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Solutions Homework 6
November 12, 2018

Solution to Exercise 3.3.1 (a) FALSE: Here is a counterexample
to the statement: Let U and V be independent N(0, 1) random variables.
Define a sequence of bivariate random vectors by

(Xn, Yn) = (U, V ), ∀n.

Then Xn
D→ U , Yn

D→ U (since Xn
D
= Yn

D
= U). However, (Xn, Yn) does not

converge in distribution to the bivariate random vector (U,U) (which has a
singular normal distribution in IR2 whereas the common distribution for all
(Xn, Yn) has a nonsingular normal distribution).

(b) FALSE: Counterexample: let U ∼ Unif(0, 1), Xn = nI(0,1/n)(U).

The P [Xn 6= 0] = 1/n which → 0, so Xn
P→ 0 and hence also Xn

D→ 0.
However E[Xn] = 1 for all n while E[0] = 0, of course.

(c) TRUE: Use Continuous Mapping Principle with h(x) = x2.

(d) TRUE: Apply the Cramer-Wold device. Suppose that Xn
D→ X and

Yn
D→ c, where Xn, Yn are random k-vectors. Let v be a fixed k-vector, they

by the Continuous Mapping Principle, v′Xn
D→ v′X and v′Yn

D→ v′c. By the

univariate Slutksky result, v′Xn + v′Yn = v′(Xn + Yn)
D→ v′(X + c). Since

this holds for all v′, the result that Xn + Yn
D→ X + c follows.

Solution to Exercise 3.3.2: This should be a straightforward
applicaton of the Cramer-Wold device (Theorem 3.3.7). Assume the random
vectors are k dimensional and fix any u ∈ IRk. Then by the continuous

mapping principle, uTXn
D→ uTX. We are assuming Xn − Yn

D→ 0, so by

continuous mapping principle again, uT (Xn − Yn) = uTXn − uTYn
D→ 0,

and hence the univariate random variabls uTXn and uTYn are convergence
equivalent. Thus, we conclude from the univariate version of the theorem

that uTYn
D→ uTX. Since u was arbitrary, we conclude from Cramer-Wold

that Yn
D→ X, as desired.

Solution to Exercise 3.3.6 (a) This is an easy application of Cramer-
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Wold. Let v be a fixed d-vector. Note that

E[vtXn] = vtµ

Var[vtXn] = vtV v.

An application of the univariate CLT gives

√
n
(
vtX̄n − vtµ

)
= vt

[√
n(X̄n − µ)

]
D→ N(0, vtV v).

Note that if Z ∼ N(0, V ) then vtZ ∼ N(0, vtV v). Thus, we have shown

that for all v we have vt
[√
n(X̄n − µ)

]
D→ vtZ where Z ∼ N(0, V ) and so it

follows that
√
n(X̄n − µ)

D→ N(0, V ).
(b) Let A be a symmetric matrix such that A2 = V . Basically, if V

= UΛU t where U is orthogonal and Λ = diag(λ1, . . . , λd) is diagonal, then

A = UΛ1/2U t where Λ1/2 is the diagonal matrix diag(λ
1/2
1 , . . . , λ

1/2
d ). Put

Y n = A−1
√
n(X̄n−µ). If Z ∼ N(0, V ) then since

√
n(X̄n−µ)

D→ Z we have

by the continuous mapping principle that Y n
D→ A−1Z ∼ N(0, A−1V A−1) =

N(0, I). Let Y ∼ N(0, I). Applying the continuous mapping principle again,

we get n (X̄n − µ)′V −1(X̄n − µ) = Y t
nY n

D→ Y tY =
∑d

i=1 Y
2
i ∼ χ2

d since Y1,
. . ., Yd are i.i.d. N(0, 1).

Solution to Exercise 3.3.7 It is somewhat easier to do part (b) first,

then part (a). So, to that end, assume Xn are random k-vectors, Xn
D→ X,

and An are random m × k matrices, An
D→ Z, where A is a fixed m × k

matrix. As pointed out in class, for any matrix B and vector x,

‖Bx‖ ≤ ‖B‖‖x‖,

provided the multiplication makes sense (where ‖B‖2 =
∑

i

∑
j B

2
ij). Now,

An
D→ A means An = A+ oP (1), by Proposition 3.3.4(b).Hence,

‖AnXn − AXn‖ = ‖(An − A)Xn‖
≤ ‖(An − A)‖‖Xn‖
= oP (1)‖Xn‖
= oP (1)OP (1) (tightness)

= oP (1).
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Thus, AnXn and AXn are convergence equivalent. Now AXn
D→ AX by the

continuous mapping principle (applied to h(x) = Ax). The desired result
follows.

To do part (a), we need only show that An
D→ A where A is nonsingular

implies A−1n
D→ A−1. To this end, it suffices to argue that h(B) = B−1

is a continuous mapping on the space of nonsingular matrices, then apply
continuous mapping principle. One can “handwave” this argument as follows.
Using the formula for B−1 in terms of determinants of cofactors, one sees that
B−1 can be expressed in terms of sums of products of entries of B (which are
“clearly” continuous maps) divided by detB, which is also a continuous map
(same argument), so h(B) = B−1 is continuous provided detB is nonzero.

Solution to Exercise 3.4.1: By the Continuous Mapping Principle

(CMP) for convergence in distribution, we have that h(
√
n[Xn−µ])

D→ h(Z)
= Z2, where Z ∼ N(0, σ2). Of course Z2 ∼ σ2χ2

1.
The limiting distribution of h(Xn) = X2

n is degenerate at µ2. Since√
n[Xn − µ] converges in distribution, we have by the Tightness Lemma

that
√
n[Xn − µ] = OP (1), and hence Xn = µ + OP (n−1/2) which implies

Xn
D→ µ and so by CMP, X2

n
D→ µ2, a degenerate random variable.

Finally, for the last part, we apply the δ-method. Dh(µ) = 2µ, so
√
n[h(Xn)−h(µ)]

D→ 2µZ where Z ∼ N(0, σ2), and thus 2µZ ∼ N(0, 4µ2σ2).

Solution to Exercise 3.4.2: (a) Since Var[Xi] = µ2, we have by the
CLT √

n
(
X̄n − µ

)
D→ N(0, µ2).

(b) We apply the δ-method with

h(u) = exp[−x0/u], u > 0.

Now
h′(u) = (x0/u

2) exp[−x0/u],

so
√
n
(
exp[−x0/X̄n]− exp[−x0/µ]

)
=
√
n
(
h(X̄n − µ

)
D→ N

(
0, [h′(µ)]2µ2

)
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= N

(
0,
x20
µ4

exp[−2x0/u]µ2

)

= N

(
0,
x20
µ2

exp[−2x0/u]

)

Note that the variance expression is dimensionless (e.g., assume Xi are in
meters), as it should be since the first expression is basically a (dimensionless)
probability.

Solution to Exercise 3.4.3 Following the hint in part (a),

nS2
n/σ

2 ∼ χ2
n−1

D
=

n−1∑
i=1

Yi, where the Yi are i.i.d. χ2
1.

Defining

Ȳn−1 =
1

n− 1

n−1∑
i=1

Yi,

then by the CLT, √
n− 1

(
Ȳn−1 − 1

)
D→ N(0, 2). (1)

(Note, we used the facts that E[Yi] = 1 and Var[Yi] = 2.) So let’s relate Ȳn
to S2

n.

nS2
n/σ

2 D
=

n−1∑
i=1

Yi = (n− 1)Ȳn−1,

so

S2
n

D
=

n− 1

n
σ2Ȳn−1,

and

√
n
(
S2
n − σ2

)
D
=
√
n
(
n− 1

n
σ2Ȳn−1 − σ2

)
=

√
n

n− 1
σ2
√
n− 1

(
Ȳn−1 − 1

)
− 1√

n
σ2Ȳn−1

Now √
n

n− 1
→ 1,
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so by Slutsky (equation (3.28) of the text) and (1) above,√
n

n− 1
σ2
√
n− 1

(
Ȳn−1 − 1

)
D→ σ2N(0, 2)

D
= N(0, 2σ4). (2)

Also,
1√
n
σ2Ȳn−1 = OP

(
n−1/2

)
= oP (1),

so by Slutsky (equation (3.27) in the text) and (2) above,√
n

n− 1
σ2
√
n− 1

(
Ȳn−1 − 1

)
− 1√

n
σ2Ȳn−1

D→ N(0, 2σ4),

which of course gives the asymptotic distribution for
√
n[S2

n − σ2].
For Sn we apply the δ-method with h(x) =

√
x, h′(x) = (2

√
x)−1, and

√
n[Sn − σ]

D→ N
(
0, (2
√
σ2)−22σ4

)
D
= N(0, σ2/2).

(Exercise: check that units are correct.)

Solution to Exercise 3.4.6 We first consider the univariate case. We
assume without loss of generality that µ = 0, σ2 = 1. Let Cn = max1≤i≤n c

2
ni.

Verifying the Lindeberg condition:

1∑n
i=1 c

2
ni

n∑
i=1

c2niE

[
Y 2
i I[c2niY

2
i > ε

n∑
i=1

c2ni]

]

≤ 1∑n
i=1 c

2
ni

n∑
i=1

c2niE

[
Y 2
1 I[CnY

2
1 > ε

n∑
i=1

c2ni]

]

= E

[
Y 2
1 I[Y 2

1 > ε
n∑

i=1

c2ni/Cn]

]
→ 0.

as n→∞ for all ε > 0 since the quantity in the indicator in the last expres-
sion tends to ∞, so the indicator tends to 0. We are using the dominated
convergence theorem with dominating function Y 2

1 . Note how easy the veri-
fication of the Lindeberg condition is. Also, taking all cni = 1 gives the i.i.d.
CLT.
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Turning to the vector valued case. Note that this is not a simple appli-
cation of the Cramer-Wold device. We assume the mean is 0 and that the
covariance matrix V is nonsingular. Let Λ and λ be the largest and smallest
eigenvalues, respectively. Then for any vector c we have

λ‖c‖2 ≤ cTV c ≤ Λ‖c‖2,

and all quantities are positive if c is nonzero. We have the events

[(cTniYi)
2 > ε

n∑
i=1

cTniV cni] ⊂ [‖cni‖2‖Yi‖2 > ελ
n∑

i=1

‖cni‖2].

Hence,

1∑n
i=1 c

T
niV cni

n∑
i=1

E

[
(cTniYi)

2I[(cTniYi)
2 > ε

n∑
i=1

cTniV cni]

]

≤ 1

Λ
∑n

i=1 ‖cni‖2
n∑

i=1

‖cni‖2E
[
‖Y1‖2I[‖Y1‖2 > ελ

n∑
i=1

‖cni‖2/ max
1≤i≤n

‖cni‖2]
]

=
1

Λ
E

[
‖Y1‖2I[‖Y1‖2 > ελ

n∑
i=1

‖cni‖2/ max
1≤i≤n

‖cni‖2]
]

→ 0,

as n → ∞ for all ε > 0 by the same argument as before. This verifies the
Lindeberg condition.


