Solutions Homework 5

October 30, 2018

Solution to Exercise 2.4.4

(a) This is trivial by properties of the determinant: the determinant of a product is the product of the determinant, and taking transpose doesn't change the determinant. Thus, if $V = AA^t$, then

$$\det(V) = \det(AA^t) = \det(A)\det(A^t) = \det(A)^2.$$

Actually, since we could have $\det(A) < 0$, we can only conclude $\det(A) = |\det(V)^{1/2}|$. Of course, $\det(A) \neq 0$ if and only if $\det(V) \neq 0$.

(b) By Proposition 1.3.3 and Proposition 1.4.3, $\text{Law}[\underline{Z}] \ll m^n$ and the Lebesgue density is

$$f_{\underline{Z}}(\underline{z}) = (2\pi)^{-n/2} \exp(-\underline{z}^t \underline{z}/2).$$

If we can find a matrix A such that $AA^t = V$, then we know from Exercise 2.3.3(b) that $A\underline{Z} + \underline{\mu} \sim N(\underline{\mu}, V)$. Assuming $\det(V) \neq 0$ and hence $\det(A) \neq 0$, the transformation $h : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a bijection with inverse $h^{-1}(\underline{y}) = A^{-1}(\underline{y} - \underline{\mu})$ and derivative $Dh^{-1}(\underline{y}) = A^{-1}$ so the Jacobian is $|\det(A^{-1})| = \det(V)^{-1/2}$. Thus, by Proposition 2.4.2, if $\underline{Y} = A\underline{Z} + \underline{\mu} \sim N(\mu, V)$ then the Lebesgue density for \underline{Y} is given by

$$f_{\underline{Y}}(\underline{y}) = \det(V)^{-1/2} f_{\underline{Z}} \left(A^{-1}(\underline{y} - \underline{\mu}) \right)$$

= $(2\pi)^{-n/2} \det(V)^{-1/2} \exp\left[\left(A^{-1}(\underline{y} - \underline{\mu}) \right)^t \left(A^{-1}(\underline{y} - \underline{\mu}) \right) \right]$
= $(2\pi)^{-n/2} \det(V)^{-1/2} \exp\left[\left(\underline{y} - \underline{\mu} \right)^t \left(A^{-1} \right)^t A^{-1}(\underline{y} - \underline{\mu}) \right]$
= $(2\pi)^{-n/2} \det(V)^{-1/2} \exp\left[\left(\underline{y} - \underline{\mu} \right)^t \left(AA^t \right)^{-1} \left(\underline{y} - \underline{\mu} \right) \right]$
= $(2\pi)^{-n/2} \det(V)^{-1/2} \exp\left[\left(\underline{y} - \underline{\mu} \right)^t V^{-1}(\underline{y} - \underline{\mu}) \right]$.

This gives the desired Lebesgue density for the $N(\mu, V)$ distribution.

There does remain one detail: how do we know there exists a matrix A such that $AA^t = V$? Well, there are many such matrices, but one obvious one is $V^{1/2}$ which is defined as follows. Let $V = U\Lambda U^t$ be the spectral decomposition of V (Theorem 2.1.6). Here, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ where the

diagonal entries of Λ are the eigenvalues of V, which are nonnegative since V is nonnegative definite. Defining $\Lambda^{1/2}$ by diag $(\lambda_1^{1/2}, \ldots, \lambda_n^{1/2})$, then it is easy to check that $V^{1/2} = U\Lambda^{1/2}U^t$ is a symmetric matrix and $(V^{1/2})^2 = V$. Thus, we may take $A = V^{1/2}$.

Solution to Exercise 2.4.6: Note that T ranges over positive and negative real numbers, so we may restrict attention to m being an integer (else we would have to deal with complex numbers). Clearly $E[T^m]$ for m even, but it may be ∞ . Now we just try to do the integral:

$$E[T^m] = \int_{-\infty}^{\infty} t^m \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + t^2/\nu\right)^{-(\nu+1)/2} dt$$

In order for the integral to be finite, we need

$$\int_0^\infty \frac{t^m}{(1+t^2/\nu)^{(\nu+1)/2}} \, dt < \infty.$$

If m < 0 the integrand blows up at the origin. If $m \ge 0$, then the problematic part of the integral is the large values of t. Note that as $t \to \infty$, $t^m/[(1 + t^2/\nu)^{(\nu+1)/2}]$ behaves like $t^{m-\nu-1}$. Put somewhat more formally,

$$\exists C_1, C_2 \in (0, \infty) \, \forall t > 1, \quad C_1 t^{m-\nu-1} \leq \frac{t^m}{(1+t^2/\nu)^{(\nu+1)/2}} \leq C_2 t^{m-\nu-1}.$$

Now,

$$\int_{1}^{\infty} t^{m-\nu-1} dt < \infty \text{ if and only if } m-\nu-1 < -1 \text{ if and only if } m < \nu.$$

Thus, for $m \ge 0$, we conclude that that $E[T^m]$ is finite (and hence exists) if and only if $m < \nu$, and if $m \ge \nu$ and m is even, then the integral exists but is infinite. If $m \ge \nu$ and m is odd, then t^m has the same sign as t, and we will get an $\infty - \infty$ when we try to do the integral, so it will be undefined.

Recall that if $Z \sim N(0, 1)$ and $V \sim \chi^2_{\nu}$ are independent, then

$$T = Z/(V/\nu)^{1/2},$$

has a *t*-distribution with ν d.f. Clearly, then we have

$$E[T^{m}] = \nu^{m/2} E[Z^{m}/V^{m/2}] = \nu^{m/2} E[Z^{m}] E[V^{-m/2}],$$

provided everything is finite, i.e. $0 \leq m < \nu$. Note that the sign of the exponent of ν given in the text is incorrect. Now, we just have to check if the formula holds if is even but m < 0 or $m \geq \nu$, i.e., make sure the r.h.s. if ∞ in these cases. If m < 0 and even, then $E[Z^m] = \infty$ and $E[V^{-m/2}] > 0$, so the r.h.s. with be ∞ . If $m \geq \nu$ and m is even, then $E[Z^m] > 0$. The important factors in $v^{-m/2} f_V(v)$ will for v near 0 the powers of v, (the exponential $e^{-v/2}$ is bounded away from 0 and ∞ for v near 0), i.e. $v^{-m/2+\nu/2-1}$, and this will lead to an infinite integral (on say, (0, 1)) if the exponent is ≤ -1 , i.e. $m \geq \nu$. This completes the exercise.

Solution to Exercise 3.1.12 Let

$$\bar{F}(z) = \int_{z}^{\infty} \frac{x^{\alpha-1}}{\Gamma(\alpha)} e^{-x} dx.$$

There are a lot of integration by parts games we could play here, but in general we should separate the power function $x^{\alpha-1}$ from the exponential e^{-x} because we can't get a simple, explicit form for an indefinite integral, otherwise. So let's start with

$$u = x^{\alpha - 1} \qquad dv = e^{-x} dx,$$
$$du = (\alpha - 1)x^{\alpha - 2} dx \qquad v = -e^{-x}.$$

We obtain

$$\bar{F}(z) = [\Gamma(\alpha)]^{-1} x^{\alpha-1} (-e^{-x}) \Big|_{x=z}^{\infty} - [\Gamma(\alpha)]^{-1} \int_{z}^{\infty} (\alpha - 1) x^{\alpha-2} (-e^{-x}) dx$$
$$= [\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z} + [\Gamma(\alpha)]^{-1} (\alpha - 1) \int_{z}^{\infty} x^{\alpha-2} e^{-x} dx.$$

For $x \ge z, x^{\alpha-2} \le x^{\alpha-1}/z$, so

$$\int_{z}^{\infty} x^{\alpha-2} e^{-x} dx \leq \frac{1}{z} \int_{z}^{\infty} x^{\alpha-1} e^{-x} dx$$
$$= \frac{1}{z} \Gamma(\alpha) \overline{F}(z).$$

Plugging this into our previous calculation and remebering that $\Gamma(\alpha)/\Gamma(\alpha-1) = \alpha - 1$ is just an unimportant constant, we get

$$\bar{F}(z) = [\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z} + \mathcal{O}(1/z)\bar{F}(z).$$

The $\mathcal{O}(1/z)$ is of course as $z \to \infty$. Now we subtract the last term from both sides to obtain

$$\bar{F}(z) [1 + \mathcal{O}(1/z)] = [\Gamma(\alpha)]^{-1} z^{\alpha - 1} e^{-z}$$

Now we apply the same argument as in the normal tail example (see the discussion of (3.8) from (3.7)) to conclude

$$\bar{F}(z) = [\Gamma(\alpha)]^{-1} z^{\alpha-1} e^{-z} [1 + \mathcal{O}(1/z)].$$

Interestingly, the tail area in the Gamma distribution is asymptotically equivalent to the density.

Solution to Exercise 3.2.8: We can solve this fairly easily using Proposition 3.2.8 by computing second moments. Since the X_i 's are assumed to have mean 0 and finite variance $\sigma^2 > 0$, we have (using the assumed independence of the X_i 's in the variance calculation)

$$E[Y_n] = 0,$$

Var $[Y_n] = \sigma^2 \sum_{i=1}^n i^{2p}$

Now we employ the simple trick from analysis of bounding the sum by a pair of integrals (with possibly additional terms). There are a few cases to consider.

 $p \ge 0$: In this case, the mapping $x \mapsto x^{2p}$ is nondecreasing, so

$$x^{2p}I_{[i-1,i]}(x) \leq i^{2p}I_{[i-1,i]}(x) \leq x^{2p}I_{[i,i+1]}(x).$$

Adding up over $1 \le i \le n$ and integrating gives

$$\frac{n^{2p+1}}{2p+1} \leq \int_0^n x^{2p} dx \leq \sum_{i=1}^n i^{2p} \leq \int_1^{n+1} x^{2p} dx \leq \frac{(n+1)^{2p+1} - 1}{2p+1}.$$

Since $n^{2p+1} \to \infty$, it is easy to see that

$$\frac{(n+1)^{2p+1}-1}{2p+1} = O(n^{2p+1}).$$

We do not really need the lower bound, but using it we can check that in fact $E[Y_n^2] \sim \sigma^2 n^{2p+1}/(2p+1)$. To see the claim in the last equation, note that the term $-1/(2p+1) = o(n^{2p+1})$ and since $[(n+1)/n]^{2p+1} \rightarrow 1$, we also have $(n+1)^{2p+1} = O(n^{2p+1})$. So, we have

$$E[Y_n^2] \; = \; O(n^{2p+1})$$

and this implies by the proposition that

$$Y_n = O_P(n^{p+1/2}).$$

-1/2 : In this case, the map is decreasing, so an appropriate upper bound is

$$i^{2p}I_{[i,i+1]}(x) \leq x^{2p}I_{[i,i+1]}(x).$$

Adding up and integrating again, we get

$$\sum_{i=1}^{n} i^{2p} \leq \int_{1}^{n} x^{2p} dx = \frac{n^{2p+1} - 1}{2p+1} = O(n^{2p+1}).$$

Then from the proposition we get $Y_n = O_P(n^{p+1/2})$.

p = -1/2: For this case, the same upper bound from the previous case applies, but the integral is now

$$\int_{1}^{n} x^{-1} dx = \log(n)$$

and so we get $Y_n = O_P((\log n)^{1/2}).$

p < -1/2: The same upper bound as the previous two cases applies, but now the integral is bounded as $n \to \infty$:

$$\int_{1}^{n} x^{2p} dx = \frac{1 - x^{2p+1}}{-(2p+1)} \to 1/(-(2p+1)),$$

since of course 2p + 1 < 0. Hence, $E[Y_n^2]$ is bounded and so is O(1), so $Y_n = O_P(1)$.