
Goodness of Fit Testing for Logistic Regression
October 15, 2018

The purpose of this lesson is to investigate goodness of fit tests for logistic
regression. Specifically, we are interested in testing whether or not a logistic
regression model really fits the data. We assume that,

P [Y = 1|X = x] = π(x),

where π is a reasonable function of x. Of course, the logistic regression model
gives a specific functional for for π with some parameters to be estimated.
Because of the nature of the response variable Y , namely that it is binary,
it is often very difficult to apply the usual tools to assess model validity, like
residual plots. This will be illustrated below.

We first wrote a function to simulate data from a logistic regression model:

Simlogistic = function(x,alpha,beta){

function to simulate data from a logistic model

INPUTS:

x: n by p matrix of predictor values, or n vector if p=1

alpha: intercept

beta: p dimensional coefficient vector

OUTPUTS:

y: n vector of binary values with logit P[Y = 1 | X = x] = alpha + sum(beta*x)

if(is.matrix(x)){

logits = alpha + x%*%beta

n = nrow(x)

}

else {

logits = alpha + beta*x

n = length(x)

}

probs = 1/(1+exp(-logits))

y = rbinom(n,1,probs)

}

Next, we simulate some data from a logistic model with a quadratic term,
and then fit an incorrect model with only a linear term.

1

> yquad = Simlogistic(cbind(x,x^2),-2,c(-1,.25))

> plot(x,yquad)

> fitquad = glm(yquad ~x,family=binomial)

> summary(fitquad)

Call:

glm(formula = yquad ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6572 -0.6254 -0.2132 0.5274 2.7018

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7729 0.7460 -5.058 4.24e-07 ***

x 0.7468 0.1371 5.446 5.16e-08 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 140.006 on 100 degrees of freedom

Residual deviance: 81.056 on 99 degrees of freedom

AIC: 85.056

Number of Fisher Scoring iterations: 5

> plot(x,fitquad$residuals,ylab="residuals",main="Working Residual Plot")

The raw data plot and residual plot are shown below. We should be able to
see in the raw data plot that there are a few too many values of y = 1 on the
left hand side, but it can escape notice. Also, it may not be possible to see
if the predictor is multivariate. The residual plot definitely has some large
values on the left side which is a cause for concern, but it doesn’t obviously
suggest the need for a quadratic term.

Regarding the output of the summary function, we see that both the in-
tercept and slope parameters are significant. The null deviance is apparently
the difference in 2 log likelihood for the model with no intercept vs. the

2

model with intercept, based on the degrees of freedom, and it looks like it is
significant based on a χ2 approximation, which is of dubious accuracy in this
setting (the d.f. is too big), which is telling us that the slope is significantly
different from 0, as we can see more accurately in the p-value given. The
residual deviance does not appear significant, based on the d.f.

In order to do a formal goodness of fit test, we follow a suggestion in the
book and bin the data by x-values and then do a χ2 goodness of fit test with
the binned data. This isn’t totally trivial to implement.

> grp = floor((1:101)/20)

> grp[grp==5] = 4

> grp = 1+grp

> tabquad = table(grp,yquad)

> tabquad

yquad

grp 0 1

1 16 3

2 18 2

3 15 5

4 2 18

5 0 22

> grpfv = tapply(fitquad$fitted.values,grp,mean)

> grpfv

1 2 3 4 5

0.04626185 0.17018895 0.46394072 0.78420715 0.94337675

> # these are averaged values of the fitted probabilities pi(x)

> temp = as.vector(grpfv)

> temp = c(1-temp,temp)

> temp2 = table(grp)

> temp2=as.vector(temp2)

> temp2

[1] 19 20 20 20 22

> temp1 = temp

> temp1[1:5] = temp1[1:5]*temp2/101

> temp1[6:10] = temp1[6:10]*temp2/101

> sum(temp1)

[1] 1

> chisq.test(as.vector(tabquad),p=temp1)

3

Chi-squared test for given probabilities

data: as.vector(tabquad)

X-squared = 12.65, df = 9, p-value = 0.1791

Warning message:

In chisq.test(as.vector(tabquad), p = temp1) :

Chi-squared approximation may be incorrect

> pchisq(12.65,df=7,lower.tail=F)

[1] 0.08110936

Note that we had to correct the d.f. of the chi-squared from 9 to 7 since the
test we are using doesn’t “know” that we estimated 2 parameters. The p-
value is on the small side, but not small enough to reject the null hypothesis
at the usual 0.05 level. The null hypothesis here is

H0 : logitπ(x) = α + βx, for some α, β.

That is, that the logistic model is correct.
We have a warning that the chi-squared approximation may be inaccu-

rate (a better adjective than “incorrect”). There is no way I can think of
to do an exact test in this case (as we can do when testing independence).
Probably, the best we can do is a parametric bootstrap. Assuming the lo-
gistic regression model is correct, our best guess at the coefficient vector is
the MLE. So, we simulate data from the fitted model, and compute the test
statistic for each simulated data set. The proportion of simulated test statis-
tic values greater or equal to the observed value then gives us an approximate
p-value. Asymptotic theory shows this works well to control the type I error
probability.

4

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Binary y vs. x

x

yq
ua
d

width=8cm

Figure 1: Plot of raw data.

5

0 2 4 6 8 10

0
10

20
30

40
Working Residual Plot

x

re
si
du
al
s

width=8cm

Figure 2: Plot of working residuals.

6

