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Abstract. This paper provides an introduction to recent advances in the study of scale-invariance
and related phenomena, namely the concept of infinitely divisible scaling which encompasses
statistical self-similarity and multifractal scaling. Further the paper develops path properties and
scaling of Poisson products of multiplicative and exponential shot-noise processes.
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1. INFINITELY DIVISIBLE SCALING: A VERSATILE CONCEPT

Scaling and related phenomena form a striking and crucial component of empirical
data observed in a wide variety of applications ranging from natural phenomena such
as hydrodynamic turbulence [1], to purely human phenomena created by mankind’s
activities such as computer networks [2, 3, 4] and financial markets [5, 6]. Often, scaling
directly impacts performance, e.g., leading to high volatility in markets and to large
waiting queues in networking. Versatile tools of analysis and models are, therefore,
imperative towards improving our understanding and physical interpretations.

Scaling.  As of today, the concept of infinitely divisible scaling of a process {X(¢)},
appears to be the most general of its kind, introduced at the end of the out-going
millennium [8, 7]:

EIA(t +8) ~ AW = cgexp[~H(q) - n(5)]. ()

This framework encompasses at the same time statistical self-similarity as exhibited,
e.g., by fractional Brownian motion where H(q) = H - q as well as multifractal scaling
as exhibited, e.g., by the Martingale of Mandelbrot [9, 10, 11] (see below).

Note that for both, self-similar processes and multifractals, the scaling is in terms of a
power-law since n(d) = —log(d). The extra degree of freedom of infinitely divisible
scaling in terms of n(8) was found highly useful for the analysis and modelling of
empirical data in turbulence and computer network traffic [8, 7, 12, 4, 13].

Cascades. The basic structure of a cascade {Q,(t)}; consists of multiplying build-
ing blocks, i.e. stochastic processes P;(z), as follows:
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FIGURE 1. From left: Dyadic geometry of the Martingale of Mandelbrot, and a realization; scale-
invariant Poisson random geometry of a shot-noise cascade, and a realization (far right) with multiplicative
Gaussian kernel (C = 5) [plots of geometries courtesy P. Chainais [13]]

Here, the so-called pulse m(w,-) is a non-negative function converging to 1 at infinity,
with parameter w. In the building block P;, the parameter W; plays the role of an
amplitude, i.e., W; = max, P;(t). Clearly, T; is a location parameter while R; represents
the time scale over which P, is significantly different from 1. To gain some intuition, one
may interpret Q,(¢) as the intensity resulting from scattering light at identical shapes,
placed at random locations 7; and at random heights R;, with random transparency W;
(see [14] and references therein for further physical interpretations and applications).

The most basic pulse, called cylindrical pulse by Mandelbrot [10] leads to a simple
form of Q,:

fw for—1/2<5<1/2 B :
m(w,s) = { 1 otherwise. 0,(1) = Rer |111<R‘/2W‘ 3)

The well-known Martingale of Mandelbrot [9] is recovered by choosing W; to be
independent identically distributed (i.i.d.) random variables with mean 1, to set 7; =
(k+1/2)2/ fori=2"7+k—1(k=0,..,27/ —1)and R; =2/ for2~/ —1<i< 27771 —1
where j = —1,—2,... (see Figure 1 left). In this simple deterministic case, Q, can be
interpreted as a density that is uniform over each dyadic interval [k/2",(k+ 1)/2"[.
Since E[A(1/2")9] = E[W4)" for A(t) = lim,_¢ [; Qr(s)ds, one finds (1) with H(q) =
—logE[WY] and n(8) = —log(d), at least for § = 1/2".

Two inherent properties of the martingale of Mandelbrot have limited its applicability
to real world problems, namely the rigid, dyadic geometry restricting exact scaling to
binary scales and imposing non-stationarity (see Figure 1 1st and 2nd from left), as well
as the scaling in form of a power-law.

A crucial step towards modeling infinitely-divisible scaling over all scales and beyond
power-laws was taken with the introduction of Compound-Poisson-Cascades (CPC) and
their subsequential generalization to Infinitely-Divisible-Cascades [15, 16, 17, 10, 13].

The main novelty of CPC over the Martingale of Mandelbrot consists in choosing
the location and scale parameters of the pulses according to a Poisson Point Process
(see Figure 1 right). Notably, this implies that the cascade Q, is made of a random
number of factors. Most conveniently, one may think of the locations {7;}; as forming a
homogeneous Poisson Process of arrival rate A, on the real line and the scales R; being
i.i.d. marks with density g,(-) on the interval [r, 1]. Equivalently, the points (7}, R;); form
a Poisson point process, meaning that the number N(E) of such points falling into a
measurable set E in the plane is a Poisson random variable which is independent of
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FIGURE 2. Effects of pulse and density: Realizations of scale-invariant (5) multiplicative shot-noise
cascades, from left with cylindrical (¢ = .1), double exponential (¢ = 1), Gaussian (¢ = .1), and again
Gaussian (¢ = 1) kernels, respectively. They are all normalized to mean 1.

N(E') whenever E’ and E are disjoint, and with mean

E[N(E)] = m(E) = /E dm(t,a) = /E Aog,(a)dadt, )

Thereby, it is assumed that the multipliers {W;}; are i.i.d. and independent of the Point
Process (T;,R;);.

Today, both the scaling behavior of CPCs as well as their mathematical properties
[16, 17, 13] are well understood. A special role plays the scale-invariant case where

dm(t,a) = a—czdadt forr<a<1landreR. (5)

Since g, forms a density on [r, 1] we must choose A, = ¢(1/r— 1), meaning that for
r = 1/2" there fall on average ¢(2" — 1) points 7; into a z-interval of unit length, in rough
agreement with the deterministic geometry of the Martingale of Mandelbrot.

The importance of the scale invariant point density lies in its close connection to
asymptotic power-laws. It has been studied most intensively [16, 6, 17, 13]. Notably,
exact power-laws are given in [16]; the connection between scaling and local fractal
behavior is rigorously established via the multifractal formalism in [17]. Also, scaling
beyond power-laws with densities dm(t,a) deviating from (5) are reported in [13].

Shot-noise cascades. More recently, attention has focussed on extending the CPC
to cascades with pulses 7 different from the cylindrical pulse (3) [15, 17, 13, 14].
Thereby, two versions offer themselves, which we term the multiplicative shot-noise
and exponential shot-noise, where

[ 14+ (w—1)h(r) multipicative shot-noise,
T(wit) = { wk(®) exponential shot-noise. ©)
The functions 4 and k are called kernel and are assumed to be non-negative, bounded by
1 and to converge to zero at infinity. When choosing either kernel to be the indicator of
the unit interval 1j_; /5 /2[(~), the corresponding pulse reduces to the basic cylindrical
shape (3). Both shot-noise cases lead to similar convergence properties. Notably, the
exponential shot-noise cascade finds a natural interpretation in the more general setting
of infinitely divisible cascades [13, 14]. For examples, see Figure 2.



2. SHOT-NOISE CASCADES

For clarity we emphasize that we assume that Q, is a multiplicative cascade of the form
of (2) where the pulse 7 is a shot-noise with kernel 4, respectively k, as in (6). We further
assume that locations 7; and scales R; form a Poisson point process as in (4) and that the
amplitudes or weights W; are i.i.d. and independent of the point process. Note that we
do not assume EE[W;] = 1, nor scale invariance, unless indicated.

Also, in contrast with much of the existing literature we do not assume that the pulse
7 be compactly supported. While such an assumption avoids technical subtleties it also
precludes the use of simple and natural exponential, Gaussian and wavelet transform
kernels.

Convergence and Moments. In general, for fixed ¢ and r, Q,(f) given in (2) may
consist of infinitely many factors. Alluding to martingale techniques we find that arguing
for convergence goes hand in hand with the computation of moments. We recall a well-
known fact saying that conditioning on knowing the number Ny, ; of points 7; that fall
into the interval |a, b], these points 7; become i.i.d. and distributed as a uniform variable
U on [a,b]. Fixing ¢, r and ¢, we find:

cola.b) = E ] W:E’E[ [T P0)|Nus| = E| (Elmw. 501"

a<Ti<b a<Ti;<b

b
= exp[A(b—a) (Ela(W,5Y)7] —1)] = exp PrIE[ / T(W, =) — 1du]}

(t—a)/R
— exp [l,]E[R - / (W, v)? — ldv]} )
(1-b)/R

The independence properties of Poisson point processes imply that ¢ (a,c) = c4(a,b)-
1

cq(b,c) for a < b < c and that the normalized products {m [Ta<r.<b Pi(t) Yaco<p form
a continuous, positive, Li-bounded martingale with respect to its natural filtration. By
Doob’s martingale convergence theorem it must converge almost surely as —a,b — oo
to a limiting L; random variable. Note that the convergence is not necessarily in Lj;
however, the limit being in L; it must be almost surely finite. Provided the normaliza-
tion constants, i.e. c1(a,b), converge to a finite limit, the products [],.7.p Pi(t) must
themselves converge almost surely. We conclude:

Theorem 1 Fix ¢ and r. Assume that E [~ |n(W,v) — 1|dv < oo. Then, the compound
Poisson cascade specified by (2) and (4) is well defined as an almost sure limit. If also

]E/ (W, )7 —1|dv < oo )
for some q > 0, then the product Q.(t) in (2) is an Ly-limit for 0 < p < g and

E[Q,(1)"] = exp {/ME[R]-IE / i n(W,v)P—wv] ©)



Sufficient for (8) is E[W"] < oo for some integer n > q and [ h(u)du < o in the case of
a multiplicative shot-noise cascade, respectively M(s) = IE[e““l”gM] < oo for some s >0
and [ k(u)du < oo in the case of an exponential shot-noise cascade.

Proof

Under the moment condition (8) dominated convergence implies that c,(a,b) converges
as —a,b — oo. For ¢ = 1 this implies almost sure convergence of the product Q,(t)
as indicated above. In addition, it implies that the family of products [],.7, Pi(¢)? is
uniformly integrable; thus, the product Q,(¢) converges in L,. To verify the sufficient
conditions for (8) one uses the binomial expansion in the multiplicative case, respec-
tively the inequality |¢* — 1| < el?l —1 for all @ € R in the exponential case, noting that
M(-) is differentiable around 0. &

Note that the moments do not depend on 7, in agreement with the translation invariance
along the 7-variable of the Poisson process (see (4)). Similarly one finds, provided Q,(t)
is an L,-limit, that

(oo}

E[0,()0,(5)] = exp (ME[R- /

m(u)w(u+ %) — 1du]> (10)

Path-properties and Scaling. The path oscillations of stochastic processes formed
by cascades have attracted quite some attention. We start by establishing that the CPC
{0,(t)}; defined through (2) and (4) exists as a stochastic process and exhibits continu-
ous, or at least cadlag paths under mild conditions.

Proposition 2 Fix r > 0. Assume that the pulse branches ©(W,t) and t(W,—t) are both
non-increasing and convex for t > ¢ almost surely (a.s.), for some c. Assume that the
product (2) converges a.s. and in Ly for any fixed t. Then, the product (2) converges in
the Skorohod topology, hence, {Q,(t)}; is a cadlag process. If the pulse w(W,-) is in
addition continuous a.s., then {Q,(t)}; possesses a.s. continuous paths.

Sufficient conditions for the properties of the pulse branches in the shot-nose cases
are that the kernel branches be non-increasing and convex fort > c.

Proof The main idea is to note that the largest variations of the P;(r) with |T}| > 7
(see (2)) over the interval [—1, 7| are at the boundaries, due to convexity.

Let us now turn to the limit of » — 0 and to scaling. To this end, let Q,(¢) :=
0,(t)/EE[Q,(t)] be the normalized cascade. Being a positive continuous martingale
indexed by r > 0, its distributional limit A(t) = lim,_,o J§ O,(s)ds exists almost surely.
Tools towards assessing path regularity, such as the Kolmogorov regularity theorem
or more generally, multifractal analysis and infinitely divisible scaling, rely on the
knowledge of scaling behavior of the moments of E[|A(r + 8) — A(r)|?] as § — 0. To
this end, we follow [13, III.C] closely and find

Theorem 3 Let A(t) be as above, assuming the scale-invariant case (2), (4), (5), ¢ > 0.

* (Moment condition) Assume (8) and that A(t) converges almost surely and in L.

« (Variational condition) Assume that w(t) and m(—t) are C'(RT) and non-
increasing and convex for t > ¢ almost surely, for some c.



Let f(8) ~ g(0) stand for C < % < 1/C for all 0 < & < 1, where 0 < C < oo. Then,
we find infinitely divisible scaling, at least approximately, of the form:

E[JA(r +8) —A(1)|7] ~ §7E [@5(0)‘1] — §4—<(p(g)—gp(1)) (an

where p(q) = Llog, 5 (B[Q5(0)]) = E[[™, a(W,u)7 — 1du].

Proof The main idea is to follow the argumentation of [13, III.C] verbatim. Notably,
matters simplify here considerably due to scale-invariance. Basically, the main task is to
show that

E sup [Q(s)? = Q,(0)7| <t-C' (12)

0<s<t

where C’ is independent of ¢. This task, in turn, is simplified as compared to [13] since
the regularity assumptions here allow the use of the mean value theorem. Similar to the
Skorohod argument above, consider blocks P;(¢) with |T;| < T and 7 < |T;| < T and use

Fatou to let 7 — oo. For the computation of p(g) note that (5) implies A, IE[R] = clog%
and use (9)).

Details on the proofs of this section can be found in [18].
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