Example of Fitting Log-Linear Models
November 20, 2017

1 Fitting a Model to a 4-way Table

Our data consists of reponses by 607 individuals on a survey about different
categories of government spending. All responses have the values 1, 2, or
3, with 1 meaning "Too Low”, 2 means ” About Right”, and 3 means ”Too
High.” The 4 categories of government spending are labelled Environment
(E), Health (H), Cities (C), and Law (L). There are 3* = 81 possible outcomes
which can be summarized in a 3 x 3 x 3 x 3 table. The data appear on the
website for the book and are discussed in Exercise 9.5.

We fit 3 successive log-linear models starting with main effects only
(fit1), main effects plus all 2-way interactions (£it2), and added in all
3 way interactions (fit3). Based on these results, we fit a model which
includes all main effects and some second order interactions (£it2.2).

The results are given below with some discussion afterwards.

> data = scan("data.txt")
Read 405 items
> data=matrix(data,ncol=5,byrow=T)
> apply(data,2,range)
[,11 [,2]1 [,3] [,4] [,5]
[1,] 1 1 1 1 0
[2,] 3 3 3 3 90
> colnames(data) = c("Environment","Health","Cities","Law","Count")

> datal = data.frame(data)

> for(j in 1:4) datall[,j] = as.factor(dataill,jl)

> # seems to be necessary to do the columns separately

> fitl = glm(Count ~ Environment + Health + Cities + Law,family=poisson,data=datal)
> summary(fit1l)

Call:

glm(formula = Count ~ Environment + Health + Cities + Law, family = poisson,
data = datal)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.5722 -0.9335 -0.2423 0.7653 4.3062



Coefficients:
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 3.77602 0.09860 38.296 < 2e-16 *x*
Environment2 -1.24379 0.10032 -12.398 < 2e-16 *x*
Environment3 -2.54048 0.17556 -14.470 < 2e-16 *x*
Health2 -1.14579 0.09773 -11.724 < 2e-16 *x*
Health3 -2.51770 0.17570 -14.329 < 2e-16 *x*
Cities2 0.58280 0.10784 5.404 6.50e-08 *x*x*
Cities3 0.55320 0.10842 5.102 3.35e-07 **x*
Law?2 -0.69315 0.08909 -7.781 7.22e-15 **x
Law3 -2.24601 0.16627 -13.508 < 2e-16 *x**

Signif. codes: O ***% 0.001 **x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1370.46 on 80 degrees of freedom
Residual deviance: 124.34 on 72 degrees of freedom
AIC: 349.18

Number of Fisher Scoring iterations: 5

> fit2 = glm(Count ~ (Environment + Health + Cities + Law)"2,
+ family=poisson,data=datal)
> summary (£fit2)

Call:
glm(formula = Count ~ (Environment + Health + Cities + Law) "2,
family = poisson, data = datal)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.62783 -0.47669 -0.07639 0.33622 1.49280

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 4.13581 0.11860 34.873 < 2e-16 *x*x*
Environment?2 -1.87605 0.25914 -7.240 4.50e-13 *x*x
Environment3 -3.35321 0.49608 -6.759 1.39e-11 **x*
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> fit3 = glm(Count ~ (Environment + Health + Cities + Law)"3,

+ family=poisson,data=datal)

Warning message:
glm.fit: fitted rates numerically O occurred

> summary(fit

Call:
glm(formula =

3)

Count

~ (Environment + Health + Cities + Law) "3,
datal)

family = poisson, data =

Deviance Resi
Min
-1.08934 -0.
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Health2:Cities3:Law3 1.936e+01 9.446e+03 0.002 0.9984
Health3:Cities3:Law3 -1.168e+00 1.486e+00 -0.786 0.4318

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1370.4575 on 80 degrees of freedom
Residual deviance: 8.5237 on 16 degrees of freedom
AIC: 345.36

Number of Fisher Scoring iterations: 19

> £fit2.2 = glm(Count ~ Environment + Health + Cities + Law +
+ Environment*Health + Health*Law,family=poisson,data=datal)
> summary(£fit2.2)

Call:
glm(formula = Count ~ Environment + Health + Cities + Law + Environment *
Health + Health * Law, family = poisson, data = datal)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9483 -0.7317 -0.2197 0.4454 2.0474

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.90715 0.09960 39.227 < 2e-16 ***
Environment?2 -1.41968 0.12382 -11.466 < 2e-16 *x*x
Environment3 -2.92376 0.24195 -12.084 < 2e-16 *x*x
Health2 -1.51455 0.14586 -10.384 < 2e-16 *xx*
Health3 -3.69507 0.34408 -10.739 < 2e-16 *xx*
Cities?2 0.58280 0.10784 5.404 6.51e-08 *xx*
Cities3 0.55320 0.10842 5.102 3.35e-07 **x
Law2 -0.91458 0.10942 -8.359 < 2e-16 *x*
Law3 -2.45788 0.20839 -11.795 < 2e-16 *xx*
Environment2:Health2 0.36231 0.23698 1.529 0.126298
Environment3:Health2 0.67247 0.41118 1.635 0.101951
Environment2:Health3 1.41968 0.39773 3.569 0.000358 **x*
Environment3:Health3 2.23061 0.52230 4.271 1.95e-05 *x*x



Health2:Law2 0.73226 0.20622 3.551 0.000384 x*x*x*

Health3:Law2 0.76043 0.40832 1.862 0.062557 .
Health2:Law3 -0.02703 0.47326 -0.057 0.954457
Health3:Law3 2.01605 0.47535 4.241 2.22e-05 *x*

Signif. codes: O *** 0.001 *x 0.01 *x 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1370.458 on 80 degrees of freedom

Residual deviance: 71.422 on 64 degrees of freedom
AIC: 312.26

Number of Fisher Scoring iterations: 5

We note the following items in the analysis:

1.

Note that the first level of each factor is set as the baseline, so it is
automatically 0 in all effects. That is why we see Law2 and Law3
terms but no Lawl terms.

In fit1, all terms are significant, suggesting we can reject a null hypoth-
esis of independence. The LRT test for independence has a chi-squared
value of 1370.46 — 124.34 with 80 — 72 = 8 degrees of freedom and
clearly has a p-value of basically 0.

In £it2, the main effects of C “lose” significance, and most of the
interaction terms of C with other variables are not “very” significant.

In £it3, we see most of the second order effects with are not significant,
and all of the third order terms are not significant. Also, there was a
warning “fitted rates numerically O occurred”, all of which sug-
gests the third order model is unnecessary.

Based on these observations, we did the £it2.2, which includes all main
effects and only the E¥H and H*L interactions. Note that this model cor-
responds to independence of C with (E,H,L), and conditional independence
of E,LL given H. Clearly, this is a much simpler model than the full second
order model, and would be easy to summarize as a simple graphical model
(if you know what those are). Also, most of the terms are “very” significant.
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I would hesitate to drop selective terms from different factor levels in second
order interactions. So, based on the significance patterns, I conclude this is
a pretty good model.

We perhaps should do a full, formal test of the null hypothesis that the
fit2.2 model is valid vs. the more general fit2 model. The LRT chi-squared
is 71.422 — 31.669 = 39.75 with 64 — 48 = 16 d.f. The p-value is .00085, so
we can reject the null hypothesis if we want, but I like the model for being
more parsimonious.

This analysis shows the power of log-linear models. We can quickly fit
them and use the results to arrive at a parsimonious model, and often inter-
pret the results in terms of independence or conditional independence.

2 Fitting Ordinal Predictors Using Linear Scores



