Stat650: Homework 4

April 7, 2010

Exercise 1 Here, we develop a general theory of integrating factors for classical Ito equations. We consider a one-dimensional equation of the form

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d W(t) \tag{1}
\end{equation*}
$$

where $W(t)$ is a standard Brownian motion. The goal is to find a factor $f(t, x)$ such that we can multiply both sides of the equation by $f(t, X(t))$, add some terms to both sides, recognize the left hand side of the result as the differential of a product, and eliminate the dependence of the right hand side on $X(t)$. Then we can simply integrate both sides and obtain a "solution" in the form
$X(t)=\frac{1}{f(t, W(t))}\left\{f(0) X(0)+\int_{0}^{t} u(s, W(s)) d s+\int_{0}^{t} v(s, W(s)) d W(s)\right\}$,
for some functions u and v.
We will use the first year calculus notation when we write partial derivatives. For example, $f(t, w)$ is a function of 2 variables. $\frac{\partial f}{\partial w}$ denotes partial differentiation w.r.t. the second variable.

Hopefully, I have done all the calculus/algebra correctly.
(a) Given that $X(t)$ is a solution of the $\operatorname{SDE}(1)$ and $f(t, w)$ is a suitably smooth function, show that

$$
\begin{aligned}
& d[f(t, W(t)) X(t)] \\
& =\quad f(t, W(t)) d X(t)+\left\{\frac{\partial f}{\partial t}(t, W(t)) X(t)+\frac{1}{2} \frac{\partial^{2} f}{\partial w^{2}}(t, W(t)) X(t)\right. \\
& \left.\quad+\frac{\partial f}{\partial w}(t, W(t)) \sigma(t, X(t))\right\} d t+\frac{\partial f}{\partial w}(t, W(t)) X(t) d W(t)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& d[f(t, W(t)) X(t)] \\
& \quad=\left\{f(t, W(t)) b(t, X(t))+\frac{\partial f}{\partial t}(t, W(t)) X(t)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{2} \frac{\partial^{2} f}{\partial w^{2}}(t, W(t)) X(t)+\frac{\partial f}{\partial w}(t, W(t)) \sigma(t, X(t))\right\} d t \\
& +\left\{f(t, W(t)) \sigma(t, X(t))+\frac{\partial f}{\partial w}(t, W(t)) X(t)\right\} d W(t)
\end{aligned}
$$

Now we want to choose $f(t, W(t))$ so as to make the last expression functionally independent of $X(t)$. This will also force $b(t, x)$ and $\sigma(t, x)$ to be of specific forms.
(b) From the factor in the last expression in part (a) in front of the $d W(t)$, show that in order to make it functionally independent of $X(t)$ (but it can still depend on $(t, W(t))), \sigma(t, x)$ must take the form

$$
\sigma(t, x)=\alpha(t)+\beta(t) x,
$$

for some functions $\alpha(t)$ and $\beta(t)$, and then our integrating factor must take the form

$$
f(t, w)=\exp [\gamma(t)-\beta(t) w]
$$

where $\gamma(t)$ is a fairly arbitrary function.
(c) From the factor in the last expression in part (a) in front of the $d W(t)$, show that in order to make it functionally independent of $X(t)$, the $\beta(t)$ must be a constant, say β, and $b(t, x)$ must take the form

$$
b(t, x)=c(t)+r(t) x
$$

for some functions $c(t)$ and $r(t)$. Then, the $\gamma(t)$ from part (b) is given by (up to an arbitrary constant which is irrelevant)

$$
\gamma(t)=\frac{1}{2} \beta^{2} t-\int_{0}^{t} r(s) d s
$$

(d) Apply the above to give a general "solution" (in the sense described above) to equations of the form

$$
d X(t)=[c(t)+r X(t)] d t+[\alpha(t)+\beta X(t)] d W(t)
$$

where $c(t)$ and $\alpha(t)$ are given functions of time, and r and β are given constants.

Exercise 2 Continuing in the same vein as Exercise 1, we consider an equation of the form

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\beta(t) X(t) d W(t) . \tag{2}
\end{equation*}
$$

Now define an "integrating factor" of the form

$$
F(t)=\exp \left[-\int_{0}^{t} \beta(s) d W(s)+\frac{1}{2} \int_{0}^{t} \beta^{2}(s) d s\right] .
$$

(a) From (2) show that

$$
d(F(t) X(t))=F(t) b(t, X(t)) d t
$$

Thus, if we define

$$
Y(t)=F(t) X(t),
$$

so that $X(t)=Y(t) / F(t)$, then

$$
d Y(t)=F(t) f(t, Y(t) / F(t)) .
$$

This is an ordinary differential equation for $Y(t)$. In principle, we can compute a sample path of $W(t)$, compute the corresponding sample path of $F(t)$, plug it into this last equation, and "solve."
(b) Apply the above to solve

$$
d X(t)=\frac{1}{X(t)} d t+\beta X(t) d W(t)
$$

where β is a constant, and $X(0)>0$.
Exercise 3 Ito's lemma also allows us to use "substitution" methods to solve SDEs. Consider the SDE

$$
d X(t)=r X(t) d t+\beta X(t) d W(t) .
$$

Make the substitution $Y(t)=\log X(t)$ and obtain a solution. Compare with the result you get applying the formula you got from Exercise 1(d).

Exercise 4 (a) Let W be m-dimensional standard Brownian motion, where $m>2$. Fix $R>0$ and define the annulus

$$
A_{k}=\left\{x \in \mathbb{R}^{m}: R<|x|<2^{k} R\right\} .
$$

Let τ_{k} be the first exit time of $W(t)$ from A_{k} :

$$
\tau_{k}=\inf \left\{t \geq 0: W(t) \notin A_{k}\right\}
$$

Show that for $x \in A_{k}$,

$$
P\left[\left|W\left(\tau_{k}\right)\right|=R \mid W(0)=x\right] R^{2-m}+P\left[\left|W\left(\tau_{k}\right)\right|=2^{k} R \mid W(0)=x\right]\left(2^{k} R\right)^{2-m}=|x|^{2-m} .
$$

Use this to derive a formula for $P\left[\left|W\left(\tau_{k}\right)\right|=R \mid W(0)=x\right]$.
(b) Show that as $k \rightarrow \infty, P\left[\left|W\left(\tau_{k}\right)\right|=R \mid W(0)=x\right] \rightarrow 0$. Use this to show that Brownian motion is transient in 3 or higher dimensions.

