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Solutions Homework 5
December 12, 2018

Solution to Exercise 5.1.8: Let a ∈ IR be a translation and c > 0 be
a re-scaling.

b̂1(cx+ a) = |cxn + a− (cx1 + a)|
= c|xn − x1|
= cb̂1(x),

which shows b̂1 is location invariant and scale equivariant. It’s not clear why
anyone would want to compute this.

Turning to the others:

b̂2(cx+ a) = (cx(n) + a)− (cx(1) + a)

= c(x(n) − x(1))
= cb̂2(x).

Note that since c > 0, if we define y = cx+a then the order statistics (sorted
values) of y satisfy y(i) = cx(i) + a, a fact that was used in the first step of
the computation above. Note that the statistic analyzed here is the sample
range, which is used often for various reasons.

b̂3(cx+ a) =
1

n(n− 1)

∑
i 6=j
|(cxi + b)− c(xj + b)|

= cb̂3(x).

b̂4(cx+ a) =
n∑
i=1

ci(cx(i) + a)

= c
n∑
i=1

cix(i) + a
n∑
i=1

ci

= c
n∑
i=1

cix(i)

= cb̂4(x).

In the last verification, we used the comment about the relation between the
order statistics of y and x at the first step, and the assumption that

∑
i ci = 0

in the second to last step.
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Solution to Exercise 5.2.9: These are all exponential families, so
we will apply Proposition 5.2.3. For part (a),

fθ(x) =
1

x!
θxe−θ = exp[x log θ − θ]h(x).

Cleary η(θ) = log θ is differentiable and the derivative 1/θ has rank 1 for
all θ (i.e., is nonzero). The formula for the Fisher Information in equation
(5.40) is

I(θ) = (1/θ)2Varθ(X) = 1/θ.

Note as an aside that X is an unbiased estimator of θ and Varθ(X) = θ =
1/I(θ), so X is UMVUE for θ.

Turning to part (b),

fθ(x) =

(
n
x

)
θx(1− θ)n−x = exp[x log(θ/(1− θ)) + n log(1− θ)]h(x).

The derivative of the natural parameter function is

η′(θ) =
d

dθ
log(θ/(1− θ)) =

1

θ
+

1

1− θ
=

1

θ(1− θ)
.

As this clearly exists for 0 < θ < 1, we conclude that Proposition 5.2.3
applies. Now, the Fisher Information is

I(θ) = η′(θ)2Varθ[X] =
nθ(1− θ)
[θ(1− θ)]2

= =
n

θ(1− θ)
.

Again, as an aside, we can easily see that n−1X is an unbiased estimator of
θ whose variance equals the lower bound, so it is UMVUE.

Finally, for part (c), the pmf is

fθ(x) =

(
m+ x− 1
m− 1

)
θm(1− θ)x = exp[x log(1− θ) +m log(θ)]h(x).

Clearly,

η′(θ) =
d

dθ
log(1− θ) =

−1

1− θ
exists. One can use Proposition 2.3.1(b) (on the moments of the sufficient
statistic in an exponential family; we have to subsitute in θ = 1 − eη into
m log(θ)) to derive that

Varθ(X) =
m(1− θ)

θ2
.
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Therefore,

I(θ) =
( −1

1− θ

)2 m(1− θ)
θ2

=
m

θ2(1− θ)
.

Solution to Exercise 5.2.16: If f(−x) = f(x), then ψ(x) =−f ′(x)/f(x)
satisfies ψ(−x) = −ψ(x) (since f ′(−x) = −f ′(x)), so ψ2(−x) = ψ2(x), and
therefore

I12(a, b) =
1

a2

∫
xψ2(x)f(x) dx = 0,

since x is an odd function and ψ2(x)f(x) is an even function. Thus, the
information matrix is diagonal:

I(a, b) =
1

a2

[
I11(1, 0) 0

0 I22(1, 0)

]
,

and thus

I−1(a, b) = a2
[
I−111 (1, 0) 0

0 I−122 (1, 0)

]
.

Now it is clear that a−2I11(1, 0) (respectively a−2I22(1, 0)) are the Informa-
tions for location estimation when scale is known (respectively, scale esti-
mation when location is known) for a single sample, so this shows parts (a)
and (b). For part (c), simply note that all the p.d.f.’s mentioned there are
symmetric, so the result applies to them.

Solution to Exercise 5.3.2: For part (a), the p.d.f. w.r.t. counting
measure on IN = {0, 1, 2, . . .} is

fµ(x) = exp [x log µ − µ]
1

x!
,

which is an exponential family with

T (x) = x, η(µ) = log(µ).

Note that x is not a.s. constant (i.e., does not satisfy a linear constraint in
one dimension) and η ranges over IR as µ ranges over (0,∞), so the family
is full rank, and X is complete and sufficient for a single sample, and T =∑
iXi is complete and sufficient for n i.i.d. observations. We know from e.g.

a m.g.f. argument that T is Poisson(nµ).
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g(µ) is U-estimable if and only if there is a δ : IN −→ IR such that

g(µ) =
∞∑
k=0

δ(k)
(nµ)k

k!
e−nµ, ∀µ > 0.

Multiplying through by enµ we see that enµg(µ) has a power series that
converges for all µ > 0, so it must in fact converge for all real µ (indeed,
for all complex µ), and I hope that you at least learned in calculus that if a
power series centered at 0 (a.k.a. a McLaurin series) converges for some x,
then it converges for any y with |y| < |x|. Furthermore, such power series
representations are unique and are given by the classical Taylor formula:

enµg(µ) =
∞∑
k=0

δ(k)nk
1

k!
µk ∀µ

if and only if

δ(k) = n−k
dk

dµk
[enµg(µ)]µ=0 .

In conclusion, g(µ) is U-estimable if and only if it has a power series expansion
(centered at 0) valid for all real numbers (otherwise said, is an entire analytic
function), and then the UMVUE is δ(T ) where δ is given by formula above.

For part (c), it is sometimes easier to use ad hoc methods rather than the
formula above to find the UMVUE.

(i) g(µ) = µk is already given as a power series expansion, and it is easy to
see that power series multiply, so the power series we want is

enµµk = µk
∞∑
j=0

njµj

j!
. = n−k

∞∑
i=k

1

i!
niµi

i!

(i− k)!

Matching the coefficients, it is clear that the UMVUE is δ(T ) where

δ(t) =

{
0 if t < k,

n−kt!/(t− k)! if t ≥ k.

In particular,

UMVUE for µ = n−1T = X̄
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and

UMVUE for µ2 =

{
0 if T = 0 or T = 1

T (T − 1)/n2 if T ≥ 2.

= T (T − 1)/n2

Note that if we write

t!/(t− k)! =
k−1∏
i=0

(t− i),

then the UMVUE for µk may be written more simply as

δ(t) = n−k
k−1∏
i=0

(t− i).

(ii) Of course,

g(µ) = Pµ[X1 = k] =
µk

k!
e−µ.

Thus,

enµg(µ) =
µk

k!
e(n−1)µ

=
µk

k!

∞∑
j=0

1

j!
(n− 1)jµj

=
∞∑
i=k

i!

(i− k)!k!
n−i(n− 1)i−kni

1

i!
µi,

and we see that the desired UMVUE is

δ(t) =

(
t
k

)
n−t(n− 1)t−k.

Note that the binomial coefficient

(
t
k

)
is 0 unless k ≤ t. In particular,

our UMVUE of Pµ[X1 = 0] is

δ(t) = n−t(n− 1)t = (1− 1/n)t.



6

(iii) Note that g(µ) = log µ does not have the required Taylor series ex-
pansion (in particular, it doesn’t have a finite value and derivates at
µ = 0). No unbiased estimate exists.

(iv) Plugging in our formula, (I am changing the estimand to g(µ) = eaµ)

enµeaµ = e(n+a)µ =
∞∑
k=0

(
n+ a

n

)k
nk

1

k!
µk,

from which we can read off the UMVUE as

δ(t) =
(
n+ a

n

)t
= (1 + a/n)t.

(v) Plugging in again,

enµeµ
2

=
∞∑
k=0

(nµ+ µ2)k
1

k!

=
∞∑
k=0

1

k!

k∑
j=0

(
k
j

)
njµj+2(k−j)

(by the binomial formula)

=
∞∑
k=0

1

k!

k∑
j=0

(
k
j

)
njµ2k−j

=
∞∑
k=0

2k∑
i=k

1

k!

(
k

2k − i

)
n2k−iµi

=
∞∑
i=0

 i∑
k=di/2e

i!

(i− k)!(2k − i!)
n2(k−i)

 1

i!
niµi.

In the above, di/2e denotes the smallest integer ≥ i/2, i.e. i/2 if i is
even and (i+ 1)/2 if i is odd. From this, we can read off the UMVUE
as

δ(T ) =
T∑

k=dT/2e

T !

(T − k)!(2k − T !)
n2(k−T )

(vi) This one is easy: eµ
−2

is ∞ at µ = 0, so it can’t have the requisite
Taylor series expansion.
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Solution to Exercise 5.3.6: We have from the fact that σ−2
∑n
i=1(Xi−

X̄)2 has a χ2
n−1 distribution that

E[σ̂2(a)] = (n− 1)aσ2

Var[σ̂2(a)] = 2(n− 1)a2σ4.

Using the formula MSE = Bias2 + Variance, we obtain

σ−4MSE[σ̂2(a)] = [a(n− 1)− 1]2 + 2(n− 1)a2.

Thus, with a little algebra we obtain

σ−4
{
MSE[σ̂2(a)]−MSE[σ̂2(1/(n− 1))]

}
= (n2 − 1)a2 − 2(n− 1)a+ 1− 2/(n− 1)

= (n2 − 1)[a− 1/(n− 1)][a− 1/(n+ 3)].

Note that the r.h.s. is a quadratic function of a whose graph is an upward
opening parabola with roots at a = 1/(n−1) and a = 1/(n+3). Thus, σ̂2(a)
has smaller MSE than the UMVUE, which is σ̂2(1/(n− 1)), for (n+ 3)−1 <
a < (n− 1)−1.

Solution to Exercise 5.3.8: (a) The likelihood is

f(y; a, b, σ2) = (2πσ2)−n/2 exp

[
− 1

2σ2

n∑
i=1

(yi − (axi + b))2
]

= (2π)−n/2 exp

[
− 1

2σ2

∑
i

y2i +
a

σ2

∑
i

xiyi +
b

σ2

∑
i

yi

− 1

2σ2

∑
i

(axi + b)2 − n

2
log σ2

]

As long as we have at least two distinct values of the xi, then the family
will be identifiable, as different values of a and b will give different means.
This assumption was apparently forgotten. Thus, the sufficient statistic vec-
tor T = (

∑
xiYi,

∑
Yi,

∑
Y 2
i ) does not satisfy any linear constraints. As

(a, b, σ2) range over IR × IR × (0,∞), the natural parameter vector ranges
over (−∞, 0)×IR×IR, which is an open set, so has nonempty interior. Thus,
the family is full rank, hence T is complete and sufficient.
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(b) Clearly Ȳ = n−1T2 is a function of T . Also,

n∑
i=1

x̃iỸi =
∑

xiYi − x̄
∑

Yi − Ȳ
∑

x̃i

is a function of T . Thus, we only need to check that â is unbiased for a. Note
that E[Ȳ ] = ax̄+ b. Thus,

E(a,b,σ2)[â] =
1∑
x̃2i

∑
x̃iE[Ỹi]

=
1∑
x̃2i

∑
x̃i[(axi + b)− (ax̄+ b)]

=
1∑
x̃2i
a
∑

x̃i(xi − x̄i)
= a.

Thus, â is a function of the complete and sufficient statistics which is unbiased
for a, so it is the UMVUE of a.

We see immediately that b̂ is also a function of T (since Ȳ and â are), so
we need only check that it’s expectation is always b. Thus,

E(a,b,σ2)[b̂] = E[Ȳ ]− E[â]x̄

= ax̄+ b− ax̄
= b.

(c) Clearly

σ̂2 =
1

n− 2

[∑
Y 2
i +

∑
(âxi + b̂)2 − 2â

∑
xiYi − 2b̂

∑
Yi
]
,

which is a function of T . Now we want to check that its expectation of σ2.
It is almost always easier to do these types of calculations if one subtracts
and adds E[Yi] in the squared quantity:

(n− 2)E[σ̂2] =
∑

E
[(
Yi − E[Yi] + E[Yi]− âxi − b̂

)2]
=

∑
E
[(
εi + (a− â)xi + (b− b̂)

)2]
(since Yi = E[Yi] + εi and E[Yi] = axi + b)
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â− a =

∑
Ỹix̃i∑
x̃2i
− a

Ỹi = Yi − Ȳ
= axi + b+ εi − (ax̄+ b+ ε̄)

= ax̃i + ε̃i (where ε̃i = εi − ε̄)

â− a =

∑
(ax̃i + ε̃i)x̃i∑

x̃2i
− a

=

∑
ε̃ix̃i∑
x̃2i

b̂− b = Ȳ − âx̄− b
= ax̄+ b+ ε̄− âx̄− b
= (a− â)x̄+ ε̄

(â− a)xi + (b̂− b) = (â− a)x̃i + ε̄

=

∑
j ε̃jx̃j∑
j x̃

2
j

x̃i + ε̄

Put

wi =
x̃i(∑
j x̃

2
j

)1/2 .
Note that ∑

i

w2
i = 1,∑

i

wi = 0,

where the latter follows because
∑
i x̃i =

∑
i(xi − x̄) = 0. Thus, we have

(n− 2)E[σ̂2] =
∑
i

E


εi − wi∑

j

wj ε̃j − ε̄

2


= E

∑
i

ε̃i − wi∑
j

wj ε̃j

2


= E

∑
i

ε̃2i − 2
∑
i

ε̃iwi
∑
j

wj ε̃j +
∑
i

w2
i

∑
j

wj ε̃j

2
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= E

∑
i

ε̃2i −

∑
j

wj ε̃j

2
 .

Now

E

[∑
i

ε̃2i

]
= E

[∑
i

(εi − ε̄)2
]

= (n− 1)σ2.

Also,

E


∑

j

wj ε̃j

2
 = E


∑

j

wj(εj − ε̄)

2


= E


∑

j

wjεj

2
 (since

∑
wj = 0)

= σ2
∑
j

w2
j = σ2.

Thus, we get in the end that E[σ̂2] = σ2, as desired.


