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Introduction 
These are handy results needed from mathematics.  These will be applied; more fundamental building 
blocks (mostly from analysis, algebra and calculus) are found in [1]; standard texts should also be 
consulted.   

Differentiation in Rn 
We define an element nx R∈ as a standard nx1 column vector 1( , , ).nx x   We define our matrices as 

xn k where n is the number of rows (observations) and k (or variously m, p, d) the number of columns 
(components/variables); we believe this represents the majority usage in engineering and statistics.  
(Unfortunately there are users who define n variables as columns with m row observations.   

Let a function : .d kg R R→   We say the derivative of g at dx R∈  is defined to be the linear map:  

( )( ) ( )T h g x h g x hο⋅ = + − + .  Other parameterizations are possible; the interpretation of the derivative as 

a linear map is not optional.  Usually x∇ is the matrix associated with this transformation, and we often 

denote it variously as , , d , or .gg g g
x
∂

∇
∂

   The second derivative at x is defined similarly and is 

denoted
2

2, , D , or .T

gg g g
x x
∂

∇
∂ ∂

  

Definitional Notation 

2
2

2

:
: ( ) .
:

g R R
dg d gg R R g g x g g g g
dx dx

g R R

→ 
→ = =∇ = =∇ =
→ 

  



  For example, 

( ) sin( ), ( ) cos( ), and ( ) ( )g x a x g x a x g x g x= = = −  . 

 
2

1 1( x )
2

1
( x ) 2

2

2

( ) ( )
: ( )
:
: ( ) ( ) ( )

T

T

d k k

d kk k

k k
k k k

dg x d g x
g R R R g x dx dx
g R R R g g g g g
g R R g x dg x d g x

dx dx

  
  → =        → = = = ∇ = = ∇ =     

     →      
    

  
  



.  For example, let 

( ) T dxdg x xx R= ∈ ; we have ( ) : d dg g x R R∇ = → , with ( ) 2Tg x xx xx x x x= ∇ =∇ + ∇ = . 
 

1

1

1
x

21
x x x x

1

( , , )

: ( , , )
: ( , , )
:

( , , )

d

d
d

d d k d
d

d k d d k d d d

d

d

g x x
x

g R R g x x
xg R R R g g x x g g

g R R R R
g x x

x

∂ 
 ∂ 

→  ∂
  ∂→ = = =∇ =  
  = → =   

∂ 
 ∂ 





 


 


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= ∇ = ∇∇ = ∂ ∂ ∂ ∂ 
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For example, suppose : dg R R→  as ( ) Tg x x x= .  : d dg R R→  as 2Tx x x∇ = .  Or, consider 

: , ( ) det( )dxdg R R g X X→ = .  It can be shown that : dxd dxdg R R→  as dxdX R∇ ∈ . 
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∂ ∂ ∂ 
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    
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 
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Useful Matrix Derivatives 

Chain Rules 

▪ If : , :d s s kf R R g R R→ → , and ( ( )) : d kh g f x R R= →  then ( ) ( ( )) ( )h x g f x f x= 

  

▪ If both , : d kf g R R→ , and x ( ) ( )k k Th R f x g x∈ =  then ( ) ( ) ( ) ( ) ( )T Th x g x f x f x g x= + 

   
 (NOTE need to check this….) 

 

Remarks 
▪ It is best to have a complete guide to differentiation of scalars, vectors and matrices with respect to 

scalars, vectors and matrices; Gentle [4] provides a good summary.  Just the first derivatives for 
these 9 combinations can result in tensors of rank higher than 2.  

▪ Note that a non-negative measure of variation ( )h f , such as2 df
dθ

 or 
2

,df
dθ

 
 
 

may be accumulated 

by summation/integration to give an overall variation as hµ∫ .  For pf L∈  we define our pL norm 

                                                      
1 This would be a 3rd order array.  See Dr. Genevera Allen re. 3rd Order tensor operations 
2 Note these are convex! 
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as  ( )
1

.
p p

p
f f dµ= ∫    Considering the norm squared, we have

2 2

2
f f dµ= ∫  .  For : kh R R→ we 

might use Tf f dµ∇ ∇∫ .    

▪ Note that in the case of the log likelihood, ( | ) ( | )dfl x f x
d

θ θ
θ

= is the RELATIVE variation w.r.t. θ ; 

using 
2

,dlh
dθ

 =  
 

 we have 2 2 2( | ) ( | ) ( | ) ( ) ( ),l x d l x f x dx E U Iθ µ θ θ θ= = =∫ ∫  where ( | )U xθ = ∇ is the 

score function (statistic). 

 

▪ Note that T∇ ∇   is not equal to 2 ( ),T H θ−∇ = −∇∇ = −


   although under regularity their 

expectations are.  E.g., 1 22
1 1 2

1

x x
f x x x f

x
+ 

= + ⇒∇ =  
 

; but ( ) ( )
( )

2
1 2 2 1 2

1 1 2 1 2

T x x x x xf f
x x x x x

 + +
∇ ∇ =  

+  
 is not 

equal to 
1 1
1 0

Tf
 

∇∇ =  
 

. 
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