Solutions Homework 5

October 30, 2018

Solution to Exercise 2.4.4

(a) This is trivial by properties of the determinant: the determinant of a product is the product of the determinant, and taking transpose doesn't change the determinant. Thus, if $V=A A^{t}$, then

$$
\operatorname{det}(V)=\operatorname{det}\left(A A^{t}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)^{2}
$$

Actually, since we could have $\operatorname{det}(A)<0$, we can only conclude $\operatorname{det}(A)=$ $\left|\operatorname{det}(V)^{1 / 2}\right|$. Of course, $\operatorname{det}(A) \neq 0$ if and only if $\operatorname{det}(V) \neq 0$.
(b) By Proposition 1.3.3 and Proposition 1.4.3, Law $\underline{Z}] \ll m^{n}$ and the Lebesgue density is

$$
f_{\underline{Z}}(\underline{z})=(2 \pi)^{-n / 2} \exp \left(-\underline{z}^{t} \underline{z} / 2\right) .
$$

If we can find a matrix A such that $A A^{t}=V$, then we know from Exercise 2.3.3(b) that $A \underline{Z}+\underline{\mu} \sim N(\underline{\mu}, V)$. Assuming $\operatorname{det}(V) \neq 0$ and hence $\operatorname{det}(A) \neq$ 0 , the transformation $h: \bar{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a bijection with inverse $h^{-1}(y)=$ $A^{-1}(\underline{y}-\underline{\mu})$ and derivative $D h^{-1}(\underline{y})=A^{-1}$ so the Jacobian is $\left|\operatorname{det}\left(A^{-1}\right)\right|=$ $\operatorname{det}(\bar{V})^{-1 / 2}$. Thus, by Proposition 2.4.2, if $\underline{Y}=A \underline{Z}+\underline{\mu} \sim N(\mu, V)$ then the Lebesgue density for \underline{Y} is given by

$$
\begin{aligned}
f_{\underline{Y}}(\underline{y}) & =\operatorname{det}(V)^{-1 / 2} f_{\underline{Z}}\left(A^{-1}(\underline{y}-\underline{\mu})\right) \\
& =(2 \pi)^{-n / 2} \operatorname{det}(V)^{-1 / 2} \exp \left[\left(A^{-1}(\underline{y}-\underline{\mu})\right)^{t}\left(A^{-1}(\underline{y}-\underline{\mu})\right)\right] \\
& =(2 \pi)^{-n / 2} \operatorname{det}(V)^{-1 / 2} \exp \left[(\underline{y}-\underline{\mu})^{t}\left(A^{-1}\right)^{t} A^{-1}(\underline{y}-\underline{\mu})\right] \\
& =(2 \pi)^{-n / 2} \operatorname{det}(V)^{-1 / 2} \exp \left[(\underline{y}-\underline{\mu})^{t}\left(A A^{t}\right)^{-1}(\underline{y}-\underline{\mu})\right] \\
& =(2 \pi)^{-n / 2} \operatorname{det}(V)^{-1 / 2} \exp \left[(\underline{y}-\underline{\mu})^{t} V^{-1}(\underline{y}-\underline{\mu})\right] .
\end{aligned}
$$

This gives the desired Lebesgue density for the $N(\underline{\mu}, V)$ distribution.
There does remain one detail: how do we know there exists a matrix A such that $A A^{t}=V$? Well, there are many such matrices, but one obvious one is $V^{1 / 2}$ which is defined as follows. Let $V=U \Lambda U^{t}$ be the spectral decomposition of V (Theorem 2.1.6). Here, $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where the
diagonal entries of Λ are the eigenvalues of V, which are nonnegative since V is nonnegative definite. Defining $\Lambda^{1 / 2}$ by $\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{n}^{1 / 2}\right)$, then it is easy to check that $V^{1 / 2}=U \Lambda^{1 / 2} U^{t}$ is a symmetric matrix and $\left(V^{1 / 2}\right)^{2}=V$. Thus, we may take $A=V^{1 / 2}$.

Solution to Exercise 2.4.6: Note that T ranges over positive and negative real numbers, so we may restrict attention to m being an integer (else we would have to deal with complex numbers). Clearly $E\left[T^{m}\right]$ for m even, but it may be ∞. Now we just try to do the integral:

$$
E\left[T^{m}\right]=\int_{-\infty}^{\infty} t^{m} \frac{\Gamma((\nu+1) / 2)}{\sqrt{\nu \pi} \Gamma(\nu / 2)}\left(1+t^{2} / \nu\right)^{-(\nu+1) / 2} d t
$$

In order for the integral to be finite, we need

$$
\int_{0}^{\infty} \frac{t^{m}}{\left(1+t^{2} / \nu\right)^{(\nu+1) / 2}} d t<\infty
$$

If $m<0$ the integrand blows up at the origin. If $m \geq 0$, then the problematic part of the integral is the large values of t. Note that as $t \rightarrow \infty, t^{m} /[(1+$ $\left.t^{2} / \nu\right)^{(\nu+1) / 2}$] behaves like $t^{m-\nu-1}$. Put somewhat more formally,

$$
\exists C_{1}, C_{2} \in(0, \infty) \forall t>1, \quad C_{1} t^{m-\nu-1} \leq \frac{t^{m}}{\left(1+t^{2} / \nu\right)^{(\nu+1) / 2}} \leq C_{2} t^{m-\nu-1}
$$

Now,

$$
\int_{1}^{\infty} t^{m-\nu-1} d t<\infty \text { if and only if } m-\nu-1<-1 \text { if and only if } m<\nu
$$

Thus, for $m \geq 0$, we conclude that that $E\left[T^{m}\right]$ is finite (and hence exists) if and only if $m<\nu$, and if $m \geq \nu$ and m is even, then the integral exists but is infinite. If $m \geq \nu$ and m is odd, then t^{m} has the same sign as t, and we will get an $\infty-\infty$ when we try to do the integral, so it will be undefined.

Recall that if $Z \sim N(0,1)$ and $V \sim \chi_{\nu}^{2}$ are independent, then

$$
T=Z /(V / \nu)^{1 / 2}
$$

has a t-distribution with ν d.f. Clearly, then we have

$$
\begin{aligned}
E\left[T^{m}\right] & =\nu^{m / 2} E\left[Z^{m} / V^{m / 2}\right] \\
& =\nu^{m / 2} E\left[Z^{m}\right] E\left[V^{-m / 2}\right]
\end{aligned}
$$

provided everything is finite, i.e. $0 \leq m<\nu$. Note that the sign of the exponent of ν given in the text is incorrect. Now, we just have to check if the formula holds if is even but $m<0$ or $m \geq \nu$, i.e., make sure the r.h.s. if ∞ in these cases. If $m<0$ and even, then $E\left[Z^{m}\right]=\infty$ and $E\left[V^{-m / 2}\right]>0$, so the r.h.s. with be ∞. If $m \geq \nu$ and m is even, then $E\left[Z^{m}\right]>0$. The important factors in $v^{-m / 2} f_{V}(v)$ will for v near 0 the powers of v, (the exponential $e^{-v / 2}$ is bounded away from 0 and ∞ for v near 0), i.e. $v^{-m / 2+\nu / 2-1}$, and this will lead to an infinite integral (on say, $(0,1)$) if the exponent is ≤-1, i.e. $m \geq \nu$. This completes the exercise.

Solution to Exercise 3.1.12 Let

$$
\bar{F}(z)=\int_{z}^{\infty} \frac{x^{\alpha-1}}{\Gamma(\alpha)} e^{-x} d x .
$$

There are a lot of integration by parts games we could play here, but in general we should separate the power function $x^{\alpha-1}$ from the exponential e^{-x} because we can't get a simple, explicit form for an indefinite integral, otherwise. So let's start with

$$
\begin{array}{rl}
u=x^{\alpha-1} & d v=e^{-x} d x \\
d u=(\alpha-1) x^{\alpha-2} d x & v=-e^{-x}
\end{array}
$$

We obtain

$$
\begin{aligned}
\bar{F}(z) & =\left.[\Gamma(\alpha)]^{-1} x^{\alpha-1}\left(-e^{-x}\right)\right|_{x=z} ^{\infty}-[\Gamma(\alpha)]^{-1} \int_{z}^{\infty}(\alpha-1) x^{\alpha-2}\left(-e^{-x}\right) d x \\
& =[\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z}+[\Gamma(\alpha)]^{-1}(\alpha-1) \int_{z}^{\infty} x^{\alpha-2} e^{-x} d x
\end{aligned}
$$

For $x \geq z, x^{\alpha-2} \leq x^{\alpha-1} / z$, so

$$
\begin{aligned}
\int_{z}^{\infty} x^{\alpha-2} e^{-x} d x & \leq \frac{1}{z} \int_{z}^{\infty} x^{\alpha-1} e^{-x} d x \\
& =\frac{1}{z} \Gamma(\alpha) \bar{F}(z) .
\end{aligned}
$$

Plugging this into our previous calculation and remebering that $\Gamma(\alpha) / \Gamma(\alpha-1)$ $=\alpha-1$ is just an unimportant constant, we get

$$
\bar{F}(z)=[\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z}+\mathcal{O}(1 / z) \bar{F}(z)
$$

The $\mathcal{O}(1 / z)$ is of course as $z \rightarrow \infty$. Now we subtract the last term from both sides to obtain

$$
\bar{F}(z)[1+\mathcal{O}(1 / z)]=[\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z}
$$

Now we apply the same argument as in the normal tail example (see the discussion of (3.8) from (3.7)) to conclude

$$
\bar{F}(z)=[\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z}[1+\mathcal{O}(1 / z)] .
$$

Interestingly, the tail area in the Gamma distribution is asymptotically equivalent to the density.

Solution to Exercise 3.2.8: We can solve this fairly easily using Proposition 3.2 .8 by computing second moments. Since the X_{i} 's are assumed to have mean 0 and finite variance $\sigma^{2}>0$, we have (using the assumed independence of the X_{i} 's in the variance calculation)

$$
\begin{aligned}
E\left[Y_{n}\right] & =0 \\
\operatorname{Var}\left[Y_{n}\right] & =\sigma^{2} \sum_{i=1}^{n} i^{2 p} .
\end{aligned}
$$

Now we employ the simple trick from analysis of bounding the sum by a pair of integrals (with possibly additional terms). There are a few cases to consider.
$p \geq 0$: In this case, the mapping $x \mapsto x^{2 p}$ is nondecreasing, so

$$
x^{2 p} I_{[i-1, i]}(x) \leq i^{2 p} I_{[i-1, i]}(x) \leq x^{2 p} I_{[i, i+1]}(x) .
$$

Adding up over $1 \leq i \leq n$ and integrating gives

$$
\frac{n^{2 p+1}}{2 p+1} \leq \int_{0}^{n} x^{2 p} d x \leq \sum_{i=1}^{n} i^{2 p} \leq \int_{1}^{n+1} x^{2 p} d x \leq \frac{(n+1)^{2 p+1}-1}{2 p+1}
$$

Since $n^{2 p+1} \rightarrow \infty$, it is easy to see that

$$
\frac{(n+1)^{2 p+1}-1}{2 p+1}=O\left(n^{2 p+1}\right)
$$

We do not really need the lower bound, but using it we can check that in fact $E\left[Y_{n}^{2}\right] \sim \sigma^{2} n^{2 p+1} /(2 p+1)$. To see the claim in the last equation, note that the term $-1 /(2 p+1)=o\left(n^{2 p+1}\right)$ and since $[(n+1) / n]^{2 p+1} \rightarrow$ 1, we also have $(n+1)^{2 p+1}=O\left(n^{2 p+1}\right)$. So, we have

$$
E\left[Y_{n}^{2}\right]=O\left(n^{2 p+1}\right)
$$

and this implies by the proposition that

$$
Y_{n}=O_{P}\left(n^{p+1 / 2}\right) .
$$

$-1 / 2<p<0$: In this case, the map is decreasing, so an appropriate upper bound is

$$
i^{2 p} I_{[i, i+1]}(x) \leq x^{2 p} I_{[i, i+1]}(x) .
$$

Adding up and integrating again, we get

$$
\sum_{i=1}^{n} i^{2 p} \leq \int_{1}^{n} x^{2 p} d x=\frac{n^{2 p+1}-1}{2 p+1}=O\left(n^{2 p+1}\right) .
$$

Then from the proposition we get $Y_{n}=O_{P}\left(n^{p+1 / 2}\right)$.
$p=-1 / 2$: For this case, the same upper bound from the previous case applies, but the integral is now

$$
\int_{1}^{n} x^{-1} d x=\log (n)
$$

and so we get $Y_{n}=O_{P}\left((\log n)^{1 / 2}\right)$.
$p<-1 / 2$: The same upper bound as the previous two cases applies, but now the integral is bounded as $n \rightarrow \infty$:

$$
\int_{1}^{n} x^{2 p} d x=\frac{1-x^{2 p+1}}{-(2 p+1)} \rightarrow 1 /(-(2 p+1))
$$

since of course $2 p+1<0$. Hence, $E\left[Y_{n}^{2}\right]$ is bounded and so is $O(1)$, so $Y_{n}=O_{P}(1)$.

