Handy Probability Reference - Robert Wolpert (Duke) 2011

Frequently in Probability and Statistics we need to calculate or estimate integrals and expectations; usually this is done through limiting arguments in which a sequence of integrals is shown to converge to the one whose value we need. Here are some important properties of integrals for any measurable set $\Lambda \in \mathcal{F}$ and random variables $\{X_n\}$, X, Y, useful for bounding or estimating the integral of a random variable X

- 1. $\int_{\Lambda} X dP$ is well-defined and finite if and only if $\int_{\Lambda} |X| dP < \infty$, and $\left| \int_{\Lambda} X dP \right| \leq \int_{\Lambda} |X| dP$. We can also define $\int_{\Lambda} X dP \leq \infty$ for any X bounded below by some $b > -\infty$.
- 2. Lebesgue's Monotone Convergence Thm: If $0 \le X_n \nearrow X$, then $\int_{\Lambda} X_n dP \nearrow \int_{\Lambda} X dP \le \infty$. In particular, the sequence of integrals converges (possibly to $+\infty$).
- 3. Lebesgue's Dominated Convergence Thm: If $X_n \to X$, and if $|X_n| \le Y$ for some RV $Y \ge 0$ with EY $< \infty$, then $\int_{\Lambda} X_n d\mathsf{P} \to \int_{\Lambda} X d\mathsf{P}$ and $\int_{\Lambda} |X| d\mathsf{P} \le \int_{\Lambda} Y d\mathsf{P} < \infty$. In particular, the sequence of integrals converges to a finite limit.
- 4. Fatou's Lemma: If $X_n \geq 0$ on Λ , then

$$\int_{\Lambda} (\liminf X_n) d\mathsf{P} \le \liminf \Big(\int_{\Lambda} X_n d\mathsf{P} \Big).$$

The two sides may be unequal (example?), and the result is false for $\limsup S_n \ge 0$ necessary?

- 5. Fubini's Thm: If either each $X_n \geq 0$, or $\sum_n \int_{\Lambda} |X_n| dP < \infty$, then the order of integration and summation can be exchanged: $\sum_n \int_{\Lambda} X_n dP = \int_{\Lambda} \sum_n X_n dP$. If both these conditions fail, the orders may not be exchangeable (example?)
- 6. For any p > 0, $\mathsf{E}|X|^p = \int_0^\infty p \, x^{p-1} \mathsf{P}[|X| > x] \, dx$ and $\mathsf{E}|X|^p < \infty \Leftrightarrow \sum_{n=1}^\infty n^{p-1} \mathsf{P}[|X| \ge n] < \infty$. The case p = 1 is easiest and most important: if $S \equiv \sum_{n=1}^\infty \mathsf{P}[|X| \ge n] < \infty$, then $S \le \mathsf{E}|X| < S+1$. If X takes on only nonnegative integer values, $\mathsf{E}X = S$.

Handy Probability Reference - Robert Wolpert (Duke) 2011

- 7. If μ_X is the distribution of X, and if f is a measurable real-valued function on \mathbb{R} , then $\mathsf{E} f(X) = \int_{\Omega} f(X(\omega)) \, d\mathsf{P} = \int_{\mathbb{R}} f(x) \, \mu_X(dx)$ if either side exists. In particular, $\mu = \mathsf{E} X = \int x \, \mu_X(dx)$ and $\sigma^2 = \mathsf{E} (X \mu)^2 = \int (x \mu)^2 \, \mu_X(dx)$.
- 8. Hölder's Inequality: Let p>1 and $q=\frac{p}{p-1}$ (e.g., p=q=2 or $p=1.01,\ q=101$). Then $\mathsf{E}\,XY\leq\mathsf{E}\,|XY|\leq \left[\mathsf{E}|X|^p\right]^{\frac{1}{p}}\left[\mathsf{E}|Y|^q\right]^{\frac{1}{q}}$. In particular, for p=q=2, Cauchy-Schwartz Inequality: $\mathsf{E}\,XY\leq\mathsf{E}\,|XY|\leq\sqrt{\mathsf{E}X^2\,\mathsf{E}Y^2}$.
- 9. Minkowski's Inequality: Let $1 \le p \le \infty$ and let $X, Y \in L_p(\Omega, \mathcal{F}, \mathsf{P})$. Then

$$(\mathsf{E}|X+Y|^p)^{\frac{1}{p}} \le (\mathsf{E}|X|^p)^{\frac{1}{p}} + (\mathsf{E}|Y|^p)^{\frac{1}{p}}$$

so the norm $||X||_p \equiv (\mathsf{E}|X|^p)^{\frac{1}{p}}$ obeys the triangle inequality on $L_p(\Omega, \mathfrak{F}, \mathsf{P})$ (what if p < 1?).

- 10. Jensen's Inequality: Let $\varphi(x)$ be a convex function on \mathbb{R} , X an integrable RV. Then $\varphi(\mathsf{E}[X]) \leq \mathsf{E}[\varphi(X)]$. Examples: $\varphi(x) = |x|^p$, $p \geq 1$; $\varphi(x) = e^x$; $\varphi(x) = [0 \vee x]$. The equality is *strict* if $\varphi(\cdot)$ is strictly convex and X has a non-degenerate distribution.
- 11. Markov's & Chebychev's Inequalities: If φ is positive and increasing, then $\mathsf{P}[|X| \geq u] \leq \mathsf{E}[\varphi(|X|)]/\varphi(u)$. In particular $\mathsf{P}[|X-\mu| > u] \leq \frac{\sigma^2}{u^2}$ and $\mathsf{P}[|X| > u] \leq \frac{\sigma^2 + \mu^2}{u^2}$.
- 12. One-Sided Version: $P[X > u] \le \frac{\sigma^2}{\sigma^2 + (u \mu)^2}$ (pf: $P[(X \mu + t) > (u \mu + t)] \le ?$)
- 13. Hoeffding's Inequality: If $\{X_j\}$ are independent and $(\exists \{a_j, b_j\})$ s.t. $\mathsf{P}[a_j \leq X_j \leq b_j] = 1$, then $(\forall c > 0)$, $S_n := \sum_{j=1}^n X_j$ satisfies $\mathsf{P}[S_n \mathsf{E}S_n \geq c] \leq \exp\left(-2c^2/\sum_1^n |b_j a_j|^2\right)$. Hoeffding proved this improvement on Chebychev's inequality (at UNC) in 1963. See also related Azuma's inequality (1967), Bernstein's inequality (1937), and Chernoff bounds (1952).