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1 Stochastic Processes.

Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T

is a family of random variables (Xt : t ∈ T) defined on a common probability space

(Ω,F , P ). If T is clear from context, we will write (Xt). If T is one of ZZ, IN , or

IN \{0}, we usually call (Xt) a discrete time process. If T is an interval in IR (usually

IR or [0,∞)), then we usually call (Xt) a continuous time process.

In a sense, all of probability is about stochastic processes. For instance, if T =

{1}, then we are just talking about a single random variable. If T = {1, . . . , n}, then

we have a random vector (X1, . . . , Xn). We have talked about many results for i.i.d.

random variables X1, X2, . . . . Assuming an inifinite sequence of such r.v.s, T =

IN \ {0} for this example. Given any sequence of r.v.s X1, X2, . . . , we can define a

partial sum process

Sn =
n

∑

i=1

Xi, n = 1, 2, . . . .

One important question that arises about stochastic processes is whether they

exist or not. For example, in the above, can we really claim there exists an infinite

sequence of i.i.d. random variables? The product measure theorem tells us that for

any valid marginal distribution PX , we can construct any finite sequence of r.v.s with

this marginal distribution. If such an infinite sequence of i.i.d. r.v.sr does not exist,

we have stated a lot of meaniningless theorems. Fortunately, this is not the case. We
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shall state a theorem that shows stochastic processes exist as long as certain basic

consistency properties hold.

In order to show existence, we will have to construct a probability space on which

the r.v.s are defined. This requires us to first mathematically construct the underlying

set Ω. The following will serve that purpose.

Definition 1.2 Let T be an arbitrary index set. Then

IRT = {f : f is a function mapping T −→ IR} .

Note that in the general definition of a stochastic process, for any “realization”

ω ∈ Ω, (Xt(ω)) is basically an element of IRT. Thus, a stochastic process may be

thought of as a “random function” with domain T and range IR. Next, we need a

σ-field.

Definition 1.3 A finite dimensional cylinder set C ⊂ IRT is a set of the form

∃{t1, . . . , tn} ⊂ IRT, ∃B1, . . . , Bn ∈ B, C =
{

f ∈ IRT : f(ti) ∈ Bi, 1 ≤ i ≤ n
}

Let C denote the collection of all finite dimensional cylinder sets in IRT. Then the

(canonical) σ-field on IRT is

BT = σ (C) .

Before we can show the existence of probability measures on the measurable space
(

IRT,BT
)

, we need to state the basic consistency properties such measures must

satisfy. Any subsets R ⊂ S ⊂ T, consider the projection map πSR from IRS −→ IRR

defined by as the restriction of f ∈ IRS to R. More explicitly, if f : S −→ IR, and

g = πSR(f) : R −→ IR, then g(t) = f(t) for all t ∈ R. We will denote πTR
by just

πR.
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Definition 1.4 A consistent family of finite dimensional distributions on IRT is a

family of probability measures {PS : S ⊂ T, S finite } satisfying the property that for

all R ⊂ S ⊂ T with both S and R finite, PS ◦ π−1
RS = PR.

To explain the basic idea here, let S = {t1, . . . , tn}. Then, if a process (Xt : t ∈ T)

exists, PS is simply the (marginal) distribution of (Xt1 , . . . , Xtn). If R = {t1, . . . , tk} ⊂

S, then the property above simply says that the marginal distribution PR is consistent

with PS. The next result tells us that if this consistency condition holds, then there

is a stochastic process with the given finite dimensional distributions.

Theorem 1.1 (Kolmogorov’s Extension Theorem). Let {PS : S ⊂ T, S finite }

be a consistent family of finite dimensional distributions. Then there exists a unique

probability P measure on (IRT,BT) such that for all finite S ⊂ T, P ◦ π−1
S = PS.

For a proof, see either Ash or Billingsley. In fact, one may replace IR by any

complete and separable metric space. The theorem basically says that a stochastic

process is determined by all of its finite dimensional distributions.

It is easy to show, for example, that if all of the finite dimensional distributions

are measure products of a common distribution (i.e., everything is i.i.d.) then the

consistency condition holds. Thus, we certainly have i.i.d. processes (with any index

set!).

We close this section by noting that the above theorem does not solve all of the

problems concerning stochastic processes. For example, if T is an interval of real

numbers, we might be interested in whether (Xt) is a continuous function of t. It

turns out that the set of continuous functions is not an element of BT, i.e., it is not

a measurable set in the probability space we constructed above.
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2 Martingales: Basic Definitions.

For the rest of these notes, we will only consider discrete time stochastic processes

indexed by either IN or IN \{0}. We shall use the subscript n to denote “time” rather

than t.

Definition 2.1 Given a probability space (Ω,F , P ), a (discrete time) filtration is an

increasing sequence of sub-σ-fields (Fn : n ∈ IN) (or (Fn : n ∈ IN \ {0})) of F ; i.e.,

all Fn ⊂ F are σ-fields and Fn ⊂ Fm if n ≤ m.

Given a process (Xn), we say (Xn) is adapted to a filtration (Fn) (with the same

index set) iff for all n, Xn ∈ Fn (i.e., Xn is Fn-measurable, meaning X−1
n (B) ∈ Fn

for all Borel sets B ⊂ IR.

Given any stochastic process (Xn), the filtration generated by (Xn), or the minimal

filtration for (Xn), is the filtration given by Fn = σ(Xm : m ≤ n).

When discussing processes, we will in general assume there is a filtration and

the process is adapted; we can always use the minimal filtration for the given given

process. For martingale theory, we will generally use IN for the index set, and we

assume F0 is an almost trivial σ-field, i.e. for all A ∈ F0, either P (A) = 0 or

P (A) = 1. As the process will be adapted, this implies X0 is constant, a.s.

Definition 2.2 A process (Mn : n ≥ 0) is a martingale w.r.t. a filtration (Fn : n ≥ 0)

iff the following hold:

(i) (Xn) is adapted to (Fn);

(ii) For all n, E[|Xn|] < ∞;

(iii) For all n, E[Xn+1|Fn] = Xn, a.s.
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We say (Mn) is a submartingale iff properties (i) and (ii) hold, and property (iii) is

replaced by

∀n, E[Xn+1|Fn] ≥ Xn, a.s.

We say (Mn) is a supermartingale iff (i) and (ii) hold, and the reverse inequality

above holds (i.e., (−Mn) is a submartingale.)

Note that to check a process is a martingale, it suffices to check property (iii)

(which is usually called “the martingale property”) since if it holds, then the condi-

tional expectation makes sense, so (ii) holds, and since the conditional expectation

is measurable with respect to the σ-field being conditioned on, it follows Xn is Fn-

measurable (up to sets of measure 0, which can always be finessed away; i.e., we

can change the definition of Xn on a null set so as to make it Fn measurable). For

sub- and supermartingales, it is necessary to check (i) and (iii) (since (iii) won’t make

sense unless (ii) holds). Some authors use the term “smartingale” to refer to a process

which is either a martingale, a submartingale, or a supermartingale.

A martingale may be thought of as a “fair game” in the following sense: if Xn

denotes the total amount you have won on the nth play of a game, then, given all

of the information in the current and previous plays (represented by Fn), you don’t

expect to change your total winning. A submartingale would be a game which is

not fair to your opponent (if Xn denotes the total amount you have won), and a

supermartingale would be not fair to you.

One of the main reasons that martingale theory has become so useful is that

martingales may be “found” in many probability models. Here are a few examples.

Example 2.1 Let X1, X2, . . ., be independent r.v.s with E[Xi] = µi. Define the

partial sum process

S0 = 0, Sn =
n

∑

i=1

Xi, n = 1, 2, . . . .
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Let Fn be the minimal filtration for Xn (with F0 = {∅, Ω}, the trivial σ-field). If

µ = 0, then we claim Sn is a martingale. To check this, note that

E[Sn+1|X1, . . .Xn] = E [Xn+1 + Sn|X1, . . .Xn]

= E [Xn+1|X1, . . .Xn] + Sn

= E[Xn+1] + Sn

= Sn.

The second line follows since Sn ∈ σ(X1, . . . , Xn) (see Theorem 1.5.7(f)), and next

line by the independence assumption (see Theorem 1.5.9). Clearly, in general Mn =

Sn −
∑n

i=1 µi is a martingale.

Example 2.2 Another construction which is often used is what might be called

“partial product” processes. Suppose X1, X2, . . . are independent with E[Xi] = 1.

Let Mn =
∏n

i=1 Xi. Again using the minimal filtration for the (Xn) process, we have

E [Mn+1|X1, . . . , Xn] = E [Xn+1Mn|X1, . . . , Xn]

= MnE [Xn+1|X1, . . . , Xn]

= Mn.

Again, at the second line we used one of the basic results on conditional expectation

(see Theorem 1.5.7(h)).

Example 2.3 Let X be a r.v. with E[|X|] < ∞ and let (Fn) be any filtration (with

F0 an almost trivial σ-field). Let Xn = E [X |Fn ]. Then (Xn) is martingale. See

Exercise 3.

Example 2.4 Let (Xn : n ≥ 0) be an arbitrary process adapted to a filtration

(Fn : n ≥ 0). Assume that for all n, E[|Xn|] < ∞. For n > 0 define

Yn = Xn − E[Xn|Fn−1].
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Put M0 = 0 and for n > 0 let

Mn =
n

∑

i=1

Yi.

Then (Mn : n ≥ 0) is a martingale w.r.t. the filtration (Fn : n ≥ 0). See Exercise 4.

3 The Optional Stopping Theorem.

Our main result in this section is not difficult and shows the power of martingale

theory. We first need a very important definition.

Definition 3.1 Let (Fn : n ∈ IN) be a filtration and let T be an (IN ∪ {∞})-valued

random variable. Then T is called a stopping time w.r.t (Fn) iff for all n ∈ IN , the

event [T ≤ n] is in Fn.

If (Xn) is adapted and P [T < ∞] = 1, then the stopped value of the process is

XT =
∞
∑

n=0

I[T = n]Xn.

(We will write I[· · ·] for the indicator I[···] sometimes.)

The process (Xn∧T : n ≥ 0) is called the stopped process. (Recall that a ∧ b =

min{a, b}.)

Proposition 3.1 If T1 and T2 are stopping times w.r.t (Fn), then so are T1 + T2,

T1 ∧ T2, and T1 ∨ T2.

Proposition 3.2 T is a stopping time if and only if for all n ∈ IN , [T = n] ∈ Fn.

Proof: (⇒) Assume T is a stopping time. We have [T = n] = [T ≤ n] ∩ [T ≤

n− 1]c, and both events in the last expression are in Fn, so their intersection is also.
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(⇐) Assume for all n [T = n] ∈ Fn. Then

[T ≤ n] =
n
⋂

i=0

[T = i].

All of the events in the intersection are in Fn, so also is [T ≤ n].

2

Many of our stopping times will be of the following type.

Definition 3.2 Suppose (Xt) is adapted to (Ft), and let B ⊂ IR be a Borel set. The

hitting time or first entry time to B is

TB = inf{n ∈ IN : Xn ∈ B}.

Recall that by convention, inf ∅ = ∞.

Proposition 3.3 A hitting time is a stopping time.

Proof: Note that

[TB = n] = [Xn ∈ B] ∩
n−1
⋂

i=0

[Xi ∈ B]c.

Of course [Xn ∈ B] ∈ Fn, and for i < n, [Xi ∈ B]c ∈ Fi ⊂ Fn, so [TB = n] ∈ Fn.

2

Before stating and proving the big result, it is useful to have the next one, which

has many useful ramifications. First, a couple of definitions.

Definition 3.3 A process (An : n ≥ 1) is called non-anticipating (or pridictable, or

sometimes previsible) iff for all n ≥ 1, An ∈ Fn−1; i.e., the process Xn = An+1, n ≥ 0

is adapted.
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We will also need the backwards difference operator defined by

∆Mn = Mn − Mn−1, n ≥ 1.

The process (∆Mn) is sometimes called a martingale difference process. The defining

property for such a process is

E[∆Mn+1|Fn] = E[Mn+1 − Mn|Fn] = Mn − Mn = 0, a.s.

Theorem 3.4 Suppose (Mn : n ≥ 0) is a martingale w.r.t. (Fn : n ≥ 0) and (An :

n ≥ 1) is bounded non-anticipating w.r.t. (Fn). Then the process

M̃n =
n

∑

i=1

Ai∆Mi,

(with M0 = 0), which is called the martingale transform of (Mn) w.r.t. (An), is a

martingale w.r.t. (Fn).

Proof: Using the boundedness of An (say, |An| ≤ K), we have

E[|M̃n ≤ K
n

∑

i=1

(E[|Mi|] + E[|Mi−1|]) < ∞.

Checking the martingale property

E
[

M̃n+1

∣

∣

∣Fn

]

= E

[

An+1∆Mn+1 +
n

∑

i=1

Ai∆Mi

∣

∣

∣

∣

∣

Fn

]

= An+1E [∆Mn+1| Fn] +
n

∑

i=1

Ai∆Mi

= 0 +
n

∑

i=1

Ai∆Mi

= M̃n.

The second line follows from the facts about conditional expectation and that (An)

is non-anticipating and (Mn) is adapted. The third line is the martingale difference

property.
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Now we can state our big result.

Theorem 3.5 (Optional Stopping Theorem.) Let T be a stopping time and (Mn)

a martingale w.r.t. (Fn). Then the stopped process (Mn∧T ) is also a martingale.

Proof: We begin with the assumption that E[Mn] = 0. Note that I[T ≥ n] =

1 − I[T ≤ n − 1] is bounded and non-anticipating. Thus

M̃n =
n

∑

i=1

I[T ≥ n]∆Mn

is a martingale by the previous theorem. We will show in fact that M̃n = Mn∧T , which

will prove the result. This claim follows by “partial summation,” which is analogous

to integration by parts. If one lists out the summands as (note that M0 = 0 by our

assumption)

M̃n = I[T ≥ 1]M1 + I[T ≥ 2](M2 − M1) + I[T ≥ 3](M3 − M2) + . . .

I[T ≥ n − 1](Mn−1 − Mn−2) + I[T ≥ n](Mn − Mn−1)

= (I[T ≥ 1] − I[T ≥ 2])M1 + (I[T ≥ 2] − I[T ≥ 3])M2 + . . .

(I[T ≥ n − 1] − I[T ≥ n])Mn−1 + I[T ≥ n]Mn

=
n−1
∑

i=1

I[T = i]Mi + I[T ≥ n]Mn.

Of course, if T ≥ n, then T ∧ n = n, and if T = i < n, then T ∧ n = i, so the last

expression is equal to
n

∑

i=1

I[(T ∧ n) = i]Mi = Mn∧T .

If E[Mn] 6= 0, then apply the above argument to M ′

n = Mn−E[Mn]. The resulting

M̃ ′

n is a mean 0 martingale, and it is clear that the corresponding M̃n = M̃ ′

n +E[Mn]

= Mn∧T .
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2

More general versions of the optimal stopping theorem can be found; see e.g. Ash.

This version is relatively elementary to prove and still very powerful, as we shall see

in some examples.

Example 3.1 (Unbiased Gambler’s Ruin.) Suppose you play a game with your

opponent. The plays are i.i.d. with your winning on each play either ±1 with equal

probability. You begin with a total wealth of a and your opponent with b. We assume

a and b are positive integers. Let us calculate the probability that you bankrupt your

opponent before he bankrupts you. Letting Xn denote the outcome of the nth play,

we have P [Xn = ±1] = 1/2. The total winning is

Sn =
n

∑

i=1

Xi.

Since E[Xi] = 0 and they are independent, we have already seen this is a martingale.

The game will stop at the time

T = inf{n : Sn = −a or Sn = b}. (1)

As this is a hitting time (of (−∞,−a] ∪ [b,∞)) for an adapted process (we are using

the filtration generated by the (Xn)), it is a stopping time. We claim T < ∞ a.s.

Then, as n → ∞, ST∧n → ST a.s. (Simply note that for ω in [T < ∞], T (ω) ∧ n

= T (ω) for all n ≥ T (ω).) Also, ∀n, |ST∧n| ≤ a ∨ b, so by dominated convergence

we have E[ST∧n] → E[ST ]. Now ST only takes on two values. Let w = P [ST = b]

(the probability you win and your opponent is ruined). Then, since ST∧n is a mean

0 martingale, we have

0 = lim E[ST∧n] = wb + (1 − w)(−a) =⇒ w = a/(a + b).

Thus, if your initial fortune is larger than your opponent’s (i.e., a > b), then you have

more than 1/2 probability of ruining your opponent.
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To complete the argument, we must show T < ∞ a.s. Let N = a + b and for

k = 1, 2, . . . define events

Ak = [Xj = 1 for (k − 1)N < j ≤ kN ].

Note that this entails of run of a + b play where you win all of them. Clearly if Ak

occurs, and if both players are still not ruined, you will ruin your opponent, so either

there was a ruin prior to the event occuring or it will occur during or after the event.

Note that the Ak are independent events (they involve non-overlapping blocks of the

Xi), P (Ak) = 2−N for all k, and so
∑

k Ak = ∞. By the Borel-Cantelli Lemma, part

II, the Ak must occur infinitely often, so they occur at least once, and hence ruin is

assured with probability 1.

Example 3.2 (Biased Gambler’s Ruin.) Now we consider the same problem as in

the previous example except we change the probability of you winning a play of from

1/2. Let P [X = 1] = p and P [X = −1] = q where q = 1 − p. We assume p 6= 1/2.

Also, the cases p = 0, 1 are not interesting as they mean almost certain ruin for one

player in a constant number of moves. Now the martingale used above no longer

applies, but we can try to find a useful “partial product” martingale. Specifically, we

seek a constant r such that

E
[

rXi

]

= 1.

If we can find such a constant, then

Mn =
n

∏

i=1

rXi = rSn

will be a martingale, and we can try to use the Optional Stopping Theorem again.

Such an r must satisfy the equation

1 = E
[

rXi

]

= pr + qr−1.
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This is easily converted to a quadratic equation. Clearly r = 1 is one root of the

equation (but one that doesn’t help us), and it is easy to see r = q/p is the other,

and this works. Thus, but optional stopping and constancy of the expectation of a

martingale

1 = E
[

rSn∧T

]

.

It is easy to check that T < ∞ a.s. (the probability of the events Ak is now pN > 0),

so Mn∧T → MT a.s. Also,

0 ≤ MT∧n ≤ [(q/p) ∨ (p/q)](a∨b) ,

so dominated convergence applies again and we have

1 = E [MT∧n] → E [MT ] .

But by direct calculation

E [MT ] = w(q/p)b + (1 − w)(q/p)−a = 1.

Solving for w gives

w =
(q/p)a − 1

(q/p)a+b − 1
.

As a check, note that if a = b, this can be simplified to w = 1/[(q/p)a +1], so if q > p

your chances of being ruined before your opponent is > 1/2, which is clearly correct.

Also, as a → ∞, your chances of ruin are almost certain, which makes sense, since

if both you and your opponent are very wealthy, it will take a long time for ruin to

occur and his advantage on each individual play will become more pronounced in the

long run.
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4 Martingale Convergence.

We will show that there are some simple, general conditions under which a martingale

will converge a.s. to a fixed r.v. The proof involves the use of submartingales, which

we haven’t discussed too much up to this point. First, we consider a general way of

constructing submartingales. We will need part (a) of the following proposition.

Proposition 4.1 Assume the process Xn is a smartingale w.r.t the filtration Fn. Let

φ be a convex function defined on an interval (a, b), −∞ < a < b < ∞, and suppose

∀n, P [Xn ∈ (a, b)] = 1. Assume ∀n, E[|φ(Xn)|] < ∞.

(a) If Xn is a martingale then φ(Xn) is a submartingale.

(b) If Xn is a submartingale and φ is nondecreasing, then φ(Xn) is a submartin-

gale.

Proof: Clearly φ(Xn) is adapted, and property (ii) in the definition of a smartin-

gale holds by assumption. Jensen’s inequality applies, so we have

E[φ(Xn+1)|Fn] ≥ φ (E[Xn+1|Fn]) . (2)

If Xn is a martingale, then the last expression is φ(Xn), thus showing the submartin-

gale property. If Xn is a submartingale, then the submartingale property is that

E[Xn+1|Fn] ≥ Xn. If φ is nondecreasing then it follows that the last expression in

(2) is ≥ φ(Xn), thus showing the submartingale property for φ(Xn).

2

Example 4.1 It is easy to write down several transformations that might be inter-

esting. If Mn is a martingale, then |Mn| and (Mn)± (the positive or negative parts

of Mn) are submartingales. Assuming integrability, M2
n and exp[aMn] are also sub-

martingales. For some of these transformations, if Mn is a submartingale, then so is

the transformed process.
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Theorem 4.2 (Martingale Convergence Theorem.) If Mn is a martingale and

there exists λ > 0 such ∀n, E[|Mn|] ≤ λ, then there is a r.v. M∞ such that Mn
a.s.
→ M∞

and E[|M∞|] ≤ λ.

Before giving the proof, we review some basic notions about convergence of a

sequence of real numbers. The sequence (an : n = 1, 2, . . .) converges if and only

if lim infn an = lim supn an, and the common value is limn an. Of course lim infn an

is the smallest limit point of the sequence (an) (a limit point is the limit of any

subsequence), and lim supn an is the largest limit point.

Therefore, if (an) doesn’t converge, then lim infn an < lim supn an, and thus we

can find rational numbers c and d such that

lim inf
n

an < c < d < lim sup
n

an.

Now, we can find subsequences, say anj
and amk

such that limj anj
= lim infn an and

limk amk
= lim supn an. By selecting further subsequences if necessary, we can in fact

insure that

(i)

∀j, anj
< c, and ∀k, amk

> d.

(ii)

n1 < m1 < n2 < m2 < · · · < nj < mj < nj+1 < mj+1 < · · · .

The basic notion is that if sequence (an) doesn’t have a limit, then there exist rationals

c < d such that infinitely often the sequence is below c but then at some later value

is above d. This motivates the following definition. Given and numbers c < d, the

number of upcrossings of [c, d] by the finite sequence a0, a1, . . ., aN is the largest k

such that there exists 2k integers 0 ≤ n1 < m1 < · · · < nk < mk ≤ N such that for
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all j, 1 ≤ j ≤ k, anj
< c and amj

> d. The sequence (an) converges if and only if the

number of upcrossings of any rational interval is finite. (We can limit ourselves to

rational intervals so in a proof that something happens with probability 1, we have

only countably many null events to add up.) Note that the limit may be ±∞.

Lemma 4.3 (Upcrossing Inequality.) Given a submartingale (Mn), define the

r.v. Un([c, d]) to be the number of upcrossings of [c, d] by the finite sequence M0, M1,

. . ., Mn. Then

(d − c)E[Un([c, d])] ≤ E[(Mn − c)+].

Proof: The proof relies on constructing a non-anticipating process An and for-

mally applying a martingale transform to the submartingale Mn w.r.t. An. (One

canshow that the transform is in fact a submartingale.) The process An will be es-

sentially an indicator of an upcrossing currently in progress. We will actually count

upcrossings of (c, d] rather than [c, d]; clearly there will be more of the former than

the latter. Note that (Mn − c)+ is a nonnegative submartingale, and the upcrossings

by this process of (0, d− c] are the same as the upcrossings by the original process of

(c, d]. Thus, without loss of generality we may assume Mn ≥ 0 and c = 0. We define

An recursively (recall that the index of a non-anticipating process begins at n = 1).

A1 =











0 if M0 ≥ 0;

1 if M0 = 0.

For n ≥ 1,

An+1 =











0 if An = 0 & Mn > 0, or An = 1 & Mn > d;

1 if An = 1 & Mn ≤ d, or An = 0 & Mn = 0.

It is not clear if explaining in words will make matters clearer, or if the reader should

simply stare at the above to make sure An is 0 if an upcrossing is not in progress and

is 1 if an upcrossing is underway. An upcrossing begins right after the first time (after
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beginning or after the last upcrossing ends) that Mn hits the level 0. It continues

until the first time Mn goes above d. It is clear that An is non-anticipating since it

only depends on An−1 and Mn−1.

Now let M̃n be given by the martingale transform

M̃n =
n

∑

i=1

Ai∆Mi. (3)

Let 0 ≤ n1 < m1 ≤ n2 < m2, . . ., denote the beginning and ending times of the

upcrossings (upcrossings begin at the nj and end at the mj). Then Ai = 1 if and

only if for some j, nj < i ≤ mj , and otherwise Ai = 0. Thus the sum defining M̃n

may be written as sums of blocks of the form
mj
∑

i=nj+1

Ai∆Mi =
mj
∑

i=nj+1

(Mi − Mi−1) = Mmj
− Mnj

= Mmj
≥ d.

Note that for any n, it may happen that for some j, nj < n < mj , i.e., an upcrossing is

underway but not yet completed at time n. In this case M̃n will involve an additional

block whose value is Mn−Mnj
. Note that Mn ≥ 0 and Mnj

= 0 (after our modification

of the original process by replacing it with (Mn − c)+), so Mn − Mnj
is nonnegative

and leaving it out of the summation simply makes the result possibly smaller. In

summary, each upcrossing contributes no more than d to M̃n, and we may ignore an

upcrossing underway at time n to get

M̃n ≥ dUn((0, d]).

Once we show E[M̃n] ≤ E[Mn], the lemma will be proved.

We have

E
[

M̃n

]

=
n

∑

i=1

E[Ai∆Mi]

=
n

∑

i=1

E [E [Ai (Mi − Mi−1)| Fi−1]]

=
n

∑

i=1

E [Ai (E[Mi|Fi−1] − Mi−1)]

17



The second line uses the “law of total expectation,” (Theorem 1.5.7(d)), and the third

line uses uses another basic result on conditional expectation (Theorem 1.5.7(h)). By

the submartingale property, E[Mi|Fi−1] − Mi−1 ≥ 0. Since Ai ∈ {0, 1} we have

Ai (E[Mi|Fi−1] − Mi−1) ≤ (E[Mi|Fi−1] − Mi−1) .

Thus,

E
[

M̃n

]

≤
n

∑

i=1

E [E[Mi|Fi−1] − Mi−1]

= E

[

n
∑

i=1

E [Mi − Mi−1| Fi−1]

]

= E [Mn − M0]

≤ E [Mn] .

The last line follows since M0 ≥ 0. This completes the proof.

2

Theorem 4.4 (Martingale Convergence Theorem.) Let Mn be a martingale

and suppose there is a B < ∞ such that ∀n, E[|Mn|] ≤ B. Then there is a r.v. M∞

such that Mn
a.s.
→ M∞ and E[|M∞|] ≤ B.

Proof: We will show that the number of upcrossings of any interval with rational

endpoints is finite a.s., which will imply the existence of an extended r.v. M∞ such

that Mn
a.s.
→ M∞. By the upcrossing inequality, if c < d

E[Un([c, d])] ≤ E[(Mn − c)+]/(d − c) ≤ (B + |c|)/(d− c).

Note that the last expression is independent of n. Now as n increases, 0 ≤ Un([c, d])

increases, so by Monotone Convergence Theorem Un → U∞ and E[Un] → E[U∞].

But our bound on E[Un] implies E[U∞] is finite, and hence U∞ is finite a.s., i.e., the

total number of upcrossings if finite a.s., as claimed.
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Now we show that M∞ is finite a.s., and the bound on E[|M∞|] holds. Note

that by continuous mapping, |Mn|
a.s.
→ |M∞|, and since 0 ≤ |Mn|, we have by Fatou’s

lemma that E[|M∞|] ≤ lim inf E[|Mn|] ≤ B. This establishes that |M∞| is finite a.s.,

and the bound on its expectation.

2

.

Example 4.2 Let Mn be an arbitrary martingale, and for any a < b, define the

stopping time

T = inf{n : Mn ≥ b or Mn ≤ a}.

Now we know Mn∧T is a martingale by the optional stopping theorem, but this mar-

tingale is also bounded, hence satisfies the conditions of the martingale convergence

theorem. Thus, on the event [∀n, a < Mn < b] = [T = ∞], the process must converge

a.s. to a constant.

If Mn is integer valued, the above implies that on the event [T = ∞], Mn must

eventually be a constant. In particular, if ∀n, P [Mn+1 = Mn] = 0 (as was the case

in the gambler’s ruin example), we must have T < ∞ a.s. Thus, with a few simple

assumptions, we can get some very general results about a martingale.

Exercises

1 Let T be an arbitrary index set and let µ : T → IR and V : T×T → IR. Assume

that V satisfies the property that for any finite subset S = {t1, . . . , tn)} ⊂ T, the

n × n matrix

Vij = V (ti, tj), 1 ≤ i, j ≤ n,
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is symmetric and nonnegative definite. Now consider the family of finite dimensional

distributions which for any finite S as above are multivariate normal with mean

(µ(t1), . . . µ(tn)) and covariance matrix V as above. Show that the family satisfies

the consistency property, and conclude that there is a stochastic process with these

as the finite dimensional distributions. This process is called the Gaussian process

with mean function µ and covariance function V .

2 (a) Assume (Xn : n ≥ 0) is a martingale w.r.t. the filtration (Fn : n ≥ 0) where

all A ∈ F0 satisfy P (A) = 0 or 1. Show the following results:

(i) For all k ≥ 0, E[Xn+k|Fn] = Xn, a.s.

(ii) For all n ≥ 0, E[Xn] = X0, a.s., and X0 is constant a.s.

(b) Give appropriate extensions of the properties in part (a) to submartingales.

3 Prove that the process (Xn) in Example 2.3 is indeed a martingale.

4 Prove that the process (Mn) in Example 2.4 is a martingale.

5 Prove Proposition 3.1.

6 Let Fn be a filtration and let A1, A2, . . . be a sequence if independent events such

that ∀n, An ∈ Fn, and

φ(n) =
n

∑

i=1

P (Ai) → ∞, as n → ∞.

Let Xn =
∑n

i=1 IAi
. Fix a positive integer k and let

T = inf{n ≥ 1 : Xn = k}.

That is, T is the first time k of the events have occurred. Show that T < ∞ a.s., and

E[φ(T )] = k.
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7 (a) Let X1, X2, . . . be i.i.d. r.v.s with E[Xi] = 0 and 0 < σ2 = E[X2
i ] < ∞. Let

Sn =
∑n

i=1 Xi. Show that Mn = S2
n −nσ2 is a martingale w.r.t. the minimal filtration

of the Xns.

(b) Suppose that P [Xi = 1] = P [Xi = −1] = 1/2. Let a and b be positive integers

and define the stopping time T as in equation (1). Show that E[T ] = ab.

8 Let Xn denote the number of organisms in a population. Note that if Xn = 0 at

some time, the population becomes extinct (i.e. Xn+m = 0 for all m ≥ 0). Suppose

that for every integer N ≥ 0, there exists δ > 0 such that for all n,

P [Xn+1 = 0|X1 = x1, . . . , Xn = xn] ≥ δ, if xn ≤ N.

Let F be the event of extinction, i.e. F =
⋃

∞

n=1[Xn = 0]. Let G be the event [Xn → ∞].

Show that P (F ) + P (G) = 1. (We leave it to the reader to ponder the philosophical

meaning of this if the environment is bounded so that Xn → ∞ can’t occur in

practice.)

9 (Doob’s Martingale) Let Fn be a filtration and let Y be any r.v. satisfying

E[|Y |] < ∞. Put Mn = E[Y |Fn].

(a) Show that Mn is a martingale w.r.t. Fn.

(b) Show that there exists a r.v. M∞ such that Mn
a.s.
→ M∞, and E[|M∞|] ≤

E[|Y |].

(c) Suppose there is a K > 0 such that |Y | ≤ K a.s. Show that M∞ = E[Y |F∞]

a.s., where F∞ = σ (
⋃

∞

n=1 Fn). (Note: the result holds without assuming |Y | is

bounded a.s. but the proof requires results we have not given here.)

(d) (Consistency of Bayesian Estimators.) Suppose Θ is a random parame-

ter, and there is a K > 0 such that |Θ| ≤ K a.s. Once Θ is selected, data X1, X2, . . .

are generated, whose distribution depends on Θ. (We make no particular assumptions

about these data.) Let Fn be the filtration generated by the Xns. Assume there is a
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strongly consistent estimator of Θ, i.e., a sequence of functions θ̂n : IRn −→ IR such

that

θ̂n(X1, . . . , Xn)
a.s.
→ Θ.

Show that the posterior mean is a consistent estimator of Θ, i.e.

E[Θ|Fn]
a.s.
→ Θ.
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