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Abstract

Security returns are an example of phenomena whose distributions defy parametric
modeling. Jim Thompson used a variety of non-parametric approaches to develop workable
investing solutions in such an environment. We review his ground-breaking exploration of
the veracity of the capital asset pricing model (CAPM), and several non-parametric
approaches to portfolio formulation including the Simugram™, variants of his Max-
Median rule, and Tukey weightings
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1. Introduction

We are honored and pleased to present this look at James Thompson's non-parametric
market portfolio approaches. Professor James R. Thompson (1938-2017) earned his Ph.D.
in Mathematics from Princeton in 1965 where John W. Tukey was his thesis advisor.
Thompson was well-positioned for the age of Tukey, EDA and numerical solutions. He
bridged the robustness/heavy math age of statistics with the bootstrap/computer age. He
was one of the first to immediately realize the usefulness of the Bootstrap, back in the time
of Julian Simon in 1969, and he became one of its evangelists, from the outset through the
optimality phase of its development, to the present. We recall that the hardware processing
at the time was accomplished on time-share machines or university computers such as the
IBM 360, CDC-6600 or DEC PDP-8.

Like his mentor, Professor Thompson spent half a century thinking “outside the box™ and
creating or applying de novo methods impacting the modeling of real world problems using
statistics and Aristotelian thought processes. Most statisticians familiar with Jim's work
think in keywords such as mathematical biology, SIMEST, empirical model-building,
cancer modeling, and non-parametric statistics (Dobelman, 2017). The purpose of this
paper is to highlight the latter portion of his career in which he took up the problem of
modeling and making application in financial markets.

Thompson was well aware that security returns are an example of phenomena whose
distributions defy parametric modeling. He was also well-trained in Tukey's Maxim
(Tukey, 1962), “Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be made precise.”
To make progress in computational finance, he proceeded in the manner served him well



in biological modeling, i.e. abandoning attempts at closed-form solutions and instead using
simulation of fundamental underlying axiomatic probabilistic models.

Figure 1: James R. Thompson

This paper will first present some stylized facts about the security markets, review
Thompson's computationally-intensive Simugram™ system, review his work in Capital
Asset Pricing Model (CAPM) evaluation and validation, outline his simpler "MaxMedian"
system for portfolio management, including extensions, and conclude with his
investigation into alternative weighting systems using the Tukey transformation ladder.

2. Almanac of Security Returns

Jim was a staunch believer in exploratory data analysis. In this vein, we present some
salient statistics on security market returns and other variables and parameters. More
complete treatments may be found in references such as Chakraborti (2011), Cont (2011)
and Sewell (2011), but the empirical picture here gives an adequate overview, especially
for those readers for whom this subject is not of primary focus.

One of the first things we notice is that the distribution of returns is decidedly non-
Gaussian. This will immediately hamper closed-form modeling. In figure 2 we find the
empirical density estimate of over 77,000 annual returns from 1985-2008. A similar picture
is encountered when looking at all annual (N=380,562) or monthly (N=4,248,428) security
returns for the 1926-2017 period. Figure 3 compares the theoretical returns of a standard
geometric Brownian motion (GBM) model with the actual returns of General Electric
stock; one notes straightaway the persistence in volatility, long-range dependence of
autocorrelation, volatility “clumping” and other non-stationarities in the true market
returns.

It is tempting when inspecting the empirical distribution of the returns to try and fit a
univariate parametric distribution, of which there are many candidate frequency curves.
We then have the problem of determining which class of curves the distribution belongs
to. This process is highly dependent on the values of the estimated parameters from which
the determination is made. In the case of Pearson curves, the first four sample moments are
required to determine which regime the curve falls in, and given the sample variability of
these estimates, definitive inference eludes us, especially for the small sample sizes
encountered in the only 91 years of US security returns generally available to academics.
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Figure 2: Realized security returns, 1985-2008 vs. normal variates

Summary statistics for financial markets attempt to encapsulate the variability in periodic
realizations of these distributional draws. Figure 4 plots the annual returns and cumulative
return on $1 from 1970 through 2012 from a particular portfolio construction scheme. The
cumulative return plot is inherently difficult for the human eye to process unless it is
transformed to linearity. In the case of log(x), an exponential nature is easy to see as a
straight line. Scalar summary statistics such as average annual return or compound annual
growth rate (equation 1) summarize the 42-year process. Mutual fund literature normally
quote arithmetic average returns since they are always higher than geometric average rates
of return; only the latter however regenerate realized terminal values.

n I/n
(1) CAGR = (H Rij —1, where Rj is the annual gross return.
i=1

In figure 4, we have three series; the one with the highest terminal value of $189.6 is labeled
MaxMeasures, exhibiting a compound annual growth rate (CAGR) of 13.3%. The Max
Measures portfolio strategy is discussed in section 4 of this paper. The second highest
terminal value of $49.1 corresponds to the S&P 500 index (with dividends), with CAGR
0f 9.7%, and the third is that of 30-day US Treasury bills with a terminal value of $8.6 and
CAGR of 5.2%. Note the non-intuitive behavior of CAGR's and their associated terminal
values. The CAGR difference between T-bills and the S&P 500 index, or the MaxMeasures
and S&P 500, is 4.5%, which results in a multiplicative terminal value factor of about
570%. Differences in terminal value due to CAGR can be substantial, for example if the
42-year CAGR on a one-million-dollar investment in the S&P 500 were 2 percent lower
(9.2%), the difference in terminal value is almost $10 million dollars.



GBM Returns, 1960-2017
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Figure 3: Comparison of geometric Brownian motion (GBM) and actual security returns,
1960-2017

Some comparative market parameters for the study period of 1926-2017 are provided in
table 1 below.

Table 1: Market Parameters, 1926-2017

Total number of years study period 92
NYSE average annual return 11.8%
NYSE compound annual growth rate (CAGR) 9.81%
Average excess return (r-ry) 8.5%
Number of years with negative returns 24 (26%)
Number of years return less than r; 29 (32%)
GBM parameter estimates (u,0) (.062, .164)
Last Saturday trading May 24, 1952
Median company survival (years) 6.92

CAGR’s for various major US indexes are provided in table 2 below. We quickly note the
importance of reinvesting dividends, and that the equal weight indexes substantially
outperform the market weighted composition.



Enhanced MaxMedian Simple Return by Year
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Figure 4: Annual returns and compound growth of $1 for the period 1970-2012

Table 2: Compound annual growth rate (CAGR) of select major U.S. Stock
Indexes. VW and EW are correspond to market-value weighted and equal-
weighted, respectively. Dividends included or excluded as indicated by D or X.
Source: The Center for Research in Security Prices (CRSP).

Current Date: 12/31/17 CAGR

Index Begin Date N VWRETD VWRETX EWRETD EWRETX
SP500 12/31/1925 92 0.100 0.059 0.118 0.078
NYSE 12/31/1925 92 0.098 0.057 0.123 0.081

AMEX 12/31/1962 55 0.077 0.053 0.126 0.103
NASDAQ 12/31/1972 45 0.106 0.089 0.131 0.116

Figure 5 depicts market volatility and the risk-free interest rate (“r¢”); the latter is usually
proxied by U.S. Government Treasury Bills (T-bills) of short duration (such as 30-day
bills). The long run average T-bill rate has been about 3.3% over the study period. The
mean volatility is 15.3%, or about 1% per day.
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Figure 5:"Risk-free rate" and major stock index annual volatility, 1926-2017. Smoothed
volatility curve is 5-year simple moving average

The actual NYSE/AMEX/NASDAQ annual market returns are plotted in figure 6, along
with a rolling 2-c band. We can see the mean return is positive; it equals 11.78%. The
cumulative return plot for one dollar is illustrated by a representative index level and is

t
obtained as y, =Y, H (1+r), with y, =1. The generic index level using realized returns is
i=1
plotted in the lower panel of figure 6, based on a starting index level of 5 in 1926. The
actual Dow Jones Industrial Average and S&P 500 (which only had 90 stocks until March
1957) had nominal index levels of 158.54 and 12.74 in 1926, respectively. A diagnostic
normal plot of the market returns is provided in figure 7 from which we can again safely
reject the normal hypothesis most popularly expounded by Roberts (1959).



Market Returns
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Figure 6: Market returns, 1926-2017 and representative index levels based on the market
returns. Ending level is 25,044

Today (June 2018) there are 16,728 stocks traded in the U.S. and Canada on an exchange.
Excluding ADR's (foreign) and OTC/BB stocks, the main U.S. exchanges see only 7,100
issues. The number of traded companies grew steadily since the 1920's, peaking at the end
of the boom of the late 1990s. Both these totals are down considerably since the dot.com
bubble burst in 2000. The total number of stocks is provided on figure 8. The evolution of
company counts is a fascinating study, and many methods could be employed to model the
birth and death process of a stock. Company counts and trading days per year are given in
table 3 and figure 9 below.
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Figure 7: Normal diagnostic plot for market returns shown in figure 6
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Figure 8: Major U.S. exchanges stock counts, 1926-2017



Table 3: U.S. Exchange-traded stocks as of 6/30/18

Exchange Count Percent

Non-traded security 26 0.16
Toronto TSX 1,615 9.65
Canadian Venture 1,405 8.40
NYSE 2,551 15.25
ASE 294 1.76
OTC/BB 10 0.06
Nasdaq 3,044 18.20
PSE 1,380 8.25
Other-0OTC 6,132 36.66
Unlisted, evaluated 1 0.01
Not otherwise classified 270 1.61

16,728 100.00

Trade Days per Year, 1926-2017
US Exchanges NYSE/AMEX/NASDAQ
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Figure 9: Active trade days on major US exchanges. Anomaly in the modern era was due
to the NYSE 6-month closure on Wednesdays to deal with the infamous "paperwork crisis"
of 1968. (Traflet 2007)

All company survival times on the major exchanges are given in figure 10. Although the
shape of the curve suggests an exponential lifetime, upon closer inspection we see that the
sample moments do not match very well, as they should with X ~expo(11.06) and

2020
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fy, =B =11.06=36, , and we see a discrepancy with very short survival times. A simple
gamma fit of X~gamma(.832, 12.28) using method of moment estimators (reasonable

given the sample size) provides the appropriate moment values /i, =0?[;’ =11.057 and

&y = ap* =12.12.
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Figure 10: Survival time (in years) of all U.S. exchange traded companies, 1926-2017
2. The Simugram™

Around the turn of the century, Thompson directed his efforts to a serious non-linear
optimization computational effort he dubbed the “Simugram” system, which he filed for
patent protection in 2003 and which was subsequently granted in 2004. It is an attempt to
find holding weights for a given universe of stocks which will provide a portfolio
exhibiting the desired profit and risk characteristics using non-parametric resampling of
historical returns and non-linear optimization constraints.

Some background in portfolio notation is necessary. A sized portfolio consisting of 2
stocks, say {IBM, CAT} is denoted IT={N,-IBM,N, -CAT}. Assuming we have an

amount | to invest, position sizes (in numeraire) come from the weights w and the trading
element prices as P=1-w=(P,P,). With 1=$50,000 and w=(.5,.5) we have P=($25,000,
$25,000). If (IBM, CAT) = ($144, $154) we find N=(173.61, 162.34). Our actual portfolio



IT=(1741BM,162CAT) with value extension Il =($25000,$25000). The value of the
portfolio is thus the sum of the individual positions P, =1 I =$50,000 . Letting the

. . X
return of each trading element at the end of a period be I, =——1, then the return of the
t-1

1/2
portfolio is found to be 1, = w'r, with standard deviation o, = (WTZW) .

The essence of portfolio construction is finding weights on the universe which result in an
acceptable portfolio return (or standard deviation or other risk measures). For example, if
one knew stock Xj would perform the best over the coming forward return period, weights
0f(0,0,0,0,...1,0,0,...0) would guarantee the best return. This of course is cheating. Other
weighting schemes might include:

a. Equal weights. W:Lln giving r, =w'r :eri =T and
n nio

o . MC.
b. Market capitalization weights. w, = Z—'

MC

c. Random weights. w=(.3245, .212, ...)

The seminal Markowitz (1952) optimization solution optimizes for a target return, a target
“risk” (standard deviation), or uses a risk-tolerance utility function. Neither of these
approaches are suited to real-world investors. The expected value or other scalar measures
of a portfolio are not very useful either (Thompson, 2003, p.33). Instead, based on the
simulated risk profile, the empirical cumulative distribution function (ECDF, or
“Simugram”) of future terminal values of portfolios formed at the end of the investment
horizon, we might maximize the lower 20™ percentile of return subject to a loss constraint.
This is illustrated in figure 11 corresponding to an investment of $100,000 with a 20-year
terminal value of $417,000.
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Figure 11: Simugram percentile optimization, taken from U.S. Patent No. 7,720,738



In the Simugram approach the decision variable is the portfolio weights w and the problem
is stated as:

Max R; (w,X.y)
s.t.

2)

Where R;  is the cut-off return (figure 12) with specified minimum, w are the weights, X

are the securities’ returns, and y; are members of a constraint set y.
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Figure 12: Stochastically dominating simugrams: F, <, F,

Simugram™ returns are impressive. On the S&P 100 universe, 32-years CAGR's in excess
of 15% are typical. Figure 13 shows the outperformance of the Simugram™ system
compared with the S&P 500 benchmark for the period 1970-2002. Subsequent work by
other researchers have validated these results, and although the 15% annualized returns
have been reduced in recent years, the system still provides equivalent returns to those of
the equal-weighted total return indexes, with a manageable portfolio size, say 20 stocks.
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Figure 13: Simugram outperformance over the S&P 500 for the period 1970-2002. Solid
dots are S&P return for the year, and light dots are various Simugram trials for that year

3. Capital Asset Pricing Model (CAPM) Validation

In the mid-1990s, Professor Thompson and Jones Graduate School Professor Edward E.
Williams began collaborating on entrepreneurship and financial modeling. Around the turn
of the 21* century, they focused on critical statistical analyses of the Efficient Market
Hypothesis (EMH). Their first joint paper was a critique of the assumptions and
conclusions inherent in the famous Black-Scholes-Merton option pricing formula.
(Thompson and Williams, 1999). Professor Williams asked Dr. Thompson to take a
quantitative look at the Capital Asset Pricing Model (CAPM).

During the 1960s, Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966)
proposed economic models that purported to demonstrate how financial markets operate.
This early work became known as the CAPM. The models had their foundation with
Markowitz (1952) since he had used expected return, variance, and covariance notions to
build his theory of portfolio analysis. Since he was dealing with the future, the forecasting
task for his theory was formidable. This problem was dispatched by the development of
the EMH since past returns and risk calculations could be substituted for future ones. Many
assumptions are required for analytic tractability. According to Professors Focardi and
Fabozzi (2004, p.512),



“The CAPM is an abstraction of the real world capital markets and, as such, is
based on some assumptions. These assumptions simplify matters a great deal,
and some of them may even seem unrealistic. However, these assumptions make
the CAPM more tractable from a mathematical standpoint. The CAPM
assumptions are as follows:

Assumption 1:

Assumption 2:
Assumption 3:

Assumption 4:
Assumption 5:

Assumption 6:

Assumption 7:

Investors make investment decisions based on the expected
return and variance of returns.

Investors are rational and risk averse.

Investors subscribe to the Markowitz method of portfolio
diversification.

Investors all invest for the same period of time.

Investors have the same expectations about the expected return
and variance of all assets.

There is a risk-free asset and investors can borrow and lend any
amount at the risk-free rate.

Capital markets are completely competitive and frictionless.”

However “unrealistic” these assumptions may be in real life, their use admits a beautiful
theory. One of the key results of the CAPM is the so-called Capital Market Line (CML).
According to Wojciechowski and Thompson (2006), “..the Capital Market Line contains
all volatility and return pairs that correspond to a portfolio constructed from a linear
combination of the market portfolio and a riskless instrument.” Specifically, the return
from a portfolio on the Capital Market Line is constructed as r, = ar; +(1-a)r,, , where

r, is the market portfolio return, I; is the riskless instrument return, and o >0 is a

constant representing the allocation between the market portfolio and the riskless
instrument. Note, & > 1 is interpreted as borrowing, or leveraging, to invest in the market

portfolio.”

Expected
Return

Risk Free
Rate of
Interest

Capital
Market
Line (CML)

Market Portfolio

Efficient
Frontier § *

Standard Deviation

Figure 14: The Capital Market Line (CML)

If the return and the standard deviation of returns for the market portfolio are (o, 4y, ),

then the CML is the line joining points (0,r;) and (o,,,x, ). The equation for the line is

u=r.+(uy 1)/ o)/ o .(Onerecognizes the slope of this line is related to the “market

price of risk.”). Portfolios with a return of x and standard deviation of returns o satisfying



this equation lie on the CML. Wojciechowski and Thompson (2006) define performance
and outperformance as follows:

“If a random portfolio falls above the Capital Market Line, we say the random
portfolio has outperformed. Otherwise, it has underperformed. We measure the
amount of outperformance by the distance a point is above the Capital Market
Line.”

Random Portfolios Year 1971
Size =30

0.6

n

Figure 15: Annual returns and annualized volatility of each of the random portfolios
generated for the year 1971. Open circles are the random portfolios, the black dot is the
Market portfolio (S&P 500)

We recently performed this exercise and a representative year is presented in figure 15.
One can eyeball that approximately 38% of the random portfolios lie above the CML,
indicating outperformance compared with the passive market portfolio. A graphic
representing the outperformance over the 48-year period 1970 through 2017 is seen in
figure 16. As the portfolio size increases, the dispersion of the portfolios is reduced but the
center of the clouds remains the same, and the percent of under- and out-performance tends
to gather at the 100% and 0% levels.

Thompson and Wojciechowski conclude:
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Figure 16: The percentage of random portfolios that outperform the market portfolio by
year. It is clear from random selection that there are many opportunities for a competent
portfolio manager to do better than the market portfolio.

“This is hardly what we would expect if passive investing were truly optimal. If
random selection can exhibit such behavior, then a competent, professional
portfolio manager should be able to do as well as, if not better than the random
selection. Again, we would like to make it clear that we are not promoting
random selection as a valid investment strategy. The proclamation here is that if
random selection can do better than a market cap weighted portfolio, then a
competent active portfolio manager should also be able to outperform the market
cap portfolio.”

4. “Everyman's” MaxMedian Rule for Portfolio Management"

The Simugram™ is computationally intensive. In fact, Thompson claimed it is an NP-hard
problem. He obtained workable results using the Nelder-Mead direct search approach,
followed later by the Torczon method. For years, he had a close working relationship with
the U.S. Army Research Office, and several colleagues there asked him to devise a simple
investing program that almost anyone with some basic computational skills could
implement. Thus the MaxMedian was born in 2005, and presented at the U.S. Army
Conference on Applied Statistics (Thompson, 2007). Since Professor Thompson was a
historiographic generalist and aficionado in addition to his other loves, he dubbed it
“Everyman's' MaxMedian Rule.” It is a non-proprietary rule to enhance the return to
ordinary investors not unwilling to do a little data crunching, but not requiring parallel
processing and proficiency in programming languages such as C. Moreover, MaxMedian

! The Somonyng (Summoning) of Everyman, John Skot, ¢.1530



portfolio results meet or exceed the equal-weighted S&P 500 benchmark performance with
only 20 stocks. This is very important, since the equal-weighted portfolio was impossible
to invest in (at the time of the MaxMedian publication), and obtaining these results with a
portfolio of only 20 stocks is most attractive.

The “classical” MaxMedian rule is as follows:

1. Collect the previous year's daily returns r(i,j) for all stocks in the S&P 500 at the
time of portfolio formation.

2. Each year, calculate the 500 yearly median values for 1(j,t)

3. Invest equally in the 20 stocks with the highest median returns.

4. Hold for one year (and one day), then liquidate.

Unquestionably, one could choose other statistics than the median for ranking purposes,
such as mean, various percentiles, etc. Dozens of graduate and undergraduate students in
Rice University’s Market Models class, and in independent research, have studied various
permutations to the rule, such as different lookback and holding periods, other rebalancing
rules, cash investment and constituent dropout programs, different weighting, etc.
Academic researchers have also validated and extended the concept, such as Affinito
(2009), Ernst and Miao (2017), and Tooth (2012). They have all studied the Rule's efficacy
over different study periods and have found the phenomenon persists. Table 4 provides
typical results.

Table 4: MaxMedian vs. Benchmark Returns, 1958-2014
Dividends Excluded®

Measure Equal Weight Market Weight MaxMedian
Terminal value 276.0 52.1 342.9
57-Year CAGR 10.4% 7.2% 10.8%

1. Source: Ernst, Thompson and Miao (2017)

To date, the researcher who studied this most extensively was Sarah M. Tooth (1988-2014).
In her master's thesis (2012) she looked at what she coined the MaxMeasures family of
ranking strategies. Besides considering ranking based on percentiles other than the 50"
(median), she also looked at generalized, or power means (Tooth and Dobelman, 2016).

These are defined for x, >0Viand peR, Mp(x):(ﬁz

N p . . .
1 xi") . The arithmetic mean is a

special case with p=1. Useful limiting cases are the geometric mean and the max and min:
1/p

(ﬁlexip) peR
@ Me-{T'x)  p-0

max X p—> oo

min X p——o

Recall the market index benchmarks reproduced in table 5 below. The calculated
benchmarks in Tooth (2012) are very similar, as seen in table 6.



Table 5: Compound annual growth rate (CAGR) of select major U.S. Stock
Indexes. VW and EW are correspond to market-value weighted and equal-
weighted, respectively. Dividends included or excluded as indicated by D or X.
Source: The Center for Research in Security Prices (CRSP).

Current Date: 12/31/17 CAGR

Index Begin Date N VWRETD VWRETX EWRETD EWRETX
SP500 12/31/1925 92 0.100 0.059 0.118 0.078
NYSE 12/31/1925 92 0.098 0.057 0.123 0.081

AMEX 12/31/1962 55 0.077 0.053 0.126 0.103
NASDAQ 12/31/1972 45 0.106 0.089 0.131 0.116

Table 6: Selected U.S. Index benchmarks for 1970-2011 and associated decade
CAGR's (Tooth 2012)

o\-mu\ 1970s  1980s 19905  2000s

With Dividends
Value Weighted S&P500 9.90 | 583 17.60 1836 -0.69
Equal Weighted S&P500 1240 | 891 1997 1554  6.02
Mean Return 12.66 | 10.18 18.70 16.02  6.53
Without Dividends
Value Weighted S&P500 6.49 | 1.57 1254 1549 -2.51
Equal Weighted S&P500 9.10 | 450 1541 1288  4.20

MaxMeasures results are reproduced in figure 7. Note that the 50™ percentile represents
the “classic’ MaxMedian methodology. We observe Professor Thompson’s inspired
intuition in the use of the median ranking statistic. The 25™ percentile has equivalent return
and a volatility close to that of the indexes, but the median’s 24% volatility is not
objectionable. Regarding power means, recall that p=-1 corresponds to the harmonic mean,
p=0 the geometric mean, and p=1 the arithmetic mean. The harmonic mean was chosen as
a canonical ranking statistic for the MaxMeasures results for its understabability,
simplicity, improved CAGR of 14.4% and tolerable volatility. Is it worth it to use
MaxMeasures in place of MaxMedian? The CAGR difference of 14.4% vs. the S&P 500’s
9.9% over 40 years is a terminal value factor of 591%. One could fund five vs. a single
grandchild.



Table 7: MaxMeasures results, 1970-2011, for selected percentile and power
means rankings

CAGR Mean Med o

S&P500 990 1143 1490 | 17.72
Percentile
0.05 12.33 1347 14.82 | 15.82

0.25 12,58 13.80 14.97 | 16.12

0.50 12.67 1550 18.21 | 23.61

0.75 10.17 1641 18.88 | 35.40

0.95 1154 1842 17.50 | 40.53
Power
-10.0 14.63 16.53 19.69 | 20.54
-1.0 1444 17.88 18.65 | 27.83

0.0 1343 17.29 21.12 | 29.06

1.0 1299 16.92 21.32 | 28.73

10.0 11.94 18.67 18.99 | 39.66

The average and max percent drawdowns shown in table 8 are for the sample period 1970
thru 2011, including the total number of negative years (TNY) and maximum run of
negative years (MNY). Here we see for the S&P 500 index, the maximum drawdown for
the study period was 38%, which flushed many investors (short-term, we presume) out of
the markets.

Table 8: MaxMeasures drawdown and loss summary

:\\'(‘l‘élj_’,‘(‘ Max Total | TNY MNY

S&P5H00 -17.38 -38.44 -104.30 6 2
Percentile

0.05 -12.59 -24.26  -75.56 6 2

0.25 -10.27  -29.06 -82.14 o) 2

0.50 -18.38 -54.69 -183.78 10 3

0.75 -26.29  -63.96 -315.53 12 3

0.95 -23.30  -62.36 -302.96 13 3

Power

-10 -0.94 -37.16 -99.45 10 3

-1 -15.55  -46.91 -186.57 12 3

0 -17.76 -51.89 -213.15 12 3

1 -19.65 -53.03 -235.77 12 3

10 -28.75 -62.62 -287.49 10 3




Although this does not comport with the EMH, exiting the market at the bottom of a
drawdown period is usually the worst thing to do, in that one misses the characteristically
large rebound which occurs in the recovery year. For example, at the bottom of the stock
market in March 2009, the return one year later was 48%. Just holding would result in a
25% increase for the period.

We may notice that MaxMedian has a max drawdown of 54%, which is painful for fund
investors. Higher percentile ranking methods have worse drawdowns than the median, as
do most of the power means except for -10. The harmonic mean (p=-1) has substantially
smaller drawdowns that the MaxMedian. The 5th percentile ranking strategy has almost
the same CAGR as the median, but with substantially smaller drawdowns. The truly
conservative investor might choose this MaxMeasures approach if she were comparing her
strategy to the of holding the (now-available) equal weighted index. In any case we recall
that MaxMedian generates returns equivalent to the equal weighted indexes but with only
20 stocks. After a little mode searching, Ms. Tooth's ending recommendation was for using
a lookback period of 5 months and p=-.6, but for simplicity, publicly advocated a one-year
lookback period with the harmonic mean.

Figure 17: Returns obtained by varying lookback period in days and power means p
(reparameterized as 6)

5. Tukey Transformational Ladder

For investors, there are lots of alternatives to equal or market value weights. The gamut
runs from random to sophisticated computationally derived, a la the Simugram™. Another
approach advocated by Professor Thompson was weights derived through Tukey’s
“transformational ladder of powers,” investigated in Ernst, Thompson and Miao (ETM,
2017). This general method of linearization first proposed by Tukey is seen as T(x) = x",

augmented by In(x). This results in the range of transforms T as follows:



1/x> 1/x  1/dx In(x) 1/n  x  x X

Let X be the market capitalization of a stock (a common “size” measure) as the price times
the number of shares outstanding. Then the Tukey weights for each of N stocks are

4) W, :Mfori=l,2,...N
ET(X)

1
Consider an example, for three stocks with market capitalizations (in billions of dollars) of
(400, 100, 10), we have Tukey weights as:

1/x*>  w=(0.000618, 0.009895, 0.989487)
1/x  w=(0.022222, 0.088889, 0.888889)

1/+/x  w=(0.107244, 0.214487, 0.678269)
In(x) w=(0.464483,0.357012, 0.178506)
1/n w=(0.333333,0.333333,0.333333) EW

Jx w = (0.603095, 0.301547, 0.095358)
X w=(0.784314, 0.196078, 0.019608) MW

x? w = (0.940623, 0.058789, 0.000588)

Note for positive powers p the weights favor large capitalization stocks, and vice versa
with negative p. Powers p=1 and p=0 correspond to the market and equal weights,
respectively.

The results for the Tukey weights backtests based on quarterly rebalancing are presented
in tables 9 below. We note the monotonicity in p for the CAGR and volatility. Some of the
volatilities are indeed high, although they are similar to other quantitative portfolios such
as the MaxMeasures results presented above. The ETM analysis includes both dividends
AND frictions such as commissions and slippage.

Table 9a: CAGR for Tukey weight portfolios, 1958 through 2015

"

1/x2 1/x 1/J% log(x) EQU Jx MKC x?

18.00% 17.53% 15.23% 13.80% 13.32% 11.73% 10.43% 8.69%

Table 9b: Volatility for Tukey weight portfolios, 1958 through 2015

1/x2 1/x 1/Jx log(x) EQU Jx MKC x2

39.54% 26.44% 22.29% 20.01% 19.30% 17.52% 16.98% 18.05%

Table 9c: Sharpe Ratios for Tukey weight portfolios, 1958 through 2015

1/x2 1/x 1/J% log(x) EQU Jx MKC x2

56.07% 70.35% 70.21% 69.31% 68.81% 65.24% 59.25% 47.09%




It can be seen from table 9 that the cumulative values of the portfolios exactly follow the
ordering inherent in the Tukey ladder. ETM (2017) are believed to be the first to have
discovered this behavior. A graphical representation of the time series is presented in figure
18 below. Their investigation concluded on a practical basis that monthly rebalancing was
optimal, owing to the terminal values for the daily, monthly, quarterly and annual options.
It should be noted that daily rebalancing results in ruin because of transaction costs, which
are usually ignored for simplicity’s sake in studies such as this. Annual rebalancing, widely
used in backtesting scenarios, is suboptimal, paying off 32% less than quarterly
rebalancing.

S&P 500 from 1958-01 to 2015-12, Rebalance: Monthly
Weighting Methods — 1/x2 — 1/x — 1/4x — 10g(x) — EQU — yx — X (MKC) — 2

9.04

8.51

8.04

7.57

7.01

logio(Dollars)

6.51

6.09

5.5

5.01

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Figure 18: Cumulative logio returns for 1958 to 2015 for the eight Tukey transformational
ladder portfolios. This calculation includes dividends and frictions and assumes that
$100,000 is invested on 1/2/58 and left to grow until 12/31/15. The major avowed
recessions are depicted in the shaded zones

The terminal values at the end of this 58-year study period beginning with an investment
of one dollar are:

/x> TV =14,762
1/x TV=11712
1/Ax TV = 3,722
In(x) TV = 1,804
1I/n  TV=1412 EW
Jx o TVv= 622
X TV= 315 MW
X TV= 125



This phenomenon is currently being actively investigated, both for additional validation,
and for possible theoretical explanation. Regarding this last point, ETM observe that “our
empirical results neither contradict nor support the small-firm effect hypothesis and
therefore results concerning Tukey’s transformational ladder for portfolio management
must be viewed as their own distinct phenomena.”

6. Conclusion

James Thompson is best known for his work in simulation, statistical process (quality)
control, cancer and AIDS modeling, and other statistical methodology. He is the progenitor
of 43 statistical descendants according to the American Mathematical Society and North
Dakota State University's Mathematics Genealogy Project. He was also tireless in
quantitative finance and was responsible for establishing the Statistics Department’s
computational finance specialization, which we are continuing today. Many of his
approaches, while conceptually simple, are seen to be valid in the real world. As Warren
Buffet has stated in various letters to Berkshire Hathaway shareholders,

“If you need to use a computer or a calculator to make the calculation, you
shouldn’t buy [the company]...There’s this holy writ, the efficient market theory.
How do you teach your students everything is priced properly? What do you do
for the rest of the hour? ... The more symbols they could work into their writing
the more they were revered...”

Jim was a practitioner and put his money where is mouth was. Consequently. his precious
widow is survived with an uncommonly healthy nest egg. May we all be so courageous,
patient and wise.
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