
Hair – Eye Color Data:
Comparing Different Exact Tests

September 21, 2016

In this lesson, we examine a data set of people (students in a large class)
who report their hair color and eye color. Our objective is to see if there is
some kind of association between the two variables and to try to characterize
that association. The original data are shown in Table 1. Also shown are the
expected counts under the independence assumption and the standardized
Pearson residuals (“z-values”). We have arranged the rows and columns from
what I somewhat subjectively have determined is darker to lighter, so they
are essentially ordinal variables.

Following typical practice, we test for independence. If we cannot reject
the null hypothesis, then there is probably not much point in going further
- we don’t have strong evidence for an association between hair color and
eye color. Any association we think we may see in the data could be due to
chance.

The observed value of the the χ2 test statistic is 138.2925. The degrees
of freedom is ν = (4 − 1)(4 − 1) = 9. The p-value based on the asymptotic
χ2

9 distribution is < 2.2 × 10−16, essentially 0. There is strong evidence for
some kind of association. All of the expected cell counts are quite large
(> 5) so there should be no difficulty with the χ2 approximation of the null
distribution. Here is the copy-and-paste from the R-console:

> # have already entered the data into a 4 by 4 matrix:

> haireye

black brown red blond

brown 68 119 26 7

hazel 15 54 14 10

green 5 29 14 16

blue 20 84 17 94

> chisq.test(haireye)

Pearson’s Chi-squared test

data: haireye

X-squared = 138.29, df = 9, p-value < 2.2e-16
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Looking at the z-values in Table 1 which are outside the range of ±2,
we see that they tend to be positive near the main diagonal and negative
away from the diagonal, suggesting a monotone association between the or-
dinal variables. There are various ways of testing for association including
“monotone” association for ordinal variables. We list five approaches here:

X2 , Pearson’s χ2 for non-ordinal association.

R2 , Estimated Renyi’s Maximal Correlation squared for non-ordinal associ-
ation.

ρ̂ , for “linear association” (with some power for monotone association) be-
tween the identity scores for the ordinal values.

S , for linear association between the rank scores.

M2 , the estimated monotone maximal correlation squared.

We would like to compare how these various test statistics perform. There
is no known asymptotic null distribution for R2 and M2 so we will have to use
permutation methods to get estimated p-values from a monte-carlo sample of
permutations. Here is a function to perform such monte-carlo approximations
for all 5 test statistics. Here is an R function to do this:

Exact5 = function(ctab,nmc=10000){

# function to perform 5 tests of association in 2 way table using monte carlo approximation.

# For monotone associations, 1-sided tests of positive association are performed for the

# rho and spear as defined below.

# INPUTS:

# ctab: I by J matrix of counts (contingency table)

# nmc: number of monte carlo trials to estimate p-values

# OUTPUTS: p-values corresponding to 5 test statistics:

# X2: Pearson chi-squared

# R2: Renyi maximal correlation squared (as estimated by ACE algorithm)

# rho: correlation of identity scores

# spear: Spearman correlation (correlation of rank scores)

# M2: maximal monotone Renyi correlation

##########################################

# convert tabled data to X-Y pairs
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I = nrow(ctab)

J = ncol(ctab)

N = sum(ctab)

X = rep(NA,N)

Y = X

n = 0

for(i in 1:I){ for(j in 1:J){

m = n+ctab[i,j]

X[(n+1):m] = i

Y[(n+1):m] = j

n = m

}}

############################################

# compute test statistics for real data

treal = Teststat5(X,Y)

# accumulator of counts of trand >= treal

pval = rep(0,5)

names(pval) = c("X2","R2","rho","spear","M2")

for(n in 1:nmc){

Xrand = sample(X)

trand = Teststat5(Xrand,Y)

pval = pval + (trand >= treal)

}

pval = pval/nmc

return(pval)

}

Here is the R function that computes all 5 test statistics on the X, Y
data:

Teststat5 = function(X,Y){

# function to compute 5 test stat values for function Exact5

# Note: must install acepack package for ace() function

X2 = chisq.test(as.factor(X),as.factor(Y))$statistic

R2 = ace(as.matrix(X),Y,cat=c(0,1))$rsq

rho = cor(X,Y)

spear = cor(rank(X),rank(Y))

M2 = ace(as.matrix(X),Y,mon=c(0,1))$rsq
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return(c(X2,R2,rho,spear,M2))

}

When it was tried on the original haireye data, the results are

> Exact5(haireye)

X2 R2 rho spear M2

0 0 0 0 0

(That took about a minute of wall time for 10,000 monte carlo trials). Every
test shows significance. Can we estimate the monte carlo sampling error?
There is a simple way of constructing confidence intervals for binomial prob-
abilities based on the Poisson approximation when the number of successes
is small (like 0). When p is small but n is large, Binomial(n, p) is approxi-
mately Poisson(λ) with λ = np. Thinking of a Poisson process with intensity
λ, the number of events in the interval [0, 1] has a Poisson(λ) distribution.
The probability of no events (approximating the binomial probability of no
successes) is e−λ, so for testing H0(λ0)λ >= λ0 vs. H1 : λ < λ0 at 0.05 level,
we cannot reject H0(λ0) if e−λ0 ≥ .05, i.e., λ0 ≤ − log(.05). Going back to
the binomial setting, if we observe 0 successes, then we get an approximate
upper 95% confidence limit of −log(.05)/n, which for this case (n = 10000)
gives 0.0002995732, approximately 0.0003. So we are pretty sure all the true
randomization p-values are < 0.0003.

To get something more interesting, we take a smaller sample of N = 50
observations and redo the tests:

> length(X)

[1] 592

> subs = sample(1:592,size=50)

> X1 = X[subs]

> Y1 = Y[subs]

> table(X1,Y1)

Y1

X1 1 2 3 4

1 5 8 3 0

2 0 7 1 1

3 0 0 1 0

4 3 10 2 9
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> # asymptotic approximations wouldn’t work well here - too many zeroes

> Exact5(table(X1,Y1))

X2 R2 rho spear M2

0.0981 0.0630 0.0015 0.0022 0.0050

There were 50 or more warnings (use warnings() to see the first 50)

> warnings() # NEVER IGNORE WARNINGS!!!!!!!!!

Warning messages:

1: In chisq.test(as.factor(X), as.factor(Y)) :

Chi-squared approximation may be incorrect

....................

50: In chisq.test(as.factor(X), as.factor(Y)) :

Chi-squared approximation may be incorrect

> # DUH! THAT’S WHY WE ARE DOING EXACT TESTS!

This is just a single data set, of course. We are extremely confident
that the null hypothesis of independence is false in the full data set (of 592
observations). It will be harder to reject the null hypothesis in the smaller
data set of 50 observations. The tests based on X2 and R2 are omnibus -
they aren’t keyed into particular alternatives. They don’t show significance
at the 0.05 level. The tests based on rho and spear are specifically geared
to finding positive association between ordinal variables, and they do show
significance. This is reasonable since we did see trends of positive association
in the original table. The M2 test is a two sided test of association (because
we can’t constrain the score functions to be monotone increasing in the ace

function, only monotone), and the p-value is around twice as big as other two
test stats sensitive to positive association. All three tests which are sensitive
to the monotone association alternatives do give significant results, though.

There is a lot more potential research on the issues raised in this lesson.
One could compare powers (since the tests are exact, we know the level is
fixed) at select alternatives in a monte-carlo study. One could consider other
test stats (like Wilks’ G2, various Wald tests, correlations using other scoring
methods, etc.).
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Hair Color
Eye Color Value Black Brown Red Blond Row Sums

Brown Obs. 68 119 26 7 220
Exp. 40.14 106.28 26.39 47.20

z-value 6.13 2.16 -0.10 -8.33
Hazel Obs. 15 54 14 10 93

Exp. 16.97 44.93 11.15 19.95
z-value -0.58 2.05 0.99 -2.74

Green Obs. 5 29 14 16 64
Exp. 11.68 30.92 7.68 13.73

z-value -2.29 -0.51 2.57 0.73
Blue Obs. 20 84 17 94 215

Exp. 39.22 103.87 25.79 46.12
z-value -4.25 -3.40 -2.31 9.97

Column Sums 108 286 71 127 592

Table 1: The Hair/Eye Color data. For each combination of Hair and Eye
color, we show the observed number of subjects, the expected number of
subjects, and the z-value.
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