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periment has 8 male autistics, 2 female autistics, 2 male controls, and 8 female con-
trols (disproportionate cell frequencies), you can make a better-than chance guess as
to whether a subject is male or female if you know whether they’re autistic or not —
the two factors are correlated. It is, of course, possible to have a middle ground —
unequal but proportionate cell frequencies (see above, p. 70, for an example), which
still involves orthogonal sums of squares.

6.4 Expected mean squares (EMS) and error terms

First we need to consider the sampling fraction for fixed and random factors (fixed
and random factors are defined on p. 31). If we have factor A with a levels and it is
a fixed factor, we have sampled all the levels. We can say that the maximum number
of levels of A is amax = a, and the sampling fraction a/amax = 1. On the other hand, if
our factor is a random factor, amax is likely to be very large, so a/amax = 0, approxi-
mately. Take the example of subjects: we presume that our s subjects are sampled
from a very large population, smax ≈ ∞, so the sampling fraction s/smax = 0.

It is possible to have sampling fractions between 0 and 1 (Howell, 1997, p. 423) —
but you will have to work out some messy EMSs yourself. Software packages such
as SPSS assume that the sampling fraction is 1 for fixed factors and 0 for random
factors.

6.4.1 Rules for obtaining expected mean squares (EMS)

From Myers & Well (1995, p. 299). Let’s list the rules with an illustrative example.
Suppose we have one between-subjects factor A with 3 levels. There are 6 subjects
per level of the between-subjects factor (n = 6). There are 4 levels of a within-
subjects factor B.

1. Decide for each independent variable, including Subjects, whether it is fixed or
random. Assign a letter to designate each variable. Assign another letter to rep-
resent the number of levels of each variable. (In our example, the variables are
designated A, B, and S; the levels are a, b, and n respectively. A and B are fixed
and S is random.)

2. Determine the sources of variance (SS) from the structural model. (We’ve al-
ready seen what this produces for our example design, when we discussed it
earlier: SStotal is made up of SSA + SSS/A + SSB + SSAB + SSSB/A. These are our
sources of variance.)

3. List 2
eσ  as part of each EMS.

4. For each EMS, list the null hypothesis component — that is, the component cor-
responding directly to the source of variance under consideration. (Thus, we add

2
Anbσ  to the EMS for the A line, and 2

/ ASbσ  to the EMS for the S/A line.) Note

that a component consists of three parts:

• A coefficient representing the number of scores at each level of the effect
(for example, nb scores at each level of A, or b scores for each subject).

• 2σ
[Myers & Well (1995, pp. 299) use 2

Aσ  if A is a random factor, and
2
Aθ  if A is a fixed factor; Howell (1997, p. 423) doesn’t, and I think

it’s clearer not to.]
• As subscripts, those letters that designate the effect under consideration.

5. Now add to each EMS all components whose subscripts contain all the letters
designating the source of variance in question. (For example, since the subscript

SB/A contains the letters S and A, add 2
/ ASBσ  to the EMS for the S/A line.)
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6. Next, examine the components for each source of variance. If a slash (/) ap-
pears in the subscript, define only the letters to the left of the slash as ‘essen-
tial’. If there are several slashes, only the letters preceding the leftmost slash are
essential. If there is no slash, all letters are essential.

7. Among the essential letters, ignore any that are necessary to designate the
source of variance. (If the source of variance is A, for example, then when con-

sidering 2
ABnσ , ignore the A. If the source is S/A, then when considering the

2
/ ASBσ  component, S and B are essential subscripts and S is to be ignored.) If

any of the remaining (non-ignored) essential letters designate fixed variables,
delete the entire component from the EMS.

An example:

Term EMS so far

Step 1: identify variables and numbers of levels.

A, a (between-subjects factor)
B, b (within-subjects factor)
S, n (number of subjects per group)

Step 2: identify sources of variance.

A
S/A
B
BA
SB/A

Step 3: List 2
eσ  as part of each EMS.

A 2
eσ

S/A 2
eσ

B 2
eσ

BA 2
eσ

SB/A 2
eσ

Step 4: list the null hypothesis component.

A 22
Ae nbσσ +

S/A 2
/

2
ASe bσσ +

B 22
Be anσσ +

BA 22
BAe nσσ +

SB/A 2
/

2
ASBe σσ +

Step 5: add all components whose subscripts contain all the letters desig-
nating the source of variance in question.

A 2
/

22
/

22
ASBBAASAe nbnb σσσσσ ++++

S/A 2
/

2
/

2
ASBASe b σσσ ++

B 2
/

222
ASBBABe nan σσσσ +++

BA 2
/

22
ASBBAe n σσσ ++

SB/A 2
/

2
ASBe σσ +
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Steps 6 and 7: for each component, define ‘essential’ letters; ignore any that
are part of the designation of the source of variance; if any remaining es-
sential letters contain fixed factors, delete the component.

A 2
/

22
ASAe bnb σσσ ++

S/A 2
/

2
ASe bσσ +

B 2
/

22
ASBBe an σσσ ++

BA 2
/

22
ASBBAe n σσσ ++

SB/A 2
/

2
ASBe σσ +

6.4.2 Choosing an error term

A mean square qualifies as an error term for testing an effect if its E(MS) matches
the E(MSeffect) in all respects except the null-hypothesis component (Keppel, 1991,
p. 568). In our example above, therefore, we’d test MSA against MSS/A, and we’d
test both MSB and MSBA against MSSB/A.

6.4.3 Pooling error terms

When we have random factors in a model, important variables are often tested
against an interaction term. Since interaction terms have few df (and since power
depends on F being large when the null hypothesis is false, and since F is the ratio
of MSeffect to MSerror, and since MSerror is SSerror/dferror), this means we may have
poor power to detect such effects.

One possibility is to test interaction terms in a full model with a conservative crite-
rion, like this (Howell, 1997, p. 425). If there is an interaction (p < 0.05), we declare
that there’s an interaction. If there isn’t (0.05 < p < 0.25), we just look at the results
for other terms. But if there is no interaction (p > 0.25), we remove the interaction
term from the model. In the example above, if we found that the AB interaction was
not significant (p > 0.25), we could remove any terms including it and its df would
contribute to the within-subjects error term, which might increase power to detect
effects of B (see p. 51).

6.5 Contrasts

See Howell (1997, pp. 354-369); Myers & Well (1995, chapter 6).

6.5.1. Linear contrasts

Linear contrasts are comparisons between linear combinations of different groups.
Suppose we want to know whether students are more bored on Wednesdays than
other weekdays, because Wednesday is statistics day, and whether they’re more
bored on weekdays than weekends. We could measure their boredom on all days of
the week, and use DayOfWeek as a factor (with 7 levels) in an ANOVA. If this
turned up significant, we would know that all days were not the same — but it
wouldn’t answer our original questions. We can do that with linear contrasts.

In general, a linear contrast is a linear combination of a set of treatment means. Each
mean µj is weighted by a weight wj:

∑=+++=
j

jjkk wwwwL µµµµ …2211

such that 0=∑
j

jw

In our example, suppose µ1 is the Monday mean, µ2 is the Tuesday mean, and so on.
Our ‘Wednesdays versus other weekdays’ question can be written as a linear con-
trast:
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EXPECTED MEAN SQUARES: not Greek to me!

Expected Mean Squares are theoretical descriptions of group differences broken into their logical components of
variability.  The Mean Squares in the ANOVA table are numbers obtained to represent group variances; the EMS
are abstract representations of the MS.

This discussion isn't replacing the stated rules, or conflicting with them in any way.  It's just elucidating them a bit.
Let's say you have all the sources of variance listed.  First determine whether each effect is fixed or random.  (This
has nothing to do with whether you have a "completely randomized design", which just means "between-subjects":
no subject appears in more than one cell.  In any design, each effect is considered "fixed" or "random".)

How do you know if it's Fixed or Random?  You might be told outright, for one thing.  But if you have to
figure it out, start by assuming it's probably fixed.  Fixed effects are what you're used to and what are most
common by way far.  Random effects are those for which you are really not interested in the particular levels
you've chosen for your design; instead you want to generalize from the levels you've randomly selected to other
possible levels.  Good examples of this are: Subjects -- would you really want to discover how well Ivan, Penelope,
Herb, and Wilhelmina do on your task?  No, you'd want to generalize from their performance to how people like
them generally would perform.  Groups -- would you care about the particular combinations of subjects with
certain characteristics that you happened to use?  No, you'd want to generalize to the possible other classrooms, or
other therapy groups, or other sets of roommates, or other groups of whatever type you used.  

[There are also cases you most likely won't encounter, in which items selected to be representative are random
effects (if they're even analyzed in the design): in a reading test you're not interested in how well children read the
particular fifty words on your test, but rather how those words are indicative of their ability to read the rest of the
words in the language, so Words would be random.  Or if you're sampling food from restaurant chains -- do you
want to make statements about particular McDonald's franchises in Willimantic, in New Haven, and in Vernon?
No, you want your conclusions to apply to the food at any McDonald's, not just the ones you randomly selected,
so Locations is random.  What's a bad example of a random variable?  Well, Gender sure is -- does it make any
sense at all to say you used the levels "male" and "female" in order to generalize to all the other possible sexes?
Those are the only levels of interest.  And you don't have to exhaust all the possible levels: Drug Dosage is not a
random effect -- you choose something like 10, 50, and 100 mg because you want to know what those amounts
will do; you don't choose them randomly so that you can also make statements about what happens when you give
200mg or 500 mg or 20g.  As long as the levels you use are the only ones you want to make statements about, it's a
fixed effect.]

So you have to say for each single factor whether it's fixed or random.  For interactions of factors, if any one of the
combined factors is random itself, then the whole combined term counts as random.  

The Rules.  Once you know for each term whether it's fixed or random, it's trivial to write down a variance
symbol: θ2 for anything fixed, and σ2 for anything random.  Then, equally trivial, you put the SV itself as a
subscript: for B you have θ2B (it's θ2 assuming B is fixed) and for SC/AB you have σ2SC/AB (it's σ2 even if C is
fixed because it only takes one random term -- S -- to make the whole thing random).  Finally, use all the
remaining letters as coefficients, in lower case since they're representing numbers.  If you have variables up
through D, then your terms become acdnθ2B and dσ2SC/AB.  Now you have a complete variance term, the
hypothesis term, for each SV.

[You use all the other letters in the design as coefficients because you want to multiply the variance by the number
of times it enters into your pattern of differences.  If you drew a design with the correct terms -- draw
AxBx(CxDxS) -- you'd see that S/AB interacted with C in d different cases, for instance SC/AB at D1, at D2, and
at D3; thus, dσ2SC/AB = 3σ2SC/AB.  Likewise you can see an effect of B at every combination of A, C, and D, so
there are acd=2*2*3=12 places that the variance associated with B enters into the group differences.]

Once you have a complete variance term for each effect, the only question is what other variances are components
of the differences in those effects -- or, concretely, which other variance terms should be added to the hypothesis
term as components of each effect.  Well, everything gets the random population variance, σ2e.  Then, according to
the rules, consider the hypothesis term of another SV if that SV itself (or, same thing, the subscript of its
hypothesis term) contains all the letters of the effect you're working on; then looking only to the left of any slashes,
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if all the letters aside from the effect you're working on are random, then you add that variance term to the effect
you're working on.

What you're doing by these rules is just mechanically adding other terms that represent the effects of random
variables on your term.  Notice that this means you'll only ever add σ2 terms as components, since a θ2 would
represent some kind of fixed variable; if you find yourself adding a θ2 term, you've either made a mistake in the
rules or chosen the wrong Greek letter.  A more useful thing to notice is that you can do all your combining of
terms before you write a single Greek letter.  All the information you use to make those decisions is right in the list
of your sources of variance: which terms are fixed and random, which terms contain which letters, and where the
slashes are.  You might find it easier, then, to work out your combinations first and then worry about the simple
stuff, i.e., the Greek letters, subscripts, and coefficients.

There's one important exception to the way the terms are written.  When subjects give only a single data point (i.e.,
the design is completely randomized), the subject term's EMS is just σ2e regardless of what subjects are nested in.
That is, S/A for a one-factor CR design, S/AB for a two-factor, S/ABC for three, etc., would each have just the
population variance term σ2e.  Do not write "σ2e + σ2S/AB", for instance, and do not try to add "σ2S/AB" as a
component of the EMS for A as the rules would suggest; the term is just σ2e, and that's already part of all the other
terms, including A.  This only holds for completely randomized designs, where you always find that the bottom SV
is S to the left of a slash with all the other SV's to the right.  In mixed designs you also may find terms like S/AB,
but in those cases you do write "σ2e + σ2S/AB".

Using EMS.  Yes, there are reasons to bother with this stuff.  First, it tells you what MS terms are error terms for
what other MS terms, i.e., how to make F ratios.  An error MS is the denominator of an F ratio, and it has all the
same EMS components as the numerator except for one -- the numerator's hypothesis term.  For instance, in a one-
way repeated measures design (AxS), EMSA is "σ2e + σ2AS + nθ2A", so its error term is "σ2e + σ2AS", or EMSAS.
When Ho is true, θ2A = 0, thus the F ratio has the same numerator and denominator, which should make it equal 1.
The bigger the effect, the more is added to the numerator and the bigger the F ratio gets.

[The idea of a "true" F ratio refers to the fact that mathematically, F should have the same numerator and
denominator; what we like, experimentally, is when our F is not a true F ratio, i.e., when the numerator has
something extra in it, namely a hypothesis term bigger than zero.  Then the p-value tells us the chances that we
really do have a true F ratio.  If that p is really small, it tells us that we probably don't have a real F, and we
conclude that the culprit is the hypothesis term we threw into the numerator.  When we test a strong effect it is very
unlikely that the F we compute is a true F, since we see things like p = .0001, and that makes us happy.]

You also find out that some effects don't even have error terms.  In the simplest (AxS) case, that's true of S, since
its EMS is "σ2e + aσ2S" and there is no other term with just "σ2e" as its EMS.  But we might try to make an F
ratio anyway, using "σ2e + σ2AS", or EMSAS, as the denominator.  Write out that fraction and you'll see that the
denominator is bigger than it should be according to the above definition of an error term-- so your F will be
smaller than it should be.  This is known as a conservative F ratio: given that it's biased toward being small by its
puffed up denominator, if it turns out to be significant anyway you'll know that it's really significant (or in technical
terms, "way significant").  If the conservative F is not significant, the S effect might still be significant but you have
no way to find out.  Luckily, you rarely care about the effects without error terms anyhow.  (For the gullible I
should mention that "way significant" isn't really a technical term.)

Pooling error terms is another neat thing to do based on EMS.  Keep in mind that two things can make an F more
significant: a small error term (so the F ratio is larger), or lots of df (even a fairly small F can be significant on lots
of df).  Under certain circumstances you can combine error terms in your design to make it more likely that your F
will reach significance.  Read this very slowly:  say you have a hypothesis MS term for your numerator and an
error MS term for your denominator.  Looking through your EMS for the design, you may see that there is a third
MS term that has nearly the same EMS as your error term.  This third EMS should differ from your error EMS by
just one component.  Now, if that component represents a hypothesis term that was found to be really small, then
you can pretend that extra component is not even there, and add the third term into the error term.  Before doing the
mechanics of that, look at a concrete example (and isn't it amazing what can count as a "concrete example"?):
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In the Ax(BxS) mixed design, the EMS for the B hypothesis term is "σ2e + σ2SB/A + anθ2B", and for its error term
SB/A the EMS is "σ2e + σ2SB/A".  Fine -- you could compute your F ratio as is, and that would be the standard
thing to do.  But if your output says that F isn't significant, you do the advanced thing.  You look at the EMS for
the interaction term AB, which is "σ2e + σ2SB/A + nθ2AB".  It's the same as the error term except for the "nθ2AB"
part.  Look at your output again; what's the p-value for the AB interaction?  If it's bigger than .25, that tells you that
the "nθ2AB" part is small enough to be negligible.  It's as if the interaction term has the same EMS as the error
term.  So use them both as the error term!  Important: it's not good enough for the third term to just be non-
significant, p > .05; it has to be ridiculously non-significant in order for you to disregard the hypothesis component
in its EMS.  The rule of thumb is that p > .25 counts as ridiculously non-significant.

The mechanics of combining the terms is really simple.  Any MS is just the SS divided by the corresponding df --
nothing new -- so to combine MS terms, add up all the SS and divide by the added-up df.  In the case above, the
pooled MS is just (SSSB/A + SSAB) divided by (dfSB/A + dfAB).  The reason this helps is that even if the size of the
new MS error term is exactly the same, resulting in the exact same F ratio, the df for the denominator has gone
from a(b-1)(n-1) to a(b-1)(n-1) + (a-1)(b-1), which means you need to reach a smaller critical F value to get
significance.

If all this hasn't convinced you that EMS are both useful and fun, go read about "quasi-F ratios".

Check the following EMS examples; I hope I did them right, but if I didn't, sue me.

AxBx(CxDxS), all fixed effects:
A σ2e   +   cdσ2S/AB   +   bcdnθ2A
B σ2e   +   cdσ2S/AB   +   acdnθ2B

AB σ2e   +   cdσ2S/AB   +   cdnθ2AB
S/AB σ2e   +   cdσ2S/AB error term for A, B, and AB

C σ2e   +   dσ2SC/AB   +   abdnθ2C
AC σ2e   +   dσ2SC/AB   +   bdnθ2AC
BC σ2e   +   dσ2SC/AB   +   adnθ2BC

ABC σ2e   +   dσ2SC/AB   +   dnθ2ABC
SC/AB σ2e   +   dσ2SC/AB error term for C, AC, BC, and ABC

D σ2e   +   cσ2SD/AB   +   abcnθ2D
AD σ2e   +   cσ2SD/AB   +   bcnθ2AD
BD σ2e   +   cσ2SD/AB   +   acnθ2BD

ABD σ2e   +   cσ2SD/AB   +   cnθ2ABD
SD/AB σ2e   +   cσ2SD/AB error term for D, AD, BD, and ABD

CD σ2e   +   σ2SCD/AB   +   abnθ2CD
ACD σ2e   +   σ2SCD/AB   +   bnθ2ACD
BCD σ2e   +   σ2SCD/AB   +   anθ2BCD

ABCD σ2e   +   σ2SCD/AB   +   nθ2ABCD
SCD/AB σ2e   +   σ2SCD/AB error term for CD, ACD, BCD, and ABCD



ERIC LUNDQUIST, © 2000 p.4

AxBx(CxDxS), A,B,C fixed effects, D random -- note the paucity of error terms due to D being a random
effect:

A σ2e   +   cσ2SD/AB   +   cdσ2S/AB   +   bcnσ2AD   +   bcdnθ2Ano error term!
B σ2e   +   cσ2SD/AB   +   cdσ2S/AB   +   acnσ2BD   +   acdnθ2B no error term!

AB σ2e   +   cσ2SD/AB   +   cdσ2S/AB   +   cnσ2ABD   +   cdnθ2ABno error term!
S/AB σ2e   +   cσ2SD/AB   +   cdσ2S/AB

C σ2e   +   σ2SCD/AB   +   dσ2SC/AB   +   abnσ2CD   +   abdnθ2C no error term!
AC σ2e   +   σ2SCD/AB   +   dσ2SC/AB   +   bnσ2ACD   +   bdnθ2AC no error term!
BC σ2e   +   σ2SCD/AB   +   dσ2SC/AB   +   anσ2BCD   +   adnθ2BC no error term!

ABC σ2e   +   σ2SCD/AB   +   dσ2SC/AB   +   nσ2ABCD   +   dnθ2ABC no error term!
SC/AB σ2e   +   σ2SCD/AB   +   dσ2SC/AB

D σ2e   +   cσ2SD/AB   +   abcnσ2D
AD σ2e   +   cσ2SD/AB   +   bcnσ2AD
BD σ2e   +   cσ2SD/AB   +   acnσ2BD

ABD σ2e   +   cσ2SD/AB   +   cnσ2ABD
SD/AB σ2e   +   cσ2SD/AB

CD σ2e   +   σ2SCD/AB   +   abnσ2CD
ACD σ2e   +   σ2SCD/AB   +   bnσ2ACD
BCD σ2e   +   σ2SCD/AB   +   anσ2BCD

ABCD σ2e   +   σ2SCD/AB   +   nσ2ABCD
SCD/AB σ2e   +   σ2SCD/AB



EXPECTED MEAN SQUARES AND MIXED MODEL ANALYSES 

 

Fixed vs. Random Effects 
 

 The choice of labeling a factor as a fixed or random effect will affect how you will 

make the F-test. 

 

 This will become more important later in the course when we discuss interactions. 

 

Fixed Effect 

 

 All treatments of interest are included in your experiment. 

 

 You cannot make inferences to a larger experiment. 

 

Example 1:  An experiment is conducted at Fargo and Grand Forks, ND.  If  location is 

considered a fixed effect, you cannot make inferences toward a larger area (e.g. the 

central Red River Valley). 

 

Example 2:  An experiment is conducted using four rates (e.g. ½ X, X, 1.5 X, 2 X) of a 

herbicide to determine its efficacy to control weeds.  If rate is considered a fixed effect, 

you cannot make inferences about what may have occurred at any rates not used in the 

experiment (e.g. ¼ x, 1.25 X, etc.). 

 

Random Effect 

 

 Treatments are a sample of the population to which you can make inferences. 

 

 You can make inferences toward a larger population using the information from the 

analyses. 

 

Example 1:  An experiment is conducted at Fargo and Grand Forks, ND.  If location is 

considered a random effect, you can make inferences toward a larger area (e.g. you could 

use the results to state what might be expected to occur in the central Red River Valley). 

 

Example 2:  An experiment is conducted using four rates (e.g. ½ X, X, 1.5 X, 2 X) of an 

herbicide to determine its efficacy to control weeds.  If rate is considered a random effect, 

you can make inferences about what may have occurred at rates not used in the 

experiment (e.g. ¼ x, 1.25 X, etc.). 

 



Assumptions Underlying ANOVA 
 

 Experimental errors are random, independently, and normally distributed about a 

mean of zero and with a common variance (i.e. treatment variances are 

homogenous). 

 

 The above assumption can be express as NID (0, σ
2
). 

 

 Departure from this assumption can affect both the level of significance and the 

sensitivity of F- or t-tests to real departures from Ho: 

 

 This results in the rejection of Ho when it is true (i.e. a Type I Error) more often 

than   calls for. 

  

 The power of the test also is reduced if the assumption of NID(0, σ
2
) is violated. 

 

 Violation of the assumption NID(0, σ
2
) with the fixed model is usually of little 

consequence because ANOVA is a very robust technique. 

 

 Violation of the basic assumptions of ANOVA can be investigated by observing 

plots of the residuals. 

 

 Residuals will be discussed in more detail when Transformations are discussed later 

in the semester. 

 

 

 

 So far in class we have assumed that treatments are always a fixed effect. 

 

 If some or all factors in an experiment are considered random effects, we need to be 

concerned about the denominator of the F-test because it may not be the Error MS. 

 

 To determine the appropriate denominator of the F-test, we need to know how to 

write the Expected Mean Squares for all sources of variation. 

 

 

Expected Mean Squares 

 

All Random Model 

 

 Each source of variation will consist of a linear combination of 
2  plus variance 

components whose subscript matches at least one letter in the source of variation. 

 

 The coefficients for the identified variance components will be the letters not found in 

the subscript of the variance components. 

 



Example – RCBD with a 3x4 Factorial Arrangement 

 

Sources of variation 2                2

ABr                2

Bra                2

Arb                2

Rab  

Rep 22

Rab   

A 222

AAB rbr    

B 222

BAB rar    

AxB 22

ABr   

Error 2  

 

 

Step 1.  Write the list of variance components across the top of the table.   

 There will be one variance component for each source of variation except Total.   

 

 The subscript for each variance component will correspond to each source of 

variation.   

 

 The variance component for error receives no subscript. 

 

Sources of variation 2                
2

AB                
2

B                
2

A                
2

R  

Rep  

A  

B  

AxB  

Error  

 

Step 2.  Write in the coefficients for each variance component.   

 Remember that the coefficient is the letter(s) missing in the subscript. 

 

 The coefficient for Error is the number 1. 

 

Sources of variation 2                
2

ABr                
2

Bra                
2

Arb                
2

Rab  

Rep  

A  

B  

AxB  

Error  

 

 



Step 3.  All sources of variation will have 2  (i.e. the expected mean square for error as a  

 variance component). 

 

Sources of variation 2                2

ABr                2

Bra                2

Arb                2

Rab  

Rep 2  

A 2  

B 2  

AxB 2  

Error 2  

 

Step 4.  The remaining variance components will be those whose subscript matches at 

least one letter in the corresponding source of variation. 

 

SOV 2                
2

ABr                
2

Bra                
2

Arb                
2

Rab  

Rep 22

Rab                        (Those variance components that have at least the letter R) 

A 222

AAB rbr             (Those variance components that have at least the letter A) 

B 222

BAB rar             (Those variance components that have at least the letter B) 

AxB 22

ABr                             (Those variance components that have at least the letters A and 

B) 

Error 2  

 

Example – RCBD with a 3x2 Factorial Arrangement Combined Across Environments 

 

Sources of variation 2    
2

LABr   
2

ABrl   
2

LBra    
2

Brla    
2

LArb    
2

Arlb     

Location -- 

Rep(Loc) -- 

A 22222

ALAABLAB rlbrbrlr    

Loc x A 222

LALAB rbr    

B 22222

BLBABLAB rlararlr    

Loc x B 222

LBLAB rar    

AxB 222

ABLAB rlr    

Loc x A x B 22

LABr   

Error 2  

 

 

Step 1.  Write the list of variance components across the top of the table.   

 There will be one variance component for each source of variation except Total.   

 

 The subscript for each variance component will correspond to each source of 

variation.   

 



 The variance component for error receives no subscript. 

 

Sources of variation 2    2

LAB   2

AB   2

LB    2

B    2

LA    2

A     

Location -- 

Rep(Loc) -- 

A  

Loc x A  

B  

Loc x B  

A x B  

Loc x A x B  

Error  

 

Step 2.  Write in the coefficients for each variance component.   

 Remember that the coefficient is the letter(s) missing in the subscript. 

 

 The coefficient for Error is the number 1. 

 

Sources of variation 2    2

LABr   2

ABrl   2

LBra    2

Brla    2

LArb    2

Arlb     

Location -- 

Rep(Loc) -- 

A  

Loc x A  

B  

Loc x B  

A x B  

Loc x A x B  

Error  

 

 

Step 3.  All sources of variation will have 
2  (i.e. the expected mean square for error as a  

 variance component). 

 

Sources of variation 2    
2

LABr   
2

ABrl   
2

LBra    
2

Brla    
2

LArb    
2

Arlb  

Loc -- 

Rep(Loc) -- 

A 2  

Loc x A 2  

B 2  

Loc x B 2  

A x B 2  

Loc x A x B 2  

Error 2  



Step 4.  The remaining variance components will be those whose subscript matches at 

least one letter in the corresponding source of variation. 

 

SOV 2    
2

LABr   2

ABrl   2

LBra    2

Brla    2

LArb    2

Arlb  

Loc -- 

Rep(Loc) -- 

A   22222

ALAABLAB rlbrbrlr      (Those variance components that have at least the letter A) 

LocxA   222

LALAB rbr                         (Those variance components that have at least the letter L and A) 

B 22222

BLBABLAB rlararlr        (Those variance components that have at least the letters B) 

LocxB 222

LBLAB rar                          (Those variance components that have at least the letters L and B) 

AxB 222

ABLAB rlr                          (Those variance components that have at least the letters A and B) 

LocxAxB 22

LABr                                  (Those variance components that have at least the letters L, A, and B) 

Error 2  

 

 

All Fixed Effect Model 

 

Step 1.  Begin by writing the expected mean squares for an all random model. 

 

Step 2.  All but the first and last components will drop out for each source of variation. 

 

Step 3.  Rewrite the last term for each source of variation to reflect the fact that the factor 

is a fixed effect. 

 

Example RCBD with 3x2 Factorial 

 

SOV Before After 

Rep 22

Rab     22

Rab    

A 
222

AAB rbr               

)1(

2

2





a

rb
i

  

B 
222

BAB rar               

)1(

2

2





b

ra
j

  

AxB 
22

ABr                              
  

)1)(1(

2

2





ba

r
ij

                             

Error 2   2  

 

 

Rules for Writing Fixed Effect Component 

 

Step 1.  Coefficients don’t change. 

 



Step 2.  Replace  with 2  

 

Step 3.  The subscript of the variance component becomes the numerator of the effect. 

 

Step 4.  The denominator of the effect is the degrees of freedom. 

 

Example 2  CRD with a Factorial Arrangement 

 

SOV Before After 

Loc --   

Rep(Loc) --   

A 22222

ALAABLAB rlbrbrlr     

)1(

2

2





a

rlb


  

LxA 222

LALAB rbr     

)1)(1(

2

2





al

rb


  

B 22222

BLBABLAB rlararlr      

)1(

2

2





b

rla


  

LxB 222

LBLAB rar      

)1)(1(

2

2





bl

ra


  

AxB 222

ABLAB rlr      

)1)(1(

2

2





ba

rl


  

LxAxB 22

LABr     

)1)(1)(1(

2

2





bal

r


  

Error 2   2  

 

 

Mixed Models 

 

 For the expected mean squares for all random models, all variance components 

remained. 

 

 For fixed effect models, all components but the first and last are eliminated. 

 

 For mixed effect models: 

 

1. The first and last components will remain. 

 

2. Of the remaining components, some will be eliminated based on the following 

rules: 

 

a. Always ignore the first and last variance components. 

 



b. For the remaining variance components, any letter(s) in the subscript used 

in naming the effect is ignored. 

 

c. If any remaining letter(s) in the subscript corresponds to a fixed effect, 

that variance component drops out. 

 

Example 1 – RCBD with a Factorial Arrangement (A fixed and B random)  

 

SOV Before After 

Rep 22

Rab     22

Rab    

A 
222

AAB rbr               

)1(

2

22





a

rbr
i

AB


  

B 222

BAB rar               22

Bra   

AxB 22

ABr                               22

ABr   

Error 2   2  

 

Steps for each Source of Variation 

 

Error -   No change for Error. 

 

AxB -   No change for AxB since only the first and last variance components are present. 

 

B -  For the middle variance component, cover up the subscript for B, only A is 

 present.   

 Since A is a fixed effect this variance component drops out. 

 

A - For the middle variance component, cover up the subscript for A, only B is 

 present.   

Since B is a random effect this variance component remains. 

 

Rep -   Replicate is always a random effect, so this expected mean square remains the 

 same. 



Example 2  RCBD with a Factorial Arrangement (A and B fixed) combined across 

locations (random) 

 

SOV Before After 

Loc --  -- 

Rep(Loc) --  -- 

A 22222

ALAABLAB rlbrbrlr     

)1(

2
22






a
rlbrb LA


  

LxA 222

LALAB rbr     22

LArb   

B 22222

BLBABLAB rlararlr     

)1(

2
22






b
rlara LB


  

LxB 222

LBLAB rar     22

LBra   

AxB 222

ABLAB rlr     

)1)(1(

)( 2
22






ba
rlr LAB


  

LxAxB 22

LABr    22

LABr   

Error 2   2  

 

Steps for Each Source of Variation 

 

Error -   Error remains the same. 

 

LxAxB -   The error mean square for LxAxB remains the same since there are only first  

 and last terms. 

 

AxB-   Cover up the A and B in the subscript, L remains and corresponds to a random  

 effect. Therefore the term remains. 

 

LxB -   Cover up the L and B in the subscript, A remains and corresponds to a fixed 

 effect.  Therefore the term drops out.   

 

B –  LAB term - Cover up the B in the subscript, L and A remain and A corresponds to 

a fixed effect; therefore, the term drops out.   

 

 AxB term - Cover up the B in the subscript, A remains and corresponds to a fixed 

effect; therefore, the term drops out.  

 

LxB term - Cover up the B in the subscript, L remains and corresponds to a 

random effect; therefore, the term remains. 

 

LxA -  Cover up the L and A in the subscript, B remains and corresponds to a fixed 

effect.  Therefore the term drops out. 

 

A –  LAB term - Cover up the A in the subscript, L and B remain and B corresponds to 

a fixed effect; therefore, the term drops out.   



 

 AxB term - Cover up the A in the subscript, B remains and corresponds to a fixed 

effect; therefore, the term drops out.  

 

LxA term - Cover up the A in the subscript, L remains and corresponds to a 

random effect; therefore, the term remains. 

 

  

 Deciding What to Use as the Denominator of Your F-test 
 

 For an all fixed model the Error MS is the denominator of all F-tests. 

 

 For an all random or mix model,  

 

1. Ignore the last component of the expected mean square. 

 

2. Look for the expected mean square that now looks this expected mean square. 

 

3. The mean square associated with this expected mean square will be the 

denominator of the F-test. 

 

4. If you can’t find an expected mean square that matches the one mentioned above, 

then you need to develop a Synthetic Error Term. 

 

Example 1 – RCBD with a Factorial Arrangement (A fixed and B random)  

 

SOV Expected mean square MS F-test 

Rep 22

Rab    1 F = MS 1/MS 5 

A 

)1(

2

22





a

rbr
i

AB


  2 F = MS 2/MS 4 

B 22

Bra   3 F = MS 3/MS 5 

AxB 22

ABr   4 F = MS 4/MS 5 

Error 2  5  

 

Steps for F-tests 

 FAB -  Ignore 
2

ABr .  The expected mean square now looks like the expected mean 

 square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FB -  Ignore 
2

Bra .  The expected mean square now looks like the expected mean 

 square for Error.   Therefore, the denominator of the F-test is the Error MS. 

 



FA -  Ignore 
)1(

2




a

rb
i

.  The expected mean square now looks like the expected mean 

 square for AxB.  Therefore, the denominator of the F-test is the AxB MS. 

 

Example 2  RCBD with a Factorial Arrangement (A and B fixed) combined across 

locations 

 

SOV Expected mean square MS F-test 

Loc --  non-valid 

Rep(Loc) --  non-valid 

A 

)1(

2
22






a
rlbrb LA


  

1 F = MS 1/MS 2 

LxA 22

LArb   2 F = MS 2/MS 7 

B 

)1(

2
22






b
rlara LB


  

3 F = MS 3/MS 4 

LxB 22

LBra   4 F = MS 4/MS 7 

AxB 

)1)(1(

)( 2
22






ba
rlr LAB


  

5 F = MS 5/MS 6 

LxAxB 22

LABr   6 F = MS 6/MS 7 

Error 2  7  

 

Steps for F-tests 

 FLAB - Ignore 
2

LABr .  The expected mean square now looks like the expected mean 

 square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FAB -  Ignore 
2

ABrl .  The expected mean square looks like the expected mean square for 

 LxAxB.  Therefore, the denominator of the F-test is the LxAxB MS. 

 

FLB - Ignore 
2

LBra .  The expected mean square now looks like the expected mean 

square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FB -  Ignore 
2

Bra .  The expected mean square now looks like the expected mean 

 square for LxB.  Therefore, the denominator of the F-test is the LxB MS. 

 

FLA -  Ignore 
2

LArb .  The expected mean square now looks like the expected mean 

square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FA -  Ignore 
)1(

2




a

rb
i

.  The expected mean square now looks like the expected mean 

 square for AxB.  Therefore, the denominator of the F-test is the AxB MS. 

 



Example 3  CRD with a Factorial Arrangement (A fixed, B and C random) 

 

SOV Expected Mean Square MS F-test 

A 

)1(

2

2222





a

rbcrcrbr
i

ABACABC


  1 (MS 1 + MS 7)/(MS 4 + MS 5) 

B 222

BBC racra    2 MS 2/MS 6 

C 222

CBC rabra    3 MS 3/MS 6 

AxB 222

ABABC rcr    4 MS 4/MS 7 

AxC 222

ACABC rbr    5 MS 5/MS 7 

BxC 22

BCra   6 MS 6/MS 8 

AxBxC 22

ABCr   7 MS 7/MS 8 

Error 2  8  

 

Steps for F-tests 

 FABC - Ignore 2

ABCr .  The expected mean square now looks like the expected mean  

 square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FBC -  Ignore 2

BCra .  The expected mean square now looks like the expected mean 

 square for Error.  Therefore, the denominator of the F-test is the Error MS. 

 

FAC -  Ignore 2

ACrb .  The expected mean square now looks like the expected mean 

 square for AxBxC.  Therefore, the denominator of the F-test is the AxBxC MS. 

 

FAB -  Ignore 
2

ABrcb .  The expected mean square now looks like the expected mean 

 square for AxBxC.  Therefore, the denominator of the F-test is the AxBxC MS. 

 

FC -  Ignore 2

Crab .  The expected mean square now looks like the expected mean 

 square for BxC.  Therefore, the denominator of the F-test is the BxC MS. 

 

FB -  Ignore 
2

Brac .  The expected mean square now looks like the expected mean 

 square for BxC.  Therefore, the denominator of the F-test is the BxC MS. 

 

FA -  Ignore 
)1(

2




a

rbc
i

.  The expected mean square now looks like none of the 

 expected mean squares.  Therefore, we need to develop a Synthetic Mean Square 

 

 

 Need an Expected Mean Square that looks like:  2222

ABACABC rcrbr   . 

 

AC = 222

ACABC rbr     (missing 
2

ABrc ) 



and 

 

AB = 222

ABABC rcr     (missing 2

ACrb ) 

   

 An expected mean square can be found that includes all needed variance 

components if you sum the expected mean squares of AC and AB. 

 

AC MS + AB MS = 2222 22 ABACABC rcrbr    

 

 The problem with this sum is that it is too large by 22

ABCr  . 

 

 One method would be to get the needed expected mean square is by:   

 

AC MS + AB MS – ABC MS 

 

 Thus FA could be:  
MS ABCMS ABMS AC

MSA 


 

 

 However, this is not the preferred formula for this F-test. 

 

 The most appropriate F-test is one in which the number of MS used in the numerator 

and denominator are similar. 

 

 This allows for more accurate estimates of the degrees of freedom associate with the 

numerator and denominator. 

 

 The formula above has one mean square in the numerator and three in the 

denominator. 

 

 The formula for FA that is most appropriate is  

 

   

MS ABMS AC

MS ABC MSA 




 

 

 The numerator and the denominator then become:  2222 22 ABACABC rcrbr   . 

 

Calculation of Estimated Degrees of Freedom for the Synthetic Error Term 

 

 Calculation of degrees of freedom for the numerator and denominator of the F-test 

cannot be calculated by adding together the degrees of freedom for the associated 

mean squares. 

 



 For the F-test:   FA = 
MS ABMS AC

MS ABC MSA 




 

 

 The numerator degrees of freedom = 
 













df ABC

MS) ABC(

dfA 

MS)A (

MS ABC  MSA 
22

2

 

 

 

 The denominator degrees of freedom = 
 













df AB

MS) AB(

df AC

MS) AC(

MS AB  MS AC
22

2

 

 

Calculation of LSD Values – CRD with a Factorial Arrangement (A fixed, B and C 

Random) 

 

LSDABC (0.05) = 
r

MS2Error 
t dfError  0.05/2;  

 

LSDBC (0.05) = 
ra

MS2Error 
t dfError  0.05/2;  

 

LSDAC (0.05) = 
rb

MS) 2(ABC
t df ABC 0.05/2;  

 

LSDAB (0.05) = 
rc

MS) 2(ABC
t df ABC 0.05/2;  

 

LSDC (0.05) = 
rab

MS) 2(BC
t df BC 0.05/2;  

 

LSDB (0.05) = 
rac

MS) 2(BC
t df BC 0.05/2;  

 

LSDA (0.05) = 
rbc

MS) ABC - MS AB  MS 2(AC
t' df Estimated 0.05/2;


 

 

 



 Where Estimated df for t’ = 
 

 












df ABC

MS ABC

df AB

MS) AB(

df AC

MS) AC(

ABC - MS AB  MS AC
222

2

 

 

 

SAS Example for ana Mixed Model RCBD Combined Across Locations (Factor A 

fixed and Locations random) 

 
options pageno=1; 

data threefct; 

input Loc Rep A Yield; 

datalines; 

0 1 1 25.7 

0 1 2 31.8 

0 1 3 34.6 

0 1 4 27.7 

0 1 5 38 

0 1 6 42.1 

0 2 1 25.4 

0 2 2 29.5 

0 2 3 37.2 

0 2 4 30.3 

0 2 5 40.6 

0 2 6 43.6 

0 3 1 23.8 

0 3 2 28.7 

0 3 3 29.1 

0 3 4 30.2 

0 3 5 34.6 

0 3 6 44.6 

0 4 1 22 

0 4 2 26.4 

0 4 3 23.7 

0 4 4 33.2 

0 4 5 31 

0 4 6 42.7 

1 1 1 48.9 

1 1 2 67.5 

1 1 3 58.4 

1 1 4 35.8 

1 1 5 66.9 

1 1 6 44.2 

1 2 1 64.7 

1 2 2 71.5 

1 2 3 42.5 

1 2 4 31 

1 2 5 81.9 

1 2 6 61.6 

1 3 1 27.8 

1 3 2 31 

1 3 3 31.2 

1 3 4 29.5 

1 3 5 31.5 

1 3 6 38.9 



1 4 1 23.4 

1 4 2 27.8 

1 4 3 29.8 

1 4 4 30.7 

1 4 5 35.9 

1 4 6 37.6 

2 1 1 23.4 

2 1 2 25.3 

2 1 3 29.8 

2 1 4 20.8 

2 1 5 29 

2 1 6 36.6 

2 2 1 24.2 

2 2 2 27.7 

2 2 3 29.9 

2 2 4 23 

2 2 5 32 

2 2 6 37.8 

2 3 1 21.2 

2 3 2 23.7 

2 3 3 24.3 

2 3 4 25.2 

2 3 5 26.5 

2 3 6 34.8 

2 4 1 20.9 

2 4 2 24.3 

2 4 3 23.8 

2 4 4 23.1 

2 4 5 31.2 

2 4 6 40.2 

;; 

ods rtf file='cmbloc.rtf'; 

proc glm; 

class loc rep a; 

model yield=loc rep(loc) a loc*a/ss3; 

test h=a e=loc*a; 

means a/lsd e=loc*a; 

means loc*a; 

run; 

ods rtf close;



Analysis of Mixed Models Using Proc GLM 

 

The GLM Procedure 

 

 

 

Class Level Information 

Class Levels Values 

Loc 3 0 1 2 

Rep 4 1 2 3 4 

A 6 1 2 3 4 5 6 

 

 

Number of Observations Read 72 

Number of Observations Used 72 



Analysis of Mixed Models Using Proc GLM 

 

The GLM Procedure 

 

Dependent Variable: Yield 

 

 

 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 26 9971.27750 383.51067 9.65 <.000

1 

Error 45 1789.24250 39.76094   

Corrected Total 71 11760.52000    

 

 

R-Square Coeff Var Root MSE Yield Mean 

0.847860 18.26836 6.305628 34.51667 

 

 

Source DF Type III SS Mean Square F Value Pr > F 

Loc 2 3358.260833 1679.130417 42.23 <.0001 

Rep(Loc) 9 3930.862500 436.762500 10.98 <.0001 

A 5 1847.900000 369.580000 9.30 <.0001 

Loc*A 10 834.254167 83.425417 2.10 0.0446 

 

 

Tests of Hypotheses Using the Type III MS for Loc*A as an Error Term 

Source DF Type III SS Mean Square F Value Pr > F 

A 5 1847.900000 369.580000 4.43 0.0218 



Analysis of Mixed Models Using Proc GLM 

 

The GLM Procedure 

 

t Tests (LSD) for Yield 

 

 

 

Note

: 

This test controls the Type I comparisonwise error rate, not the 

experimentwise error rate. 

 

 

Alpha 0.05 

Error Degrees of Freedom 10 

Error Mean Square 83.42542 

Critical Value of t 2.22814 

Least Significant Difference 8.3084 

 

 

Means with the same letter are 

not significantly different. 

t Grouping Mean N A 

 A  42.058 12 6 

 A     

B A  39.925 12 5 

B A     

B A C 34.600 12 2 

B  C    

B  C 32.858 12 3 

  C    

  C 29.283 12 1 

  C    

  C 28.375 12 4 



Analysis of Mixed Models Using Proc GLM  

 

The ANOVA Procedure 

 

 

 

 

Level of 

Loc 

Level of 

A N 

Yield 

Mean Std Dev 

0 1 4 24.2250000 1.7017148 

0 2 4 29.1000000 2.2286020 

0 3 4 31.1500000 6.0058305 

0 4 4 30.3500000 2.2487033 

0 5 4 36.0500000 4.1677332 

0 6 4 43.2500000 1.0908712 

1 1 4 41.2000000 19.2175267 

1 2 4 49.4500000 23.2460032 

1 3 4 40.4750000 13.2336377 

1 4 4 31.7500000 2.7766887 

1 5 4 54.0500000 24.3493326 

1 6 4 45.5750000 11.0581418 

2 1 4 22.4250000 1.6255768 

2 2 4 25.2500000 1.7616280 

2 3 4 26.9500000 3.3550956 

2 4 4 23.0250000 1.7969882 

2 5 4 29.6750000 2.4676237 

2 6 4 37.3500000 2.2649503 



 

 

 

PROC MIXED for Analysis of Mixed Models 
 

 The SAS procedure PROC MIXED offers an alternative for the analysis of mixed 

models. 

 

 This method of analysis is becoming the preferred or even required method of 

analysis in some journals (e.g. Agronomy Journal and Crop Science). 

 

 The PROC MIXED procedure uses a method of analysis called “Restricted or 

residual maximum likelihood” (REML) as its default method of analysis. 

 

 The SAS manual (http://www.technion.ac.il/docs/sas/stat/chap41/sect1.htm) states for 

PROC MIXED that “A mixed linear model is a generalization of the standard linear 

model used in the GLM procedure, the generalization being that the data are 

permitted to exhibit correlation and nonconstant variability. The mixed linear model, 

therefore, provides you with the flexibility of modeling not only the means of your 

data (as in the standard linear model) but their variances and covariances as well.” 

 

 For many of us, the need for covariance parameters will be of minimal importance. 

 

 Research areas where covariance parameters can be important include: 

 

o The experimental units from which you collect data can be grouped into 

clusters and the data from a common cluster are correlated. 

 

o Collecting data over time from the same experimental unit and the repeated 

measurements are correlated. 

 

 The output from the PROC MIXED analysis is quite different from that produced 

using PROC GLM. 

 

 Major differences will be the F-tests are done only on the sources of variation have 

all fixed parameters and mean separation is done only on fixed effects.  F-tests and 

mean separation are not done on random or mixed effects. 

 

 If the data are balanced, the results for the F-tests on the fixed effect sources of 

variation in the PROC MIXED analysis will be the same as those obtained from the 

PROC GLM analysis. 

 

 If the data are unbalanced, the results for the F-tests from the two procedures will be 

different. 

http://www.technion.ac.il/docs/sas/stat/chap41/sect1.htm


 

 

 

Example of SAS PROC MIXED to Analyze a Single Factor Experiment Over Multiple 

Location (A is a fixed a effect and location is a random effect). 

 
options pageno=1; 

data threefct; 

input Loc Rep A Yield; 

datalines; 

0 1 1 25.7 

0 1 2 31.8 

0 1 3 34.6 

0 1 4 27.7 

0 1 5 38 

0 1 6 42.1 

0 2 1 25.4 

0 2 2 29.5 

0 2 3 37.2 

0 2 4 30.3 

0 2 5 40.6 

0 2 6 43.6 

0 3 1 23.8 

0 3 2 28.7 

0 3 3 29.1 

0 3 4 30.2 

0 3 5 34.6 

0 3 6 44.6 

0 4 1 22 

0 4 2 26.4 

0 4 3 23.7 

0 4 4 33.2 

0 4 5 31 

0 4 6 42.7 

1 1 1 48.9 

1 1 2 67.5 

1 1 3 58.4 

1 1 4 35.8 

1 1 5 66.9 

1 1 6 44.2 

1 2 1 64.7 

1 2 2 71.5 

1 2 3 42.5 

1 2 4 31 

1 2 5 81.9 

1 2 6 61.6 

1 3 1 27.8 

1 3 2 31 

1 3 3 31.2 

1 3 4 29.5 

1 3 5 31.5 

1 3 6 38.9 

1 4 1 23.4 

1 4 2 27.8 

1 4 3 29.8 

1 4 4 30.7 

1 4 5 35.9 

1 4 6 37.6 

2 1 1 23.4 



 

 

 

2 1 2 25.3 

2 1 3 29.8 

2 1 4 20.8 

2 1 5 29 

2 1 6 36.6 

2 2 1 24.2 

2 2 2 27.7 

2 2 3 29.9 

2 2 4 23 

2 2 5 32 

2 2 6 37.8 

2 3 1 21.2 

2 3 2 23.7 

2 3 3 24.3 

2 3 4 25.2 

2 3 5 26.5 

2 3 6 34.8 

2 4 1 20.9 

2 4 2 24.3 

2 4 3 23.8 

2 4 4 23.1 

2 4 5 31.2 

2 4 6 40.2 

;; 

ods rtf file='cmbloc.rtf'; 

proc mixed; 

class loc rep a; 

model yield= a; 

*comments In Proc Mixed only effects that are solely fixed are included 

in the model statement; 

random loc rep(loc) loc*a; 

*Comment In Proc Mixed the Random statement includes sources of 

variation that include solely random effects or mixed effects; 

lsmeans a/diff;  

title ‘ANOVA done using Proc Mixed’; 

run; 

ods rtf close;



ANOVA Done Using Proc Mixed 

 

The Mixed Procedure 

 

 

 

Model Information 

Data Set WORK.THREEF

CT 

Dependent Variable Yield 

Covariance Structure Variance 

Components 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Containment 

 

 

Class Level Information 

Class Levels Values 

Loc 3 0 1 2 

Rep 4 1 2 3 4 

A 6 1 2 3 4 5 6 

 

 

Dimensions 

Covariance Parameters 4 

Columns in X 7 

Columns in Z 33 

Subjects 1 

Max Obs Per Subject 72 

 

 

Number of Observations 

Number of Observations Read 72 

Number of Observations Used 72 

Number of Observations Not Used 0 

 

 



ANOVA Done Using Proc Mixed 

 

The Mixed Procedure 

 

 

 

Iteration History 

Iteration Evaluations -2 Res Log Like Criterion 

0 1 532.99533545  

1 1 481.74525633 0.00000000 

 

 

Convergence criteria met. 

 

 

Covariance 

Parameter Estimates 

Cov Parm Estimate 

Loc 49.9460 

Rep(Loc) 66.1669 

Loc*A 10.9161 

Residual 39.7609 

 

 

Fit Statistics 

-2 Res Log Likelihood 481.7 

AIC (smaller is better) 489.7 

AICC (smaller is better) 490.4 

BIC (smaller is better) 486.1 

 

 

Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

A 5 10 4.43 0.0218 

 

 

Least Squares Means 

Effect A Estimate 

Standard 

Error DF t Value Pr > |t| 

A 1 29.2833 5.3958 10 5.43 0.0003 

A 2 34.6000 5.3958 10 6.41 <.0001 

A 3 32.8583 5.3958 10 6.09 0.0001 



ANOVA Done Using Proc Mixed 

 

The Mixed Procedure 

 

 

 

Least Squares Means 

Effect A Estimate 
Standard 

Error DF t Value Pr > |t| 

A 4 28.3750 5.3958 10 5.26 0.0004 

A 5 39.9250 5.3958 10 7.40 <.0001 

A 6 42.0583 5.3958 10 7.79 <.0001 

 

 

Differences of Least Squares Means 

Effect A _A Estimate 
Standard 

Error DF t Value Pr > |t| 

A 1 2 -5.3167 3.7288 10 -1.43 0.1844 

A 1 3 -3.5750 3.7288 10 -0.96 0.3603 

A 1 4 0.9083 3.7288 10 0.24 0.8125 

A 1 5 -10.6417 3.7288 10 -2.85 0.0171 

A 1 6 -12.7750 3.7288 10 -3.43 0.0065 

A 2 3 1.7417 3.7288 10 0.47 0.6505 

A 2 4 6.2250 3.7288 10 1.67 0.1260 

A 2 5 -5.3250 3.7288 10 -1.43 0.1838 

A 2 6 -7.4583 3.7288 10 -2.00 0.0734 

A 3 4 4.4833 3.7288 10 1.20 0.2569 

A 3 5 -7.0667 3.7288 10 -1.90 0.0873 

A 3 6 -9.2000 3.7288 10 -2.47 0.0333 

A 4 5 -11.5500 3.7288 10 -3.10 0.0113 

A 4 6 -13.6833 3.7288 10 -3.67 0.0043 

A 5 6 -2.1333 3.7288 10 -0.57 0.5799 
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