
1

Solutions Homework 5
October 30, 2018

Solution to Exercise 2.4.4
(a) This is trivial by properties of the determinant: the determinant of

a product is the product of the determinant, and taking transpose doesn’t
change the determinant. Thus, if V = AAt, then

det(V ) = det(AAt) = det(A) det(At) = det(A)2.

Actually, since we could have det(A) < 0, we can only conclude det(A) =
| det(V )1/2|. Of course, det(A) 6= 0 if and only if det(V ) 6= 0.

(b) By Proposition 1.3.3 and Proposition 1.4.3, Law[Z] � mn and the
Lebesgue density is

fZ(z) = (2π)−n/2 exp(−ztz/2).

If we can find a matrix A such that AAt = V , then we know from Exercise
2.3.3(b) that AZ + µ ∼ N(µ, V ). Assuming det(V ) 6= 0 and hence det(A) 6=
0, the transformation h : IRn −→ IRn is a bijection with inverse h−1(y) =
A−1(y − µ) and derivative Dh−1(y) = A−1 so the Jacobian is | det(A−1)| =

det(V )−1/2. Thus, by Proposition 2.4.2, if Y = AZ + µ ∼ N(µ, V ) then the
Lebesgue density for Y is given by

fY (y) = det(V )−1/2fZ
(
A−1(y − µ)

)
= (2π)−n/2 det(V )−1/2 exp

[(
A−1(y − µ)

)t (
A−1(y − µ)

)]
= (2π)−n/2 det(V )−1/2 exp

[
(y − µ)t

(
A−1

)t
A−1(y − µ)

]
= (2π)−n/2 det(V )−1/2 exp

[
(y − µ)t

(
AAt

)−1
(y − µ)

]
= (2π)−n/2 det(V )−1/2 exp

[
(y − µ)tV −1(y − µ)

]
.

This gives the desired Lebesgue density for the N(µ, V ) distribution.
There does remain one detail: how do we know there exists a matrix A

such that AAt = V ? Well, there are many such matrices, but one obvious
one is V 1/2 which is defined as follows. Let V = UΛU t be the spectral
decomposition of V (Theorem 2.1.6). Here, Λ = diag(λ1, . . . , λn) where the
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diagonal entries of Λ are the eigenvalues of V , which are nonnegative since V
is nonnegative definite. Defining Λ1/2 by diag(λ

1/2
1 , . . . , λ1/2n ), then it is easy

to check that V 1/2 = UΛ1/2U t is a symmetric matrix and (V 1/2)2 = V . Thus,
we may take A = V 1/2.

Solution to Exercise 2.4.6: Note that T ranges over positive and
negative real numbers, so we may restrict attention to m being an integer
(else we would have to deal with complex numbers). Clearly E[Tm] for m
even, but it may be ∞. Now we just try to do the integral:

E[Tm] =
∫ ∞
−∞

tm
Γ((ν + 1)/2)√
νπΓ(ν/2)

(1 + t2/ν)−(ν+1)/2 dt

In order for the integral to be finite, we need∫ ∞
0

tm

(1 + t2/ν)(ν+1)/2
dt < ∞.

If m < 0 the integrand blows up at the origin. If m ≥ 0, then the problematic
part of the integral is the large values of t. Note that as t → ∞, tm/[(1 +
t2/ν)(ν+1)/2] behaves like tm−ν−1. Put somewhat more formally,

∃C1, C2 ∈ (0,∞)∀t > 1, C1t
m−ν−1 ≤ tm

(1 + t2/ν)(ν+1)/2
≤ C2t

m−ν−1.

Now,∫ ∞
1

tm−ν−1 dt < ∞ if and only if m− ν − 1 < −1 if and only if m < ν.

Thus, for m ≥ 0, we conclude that that E[Tm] is finite (and hence exists) if
and only if m < ν, and if m ≥ ν and m is even, then the integral exists but
is infinite. If m ≥ ν and m is odd, then tm has the same sign as t, and we
will get an ∞−∞ when we try to do the integral, so it will be undefined.

Recall that if Z ∼ N(0, 1) and V ∼ χ2
ν are independent, then

T = Z/(V/ν)1/2,

has a t-distribution with ν d.f. Clearly, then we have

E[Tm] = νm/2E[Zm/V m/2]

= νm/2E[Zm]E[V −m/2],
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provided everything is finite, i.e. 0 ≤ m < ν. Note that the sign of the
exponent of ν given in the text is incorrect. Now, we just have to check if the
formula holds if is even but m < 0 or m ≥ ν, i.e., make sure the r.h.s. if∞ in
these cases. If m < 0 and even , then E[Zm] =∞ and E[V −m/2] > 0, so the
r.h.s. with be ∞. If m ≥ ν and m is even, then E[Zm] > 0. The important
factors in v−m/2fV (v) will for v near 0 the powers of v, (the exponential e−v/2

is bounded away from 0 and ∞ for v near 0), i.e. v−m/2+ν/2−1, and this will
lead to an infinite integral (on say, (0, 1)) if the exponent is ≤ −1, i.e. m ≥ ν.
This completes the exercise.

Solution to Exercise 3.1.12 Let

F̄ (z) =
∫ ∞
z

xα−1

Γ(α)
e−x dx.

There are a lot of integration by parts games we could play here, but in
general we should separate the power function xα−1 from the exponential
e−x because we can’t get a simple, explicit form for an indefinite integral,
otherwise. So let’s start with

u = xα−1 dv = e−x dx,

du = (α− 1)xα−2 dx v = −e−x.

We obtain

F̄ (z) = [Γ(α)]−1 xα−1(−e−x)
∣∣∣∞
x=z
− [Γ(α)]−1

∫ ∞
z

(α− 1)xα−2(−e−x) dx

= [Γ(α)]−1 zα−1e−z + [Γ(α)]−1 (α− 1)
∫ ∞
z

xα−2e−x dx.

For x ≥ z, xα−2 ≤ xα−1/z, so∫ ∞
z

xα−2e−x dx ≤ 1

z

∫ ∞
z

xα−1e−x dx

=
1

z
Γ(α)F̄ (z).

Plugging this into our previous calculation and remebering that Γ(α)/Γ(α−1)
= α− 1 is just an unimportant constant, we get

F̄ (z) = [Γ(α)]−1 zα−1e−z + O(1/z)F̄ (z).
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The O(1/z) is of course as z →∞. Now we subtract the last term from both
sides to obtain

F̄ (z) [1 +O(1/z)] = [Γ(α)]−1 zα−1e−z.

Now we apply the same argument as in the normal tail example (see the
discussion of (3.8) from (3.7)) to conclude

F̄ (z) = [Γ(α)]−1 zα−1e−z [1 +O(1/z)] .

Interestingly, the tail area in the Gamma distribution is asymptotically equiv-
alent to the density.

Solution to Exercise 3.2.8: We can solve this fairly easily using
Proposition 3.2.8 by computing second moments. Since the Xi’s are assumed
to have mean 0 and finite variance σ2 > 0, we have (using the assumed
independence of the Xi’s in the variance calculation)

E[Yn] = 0,

Var[Yn] = σ2
n∑
i=1

i2p.

Now we employ the simple trick from analysis of bounding the sum by a
pair of integrals (with possibly additional terms). There are a few cases to
consider.

p ≥ 0: In this case, the mapping x 7→ x2p is nondecreasing, so

x2pI[i−1,i](x) ≤ i2pI[i−1,i](x) ≤ x2pI[i,i+1](x).

Adding up over 1 ≤ i ≤ n and integrating gives

n2p+1

2p+ 1
≤

∫ n

0
x2pdx ≤

n∑
i=1

i2p ≤
∫ n+1

1
x2pdx ≤ (n+ 1)2p+1 − 1

2p+ 1
.

Since n2p+1 →∞, it is easy to see that

(n+ 1)2p+1 − 1

2p+ 1
= O(n2p+1).
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We do not really need the lower bound, but using it we can check that
in fact E[Y 2

n ] ∼ σ2n2p+1/(2p+1). To see the claim in the last equation,
note that the term −1/(2p+ 1) = o(n2p+1) and since [(n+ 1)/n]2p+1 →
1, we also have (n+ 1)2p+1 = O(n2p+1). So, we have

E[Y 2
n ] = O(n2p+1)

and this implies by the proposition that

Yn = OP (np+1/2).

−1/2 < p < 0: In this case, the map is decreasing, so an appropriate upper
bound is

i2pI[i,i+1](x) ≤ x2pI[i,i+1](x).

Adding up and integrating again, we get

n∑
i=1

i2p ≤
∫ n

1
x2pdx =

n2p+1 − 1

2p+ 1
= O(n2p+1).

Then from the proposition we get Yn = OP (np+1/2).

p = −1/2: For this case, the same upper bound from the previous case ap-
plies, but the integral is now∫ n

1
x−1dx = log(n)

and so we get Yn = OP ((log n)1/2).

p < −1/2: The same upper bound as the previous two cases applies, but now
the integral is bounded as n→∞:

∫ n

1
x2pdx =

1− x2p+1

−(2p+ 1)
→ 1/(−(2p+ 1)),

since of course 2p+ 1 < 0. Hence, E[Y 2
n ] is bounded and so is O(1), so

Yn = OP (1).


