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1 Exercise 3.7

The data table appears below.

Made Second?
Yes No Total

Made Yes 152 33 185
First? No 37 8 45

Total 189 41 230

Performing the χ2 test in R:

> kb = matrix(c(152,37,33,8),nrow=2)

> kb

[,1] [,2]

[1,] 152 33

[2,] 37 8

starting httpd help server ... done

> kbtest = chisq.test(kb,correct = F)

> kbtest$p.value

[1] 0.9924673

We definitely cannot reject independence here. In fact, the χ2 value is signifi-
cant on the small side (1 - the p.value = 0.0075). That doesn’t seem to mean
anything here, but in a scientific study it could mean that someone is faking
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the data and not putting enough variability in it. There have been examples
of scientific misconduct that have been discovered by statisticians this way.
But in this case, we conclude that there is no reason to doubt independence
of the free throws.

2 Exercise 3.16

(a) We entered the data into R and did a chi2 test of independence:

> tab3.16 = matrix(c(9,44,13,10,11,52,23,22,9,41,12,27),nrow=3,byrow=T)

> rownames(tab3.16) = c("low","mid","high")

> colnames(tab3.16) = c("HS","HSGrad","Col","ColGrad")

> tab3.16

HS HSGrad Col ColGrad

low 9 44 13 10

mid 11 52 23 22

high 9 41 12 27

> test3.16a = chisq.test(tab3.16)

> test3.16a$p.value

[1] 0.1809674

The p-value is too large to reject the null hypothesis of independence.
(b) One more command gives the standardized residuals:

> test3.16a$stdres

HS HSGrad Col ColGrad

low 0.4061328 1.5828205 -0.1286367 -2.1078423

mid -0.1898118 -0.5440627 1.3041565 -0.4031584

high -0.1903291 -0.9459053 -1.2374420 2.4360173

None of the standardized residuals are real big except the two in the last
column which are larger than 2 in magnitude. The last column shows an
increasing trend from lower family income to higher, so there is some evidence
that for students from higher incomes having higher aspiration of finishing
college. One also notes some tendency for the residuals in the first row to
decrease, which is consistent with students from lower income families having
lower educational aspiration.

(c) Since both variables (family income, educational aspiration) are or-
dinal, we expect that a test of ordinal association may be more appropriate.
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The easiest one is to use Pearson’s correlation with linear scores. I did a brief
search for an R-package that does this and didn’t find anything right away.
The R manual that is linked to on the web page for the book just mentions
“unpacking” the table, so that is what I did. It seems to be easiest to write
a script of function to do this.

tab2xy = function(tab){

# function to unpack a 2-way table to a matrix of xy-values

# INPUT: tab: a I by J table of counts stored as a matrix

# OUTPUT: xy: a n by 2 matrix where n is the sum of the counts in tab

n = sum(tab)

xy = matrix(NA,nrow=n,ncol=2)

I = nrow(tab)

J = ncol(tab)

k = 0

for(i in 1:I){

for(j in 1:J){

xy[(k+1):(k+tab[i,j]),] = cbind(rep(i,tab[i,j]),rep(j,tab[i,j]))

k = k+tab[i,j]

}

}

return(xy)

}

Then, we checked that it worked:

> source("/Users/dcox/MyStuff/Instruct/Stat545.17/Hw03solns/tab2xy.Rd")

> xy3.16 = tab2xy(tab3.16)

> table(xy3.16[,1],xy3.16[,2])

1 2 3 4

1 9 44 13 10

2 11 52 23 22

3 9 41 12 27

Now, we can do the test of correlation:

> test3.16b=cor.test(xy3.16[,1],xy3.16[,2])

> test3.16b$p.value

[1] 0.02905296

4



Now, we do get a statistically significant result at the 0.05 level. Of course,
we would probably have expected higher family income is associated with
higher aspiration, in which case a one sided test is appropriate, rather than
the default two sided test:

> test3.16c=cor.test(xy3.16[,1],xy3.16[,2],alternative="greater")

> test3.16c$p.value

[1] 0.01452648

Of course, the p-value is cut in half. We could also look at the test based on
a standardized estimate of γ:

> test3.16d = GKgamma(tab3.16)

> test3.16d$gamma/test3.16d$sigma

[1] 2.044439

> pnorm(-2.044439)

[1] 0.0204551

This shows positive association (the estimated gamma is positive) and is
significantly positive at about the same level as we got with the test based
on correlation of the linear scores.

Thus, we do find a significant positive association between family income
and educational aspiration in this sample of high school students. The test
using ordinal association is more powerful than the chi-squared test of in-
dependence for alternatives of positive association, so it is reasonable to use
this type of test in this setting where we expect positive association.

3 Exercise 3.19

The data are shown in the table below.

no lead lead Total
normal 18 7 25

malformed 7 7 14
Total 25 14 39

We entered the data into R in order to do the analysis.
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> tab3.19 = matrix(c(18,7,7,7),nrow=2)

> rownames(tab3.19)=c("norm","mal");colnames(tab3.19)=c("noPb","Pb")

> tab3.19

noPb Pb

norm 18 7

mal 7 7

> test3.19 = fisher.test(tab3.19,alternative="greater")

> test3.19$p.value

[1] 0.152573

At the usual 0.05 level of significance, we cannot reject the null hopothesis of
no association or negative association vs. the alternative of positive associa-
tion between the presence of lead (chemical symbol Pb) and malformations.
The p-value is small, but not small enough. Assuming there is a biological
reason to believe the alternative is true, I would suggest to the researcher
to get a larger sample size. One could estimate a sample size that’s “big
enough” based on this prelimary data (e.g., use the table to estimate the cell
probabilities, simulate data from the multinomial distribution with different
sample sizes, perform the test, and estimate the sample size where H0 is
rejected, say, 80% of the time, 80% being a commonly used power level for
estimating sample sizes).

4 Exercise 3.31

(a) We have the marginal probabilities

π1· = π11 + π12

= θ2 + θ(1 − θ)

= θ,

π·1 = π11 + π21

= θ.

Clearly then π11 = π1·π·1, and we have independence of the events [X = 1]
and [Y = 1]. For binary random variables, it suffices to check that any one of
the four possible joint events (corresponding to the cells in the 2 by 2 table)
are independent. Also, we have π1· = π·1 so the marginal distributions are
the same. Thus, X and Y are independent with the identical distribution.
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(b) The multinomial likelihood (ignoring factors that do not depend on
the parameter (π11, π12, π21)) is

`(π11, π12, π21) = πn11
11 π

n12
12 π

n21
21 (1 − π11 − π12 − π21)

n22 .

Under H0, each πij is a function of θ, so we plug in the formulae for each of
the cell probabilities in terms of θ and get a likelihood in terms of θ:

`(θ) = θ2n11 [θ(1 − θ)]n12 [θ(1 − θ)]n21(1 − θ)2n22

= θ2n11+n12+n21(1 − θ)n12+n21+2n22 .

We take logarithms (L = log `) and differentiate and set to 0:

d

dθ
L(θ) =

2n11 + n12 + n21

θ
− n12 + n21 + 2n22

1 − θ
= 0,

This gives

(1 − θ)(2n11 + n12 + n21) = θ(n12 + n21 + 2n22)

(2n11 + n12 + n21) = 2θ(n11 + n12 + n21 + n22)

θ̂ =
2n11 + n12 + n21

2(n11 + n12 + n21 + n22)

=
n1· + n·1

2n

=
p1· + p·1

2
.

The second to last line follows from the definitions of n1· and n·1 and the fact
that all the entries in the table add up to n. Of course, we need to check
the sign of the second derivative of the log likelihood to make sure we have
a maximum:

d2L

dθ
= −2n11 + n12 + n21

θ2
− n12 + n21 + 2n22

(1 − θ)2

< 0.

This shows that the log likelihood is strictly concave, hence any stationary
point is the unique maximizer of the log likelihood.
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Now that was a lot of work, and I wonder if there isn’t an easier way to
do this problem. Looking back at the likelihood, it is essentially a Bernoulli
trial likelihood

`(θ) = θy(1 − θ)m−y

where we observe y successes in m trials and

y = 2n11 + n12 + n21,

m− y = n12 + n21 + 2n21,

m = 2n11 + 2n12 + 2n21 + 2n21

= 2n.

Now we know the MLE for such a model is θ̂ = y/m, and that gives the
result with a lot less effort.

(c) We use the chi-squared test statistic with

µ̂11 = nθ̂2

µ̂12 = nθ̂(1 − θ̂)

µ̂21 = µ̂12

µ̂22 = n(1 − θ̂)2.

The degrees of freedom are the dimension of the full parameter space (which
is 3) minus the dimension of the null parameter space (which is 1), thus we
have 2 degrees of freedom. The other way of computing it is to look at the
number of independent constraints, which is 2, namely

π11 = π1·π·1

π1· = π·1.

(d) The easiest way I can think of to do this is to have the R function
compute the chi-squared value with the probability vector given by the esti-
mated values under the null hypothesis, and then get the p-value by hand.
The p-value that will be returned by the chisq.test function will be based on
3 degrees of freedom, so we need to do it with just 2 d.f.

> kb = matrix(c(152,37,33,8),nrow=2)

> thetahat = (2*152+33+37)/(2*230)

> test3.31d = chisq.test(as.vector(kb),p=c(thetahat^2,
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+ thetahat*(1-thetahat),thetahat*(1-thetahat),(1-thetahat)^2))

> test3.31d$statistic

X-squared

0.2291154

> # not significant, but to get a p-value:

> pchisq(test3.31d$statistic,2,lower.tail=FALSE)

X-squared

0.8917605

The p-value of 0.8917605 is large - there is NO EVIDENCE against the null
hypothesis that Kobe Bryant’s pairs of free throws are anything other than
independent with the same probability of success for each attempt.

5 Exercise 3.34

(a) To show this, it suffices to produce a table and then show the Pearson
residuals are different. Let’s try this:

> tab3.34 = matrix(c(20,15,10,30),nrow=2)

> test3.34 = chisq.test(tab3.34)

> test3.34$residuals

[,1] [,2]

[1,] 1.603567 -1.500000

[2,] -1.309307 1.224745

> test3.34$stdres

[,1] [,2]

[1,] 2.834734 -2.834734

[2,] -2.834734 2.834734

We see that the Pearson residuals (given with the command in the third line)
are all different in absolute value, but the standardized residuals are all the
same.

(b) This problem involves a lot of elementary algebra, which makes it
rather tedious, but anyway let’s get it over with. After a little playing around,
the student should figure out that the square-rooted quantity in the denomi-
nator for each standardized residual is in fact the same. Using the facts that
µ̂ij = npi·p·j, and 1 − p1· = p2·, etc., we have

µ̂11(1 − p1·)(1 − p·1) = np1·p·1p2·p·2

µ̂12(1 − p1·)(1 − p·2) = np1·p·2p2·p·1,
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and so on. So it’s really only the numerators where things can be different.
Writing nij = npij and plugging in for the pi· and p·j and cranking through

the algebra, we get

n11 − µ̂11 = n [p11 − (p11 + p12)(p11 + p21)]

= n
[
p11 − p211 − p11p21 − p12p11 − p12p21

]
= n [p11(1 − p11) − p11p21 − p12p11 − p12p21]

= n [p11(p12 + p21 + p22) − p11p21 − p12p11 − p12p21]

= n [p11p22 − p12p21] .

One can do this for all four cells and get the desired answer.
It would be a lot of work to solve the problem by repeating the algebraic

computation above three more times. I wonder if there is an easier way to
solve this problem. We in fact know (or can easily see) that the row and
column totals for the observed nij and “expected” µ̂ij are in fact the same:
for example

µ̂1· = µ̂11 + µ̂12

=
n1·n·1

n
+
n1·n·2

n

=
n1·(n·1 + n·2)

n

=
n1·n

n
= n1·,

and similarly, µ̂·2 = n·2, etc. Therefore

n11 − µ̂11 + n12 − µ̂12 = n11 + n12 − (µ̂11 + µ̂12) = n1· − µ̂1· = 0.

Thus, the standardized residual r21 = −r11. Similarly, r12 = −r11 and r22 =
r11. This is the pattern we saw in the numerical example in part (a).

(c) Oh goodness, do I have to go through a lot of algebra? We observed
above that they all have the same denominator, and the numerators have the
same absolute value. Of course, X2 is just the sum of squares of the Pearson
residuals. Using the notations of equations (3.13) and (3.14), pp. 80-81, we
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have

X2 =
∑
i,j

e2ij

=
∑
i,j

r2ij(1 − pi+)(1 − p+j)

= r211 (p2+p+2 + p1+p+2 + p2+p+1 + p1+p+1)

= r211.

By way of explanation, the first equation is just the definition of X2 and
the Pearson residual eij, the second equation follows from the definition of
the standardized residuals rij, the third from the fact that the rij have equal
absolute values and the relations between the row and column proportions
noted before (e.g., p+1 + p+2 = 1), and the last equation follows easily. Note
that pi+p+j is the estimate of πij under independence, and this estimate is a
probability vector.

6 Exercise 3.39

(a) Note that “combinations” refers to subsets of 3 individuals from among
the 6 individuals listed. We know the number of such subsets is

(
6
3

)
= 20.

Listing them out in a simple ordering scheme:

(F1, F2, F3), (F1, F2,M1), (F1, F2,M2), (F1, F2,M3), (F1, F3,M1),

(F1, F3,M2), (F1, F3,M3), (F2, F3,M1), (F2, F3,M2), (F2, F3,M3),

(F1,M1,M2), (F1,M1,M3), (F1,M2,M3), (F2,M1,M2), (F2,M1,M3),

(F2,M2,M3), (F3,M1,M2), (F3,M1,M3), (F3,M2,M3), (M1,M2,M3).

The contingency table: the sampling unit is a job applicant, and the two
variables of interest are gender and success at being hired. The outcome
(F2,M1,M3) gives the table

Hired Not Hired

Female 1 2
Male 2 1

(b) I guess we are using p1 − p2 as the test statistic. The observed value
is 2/3 − 1/3 = 1/3, and we reject the null hypothesis H0 : π1 ≤ π2 for large
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values of the test statistic. So the p-value can be computed as the chance of
getting a sample with a test statistic value ≥ our observed value of 1/3. In
this instance, p1−p2 ≥ 1/3 simply means that the males were in the majority
of the set of candidates hired. Clearly half the samples have majority males
and half have majority females, since the numbers of males and females in
the population is the same and the sample size is odd (so no samples can
have equal numbers of males and females). You can count which of the 10
of the 20 samples listed above have majority males.

I put the word chance in italics, since it refers to a probability. Our sample
space in this case consists of subsets of size 3 selected from a population of 6
people. This isn’t really a multinomial model for the data, but, as discussed
in the book, may be thought of as basically the conditional distribution of
the cell counts given the marginal sums. It can also be considered as a
randomization distribution under the null hypothesis as discussed in class.

There is the question of whether this is a version of Fisher’s test. For 2×2
tables, there are multiple test statistics that may be used. In the example
3.5.2, pp. 91-92, the author uses n11 as the test statistic. He is looking at
a one sided alternative π1 > π2 exactly as in this problem. In the problem
at hand, the author proposes we use p1 − p2 as the test statistic. Are they
equivalent? Well, we can write

p1 − p2 =
n11

n1+

− n21

n2+

=
n11

n1+

− n+1 − n11

n2+

=

(
1

n1+

+
1

n2+

)
n11 − n+1

n2+

.

We see that the above is strictly increasing as a function of n11. The ex-
pression also depends on marginal totals (e.g., n1+), but the randomization
that gives rise to Fisher’s null distribution preserves the marginal totals, i.e.
Fisher’s test is conditional on the marginal totals. Therefore, every table gen-
erated under Fisher’s randomization distribution will have a value of p1 − p2
≥ the observed value if and only if it has a value of n11 ≥ the observed value.
So the two different test statistics give the same test in terms of rejecting or
accepting the null hypothesis.
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