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Preface: Mathematical Statistics

After teaching mathematical statistics for several years using chalk on a black-
board (and, later, smelly “dry erase markers” on a whiteboard) dwelling on
the minutiae of theorems and examples, I decided to lecture from computer
slides that provide an outline of the “big picture”. Rather than spend class
time doing the same proofs and going over the same examples, I decided that
time would be better spent discussing the material from a different, higher-
level perspective, and addressing the details only as I felt necessary, or as the
students tell me is necessary.

It is of course expected that the student will read the primary
textbook, as well as various other texts, and to work through all
proofs and examples in the primary textbook. As a practical matter,
obviously, even if I attempted to cover all of these in class, there just is not
enough class time to do it.

After writing class slides (in LATEX2ε, of course), mostly in bullet form,
I began writing text around the bullets, and I put the notes on the class
website. Later I decided that a single document with a subject index (see
pages 479 through 488) would be useful to serve as a Companion for the
study of mathematical statistics. Much of the present document reflects its
origin as classroom notes; it contains many sentence fragments, and it lacks
connective material in many places. (The connective material was (probably!)
supplied orally during the lectures.) Several sections are incomplete. That does
not mean that the material is unimportant; it just means I have not had time
to write up the material.

The order of presentation has changed over the years that I have taught
these courses. Initially, I began with Lehmann and Casella (1998) and cov-
ered it more-or-less sequentially until the first semester ended. Then in the
second semester, I covered as much of Lehmann (1986) as I felt reasonable,
again more-or-less sequentially, but trying to find a reasonable starting point
to articulate with the material in Lehmann and Casella covered in the first
semester. For the past few years I have used Shao (2003) as the primary text.
The first time I followed Shao more-or-less sequentially, but each year I have
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deviated a little more from that order, even though I continued to use it as
the text.

This document is organized more closely to the order in which I cover the
topics now. The exception is the coverage of the appendices. I cover some of
this material first, especially Appendix D.2. Occasionally later I spend some
class time on other material from the appendices, but I generally expect the
appendices to be used for reference as they may be needed for the statistical
topics being covered.

References are given to the related sections of Shao (2003), Lehmann and
Casella (1998) (“TPE2”), and Lehmann and Romano (2005) (“TSH3”). One
or the other of these have been required for CSI 972/973 each year. These
texts state all of the important theorems, and in most cases, provide the
proofs. They are also replete with examples. Full bibliographic citations for
these references, as well as several other general resources are given in the
Bibliography beginning on page 477. More specific references cited only in
one chapter are given in the chapter Notes sections.

The purpose of this evolving document is not just to repeat all
of the material in those other texts. Its purpose, rather, is to provide
some additional background material, and to serve as an outline and a handy
reference of terms and concepts. The nature of the propositions vary consid-
erably; in some cases, a fairly trivial statement will be followed by a proof,
and in other cases, a rather obtuse statement will not be supported by proof.
In all cases, the student should understand why the statement is true (or, if
it’s not, immediately send me email to let me know of the error!).

I expect each student to read the primary textbook, and to work through
the proofs and examples at a rate that matches the individual student’s under-
standing of the individual problem. What one student thinks is rather obtuse,
another student comprehends quickly, and then the tables are turned when a
different problem is encountered. There is a lot of lonely work required, and
this is why lectures that just go through the details are often not useful.

Notation

Adoption of notation is an overhead in communication. I try to minimize that
overhead by using notation that is “standard”, and using it locally consis-
tently.

Examples of sloppy notation abound in mathematical statistics. Functions
seem particularly susceptible to abusive notation. It is common to see “f(x)”
and “f(y)” used in the same sentence to represent two different functions.
(These are often two different PDFs, one for a random variable X and the
other for a random variable Y . When I want to talk about two different things,
I denote them by different symbols. When I want to talk about two different
PDFs, I often use notation such as “fX(·)” and “fY (·)”. If x = y, which is of
course very different from saying X = Y , then fX(x) = fX(y) obviously.) For
a function and a value of a function, there is a certain amount of ambiguity
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that is almost necessary. I generally try to use notation such as “f(x)” to
denote the value of the function f at x, and I use “f” or “f(·)” to denote the
function itself (although occasionally, I do use “f(x)” to represent the function
— notice the word “try” in the previous paragraph). If, in the notation “f(x)”,
“x” denotes a real number, then “f(A)” does not make much sense if A is a
set. For the image of A under f , I use “f [A]”.

Appendix A provides a list of the common notation that I use. The reader
is encouraged to look over that list both to see the notation itself and to get
some idea of the objects that I discuss.

Easy Pieces

I recommend that all students develop a list of “easy pieces”. These are propo-
sitions or examples and counterexamples that the student can state and prove
or describe and work through without resort to notes. They may also include
definitions, stated precisely.

Some easy pieces culled from the material presented in CSI 972 in Fall,
2007 are

• Let C be the class of all closed intervals in IR. Show that σ(C) = B(IR)
(the real Borel σ-field).

• Define induced measure and prove that it is a measure. That is, prove: If
(Ω,F , ν) is a measure space and (Λ,G) is a measurable space, and f is a
function from Ω to Λ that is measurable with respect to F/G, then the
domain and range of the function ν ◦ f−1 is G and it is a measure.

• Define the Lebesgue integral for a general Borel function.
• State and prove Fatou’s lemma conditional on a sub-σ-field.
• State and prove the information inequality (CRLB) for a d-vector para-

meter. (Get the regularity conditions correct.)
• Give an example to distinguish the asymptotic bias from the limiting bias.
• State and prove Basu’s theorem.
• Give an example of a function of some parameter in some family of distri-

butions that is not U-estimable.

Make your own list of easy pieces.

“It Is Clear”

I tend to use the phrase “it is clear ...” often. (I only realized this recently,
because someone pointed it out to me.) When I say “it is clear ...”, I expect
the reader to agree with me actively, not passively.

I use this phrase only when the statement is “clearly” true to me. I must
admit, however, sometimes when I read the statement a few weeks later, it’s
not very clear! It may require many minutes of difficult reasoning. In any
event, the reader should attempt to supply the reasoning for everything that
I say is clear.
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My Courses

The courses in mathematical statistics at George Mason University are
CSI/STAT 972 and CSI/STAT 973. Until recently, the prerequisites for these
courses did not include any advanced probability theory. Therefore, a sub-
stantial amount of CSI/STAT 972 was devoted to probability theory and a
certain amount of the underlying measure theory. The courses now carry a
prerequisite of a course in measure-theoretic-based probability theory. The
coverage of probability as such in CSI/STAT 972 is consequently decreasing.
Chapter 1 and the appendices address the prerequisite material briefly. Even
after it can be assumed that all students in CSI/STAT 972 have the proba-
bility course prerequisite, however, some introductory coverage of probability
will remain in CSI/STAT 972. Although Chapter 1 is on “probability”, the fo-
cus is more on what is usually covered in “statistics” courses, such as families
of disrtribtions, in particular, the exponential class of families.

My notes on these courses are available at

http://mason.gmu.edu/~jgentle/csi9723/
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1

Probability
(Shao Ch 1, Sec 5.2; TPE2 Ch 1; TSH3 Ch 2)

Probability theory provides the basis for mathematical statistics. This chapter
covers important topics in probability theory at a fairly fast pace. Probability
theory is based on measure theory, so the presentation in this chapter assumes
familiarity with the material in Section D.2.

We begin in Section 1.1 with a statement of definitions and some basic
properties. In some cases, proofs are given; in others, references are given;
and in others, it is assumed that the reader supplies the reasoning.

Sections 1.2 and 1.3 are concerned with sequences of independent random
variables. The limiting properties of such sequences are important. Many of
the limiting properties can be studied using expansions in power series, which
is the topic of Section 1.4.

Section 1.5 is devoted to conditional probability, which is not a fundamen-
tal concept, as probability itself is. Conditional probability, rather, is based
on conditional expectation as the fundamental concept, so that is where we
begin. This provides a more general foundation for conditional probability
than we would have if we defined it more directly in terms of a measurable
space. Conditional probability plays an important role in sequences that lack a
simplifying assumption of independence. We discuss sequences that lack inde-
pendence in Section 1.6. Many interesting sequences also do not have identical
marginal distributions, but rather follow some kind of evolving model whose
form depends on, but is not necessarily determined by, previous variates in
the sequence.

The final section identifies and describes useful classes of probability dis-
tributions. These classes are important because they are good models of ob-
servable random phenomena, and because they are easy to work with. The
properties of various statistical methods discussed in subsequent chapters de-
pend on the underlying probability model, and some of the properties of the
statistical methods can be worked out easily for particular models discussed
in Section 1.7.
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2 1 Probability

1.1 Some Important Probability Definitions and Facts

A probability distribution is built from a σ-field, say F , defined on a sample
space, say Ω, and a σ-finite probability measure, say P . Properties of the dis-
tribution and statistical inferences regarding it are derived and evaluated in
the context of the “probability triple”, (Ω,F , P ). Given a probability space
(Ω,F , P ), a set A ∈ F is called an “event”. In practice, the probability mea-
sure P is usually based either on the counting measure (defined on countable
sets as their cardinality) or on the Lebesgue measure (the length of intervals).

In many ways the content of this section parallels that of Section D.2
(page 368) for more general measures.

1.1.1 Definitions of Probability and Probability Distributions

The basic ideas of probability are developed by consideration of a special
measure and the measure space it is part of. We first consider this special
function defined on subsets of the sample space, and then we consider a special
type of function of the elements of the sample space, called a random variable.
Random variables allow us to develop a theory of probability that is useful in
statistical applications.

Probability Measure on Events: Definitions

Definition 1.1 (probability measure)
A measure ν whose domain is a σ-field defined on the sample space Ω with
the property that ν(Ω) = 1 is called a probability measure. We often use P to
denote such a measure.

Definition 1.2 (probability space)
If P in the measure space (Ω,F , P ) is a probability measure, the triple
(Ω,F , P ) is called a probability space.

The elements in the probability space can be any kind of objects. They do
not need to be numbers.

Definition 1.3 (probability of an event)
The probability of the event A is P (A), also written as Pr(A).

The probability of A is
∫

A dP .

Definition 1.4 (independence)
We define independence in a probability space (Ω,F , P ) in three steps:

• Independence of events within a collection of events.
Let C be a collection of events; that is, a collection of subsets of F . The
events in C are independent iff for any positive integer n and distinct events
A1, . . . , An in C,
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1.1 Some Important Probability Facts 3

P (A1 ∩ · · · ∩ An) = P (A1) · · ·P (An).

Sometimes people use the phrase “mutually independent” to try to empha-
size that we are referring to independence of all events. We can have the
situation in which all pairs within the collection are independent, but the
collection is not independent; for example, in an experiment of tossing a
coin twice, let
A be “heads on the first toss”
B be “heads on the second toss”
C be “exactly one head and one tail on the two tosses”
We see immediately that any pair is independent, but that the intersection
is ∅.
BTW, the phrase “mutually independent” could be interpreted as “pairwise
independent”, so “mutually” really does not clarify anything.

• Independence of collections of events (and, hence, of σ-fields).
For any index set I, let Ci be a collection of sets with Ci ⊂ F . The col-
lections Ci are independent iff the events in any collection of the form
{Ai ∈ Ci : i ∈ I} are independent.

• Independence of functions (and, hence, of random variables).
(This also defines independence of any generators of σ-fields.)
The Borel-measurable functions Xi, for i ∈ I, are independent iff σ(Xi)
for i ∈ I are independent.

Definition 1.5 (exchangeability)
We define exchangeability in a probability space (Ω,F , P ) in three steps, sim-
ilar to those in the definition of independence:

• Exchangeability of events within a collection of events. Given a prob-
ability measure P , two events A and B are said to be exchangeable with
respect to P if P (A ∩ Bc) = P (AC ∩ B). This definition can be extended
to a collection of events C in an obvious manner.

• Exchangeability of collections of events (and, hence, of σ-fields).
For any index set I, let Ci be a collection of sets with Ci ⊂ F . The col-
lections Ci are exchangeable iff the events in any collection of the form
{Ai ∈ Ci : i ∈ I} are exchangeable.

• Exchangeability of functions (and, hence, of random variables).
(This also defines exchangeable of any generators of σ-fields.)
The Borel-measurable functions Xi, for i ∈ I, are exchangeable iff σ(Xi)
for i ∈ I are exchangeable.

Independence implies exchangeability, but exchangeability does not imply
independence. To see this, we first note that P (A∩Bc) = P (A∩B) iff A and
B are independent; hence, independence implies exchangeability.

A simple urn example may illustrate the difference in exchangeability and
independence. Suppose an urn contains 15 balls, 10 of which are red. We
“randomly” draw balls from the urn without replacing them. Let Ri be the
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4 1 Probability

event that a red ball is drawn on the ith draw, and Ri be the event that a
non-red ball is drawn. We see the following

Pr(R1) = Pr(R2) = · · · = Pr(R15) = 2/3

and
Pr(R1) = Pr(R2) = · · · = Pr(R15) = 1/3.

Now
Pr(R2|R1) = 5/7,

hence R1 and R2 are not independent. However,

Pr(R2 ∩R1) = Pr(R2 ∩ R1) = 5/21.

hence R1 and R2 are exchangeable. In fact, we could extend the latter com-
putations (by a binomial tree) to see that the elements of any subset of the
15 Ris is exchangeable.

Definition 1.6 (support of a probability measure)
If the probability measure P is defined with respect to the σ-field F , S ∈ F ,
and P (S) = 1, then S is called a support of the probability measure.

Random Variables and Probability Distributions: Definitions

Definition 1.7 (random variable)
Given a measurable space (Ω,F), a random variable is a real-valued measur-
able function, X(ω) or just X, defined on Ω.

(Recall that I often use “real” also to mean a vector over the reals. Al-
though we will assume X is real, it does not have to be, and we could form a
theory of probability and statistics that allowed X to be over a general field.)
In our extended meaning of the symbol “∈” (see page 345), we write X ∈ F .

Note that a constant is a random variable. If c is a constant and if X = c
a.s., then we call either c or X a degenerate random variable.

We often denote the image of X as X .

Definition 1.8 (σ-field generated by a random variable)
As with any measurable function, we have a σ-field generated by a random
variable. If X : Ω 7→ B ⊂ IRd, then we can see that σ(X−1[B]) is a sub-σ-field
of F . We call this the σ-field generated by X, and write it as σ(X).

If X and Y are random variables defined on the same measurable space,
we may write σ(X,Y ), with the obvious meaning. As with σ-fields generated
by sets or functions discussed before, it is clear that σ(X) ⊂ σ(X,Y ). This
idea of sub-σ-fields generated by random variables is important in the analysis
of a sequence of random variables.

Notice that a random variable is defined in terms only of a measurable
space (Ω,F) and a measurable space defined on the reals. No associated prob-
ability measure is necessary for the definition, but for meaningful applications
of a random variable, we need some probability measure.
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1.1 Some Important Probability Facts 5

Definition 1.9 (probability distribution of a random variable)
Given the probability space (Ω,F , P ) and the random variable X defined on
(Ω,F), the probability distribution of X is P◦X−1. The probability distribution
is also just called the distribution or the law.

For a given random variable X , a probability distribution determines
Pr(X ∈ A) for A ∈ A. An underlying probability measure of course de-
termines Pr(X ∈ A).

The support of the distribution (or of the random variable) is the closure
of the smallest set XS in the image of X such that P (X−1[XS ]) = 1.

Definition 1.10 (family of probability distributions)
A probability family or family of distributions, P = {Pθ, θ ∈ Θ ⊂ IRd}, is a
set of probability distributions of a random variable that is defined over Ω.

We call θ the parameter and Θ the parameter space. If the dimension of
Θ is large (there is no precise meaning of “large” here), we may refrain from
calling θ a parameter, because we want to refer to some statistical methods
as “nonparametric”. (In nonparametric methods, our analysis usually results
in some general description of the distribution, rather than in a specification
of the distribution.)

A family of distributions on a measurable space (Ω,F) with probability
measures Pθ for θ ∈ Θ is called a parametric family if Θ ⊂ IRk for some fixed
positive integer k and θ fully determines the measure.

We assume that every parametric family is identifiable; that is, P =
{Pθ, θ ∈ Θ} is an identifiable parametric family if it is a parametric fam-
ily and for θ1, θ2 ∈ Θ if θ1 6= θ2 then Pθ1 6= Pθ2 .

A family that cannot be indexed in this way is called a nonparametric
family.

An example of a parametric family of distributions for the measurable
space (Ω = {0, 1},F = 2Ω) is that formed from the class of the probabil-
ity measures Pπ({1}) = π and Pπ({0}) = 1 − π. This is a parametric fam-
ily, namely, the Bernoulli distributions. The measures are dominated by the
counting measure.

An example of a nonparametric family over some measurable space (Ω,F)
is Pc = {P : P � ν}, where ν is the Lebesgue measure.

Definition 1.11 (cumulative distribution function (CDF))
If (IRd,B(IRd), P ) is a probability space, and F is defined by

F (x) = P ((−∞, x]) ∀ x ∈ IRd,

then F is called a cumulative distribution function, or CDF.

The CDF is also called the distribution function, or DF. The CDF is
particularly useful in the case d = 1.
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6 1 Probability

The probability space completely determines F , and likewise, F completely
determines P a.s.; hence, we often use the CDF and the probability measure
interchangeably.

If the random variable is assumed to be in a family of distributions indexed
by θ, we may use the notation Fθ(x) or F (x; θ).

For a given random variableX , F (x) = Pr(X ≤ x). (IfX is a vector-valued
random variable, and x is a vector of the same order, X ≤ x is interpreted to
mean that Xi ≤ xi for each respective element.)

From the definition, four properties of a CDF are immediate:

• limx↓−∞ F (x) = 0.
• limx↑∞ F (x) = 1.
• F (x1) ≤ F (x2) if x1 ≤ x2.
• limε↓0 F (x+ ε) = F (x). (A CDF is continuous from the right.)

These four properties characterize a CDF, so they can serve as an alternate
definition of a CDF, without reference to a probability distribution. Notice, for
example, that the Cantor function (see Section D.2.4) is a CDF if we extend
its definition to be 0 on (−∞, 0) and to be 1 on (1,∞).

Definition 1.12 (probability density function) (PDF)
The derivative of a CDF (or, equivalently, of the probability measure) with
respect to an appropriate measure, if it exists, is called the probability density
function, PDF.

The PDF is also called the density function.
We use these terms for either discrete random variables and the count-

ing measure or for continuous random variables and Lebesgue measure. This
we take as the general meaning of the term “discrete random variable”: the
probability measure is dominated by the counting measure; and likewise for
a “continuous random variable”: the probability measure is dominated by
Lebesgue measure. Any simple CDF has a PDF wrt the counting measure,
but not every continuous CDF has a PDF wrt Lebesgue measure (the Cantor
function is a classic counterexample), but every absolutely continuous CDF
does have a PDF wrt Lebesgue measure.

We can also think of mixtures of densities in the context of a continuous
random variable with positive mass points.

The “appropriate measure” in the definition of PDF above must be σ-finite
and must dominate the probability density function.

If a specific CDF is Fθ, we often write the corresponding PDF as fθ:

fθ =
dFθ

dν

If the specific probability measure is Pθ, we also often write the corresponding
PDF as pθ:

pθ =
dPθ

dν
.
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1.1 Some Important Probability Facts 7

The dominating measure for a given probability distribution is not unique,
but use of a different dominating measure may change the representation of
the distribution. For example, suppose that the support of a distribution is
S, and so we write the PDF as

dFθ

dν
= g(x, θ)IS(x).

If we define a measure λ by λ(A) =
∫

A ISdν ∀A ∈ F , then we could write the
PDF as

dFθ

dλ
= g(x, θ).

Although we have already defined independence and exchangeability in
general, it is useful to give equivalent definitions for random variables.

Definition 1.13 (independence of random variables)
The random variables X1, . . . , Xk on (Ω,F , P ) are said to be independent iff
for any sets B1, . . . , Bk in the Borel σ-field,

P (X1 ∈ B1, . . . , Xk ∈ Bk) =
k∏

i=1

P (Xi ∈ Bi).

Definition 1.14 (exchangeability of random variables)
The random variables X1, . . . , Xk on (Ω,F , P ) are said to be exchangeable
iff the joint distribution of X1, . . . , Xk is the same as the joint distribution
of Π({X1, . . . , Xk}), for any Π, where Π(A) denotes a permutation of the
elements of the set A.

We can specify the distribution of a random variable by giving the CDF or
the PDF. There are also a number of useful distributions that we give names.
For example, the normal or Gaussian distribution, the binomial distribution,
the chi-squared, and so on. Each of these distributions is actually a family of
distributions. A specific member of the family is specified by specifying the
value of each parameter associated with the family of distributions.

For some distributions, we introduce special symbols to denote the distrib-
ution. For example, we use N(µ, σ2) to denote a univariate normal distribution
with parameters µ and σ2 (the mean and variance). To indicate that a random
variable has a normal distribution, we use notation of the form

X ∼ N(µ, σ2),

which here means that the random variable X has a normal distribution with
parameters µ and σ2.

In some cases, we also use special symbols to denote random variables with
particular distributions. For example, we often use χ2

ν to denote a random
variable with a chi-squared distribution with ν degrees of freedom.

A Companion for Mathematical Statistics c©2008 James E. Gentle



8 1 Probability

1.1.2 Definitions and Properties of Expected Values

First we define the expected value of a random variable:
Given a probability space (Ω,F , P ) and a d-variate random variableX defined
on F , we define the expected value of X with respect to P , which we denote
by E(X) or for clarity by EP (X), as

E(X) =
∫

IRd

X dP. (1.1)

Sometimes we limit this definition to integrable random variables X .
Look carefully at the integral. It is the integral of a function, X , over Ω

with respect to a measure, P , over the σ-field that together with Ω forms the
measurable space. To emphasize the meaning more precisely, we could write
the integral in the definition as

E(X) =
∫

Ω

X(ω) dP (ω).

We can also write the expectation in terms of the range of the random
variable and an equivalent measure on range. If the CDF of the random vari-
able is F , we have, in the abbreviated form of the first expression given in the
definition,

E(X) =
∫
x dF,

or in the more precise form,

E(X) =
∫

IRd

x dF (x).

If g is a Borel function, we define the expected value of g(X) in the same
way: E(g(X)) =

∫
IRd g(x) dF (x).

If the PDF exists and is f , we also have

E(X) =
∫

IRd

xf(x) dx.

From the definition of expectation, it is clear that if X and Y are random
variables defined over the same probability space,

X ≤ Y a.s. ⇒ E(X) ≤ E(Y ). (1.2)

Additionally,
g(X) ≥ 0 a.s. ⇒ E(g(X)) ≥ 0. (1.3)
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1.1 Some Important Probability Facts 9

Expected Value and Probability

There are many interesting relationships between expected values and proba-
bilities. For example, for a positive random variable X ,

E(X) =
∫ ∞

0

Pr(X > t)dt. (1.4)

We can see this is a simple application of Fubini’s theorem:

E(X) =
∫ ∞

0

x dF (x)

=
∫ ∞

0

∫

(0,x)

dt dF (x)

=
∫ ∞

0

∫

(t,∞)

dF (x)dt

=
∫ ∞

0

(1− F (t))dt

=
∫ ∞

0

Pr(X > t)dt

This leads in general to the useful property for any given random variable
X , if E(X) exists:

E(X) =
∫ ∞

0

(1− F (t))dt−
∫ 0

−∞
F (t)dt. (1.5)

Expected Value of the Indicator Function

We define the indicator function, IA(x), as 1 if x ∈ A and 0 otherwise. (This
is also called the “characteristic function”, but we use that term to refer to
something else.) If X is an integrable random variable over A, then IA(X) is
an integrable random variable, and

Pr(A) = E(IA(X)). (1.6)

When it is clear from the context, we may omit the X , and merely write
E(IA).

Expected Value over a Measurable Set

The expected value of an integrable random variable over a measurable set
A ⊂ IRd is

E(XIA(X)) =
∫

A

X dP.

We often denote this as E(XIA).

A Companion for Mathematical Statistics c©2008 James E. Gentle



10 1 Probability

Entropy

Probability theory is developed from models that characterize uncertainty
inherent in random events. Information theory is developed in terms of the
information revealed by random events. The premise is that the occurrence
of an event with low probability is more informative than an event of high
probability. For a discrete random variable we can effectively associate a value
of the random variable with an event, and we quantify information in such a
way that the information revealed by a particular outcome decreases as the
probability increases. We define the self-information of an event or the value
of a discrete random variable with PDF pX as − log2(pX (x)). The logarithm
to the base 2 comes from the basic representation of information in base 2,
but we can equivalently use any base, and it is common to use the natural log
in the definition of self-information.

We define the entropy of a discrete random variable X as the expected
value of the self-information evaluated at the random variable,

H(X) = −
∑

x

pX(x) log(pX(x)). (1.7)

We can see that the entropy is maximized if all outcomes are equally
probable. In the case of a discrete random variable with two outcomes with
probabilities π and 1−π (a Bernoulli random variable with parameter π), the
entropy is −π log(π)− (1− π) log(1− π). It is maximized when π = 1/2.

Although the definitions of information theory are generally given in the
context of a countable sample space, they can be extended in an obvious way
using equation (1.7) with p the PDF, whether it is dominated by a counting
measure or not. It is just the expected value

E(− log(pX(x))). (1.8)

It should also be clear how to define the joint entropy H(X,Y ) in terms
of the joint PDF pX,Y .

Elementwise Moments

For the random variable X , E(X), if it exists, is called the first moment
of X . For r ≥ 1, the rth moment of X , if it exists, is E(Xr). We often
denote the rth moment as µ′

r. The rth moment is often called the rth raw
moment, because central moments or moments about E(X) are often more
useful. The rth central moment of X , if it exists, is E((X−E(X))r). We often
denote the rth central moment as µr. Note that µ′

1 ≡ µ1. The first two central
moments are usually the most important; µ1 is called the mean and µ2 is
called the variance.V(·) The variance of X is denoted by V(·). (Note that for
a d-vector random variable X , this is a d-vector whose elements correspond to
the variances of the individual elements of X . A more important concept is the
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1.1 Some Important Probability Facts 11

variance-covariance matrix defined below. Also note that the term “variance”
in the case of a random vector usually means the variance-covariance.) Because
(X−E(X))2 ≥ 0 a.s., we see that the variance is nonnegative. The square root
of the variance is called the standard deviation. If it exists, E(|X |) is called
the first absolute moment of X ; and generally, if it exists, E(|X |r) is called
the rth absolute moment.

Variance-Covariance

The variance-covariance of the random variable X , if it exists, is the expecta-
tion of the outer product,

V(X) = E
(
(X − E(X))(X − E(X))T

)
.

Although the rank of an outer product is no greater than 1, unless X =
E(X) a.s., V(X) is nonnegative definite. (This follows from nonnegativity of
the variance and the covariance inequality (1.43).)

Expected Value of General Measurable Functions

A real-valued measurable function g of a random variable X is itself a random
variable, possibly with a different probability measure. Its expected value is
defined in exactly the same way as above. If the probability triple associated
with the random variable X is (Ω,F , P ) and Y = g(X), we could identify a
probability triple associated with Y . Being measurable, the relevant measur-
able space of g(X) is (Ω,F), but the probability measure is not necessarily
P . If we denote the probability triple associated with the random variable Y
is (Ω,F , Q), we may distinguish the defining integrals with respect to dP and
dQ by EP and EQ.

We can also write the expected value of Y in terms of the CDF of the origi-
nal random variable. The expected value of a real-valued measurable function
g of a random variable X with CDF F is E(g(X)) =

∫
g(x)dF (x).

Conditional Expectations and Conditional Distributions

Often the distribution of a random variable depends on the values taken on by
another random variable. The expected value of the random variable depends
on the values taken on by the other random variable. We will use conditional
expectations to develop the concept of a conditional probability distribution.

We can study conditional distributions in some cases by beginning with
the definition of conditional probability of an event under a restriction: If
Pr(A) > 0, the conditional probability of B written Pr(B|A), is defined by
Pr(B|A) = Pr(B ∩ A)/Pr(A). This approach is limited by the requirement
Pr(A) > 0. Defining conditional expectation first, and then defining the other
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12 1 Probability

concepts of conditional probability in terms of conditional expectations avoids
this problem.

We will just give the basic definitions and properties here, and then in
Section 1.5 discuss the ideas further.

conditional expectation over a sub-σ-field
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let
X be an integrable random variable over Ω. The conditional expectation
of X given A, denoted by E(X |A) is a random variable such that E(X |A)
is a measurable function from (Ω,F) to (IRd,B(IRd)) and

∫

A

E(X |A) dP =
∫

A

X dP, ∀A ∈ A. (1.9)

(The existence and uniqueness of this random variable follows from the
Radon-Nikodym theorem (Shao, Theorem 1.4)). In terms of an indicator
function, we have

∫
A

E(X |A) dP = E(XIA) for all A ∈ A. Sometimes
E(XIA) is written as EA(X), but this notation is confusing, because as
we note above, the subscript on the expectation operator usually refers to
the probability measure used in the integration.

conditional expectation with respect to another measurable function

Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , let
X be an integrable random variable over Ω, and let Y be a measurable
function from (Ω,F , P ) to any measurable space (Λ,G). Then the con-
ditional expectation of X given Y , denoted by E(X |Y ) is defined as the
conditional expectation of X given the sub-σ-field generated by Y , that
is, E(X |σ(Y )).

conditional probability
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let
B ∈ F . The conditional probability of B given A, denoted by Pr(B|A) is
defined as E(IB |A).

independence
X and Y are independent if the conditional distribution equals the mar-
ginal distribution.

∀A, Pr(X ∈ A|Y ) = Pr(X ∈ A).

(This means that we can factor the joint PDF or CDF.)
conditional independence

X and Y are conditionally independent given Z if the joint conditional
distribution equals the joint marginal distribution.

∀A, Pr(X ∈ A|Y, Z) = Pr(X ∈ A|Y ).
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1.1 Some Important Probability Facts 13

1.1.3 Generating Functions

There are some functionals of the PDF or CDF that are useful to determine
properties of the distribution.

moment-generating functions and characteristic functions
The moment-generating function (MGF) and characteristic function (CF)
are transforms of the density function. The moment-generating function
for the random variable X , which may not be well-defined (in which case
we say it does not exist), is

ψX(t) = E(etX),

and the characteristic function, which is always well-defined is

φX (t) = E(eitX)
= E(cos(tX)) + iE(sin(tX)).

Both functions are nonnegative. If the MGF is finite for some t 6= 0, the
CF can be obtained by replacing t in ψX (t) by it (where i =

√
−1). The

characteristic function is the Fourier transform of the density with argu-
ment −t/(2π). Both transforms are defined for a vector-valued random
variable X similarly, and the corresponding transforms are functions of
a vector-valued variable t. The expression tX in the definitions above is
replaced by tTX .
An interesting property of the MGF and the CF is that the (raw) moments
of X can be obtained from their derivatives evaluated at 0. So we have,
for example,

dkφX (t)
dtk

∣∣∣∣
t=0

= (−1)k/2E(Xk).

For vector-valued random variables, the moments become tensors, but the
first two moments are very simple:∇φX (t)|t=0 = E(X) and∇∇φX(t)|t=0 =
E(XTX).
The CF or MGF completely determines the distribution. (This is the “In-
version Theorem”, which is essentially the same theorem as the one often
used in working with Fourier transforms.) Also, the limit of a sequence of
CFs or MGFs determines the limiting distribution.
A nice use of CFs (or MGFs, if we are willing to assume that the MGF
exists) is in the proof of a simple form of the central limit theorem that
states that if X1, . . . , Xn are i.i.d. with mean µ and variance 0 < σ2 <∞,
then Yn = (

∑
Xi − nµ)/

√
nσ has limiting distribution N(0, 1).

Proof. It will be convenient to define a function related to the CF: let
h(t) = eµtφX(t); hence h(0) = 1, h′(0) = 0, and h′′(0) = σ2. Now expand
h in a Taylor series about 0:

h(t) = h(0) + h′(0)it− 1
2
h′′(ξ)t2,
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14 1 Probability

for some ξ between 0 and t. Substituting for h(0) and h′(0), and adding
and subtracting σ2t/2 to this, we have

h(t) = 1− σ2t2

2
− (h′′(ξ)− σ2)t2

2
.

This is the form we will find useful. Now, consider the CF of Yn:

φYn(t) = E
(

exp
(

it
(∑

Xi − nµ)√
nσ

)))

=
(

E
(

exp
(

it
(
X − µ)√

nσ

))))n

=
(
h

(
it√
nσ

))n

.

From the expansion of h, we have

h

(
it√
nσ

)
= 1− t2

2n
− (h′′(ξ)− σ2)t2

2nσ2
.

So,

φYn(t) =
(

1− t2

2n
− (h′′(ξ)− σ2)t2

2nσ2

)n

.

Now we need a well-known (but maybe forgotten) result: If limn→∞ f(n) =
0, then

lim
n→∞

(
1 +

a

n
+
f(n)
n

)b

n = eab.

Therefore, because limn→∞ h′′(ξ) = h′′(0) = σ2, limn→∞ φYn(t) = e−t2/2,
which is the CF of the N(0, 1) distribution.
This simple form of the CLT together with its proof is an easy piece that
you should be able to prove relatively quickly.

cumulant-generating functions
The sequence of (raw) moments is very useful in characterizing a distrib-
ution, but often the central moments are to be preferred because, except
for first, they are invariant to change in the first moment (the “location”).
Another sequence of constants, which, except for the first, are invariant
to change in the first moment, are called cumulants. Formally, for the
random variable X with CF φ(t), the rth cumulant, denoted κr, is

dr

dtr
log(φ(t)) |t=0

if it exists. Thus, the cumulant-generating function is log(φ(t)), where φ(t)
is the characteristic function.
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1.1 Some Important Probability Facts 15

Obviously, the cumulants and the moments are closely related. For the
first few, for example,

µ′
1 = κ1

µ′
2 = κ2 + κ2

1

µ′
3 = κ3 + 3κ2κ1 + κ3

1.

frequency-generating functions and factorial-moment-generating functions

Frequency-generating functions or probability-generating functions and
factorial-moment-generating functions are useful for discrete random vari-
ables.
For discrete random variable X taking values x1, x2, . . . with probabilities
0 < p1, p2, . . ., the frequency-generating function or probability-generating
function is the polynomial

P (t) =
∞∑

i=0

pi+1t
i.

The probability of xr is
dr+1

dtr+1
P (t) |t=0

The probability-generating function for the binomial distribution with
parameters π and n, for example, is

P (t) = (πt+ (1− π))n.

A discrete distribution with support x1, x2, . . . is equivalent to a discrete
distribution with support 0, 1, . . .. For such a distribution another kind of
moment is sometimes useful. It is the factorial moment, related to the rth

factorial of the real number y:

y[r] = y(y − 1) · · · (y − (r − 1)).

(We see that y[y] = y!. It is, of course, not necessary that y be an integer,
but factorials are generally more useful in the context of nonnegative
integers.)
The rth factorial moment of the random variable X above is

µ′
[r] =

∞∑

i=0

x
[r]
i pi.

We see that µ′
[1] = µ′

1 = µ1.
The rth central factorial moment, denoted µ[r] is the rth factorial moment
about µ.
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16 1 Probability

We see immediately that the factorial-moment-generating function is the
same as the probability-generating function evaluated at t+ 1:

P (t+ 1) =
∞∑

j=0

pj+1(t+ 1)j

=
∞∑

j=0

pj+1

j∑

i=1

(
j

i

)
ti

=
∞∑

i=0

ti

i!

∞∑

j=0

(pj+1j(j − 1) · · · (j − i+ 1))

=
∞∑

i=0

ti

i!
µ′

[i].

1.1.4 Functionals of the CDF; Distribution “Measures”

Functionals are functions whose arguments are functions. The value of a func-
tional may be any kind of object, a real number or another function, for ex-
ample. The domain of a functional is a set of functions. I will use notation of
the following form: for the functional, a capital Greek or Latin letter, Υ , M ,
etc.; for the domain, a calligraphic Latin letter, G, P , etc.; for a function, an
italic letter, g, G, P , etc.; and for the value, the usual notation for functions,
Υ (P ) where P ∈ P , for example.

Parameters of distributions as well as other interesting characteristics of
distributions can often be defined in terms of functionals of the CDF. For ex-
ample, the mean of a distribution, if it exists, may be written as the functional
M of the CDF P :

M(P ) =
∫
y dP (y). (1.10)

Viewing this as a Riemann–Stieltjes integral, for a discrete distribution, it
reduces to a sum of the mass points times their associated probabilities. A
functional operating on a CDF is called a statistical functional or statistical
function. I will refer to the values of such functionals as distributional mea-
sures. (Although the distinction is not important, “M” in equation (1.10) a
capital Greek letter mu. I usually—but not always—will use upper-case Greek
letters to denote functionals, especially functionals of CDFs and in those cases,
I usually will use the corresponding lower-case letters to represent the mea-
sures defined by the functionals.)

Linear functionals are often of interest. The functionalM in equation (1.10),
for example, is linear over the distribution function space of CDFs for which
the integral exists.

It is important to recognize that a given functional may not exist at a
given CDF. For example, if
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1.1 Some Important Probability Facts 17

P (y) = 1/2 + tan−1((y − α)/β))/π (1.11)

(that is, the distribution is Cauchy), then M(P ) does not exist. Without
always using a phrase about existence, when I write an expression such as
M(P ) or Υ (P ) I generally imply the existence of the functional for the given
P .

Also, for some parametric distributions, such as the family of beta distri-
butions, there may not be a simple functional yields the parameter.

A functional of a CDF is generally a function of any parameters associated
with the distribution. For example, if µ and σ are parameters of a distribution
with CDF P (y ; µ, σ) and Υ is some functional, we have

Υ (P (y ; µ, σ)) = f(µ, σ),

for some function f . If, for example, the M in equation (1.10) above is Υ and
the P is the normal CDF P (y ; µ, σ), then Υ (P (y ; µ, σ)) = µ.

Moments

For a univariate distribution with CDF P , if we denote the mean or the first
moment of by µ, then, for r ≥ 2, we define the rth central moment, if it exists,
as

µr = Mr(P )
=
∫

(y − µ)rdP (y). (1.12)

For a discrete distribution, this expression can be interpreted as a sum of
the values at the mass points times their associated probabilities. If the µ in
equation (1.12) is omitted, the corresponding moment is called “raw”. (An ad-
ditional comment on notation: Although the question of existence of moments
is important, whenever I speak of a moment without further qualification, I
will assume it exists.)

We define the rth standardized moment as

ηr = µr/µ
r/2
2 . (1.13)

The first raw moment or the mean, is an indicator of the general “location”
of the distribution. The second central moment or the variance, denoted as
µ2 or σ2 is a measure of the “spread” of the distribution. The nonnegative
square root, σ, is sometimes called the “scale” of the distribution. The third
standardized moment, η3, is an indicator of whether the distribution is skewed;
it is called the skewness coefficient. If η3 6= 0, the distribution is asymmetric.

The fourth standardized moment, η4 is called the kurtosis coefficient. It is
an indicator of how “peaked” the distribution is, or how heavy the tails of the
distribution are. (Actually, exactly what this standardized moment measures
cannot be described simply. Because, for the random variable Y , we have

η4 = V
(

(Y − µ)2

σ2

)
+ 1,
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18 1 Probability

it can be seen that the minimum value for η4 is attained for a discrete dis-
tribution with mass points −σ and σ. We might therefore interpret η4 as a
measure of variation about the two points −σ and σ. This, of course, leads
to the two characteristics mentioned above: peakedness and heaviness in the
tails.)

For multivariate distributions, the first moment, which is a vector, is de-
fined by equation (1.10), where the integral is taken over all components of
the vector y. For r = 2, the matrix of joint moments is given by a simple
extension of equation (1.12):

Σ(P ) =
∫

(y − µ)(y − µ)T dP (y).

Any of the marginal moments have a single component in the integrand but
with the integration performed over all components. For multivariate distri-
butions, the higher-order marginal moments are generally more useful than
the higher-order joint moments.

Quantiles

Another useful distributional measure for describing a univariate distribution
with CDF P is is the quantity yπ, such that

Pr(Y ≤ yπ) ≥ π, and Pr(Y ≥ yπ) ≥ 1− π, (1.14)

for π ∈ (0, 1). In this expression, yπ may not be unique. We define a similar
quantity to be the unique π quantile as

Ξπ(P ) = inf
y
{y, s.t. P (y) ≥ π}. (1.15)

For an absolutely continuous distribution, this is very simple:

Ξπ(P ) = P−1(π). (1.16)

I often use this notation for a quantile even when P−1 does not exist in a for-
mal sense. The 0.5 quantile is an important one; it is called the median. For
the Cauchy distribution, for example, the moment functionals do not exist,
but the median does. An important functional for the Cauchy distribution is,
therefore, Ξ0.5(P ) because that is the location of the “middle” of the distrib-
ution.

For multivariate distributions, quantiles generalize to level curves or con-
tours of the CDF. They are obviously much more complicated, and hence,
less useful, than quantiles in a univariate distribution. The quantiles of the
marginal univariate distributions may be of interest, however.

Quantiles can be used for measures of scale and of characteristics of the
shape of a distribution. A measure of the scale of a distribution, for example,
is the interquartile range:
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1.1 Some Important Probability Facts 19

Ξ0.75 −Ξ0.25. (1.17)

Various measures of skewness can be defined as

(Ξ1−π −Ξ0.5)− (Ξ0.5 −Ξπ)
Ξ1−π − Ξπ

, (1.18)

for 0 < π < 0.5. For π = 0.25, this is called the quartile skewness or the
Bowley coefficient. For π = 0.125, it is called the octile skewness. These can
be especially useful with the measures based on moments do not exist. The
extent of the peakedness and tail weight can be indicated by the ratio of
interquantile ranges:

Ξ1−π1 − Ξπ1

Ξ1−π2 − Ξπ2

. (1.19)

These measures can be more useful than the kurtosis coefficient based on the
fourth moment, because different choices of π1 and π2 emphasize different
aspects of the distribution. In expression (1.19), π1 = 0.025 and π2 = 0.125
yield a good measure of tail weight, and π1 = 0.125 and π2 = 0.25 in expres-
sion (1.19) yield a good measure of peakedness.

L Functionals

Various modifications of the mean functional M in equation (1.10) are often
useful, especially in robust statistics. A functional of the form

LJ(P ) =
∫
yJ(y) dP (y), (1.20)

for some given function J , is called an L functional. If J ≡ 1, this is the mean
functional. Often J is defined as a function of P (y). A “trimmed mean”, for
example, is defined by an L functional with J(y) = (β−α)−1I(α,β)(P (y)), for
constants 0 ≤ α < β ≤ 1 and where I is the indicator function.

In this case, the L functional is often denoted as Tα,β. Often β is taken to
be 1− α, so the trimming is symmetric in probability content.

M Functionals

Another family of functionals that generalize the mean functional are defined
as a solution to the minimization problem

∫
ρ(y,Mρ(P )) dP (y) = min

θ∈Θ

∫
ρ(y, θ) dP (y), (1.21)

for some function ρ and where Θ is some open subset of IR. A functional
defined as the solution to this optimization problem is called an M functional.
(Note the similarity in names and notation: we call the M in equation (1.10)
the mean functional; and we call the Mρ in equation (1.21) the M functional.)
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Two related functions that play important roles in the analysis of M func-
tionals are

ψ(y, t) =
∂ρ(y, t)
∂t

, (1.22)

and
λP (t) =

∫
ψ(y, t)dP (y) =

∂

∂t

∫
ρ(y, t)dP (y) (1.23)

If y is a scalar and ρ(y, θ) = (y − θ)2 then Mρ(P ) is the mean functional
from equation (1.10). Other common functionals also yield solutions to the
optimization problem (1.21); for example, for ρ(y, θ) = |y − θ|, Ξ0.5(P ) from
equation (1.15) is an M functional (possibly nonunique).

We often choose the ρ in an M functional to be a function of y− θ, and to
be convex and differentiable. In this case, the M functional is the solution to

E(ψ(Y − θ)) = 0, (1.24)

where
ψ(y − θ) = dρ(y − θ)/dθ,

if that solution is in the interior of Θ.

1.1.5 Transformations of Random Variables

We often need to determine the distribution of some transformation of a given
random variable or a set of random variables. In the simplest case, we have
a random variable X , which may be a vector, with known distribution and
we want to determine the distribution of Y = h(X), where h is a full-rank
transformation; that is, there is a function h−1 such that X = h−1(Y ). In
other cases, the function may not be full-rank, for example, X may be an n-
vector, and Y =

∑n
i=1Xi. There are some general approaches to the problem.

Sometimes one method works best, and other times some other method works
best.

method of CDFs
Given X with known CDF FX and Y = h(X) as above, we can write the
CDF FY of Y as

FY (y) = Pr(Y ≤ y)
= Pr(h(X) ≤ y)
= Pr(X ≤ h−1(y))
= FX(h−1(y)).

method of change of variables
If X has density pX(x|θ) and Y = h(X), where h is a full-rank trans-
formation (that is, there is a function h−1 such that X = h−1(Y )), then
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the density of Y is pY (y|θ) = pX(h−1(y)|θ)|Jh−1(y)|, where Jh−1(y) is the
Jacobian of the inverse transformation, and | · | is the determinant.
Why the inverse transformation? Think of the density as a differential;
that is, it has a factor dx, so in the density for Y , we want a factor dy.
Under pressure you may forget exactly how this goes, or want a quick
confirmation of the transformation. You should be able to construct a
simple example quickly. An easy one is the right-triangular distribution;
that is, the distribution with density pX(x) = 2x, for 0 < x < 1. Let y =
2x, so x = 1

2y. Sketch the density of Y , and think of what transformations
are necessary to get the expression pY (y) = 1

2y, for 0 < y < 2.
Constant linear transformations are particularly simple. If X is an n-
vector random variable with PDF fX and A is an n× n constant matrix
of full rank, the PDF of Y = AX is fX |det(A−1)|.
In the change of variable method, we think of h a mapping of the range X
of the random variable X to the range Y of the random variable Y , and
the method works by expressing the probability content of small regions
in Y in terms of the probability content of the pre-image of those regions
in X .
If the transformation is not one-to-one, we generally try to modify the
method by identifying subregions in which there are one-to=one transfor-
mations.
convolutions

A simple application of the change of variables method is in the com-
mon situation of finding the distribution of the sum of two scalar
random variables that are independent but not necessarily identically
distributed.
Suppose X is a random variable with PDF fX and Y is a random
variable with PDF fY , and we want the density of U = X + Y . We
form another variable V = Y and the matrix

A =
(

1 1
0 1

)
,

so that we have a full-rank transformation, (U, V )T = A(X,Y )T The
inverse of the transformation matrix is

A−1 =
(

1 −1
0 1

)
,

and the Jacobian is 1. Because X and Y are independent, their joint
PDF is fXY (x, y) = fX(x)fY (y), and the joint PDF of U and V is
fUV (u, v) = fX(u− v)fY (v); hence, the PDF of U is

fU (u) =
∫ ∞

−∞
fX(u− v)fY (v)dv.

We call fU the convolution of fX and fY . This form occurs often in
applied mathematics.
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method of MGFs or CFs
In this method, we write the MGF of Y as E(ety) = E(eth(x)), or we
write the CF in a similar way. If we can work out the expectation (with
respect to the known distribution of X , we have the MGF or CF of Y ,
which determines its distribution.
The MGF or CF technique is particularly useful in the case when Y is the
sum from a simple random sample.

1.1.6 Order Statistics

In a random sample of size n from a distribution with PDF f and CDF F
given the ith order statistic X(i) = a, the i−1 random variables less than X(i)

are i.i.d. as
f(x)/F (a);

the n− i random variables greater than X(i) are i.i.d. as

f(x)/(1− F (a)).

Order statistics are not i.i.d.
The joint density of all order statistics is

n!
∏

f(x(i))Ix(1)≤···≤x(n)(x(1), . . . , x(n))

The joint density of the ith and jth (i < j) order statistics is

n!
(i− 1)!(j − i− 1)!(n− j)!

·

(
F (x(i))

)i−1(
F (x(j))− F (x(i))

)j−i−1(
1− F (x(j))

)n−j

f(x(i))f(x(j)).

Understand the heuristics that lead to these formulas.

1.1.7 Useful Inequalities Involving Random Variables and
Probability Distributions

Inequalities involving functions of events and random variables are important
throughout the field of probability and statistics. Two important uses are for
showing that one procedure is better than another and for showing that some
sequence converges to a given object (a constant, a function, or a set).

In the following, for simplicity, we will assume X ∈ IR.
A simple, but surprisingly useful inequality states that if E(X2) < ∞,

then the variance is the minimum expectation of the form E((X−c)2) for any
constant c. In other words, the minimum of E((X− c)2) occurs at c = E(X)).
We see this by writing
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E((X − c)2) = E((X − E(X) + E(X)− c)2)
= E((X − E(X))2) + E((E(X)− c)2) +

2E((X − E(X))(E(X)− c))
= E((X − E(X))2) + E((E(X)− c)2)
≥ E((X − E(X))2). (1.25)

We will use various inequalities often in the subsequent sections and chap-
ters, so we collect a number of them in this section, where we have categorized
them into four types depending of the kinds of expressions in the inequalities.
These four types involve relations between

• Pr(X ∈ A) and E(f(X)), e.g., Chebyshev
• E(f(X)) and f(E(X)), e.g., Jensen’s
• E(f1(X,Y )) and E(f2(X)) and E(f3(Y )), e.g., covariance, Cauchy-Schwarz,

information
• V(Y ) and V

(
E(Y |X)

)
, e.g., Rao-Blackwell

Any special case of these involves an appropriate definition of A or f (e.g.,
nonnegative, convex, etc.)

A more general case of the inequalities is to replace distributions, and
hence expected values, by conditioning on a sub-σ-field, A.

For each type of inequality there is essentially a straightforward method
of proof, which is important to know.

Some of these inequalities involve absolute values of the random variable.
To work with these inequalities, it is useful to recall the triangle inequality
for the absolute value of real numbers:

|x+ y| ≤ |x|+ |y|. (1.26)

We can prove this merely by considering all four cases for the signs of x and
y.

This inequality generalizes immediately to |
∑
xi| ≤

∑
|xi|.

Expectations of absolute values of functions of random variables are func-
tions of norms. (A norm is a function of x that (1) is positive unless x = 0 a.e.,
that (2) is equivariant to scalar multiplication, and that (3) satisfies the tri-
angle inequality.) The important form (E(|X |p))1/p, for 1 ≤ p is an Lp norm,
‖X‖p. Some of the inequalities given below involving expectations of absolute
values of random variables are essentially triangle inequalities and their truth
establishes the expectation as a norm.

Some of the expectations discussed below are recognizable as familiar
norms over vector spaces. For example, the expectation in Minkowski’s in-
equality is essentially the Lp norm of a vector, which is defined for an n-vector
x in a finite-dimensional vector space as ‖x‖p ≡ (

∑
|xi|p)1/p. Minkowski’s in-

equality in this case is ‖x+ y‖p ≤ ‖x‖p + ‖y‖p. For p = 1, this is the triangle
inequality for absolute values given above.
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Inequalities Involving Pr(X ∈ A) and E(f(X))

An important class of inequalities bound tail probabilities of a random vari-
able, that is, limit the probability that the random variable will take on a
value beyond some distance from the expected value of the random variable.

The important general form involving Pr(X ∈ A) and E(f(X)) is Markov’s
inequality. Several others are special cases of it.

• Markov’s inequality
For ε > 0, k > 0, and r.v. X 3 E(|X |k) exists,

Pr(|X | ≥ ε) ≤ 1
εk

E(|X |k) (1.27)

Proof. For a nonnegative random variable Y ,

E(Y ) ≥
∫

y≥ε

y dP (y) ≥ ε
∫

y≥ε

dP (y) = εPr(Y ≥ ε).

Now let Y = |X |k.
• Chebyshev’s inequality

For ε > 0,

Pr(|X − E(X)| ≥ ε) ≤
1
ε2

V(X) (1.28)

Proof. In Markov’s inequality, let k = 2, and replace X by X − E(X).
• Chebyshev’s inequality (another form)

For f 3 f(x) ≥ 0 and ε > 0,

Pr(f(X) ≥ ε) ≤ 1
ε
E(f(X)) (1.29)

Proof. Same as Markov’s inequality; start with E(f(X)).
Chebyshev’s inequality is often useful for ε =

√
V(X). There are also

versions of Chebyshev’s inequality for specific families of distributions.
– 3σ rule for a unimodal random variable

If X is a random variable with a unimodal absolutely continuous dis-
tribution, and σ =

√
V(X), then

Pr(|X − E(X)| ≥ 3σ) ≤ 4
81
. (1.30)

See Dharmadhikari and Joag-Dev (1988).
– Normal tail probability

If X ∼ N(µ, σ2), then

Pr(|X − µ| ≥ kσ) ≤
1

3k2
. (1.31)

See DasGupta (2000).
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• Kolmogorov’s inequality
This inequality is a generalization of Chebyshev’s inequality that ap-
plies to finite partial sums of a sequence of independent random variables
X1, X2, . . . over a common probability space such that for each, E(Xi) = 0
and E(X2

i ) < ∞. (The common probability space means that E(·) has
exactly the same meaning for each i.)
For such a sequence, let Sk =

∑k
i=1Xi). Then for any positive integer n

and any ε > 0,

Pr
(

max
1≤k≤n

|Sk| ≥ ε
)
≤ 1
ε2

V(Sn). (1.32)

This is a special case of Doob’s submartingale inequality. It is also a special
case of the Hájek-Rènyi inequality, which I state without proof:

• The Hájek-Rènyi inequality
Let X1, X2, . . . be a sequence of independent random variables over a com-
mon probability space such that for each E(X2

i ) <∞. Then for any posi-
tive integer n and any ε > 0,

Pr

(
max

1≤k≤n
ck

∣∣∣∣∣
k∑

i=1

(Xi − E(Xi)

∣∣∣∣∣ ≥ ε
)
≤ 1
ε2

n∑

i=1

c2i V(Xi),

where c1 ≥ · · · ≥ cn > 0 are constants.

Inequalities Involving E(f(X)) and f(E(X))

• Jensen’s inequality
For f a convex function over the support of the r.v.X (and all expectations
shown exist),

f(E(X)) ≤ E(f(X)). (1.33)

Proof. By the definition of convexity, f convex over D ⇒ ∃ c 3 ∀ t ∈ D 3
c(x− t)+f(t) ≤ f(x). (Notice that L(x) = c(x− t)+f(t) is a straight line
through the point (t, f(t)). By the definition of convexity, f is convex if its
value at the weighted average of two points does not exceed the weighted
average of the function at those two points.) Now, given this, let t = E(X)
and take expectations of both sides of the inequality.
If f is strictly convex, it is clear

f(E(X)) < E(f(X)) (1.34)

unless f(X) = E(f(X)) with probability 1.
For a concave function, the inequality is reversed. (The negative of a con-
cave function is convex.)
Some simple examples for a nonconstant positive random variable X :
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– Monomials of even power: for k = 2, 4, 6, . . .,

E(X)k ≤ E(Xk).

This inequality implies the familiar fact that E(X) ≥ 0.
– Reciprocals:

1
E(X)

≤ E
(

1
X

)

– Logs:
E(log(X)) ≤ log(E(X)).

The canonical picture is that of a quadratic function of a uniform random
variable:

X

f(X)

E(X)

E(f(X))

f(E(X))

Fig. 1.1. Jensen’s Inequality

Some other consequences of Jensen’s inequality:
– Nonnegativity of the entropy distance (Kullback-Leibler information):

If f and g are probability densities, Ef (log(f(X)/g(X))), is the en-
tropy distance between f and g with respect to g. It is also called the
Kullback-Leibler information or Kullback-Leibler distance. It is nonneg-
ative:

Ef (log(f(X)/g(X))) ≥ 0. (1.35)

Proof.

Ef (log(f(X)/g(X))) = −Ef (log(g(X)/f(X)))
≥ − log(Ef (g(X)/f(X)))
= 0.
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A related fact applies to any nonnegative integrable functions f and
g on a measure space with a σ-finite measure ν, for which

∫
fdν ≥∫

gdν > 0: ∫
f(log(f/g))dν ≥ 0. (1.36)

This can be proved as above by normalizing the functions, thus forming
densities.

– An inequality important for showing the convergence of the EM algo-
rithm:

Ef (log(f(X))) ≥ Ef (log(g(X))), (1.37)

for the PDFs f and g. This inequality is also sometimes called the
“information inequality” (but see (1.45)). We see this by use of the
entropy distance.

The strict form of Jensen’s inequality (1.34) also applies to the consequent
inequalities. For example, we have for the PDFs f and g,

Ef (log(f(X))) = Ef (log(g(X)))⇔ f(X) = g(X) a.s. (1.38)

Proof(of ⇒):
By the equality of Ef (log(f(X))) and Ef (log(g(X))) we have

∫

{f>0}
g(x)dx = 1,

and so for any A,
∫

A

g(x)dx =
∫

A∩{f>0}
g(x)dx

= Ef (g(X)/f(X)|X ∈ A ∩ {f > 0})
= Pr (X ∈ A ∩ {f > 0})

=
∫

A

f(x)dx,

hence f(X) = g(X) a.s.

Inequalities Involving E(f(X, Y )) and E(g(X)) and E(h(Y ))

In many of the inequalities in this section, the functions f , g, and h are norms.
The inequalities hold for general Lp norms, and although we will consider the
inequality relationship between expected values, similar inequalities often for
real numbers, vectors, or random variables.

The inequalities are basically of two types:

• Hölder: E(|XY |) ≤
(
E(|X |p)

)1/p(
E(|Y |q)

)1/q
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• Minkowski: (E(|X + Y |p))1/p ≤ (E(|X |p))1/p + (E(|Y |p))1/p

Hölder inequality is somewhat more basic, in that it is used in the proof of
Minkowski’s inequality.

Note that Minkowski’s inequality has an interesting consequence: it means
that (E(| · |p))1/p is a norm.

Several other inequalities are special cases of these two.
In some inequalities in this section, the functions are second-degree mono-

mials. The basic special inequality of this form is the Cauchy-Schwartz in-
equality, which then leads to one of the most important inequalities in appli-
cations in statistics, the covariance inequality. The covariance inequality, in
turn, leads to fundamental bounds on the variances of estimators.

• Hölder’s inequality (a general inequality relating E(f(X,Y )) to E(g(X))
and E(h(Y ))
For p, q > 1 and 1

p + 1
q = 1 (and all expectations shown exist),

E(|XY |) ≤
(
E(|X |p)

)1/p(
E(|Y |q)

)1/q

(1.39)

p and q as in this inequality are called dual indices. Note that q = p/(p−1).
Proof. If E(|X |p) = 0 or E(|Y |q) = 0, then true because both sides = 0
wp1. Hence, assume both > 0.
Now, for p and q as in hypothesis, ∀a, b > 0, ∃ s, t 3 a = es/p and b = et/q .
Now ex is convex, so es/p+t/q ≤ 1

pes + 1
q et, or ab ≤ ap/p+ bq/q.

Now let

a =

∣∣∣∣∣∣∣
X(ω)

(
E(|X |p)

)1/p

∣∣∣∣∣∣∣
and b =

∣∣∣∣∣∣∣
Y (ω)

(
E(|Y |q)

)1/q

∣∣∣∣∣∣∣

and so

|X(ω)Y (ω)| ≤
(
E(|X |p)

)1/p(
E(|Y |q)

)1/q
(
|X(ω)|p

E(|X |p)
1
p

+
|Y (ω)|q

E(|Y |q)
1
q

)
.

Now take expectations. (The notation X(ω), Y (ω) is meant to emphasize
how to take expectation of XY .)
We note a special case by letting Y ≡ 1:

E(|X |) ≤
(
E(|X |p)

)1/p

,

and with p = 2, we have a special case of the Cauchy-Schwarz inequality:

E(|X |) ≤
(
E(X2)

)1/2

.

Other inequalities that derive from Hölder’s inequality are the following.
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– Liapounov’s inequality
If 1 ≤ r ≤ s

(E(|X |r))1/r ≤ (E(|X |s))1/s (1.40)

Proof. First, we observe this is true for r = s, and for r = 1 (in which
it is a form of Jensen’s inequality). If 1 < r < s, replace |X | in the
special case of Hölder’s inequality above with |X |r, and let s = pr for
1 < p. This yields (E(|X |r))1/r ≤ (E(|X |s))1/s.

– Schwarz inequality, or Cauchy-Schwarz inequality

E(|XY |) ≤
(
E(X2)E(Y 2)

)1/2

(1.41)

Proof. Let p = q = 2 in Hölder’s inequality.
Another proof: For nonnegative r.v. X and Y and all t (real), E((tX+
Y )2) = t2E(X2) + 2tE(XY ) + E(Y 2) ≥ 0. Hence the discriminant of
the quadratic formula ≤ 0. Now, for any r.v., take absolute value.

– Covariance inequality
If the second moments of X and Y are finite, then
(
E
(
(X − E(X))(Y − E(Y )

))2

≤ E
(
(X − E(X))2

)
E
(
(Y − E(Y ))2

)

(1.42)
or (

Cov(X,Y )
)2 ≤ V(X) V(Y ) (1.43)

Notice that the covariance inequality is essentially the same as the
Cauchy-Schwarz inequality.

The covariance inequality leads to useful lower bounds on the variances of
estimators. These are of two types. One type includes the Hammersley-
Chapman-Robbins inequality and its extension, the Kshirsagar inequality.
The other type, which is based on Fisher information, requires some “reg-
ularity conditions”.
– Hammersley-Chapman-Robbins inequality

LetX be a random variable in IRd with PDF p(x; θ) and let Eθ(T (X) =
g(θ). Let µ be a fixed measure on X ⊂ IRd such that p(x; θ)� µ. Now
define S(θ) such that

p(x; θ) > 0 a.e. x ∈ S(θ)
p(x; θ) = 0 a.e. x /∈ S(θ).

Then

V(T (X)) ≥ sup
t3S(θ)⊃S(θ+t)

(g(θ + t)− g(θ))2

Eθ

((
p(X;θ+t)
p(X;θ)

)2
) . (1.44)

This inequality follows from the covariance inequality, by first consid-
ering the case for an arbitrary t such that g(θ+ t) 6= g(θ). In that case
*************
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– Kshirsagar inequality

*******
– Information inequality

Subject to some “regularity conditions” (see Section 1.7.3), if X has
PDF p(x; θ),

V(T (X)) ≥

(
∂E(T (X))

∂θ

)2

Eθ

((
∂ log p(X;θ)

∂θ

)2
) (1.45)

The denominator of the quantity on the right side of the inequality
is called the Fisher information, or just the information. Notice the
similarity of this inequality to the Hammersley-Chapman-Robbins in-
equality, although the information inequality requires more conditions.
Under the regularity conditions, which basically allow the interchange
of integration and differentiation, the information inequality follows
immediately from the covariance inequality.
In Section 4.1 we consider the multivariate form of this inequality. Our
main interest will be in its application in unbiased estimation. If T (X)
is an unbiased estimator of a differentiable function g(θ), the right side
of the inequality together with derivatives of g(θ) forms the Cramér-
Rao lower bound and the Bhattacharyya lower bound.

• Minkowski’s inequality
This is a triangle inequality for Lp norms and related functions.
For 1 ≤ p,

(E(|X + Y |p))1/p ≤ (E(|X |p))1/p + (E(|Y |p))1/p (1.46)

Proof. Proof: First, observe the truth for p = 1 using the triangle in-
equality for the absolute value, |x + y| ≤ |x| + |y|, giving E(|X + Y |) ≤
E(|X |) + E(|Y |).
Now assume p > 1. Now,

E(|X + Y |p) = E(|X + Y ||X + Y |p−1)
≤ E(|X ||X + Y |p−1) + E(|Y ||X + Y |p−1),

where the inequality comes from the triangle inequality for absolute values.
From Hölder’s inequality on the terms above with q = p/(p− 1), we have

E(|X+Y |p) ≤ (E(|X |p))1/p(E(|X+Y |p))1/q + E(|Y |p))1/p(E(|X+Y |p))1/q .

Now, if E(|X+Y |p) = 0, Minkowski’s inequality holds. On the other hand,
if E(|X+Y |p) 6= 0, it is positive, and so divide through by (E(|X+Y |p))1/q ,
recalling again that q = p/(p− 1).
Minkowski’s inequality is a special case of two slightly tighter inequalities;
one for p ∈ [1, 2] due to Esseen and von Bahr (1965), and one for p ≥ 2
due to Marcinkiewicz and Zygmund (1937).
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An inequality that derives from Minkowski’s inequality, but which applies
directly to real numbers or random variables, is the following.
– For 0 ≤ p,

|X + Y |p ≤ 2p(|X |p + |Y |p) (1.47)

This is true because ∀ω ∈ Ω, ‖X(ω)+Y (ω)‖ ≤ 2 max{‖X(ω)‖, ‖Y (ω)‖},
and so

‖X(ω) + Y (ω)‖p ≤ max{2p‖X(ω)‖p, 2p‖Y (ω)‖p}
≤ 2p‖X(ω)‖p + 2p‖Y (ω)‖p.

Inequalities Involving V(Y ) and V
(
E(Y |X)

)

• Rao-Blackwell inequality

V
(
E(Y |X)

)
≤ V(Y ) (1.48)

This follows from the equality V(Y ) = V
(
E(Y |X)

)
+ E

(
V(Y |X)

)
.

Multivariate Extensions

There are multivariate extensions of most of these inequalities. In some cases,
the multivariate extensions apply to the minimum or maximum element of a
vector.

Some inequalities involving simple inequalities are extended by conditions
on vector norms, and the ones involving variances are usually extended by pos-
itive (or semi-positive) definiteness of the difference of two variance-covariance
matrices.

1.2 Sequences of Events and of Random Variables

Countably infinite sequences play the main role in the definition of the basic
concept of a σ-field, and consequently, in the development of a theory of prob-
ability. Sequences of sets correspond to sequences of events and, consequently,
of sequences of random variables. Unions, intersections, and complements of
sequences of sets are important for studying sequences of random variables.
The material in this section depends heavily on the properties of sequences of
sets discussed on page 349 and the following pages.

Two important types of sequences of probabilities are, similar to the anal-
ogous limits for sets on page 349,

lim sup
n

Pr(An) ≡ inf
n

sup
i≥n

Pr(Ai)

lim inf
n

Pr(An) ≡ sup
n

inf
i≥n

Pr(Ai).
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lim supn is often written as limn

lim infn is often written as limn

We recall the intuitive interpretation of lim supnAn and lim infnAn (writ-
ten also as A∗ and A∗):
An element ω is in A∗ iff for each n, there is some i ≥ n for which ω ∈ Ai.
This means that ω must lie in infinitely many of the An.
An element ω is in A∗ iff there is some n such that for all i ≥ n, ω ∈ Ai. This
means that ω must lie in all but finitely many of the An.

Similarly to the corresponding relationship between unions and intersec-
tions of sequences of sets, we have the relationships:

Pr(lim sup
n
An) ≤ lim sup

n
Pr(An) (1.49)

and
Pr(lim inf

n
An) ≤ lim inf

n
Pr(An) (1.50)

We see this by considering Bn = ∪∞i=nAi, so that Bn ↘ lim supnAn, and
likewise Cn = ∩∞i=nAi, so that Cn ↗ lim infnAn. We use the continuity of the
measure to get Pr(An) ≤ Pr(Bn)→ Pr(lim supnAn) and Pr(An) ≥ Pr(Cn)→
Pr(lim infn An).

The Borel-Cantelli Lemmas

Let An be a sequence of events and P be a probability measure.

• If
∑∞

n=1 P (An) <∞, then P (lim supnAn) = 0.
Proof. (First, notice that P (∪∞i=nAi) can be arbitrarily small if n is large
enough.)
From lim supnAn ⊂ ∪∞i=nAi, we have

P (lim sup
n
An) ≤ P (∪∞i=nAi)

≤
∞∑

i=n

P (Ai)

→ 0 as n→∞ because
∞∑

n=1

P (An) <∞.

• If
∑∞

n=1 P (An) =∞, then P (lim supnAn) = 1.
We can see this by a similar argument as above.

Recall a basic fact about probability (which we will discuss again from time
to time):

lim Pr(Ai) 6= Pr(limAi). (1.51)
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Compare this with the fact from above:

lim
n→∞

n⋃

i=1

[
a+

1
i
, b− 1

i

]
6=
⋃

lim
i→∞

[
a+

1
i
, b− 1

i

]
.

Types of Convergence

The first important point to understand about asymptotic theory is that
there are different kinds of convergence of a sequence of random variables,
{Xn}.

One type of convergence applies directly to the function (the random vari-
able). This is the strongest convergence.

One type of convergence applies to expected values of powers of the random
variable. This is also a very strong convergence.

One type of convergence applies to probabilities of the random variable
being within a range of another random variable.

One type of convergence applies to the distribution of the random variable.
This is the weakest convergence.

Almost sure (a.s.)
We say that {Xn} converges to X almost surely if

lim
n→∞

Xn = X a.s.

We write
Xn →a.s. X.

The condition above can also be written as

Pr( lim
n→∞

Xn = X) = 1.

For this reason, almost sure convergence is also called convergence with
probability 1, and may be indicated by writing Xn →wp1 X .

In rth moment (in Lr)
For fixed r > 0, we say that {Xn} converges to X in rth moment if

lim
n→∞

E(‖Xn −X‖rr) = 0.

We write
Xn →Lr X.

For r = 1, this is called convergence in mean.
For r = 2, this is called convergence in mean square.

In probability
We say that {Xn} converges to X in probability if for every ε > 0,

lim
n→∞

Pr(‖Xn −X‖ > ε) = 0.
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We write
Xn →p X.

Notice the difference in convergence in probability and convergence with
probability 1; in the former case the limit of probabilities is taken, in the
latter the case a probability of a limit is evaluated.

In distribution (in law)
If {Xn} have CDFs {Fn} and X has CDF F , we say that {Xn} converges
to X in distribution or in law if at each point of continuity t of F ,

lim
n→∞

Fn(t) = F (t).

We write
Xn →d X.

If the sequence {Xn} converges in distribution to X , we say that the
sequence of CDFs {Fn} converges weakly to the CDF of X , F . We write

Fn →w F.

If Fn →w F and F is continuous in IRk, then

lim
n→∞

sup
t∈IRk

|Fn(t)− F (t)| = 0.

This is called “Pólya’s theorem”. We can establish this result by use of
the δ-ε definition of continuity.
When a random variable converges in distribution to a distribution for
which we have adopted a symbol such as N(µ, σ2), for example, we may
use notation of the form

Xn →∼ N(µ, σ2).

Because this notation only applies in this kind of situation, we often write
it more simply as just

Xn → N(µ, σ2).

For certain distributions we have special symbols to represent a random
variable. In such cases, we may use notation of the form

Xn →d χ
2
ν ,

which in this case indicates that the sequence {Xn} converges in distrib-
ution to a random variable with a chi-squared distribution with ν degrees
of freedom.
There are several necessary and sufficient conditions for convergence in
distribution. A set of such conditions is given in the “portmanteau” the-
orem:
For the sequence of random variables Xn and the random variable X , all
defined on a common probability space, the following are necessary and
sufficient conditions that Xn →d X .

A Companion for Mathematical Statistics c©2008 James E. Gentle



1.2 Sequences of Events and of Random Variables 35

• E(g(Xn))→ E(g(X)) for all real bounded continuous functions g.
• E(g(Xn))→ E(g(X)) for all real bounded Lipschitz functions g.
• E(g(Xn)) → E(g(X)) for all real functions g such that g(x) → 0 as
|x| → ∞.

• Pr(Xn ∈ B) → Pr(X ∈ B) for all Borel sets B such that Pr(X ∈
∂B) = 0.

• lim inf Pr(Xn ∈ S) ≥ Pr(X ∈ S) for all open sets S.
• lim sup Pr(Xn ∈ T ) ≤ Pr(X ∈ T ) for all closed sets T .
The proofs of the various parts of this theorem are in Billingsley (1995),
among other resources.

Convergence in probability and convergence in distribution are essentially
the same thing; it just depends on whether we are speaking of the sequence of
random variables or the sequences of distributions of those random variables.
In either case, we refer to this type of convergence as “weak convergence”.

Almost sure convergence and convergence in rth moment are both strong
types of convergence, but they are not closely related to each other. We have
the following logical relations:

Lr a.s
Q

Q
QQs

�
�

��+p

?
d (or w)

(These relations are parts of “Theorem 1.8” in Shao – see proofs there.)
Just as for working with limits of unions and intersections of sets where

we find it useful to identify sequences of sets that behave in some simple way
(such as the intervals [a+1/n, b−1/n] on page 358), it is also useful to identify
sequences of random variables that behave in interesting but simple ways. A
useful sequence is {Un}, where Un ∼ U(0, 1/n). Other kinds of interesting
sequences can be constructed as indicators of events. The events themselves
may be defined by breaking a U(0, 1) distribution into uniform distributions
on partitions of (0, 1). For example, we for a positive integer k, we may form
2k subintervals of (0, 1) for j = 1, . . . , 2k as

(
j − 1
2k

,
j

2k

)
.

As k gets larger, the Lebesgue measure of these subintervals approaches 0
rapidly.

The following examples of sequences that show the lack of relationships
between almost sure convergence and convergence in rth moment come from
Romano and Siegel (1986).
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Let Un ∼ U(0, 1/n) and let Xn = 2nUn. Since Pr(limn→∞Xn = 0) = 1
(look at the complement of the subset of Ω for which Xn converges to 0; it is
empty), Xn →a.s. 0. However,

E(|Xn − 0|r) =
∫ 1/n

0

(2n)rdu =
2nr

n
.

This diverges for every r > 0; hence {Xn} does not converge to 0 in rth

moment for any r.
This example is also an example of a sequence that converges in probability

(since a.s. convergence implies that), but does not converge in rth moment.
Now consider an opposite case. We will use the partitioning of (0, 1) re-

ferred to above. Let U ∼ U(0, 1) and define

Xn =

{
1 if

jn − 1
2kn

< U <
jn
2kn

0 otherwise

where jn = 1, . . . , 2kn and kn → ∞ as n → ∞. We see that E((Xn − 0)2) =
1/(2kn), hence {Xn} converges in quadratic mean (or in mean square) to 0.
We see, however, that limn→∞Xn does not exist (since for any value of U , Xn

takes on each of the values 0 and 1 infinitely often). Therefore, {Xn} cannot
converge a.s. (to anything!).

This is another example of a sequence that converges in probability (since
convergence in rth moment implies that), but does not converge a.s.

Although convergence in distribution does not imply a.s. convergence, con-
vergence in distribution does allow us to construct an a.s. convergent sequence.
This is stated in Skorohod’s theorem (part of Shao’s “Theorem 1.8”), whose
proof we will omit. (It’s not hard, it’s just long and complicated.)
Skorohod’s Theorem: If for the random variables (vectors!) X1, X2, . . ., we
have Xn →p X , then there exist random variables Y1, Y2, . . . on the same
probability space with PYn = PXn and PY = PX , such that Yn →a.s. Y .

Big O and Little o Almost Surely

For sequences of random variablesXn and Yn defined on a common probability
space, we identify different types of convergence, either almost sure or in
probability.

• Big O almost surely, written O(Yn) a.s.

Xn = O(Yn) a.s. iff Pr(‖Xn‖ = O(‖Yn‖)) = 1

• Little o almost surely, written o(Yn) a.s.

Xn = o(Yn) a.s. iff ‖Xn‖/(‖Yn‖)→a.s. 0.

Compare Xn/Yn →a.s. 0 for Xn ∈ IRm and Yn ∈ IR.
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Big O and Little o Weakly

We also have relationships in which one sequence converges to another in
probability.

• Big O in probability, written OP(Yn).

Xn = OP(Yn) iff ∀ε > 0 ∃ constant Cε > 0 3 sup
n

Pr(‖Xn‖ ≥ Cε‖Yn‖) < ε.

If Xn = OP(1), Xn is said to be bounded in probability.
It is clear that if Xn →d X for any random variable X , then Xn = OP(1).

• Little o in probability, written oP(Yn).

Xn = oP(Yn) iff ‖Xn‖/‖Yn‖ →p 0.

If Xn = oP(1), then Xn converges in probability to 0. If Xn = oP(1), then
also Xn = OP(1).

Weak Convergence

Convergence in distribution, or weak convergence, plays a fundamental role
in statistical inference. It is the type of convergence in the central limits (see
Section 1.3.2) and it is the basis for the definition of asymptotic expectation
(see Section 2.5.2), which, in turn is the basis for most of the concepts of
asymptotic inference. (Asymptotic inference is not based on the limits of the
properties of the statistics in a sequence, and in Section 2.5.3, beginning on
page 116, we will consider some differences between “aysmptotic” properties
and “limiting” properties.)

Theorem 1.9 in Shao gives conditions for convergence in distribution.
The continuity theorem (Theorem 1.9(ii)) concerns a sequence of random

variables X1, X2, · · · (not necessarily independent) with characteristic func-
tions φX1 , φX2 , · · · and a random variable X with characteristic function φX

and states that Xn →d X iff φXn(t) → φX(t) ∀t. The “if” part of the con-
tinuity theorem is called the Lévy-Cramér theorem and the “only if” part is
sometimes called the first limit theorem.

Another useful fact (Shao’s Theorem 1.9(iii)) is called the Cramér-Wold
“device”. It states that Xn →d X iff tXn →d tX ∀t. (If Xn, X ∈ IRd, the
condition is tTXn →d tTX ∀t ∈ IRd. This follows immediately from the
continuity theorem.

********* tightness
Shao exercise 1.129: Let {Fn} be a sequence of CDFs on IR. Let Gn(x) =

Fn(anx+cn) andHn(x) = Fn(bnx+dn), where {an} and {bn} are sequences of
positive real numbers and {cn} and {dn} are sequences of real numbers. Now
suppose that Gn →w G and Hn →w H , where G and H are nondegenerate
CDFs. Then

A Companion for Mathematical Statistics c©2008 James E. Gentle



38 1 Probability

an/bn → a > 0 and (cn − dn/an → b ∈ IR,

and
H(ax+ b) = G(x) ∀x ∈ IR;

that is, the distributions are in a location-scale family. ****************

Convergence of Functions

The next issue has to do with functions of convergent sequences. We consider
a sequence X1, X2, . . . in IRk and a measurable function g from (IRk,Bk)
to (IRk,Bk). If we know something about the convergence of {Xn}, can we
say anything about the convergence of {g(Xn)}? We can if g is continuous.
(Recall the “portmanteau” theorem for expected values and for convergence
in distribution.) To speak about continuity of a function of random variables,
we must add some kind of qualifier, such as a.s., which, of course, assumes a
probability measure. (That consideration was not relevant for the expectations
in the portmanteau theorem.)

So, for a given probability measure, say PX , and a function g that is
continuous a.s. w.r.t. PX , the simple facts are

Xn →a.s. X ⇒ g(Xn)→a.s. g(X) (1.52)

Xn →p X ⇒ g(Xn)→p g(X) (1.53)

Xn →d X ⇒ g(Xn)→d g(X) (1.54)

This is Theorem 1.10 in Shao.
The next question is about the convergence of sequences formed by addi-

tion and multiplication of two sequences of random variables. The answer is
provided by Slutsky’s theorem.

Slutsky’s theorem (Theorem 1.11 in Shao) gives convergence in distrib-
ution for the case that one sequence converges in distribution to a random
variable and another sequence converges in probability to a fixed real number.
It tells us that sums, products, and quotients behave like we would expect (or
hope):

Xn + Yn →d X + c (1.55)

XnYn →d cX (1.56)

Xn/Yn →d X/c if c 6= 0. (1.57)

The next issue concerns the case when we have convergence in distribution
as above, and we apply a function to the sequence, but not to the random
variable itself. That is, we have {Xn} converging in distribution to Y + c, and
we ask about the convergence of {g(Xn)}. What we can say depends on the
differentiability of g at c.

The useful fact is given as Theorem 1.12(i) in Shao:
Let X1, X2, . . . and Y be random variables (k-vectors) such that
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an(Xn − c)→d Y,

where c is a constant (k-vector) and a1, a2, . . . is a sequence of constant scalars
such that limn→∞ an = ∞. Now let g be a function from IRk to IR that is
differentiable at c. Then

an(g(Xn)− g(c))→d (∇g(c))TY. (1.58)

Notice an important point in this theorem. We are given convergence of
(Xn−c) and we get convergence of (g(Xn)−g(c)) so long as g is differentiable
at c.

There is an extension of this given as Theorem 1.12(ii) in Shao for powers
of the an that has applications in the covariance of the random vector Y .

The most common application of Theorem 1.12(i) arises from the sim-
ple corollary (called “Corollary 1.1” in Shao) for the case when Y has the
multivariate normal distribution Nk(0, Σ):

an(g(Xn)− g(c))→d Z, (1.59)

where Z ∼ Nk(0, (∇g(c))TΣ∇g(c)).
One reason limit theorems are important is that they can provide approx-

imations useful in statistical inference. For example, the convergence of the
sequence above provides a method for setting approximate confidence sets
using the normal distribution, so long as no element of ∇g(c) is zero. This
method in asymptotic inference is called the delta method.

Expectations of Sequences and Sequences of Expectations

The monotonicity of the expectation operator (1.2) carries over to sequences.
The three theorems that relate to the interchange of a Lebesgue integration
operation and a limit operation stated on page 391 (monotone convergence,
Fatou’s lemma, and dominated convergence) apply immediately to expecta-
tions:

• monotone convergence
For 0 ≤ X1 ≤ X2 · · · a.s.

Xn →a.s. X ⇒ E(Xn)→a.s. E(X) (1.60)

• Fatou’s lemma

0 ≤ Xn ∀n ⇒ E(lim
n

infXn) ≤ lim
n

inf E(Xn) (1.61)

• dominated convergence
Given a fixed Y with E(Y ) <∞,

|Xn| ≤ Y ∀n and Xn →a.s. X ⇒ E(Xn)→a.s. E(X). (1.62)
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Another useful convergence result for expectations is the Helly-Bray the-
orem (or just the Helly theorem:
If g is a bounded and continuous function over the support of {Xn}, then

Xn →d X ⇔ E(g(Xn))→d E(g(X)). (1.63)

1.3 Limit Theorems

There are two general types of important limit theorems: laws of large numbers
and central limit theorems. Laws of large numbers give limits for probabilities
or for expectations of sequences of random variables. The convergence to the
limits may be weak or strong.

Central limit theorems provide weak convergence results, but they do even
more; they specify a limiting normal distribution. The first versions of both
laws of large numbers and central limit theorem applied to sequences of bino-
mial random variable.

1.3.1 Laws of Large Numbers

Bernoulli’s theorem

The first law of large numbers was Bernoulli’s (Jakob) theorem: If Xn has a
binomial distribution with parameters n and π, then

Xn/n→p π. (1.64)

This follows from
∫
Ω
(Xn/n− π)2dP = π(1 − π)/n, which means Xn/n con-

verges in mean square to π, which in turn means that it converges in proba-
bility to π. This is a weak law because the convergence is in probability.

The weak law of large numbers for i.i.d. random variables

A generalization of the Bernoulli’s theorem is the weak law of large numbers
(WLLN) for i.i.d. random variables:

Let X1, X2, . . . be a sequence of independent and identically distributed
random variables. There exists a sequence of real numbers a1, a2, . . . such that

nPr(|X1| > n)→ 0 ⇐⇒ 1
n

n∑

i=1

Xi − an →p 0 (1.65)

If this condition holds, we can choose an = E(XiI{|X1|≤n}).

We will not prove this or the following limit theorems at this time.
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The strong law of large numbers for i.i.d. random variables

If E(|X1|) <∞, we can form a strong law in terms of E(X1).
The strong law of large numbers (SLLN) for i.i.d. random variables states
Let X1, X2, . . . be a sequence of independent and identically distributed

random variables such that E(|X1|) <∞. Then

1
n

n∑

i=1

Xi →a.s. E(X1). (1.66)

(Shao states this in a slightly different form.)
A slight generalization is the alternate conclusion

1
n

n∑

i=1

ci(Xi − E(X1))→a.s. 0,

for any bounded sequence of real numbers c1, c2, . . ..

We can generalize these two limit theorems to the case of independence
but not necessarily identical distributions, by putting limits on normalized pth

moments.

The weak law of large numbers for independent random variables
with finite expectation

The weak law of large numbers for independent random variables with finite
expectation: Let X1, X2, . . . be a sequence of independent random variables
such for some constant p ∈ [1, 2],

lim
n→∞

1
np

n∑

i=1

E(|Xi|p) = 0,

then
1
n

n∑

i=1

(Xi − E(Xi))→p 0. (1.67)

The strong law of large numbers for independent random variables
with finite expectation

The strong law of large numbers for independent random variables with finite
expectation: Let X1, X2, . . . be a sequence of independent random variables
such for some constant p ∈ [1, 2],

∞∑

i=1

E(|Xi|p)
ip

<∞,

then
1
n

n∑

i=1

(Xi − E(Xi))→a.s. 0. (1.68)
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1.3.2 Central Limit Theorems

Central limit theorems give conditions that imply that certain standardized
sequences converge to a normal distribution. The simplest ones apply to i.i.d.
random variables, and more complicated ones apply to independent random
variables that are not necessarily identically distributed.

The central limit theorems require finite first and second moments.
The first central limit theorem, called the de Moivre Laplace central limit

theorem followed soon after Bernoulli’s theorem, and like Bernoulli’s theorem,
it applies to Xn that has a binomial distribution with parameters n and π.

The de Moivre Laplace central limit theorem

The de Moivre Laplace central limit theorem states that
Xn − nπ√
nπ(1− π)

→d N(0, 1). (1.69)

This central limit theorem, called the de Moivre Laplace central limit theorem
is a special case of the classical central limit theorem for i.i.d. random variables
with finite mean and variance.

Notice that Bernoulli’s theorem and the de Moivre Laplace central limit
theorem, which are stated in terms of binomial random variables, apply to
normalized limits of sums of Bernoulli random variables. This is the usual
form of these kinds of limit theorems; that is, they apply to normalized lim-
its of sums of random variables. The first generalizations apply to sums of
i.i.d. random variables, and then further generalizations apply to sums of just
independent random variables.

The central limit theorem for i.i.d. scalar random variables with
finite mean and variance

Let X1, X2, . . . be a sequence of independent random variables that are iden-
tically distributed with mean µ and variance σ2 > 0. Then

∑n
i=1Xi − nµ√

nσ
→d N(0, 1). (1.70)

The proof of this uses a limit of a characteristic function and the uniqueness
of the characteristic function (see page 37).

Independent but not identical

The more general central limit theorems apply to a sequence of a particular
type of finite subsequences. The variances of the sums of the subsequences is
what is used to standardize the sequence so that it is convergent. We define
the sequence and the subsequences follows.

Let {Xnj , j = 1, 2, . . . , kn} be independent random variables with 0 < σ2
n,

where σ2
n −V(

∑kn

j=1Xnj) and kn →∞ as n→∞.
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A central limit theorem for independent scalar random variables
with finite mean and variance

A more general central limit theorem is called Lindeberg’s central limit theo-
rem. It is stated in terms of a sequence of finite subsequences:

Let {Xnj , j = 1, 2, . . . , kn} be independent random variables with 0 < σ2
n,

where σ2
n−V(

∑kn

j=1Xnj) and kn →∞ as n→∞. If the Lindeberg condition,

kn∑

j=1

E
(
(Xnj − E(Xnj))2I{|Xnj−EXnj |>εσn}(Xnj)

)
= o(σ2

n) for any ε > 0,

(1.71)
holds, then

1
σn

kn∑

j=1

(Xnj − E(Xnj))→d N(0, 1). (1.72)

This is proved, as Theorem 1.15, in Shao.
Lindeberg’s condition requires that the sum of the second central moments

over the full support minus the squared central differences near the mean
is ultimately dominated by the variance of the sum. (That is to say, the
sum of the tail components of the variance is dominated by the variance of
the sum. This means that the distributions cannot be too heavy-tailed.) The
requirement is in terms of an ε that tells how much of the central region to
remove before computing the individual central moments.

Another approach is to compare the sum of higher order central moments.
This yields a stronger condition; it is a condition on a power in terms of a
positive addition δ to 2, rather than on a fixed power of 2 over an interval
controlled by ε. Liapounov’s condition applies to the order of (2+δ) moments
for δ > 0:

kn∑

j=1

E
(
|Xnj − E(Xnj)|2+δ

)
= o(σ2+δ

n ) for some δ > 0. (1.73)

As above, we assume kn is a sequence such that kn →∞ as n→∞. The more
stringent Liapounov’s condition implies Lindeberg’s condition. It is sometimes
easier to establish Liapounov’s condition than Lindeberg’s condition, however.

Lindeberg’s condition (or Liapounov’s condition, of course) implies Feller’s
condition, which is:

lim
n→∞

max
j≤kn

σ2
nj

σ2
nj

= 0, (1.74)

under the assumption as above that kn is a sequence such that kn → ∞ as
n → ∞. This condition comes up in the proof of Lindeberg’s central limit
theorem.

A Companion for Mathematical Statistics c©2008 James E. Gentle



44 1 Probability

Multivariate central limit theorems for independent random
variables with finite mean and variance

The central limit theorems stated above have multivariate extensions that
are relatively straightforward. The complications arise from the variance-
covariance matrices, which must replace the simple scalars σ2

n.
The simplest situation is the i.i.d. case where each member of the sequence

{Xn} of random k-vectors has the finite variance-covariance matrix Σ. In that
case, similar to equation (1.70) for i.i.d. scalar random variables, we have

1√
n

n∑

i=1

(Xi − E(Xi))→d Nk(0, Σ). (1.75)

Another type of multivariate central limit theorem can be formed by think-
ing of the subsequences in equation (1.72) as multivariate random variables.
Let {kn} be a sequence of constants such that kn → ∞ as n → ∞. Let
Xni ∈ IRmi , where mi ≤ m for some fixed integer m and for i = 1, . . . , kn, be
independent with

inf
i,n
λni > 0,

where λni is the smallest eigenvalue of V(Xni). (Note that this is saying that
variance-covariance matrix is positive definite for every n and i; but it’s saying
a little more than that.) Also suppose that for some δ > 0, we have

sup
i,n

V(‖Xni‖2+δ) <∞.

Now, let cni be a sequence in IRmi with the property that it is diffuse:

lim
n→∞

(
max

1≤i≤kn

‖cni‖2
/

kn∑

i=1

‖cni‖2
)

= 0.

Then we have something similar to equation (1.72):

kn∑

j=1

cTni(Xnj − E(Xnj))

/


kn∑

j=1

V(cTniXnj)




1/2

→d N(0, 1). (1.76)

1.4 Power Series Expansions

Expansions in Taylor series are useful in studying asymptotic distributions.
We have seen a simple example of the use of a first-order Taylor series for
the asymptotic distributions of functions of random variables. This resulted
in the delta method. Higher order Taylor series can be used to develop higher
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order delta methods. (We will use a second order delta method on page 214.)
Expansions are used to arrive at approximations that are of some order O(nr)
for some r > 0. These approximations immediately yield asymptotic equations
or distributions.

Expansions of a given CDF in terms of another CDF, especially the normal
CDF, yield very useful approximations. This is an instance of the more general
method of representing a given function in terms of basis functions, as we
discuss beginning on page 398.

A series using these Hermite polynomials is often called a Gram-Charlier
series.

The first few Hermite polynomials are shown in equation (D.68) on
page 401.

He
0(t) = 1 He

1(t) = t
He

2(t) = t2 − 1 He
3(t) = t3 − 3t

He
4(t) = t4 − 6t2 + 3 He

5(t) = t5 − 10t3 + 15t

******

1.5 Conditional Probability

The concept of conditional distributions provides the basis for the analysis of
relationships among variables.

A simple way of developing the ideas begins by defining the conditional
probability of eventA, given event B. If Pr(B) 6= 0, the conditional probability
of event A given event B is

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
,

which leads to the useful multiplication rule

Pr(A ∩ B) = Pr(B)Pr(A|B).

We see from this that if A and B are independent

Pr(A|B) = Pr(A).

If we interpret all of this in the context of the probability space (Ω,F , P ),
we can define a new “conditioned” probability space, (Ω,F , PB), where we
define PB by

PB(A) = Pr(A ∩B),

for any A ∈ F . From this conditional probability space we could then proceed
to develop “conditional” versions of the concepts discussed in the previous
sections.

This approach, however, is not entirely satisfactory because of the require-
ment that Pr(B) 6= 0.

Another approach is to make use of a concept of conditional expectation,
and that is what we will proceed to do.
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1.5.1 Conditional Expectation: Definition and Properties

The definition of conditional expectation of one random variable given an-
other random variable is developed in two stages. First, we define conditional
expectation over a sub-σ-field, and then we define conditional expectation
with respect to another measurable function (a random variable, for exam-
ple) in terms of the conditional expectation over the sub-σ-field generated by
the inverse image of the function.

A major difference in conditional expectations and unconditional expecta-
tions is that conditional expectations may be nondegenerate random variables.
When the expectation is conditioned on a random variable, relations involv-
ing the conditional expectations must be qualified as in probability, or with
probablility 1.

Conditional expectation over a sub-σ-field

Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let X be
an integrable random variable over Ω. The conditional expectation of X given
A, denoted by, E(X |A), is a random variable from (Ω,F) to (IRd,B(IRd)) such
that

∫
A E(X |A) dP =

∫
AX dP for any A ∈ A. (The existence and uniqueness

of this random variable follows from the Radon-Nikodym theorem (Theorem
1.4 in Shao)).

Conditional expectation with respect to another measurable
function

Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , let X be an
integrable random variable over Ω, and let Y be a measurable function from
(Ω,F , P ) to any measurable space (Λ,G). Then the conditional expectation of
X given Y , denoted by E(X |Y ) is defined as the conditional expectation of
X given the sub-σ-field generated by Y , that is, E(X |σ(Y )).

Sub-σ-fields generated by random variables, such as σ(Y ), play an im-
portant role in statistics. We can think of σ(Y ) as being the “information
provided by Y ”. In an important type of time series, Y1, Y2, . . ., we encounter
a sequence σ(Y1) ⊂ σ(Y2) ⊂ · · · .

Some properties of conditional expectations

Although the definition above may appear rather abstract, it is not too dif-
ficult to work with, and it yields the properties of conditional expectation
that we have come to expect based on the limited definitions of elementary
probability.

For example, we have the simple relationship with the unconditional ex-
pectation:

E(E(X |A)) = E(X). (1.77)
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Also, if the individual conditional expectations exist, the conditional ex-
pectation is a linear operator:

∀a ∈ IR,E(aX + Y |A) = aE(X |A) + E(Y |A) a.s. (1.78)

This fact follows immediately from the definition. For any A ∈ A

E(aX + Y |A) =
∫

A

aX + Y dP

= a

∫

A

X dP +
∫

A

Y dP

= aE(X |A) + E(Y |A)

As with unconditional expectations, we have immediately from the defin-
ition:

X ≤ Y a.s. ⇒ E(X |A) ≤ E(Y |A) a.s.. (1.79)

We can establish conditional versions of the three theorems stated on
page 39 that relate to the interchange of an integration operation and a
limit operation (monotone convergence, Fatou’s lemma, and dominated con-
vergence). These extensions are fairly straightforward.

• monotone convergence:
for 0 ≤ X1 ≤ X2 · · · a.s.

Xn →a.s. X ⇒ E(Xn|A)→a.s. E(X |A). (1.80)

• Fatou’s lemma:

0 ≤ Xn ∀n ⇒ E(lim
n

inf Xn|A) ≤ lim
n

inf E(Xn|A) a.s.. (1.81)

• dominated convergence:
given a fixed Y with E(Y |A) <∞,

|Xn| ≤ Y ∀n and Xn →a.s. X ⇒ E(Xn|A)→a.s. E(X |A). (1.82)

Another useful fact is that if Y is A-measurable and |XY | and |X | are inte-
grable (notice this latter is stronger than what is required to define E(X |A)),
then

E(XY |A) = Y E(X |A) a.s. (1.83)

Conditional expectation can be viewed as a projection in a linear space
defined by the square-integrable random variables over a given probability
space and the inner product 〈X,Y 〉 = E(XY ) and its induced norm.

Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let
B ∈ F . The conditional probability of B given A, denoted by Pr(B|A) is
defined as E(IB |A)
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1.5.2 Some Useful Conditional Expectations

There are some conditional expectations that arise often, and which we should
immediately recognize:

E
(
E(Y |X)

)
= E(Y ) (1.84)

The student should realize that the expectation operator is based on a prob-
ability distribution, and so anytime we see “E”, we need to ask “with respect
to what probability distribution?” In notation such as that above, the dis-
tribution is implicit. The inner expectation on the left is with respect to the
conditional distribution of X given Y , and so is a function of Y . The outer
expectation is with respect to the marginal distribution of Y .

V(Y ) = V
(
E(Y |X)

)
+ E

(
V(Y |X)

)
(1.85)

This is intuitive, although you should be able to prove it formally. The intuitive
explanation is: the total variation in Y is the sum of the variation of its mean
given X and its average variation about X (or given X). (Think of SST =
SSR + SSE in regression analysis.)

This equality implies the Rao-Blackwell inequality (drop the second term
on the right).

1.5.3 Conditional Probability Distributions

We can now develop important concepts of joint and conditional probability
distributions in terms of conditional expectations.

• Conditional probability.
Let (Ω,F , P ) be a probability space, let A be a sub-σ-field of F , and let
B ∈ F . The conditional probability of B given A, denoted by Pr(B|A) is
defined as E(IB |A).

• Conditional distributions.
For distributions with PDFs we can define conditional distributions very
simply. The concept of a joint distribution with a PDF comes from the
Radon-Nikodym derivative of a CDF over a product space. This is the
familiar

fX|Y (x|y) =
fXY (x, y)
fY (y)

,

which may be taken as a definition so long as fY (y) > 0. With this, we
can work back to define a conditional expectation in agreement with that
above.
Another approach for defining joint and conditional distributions is given
in Shao’s “Theorem 1.7”. In this we start with a probability space
(IRm,Bm, P1) and define a probability measure on the measurable space
(IRn × IRm, σ(Bn × Bm). The existence of such a probability measure is
given in the first part of this multi-theorem (which is proved in Billingsley).
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For a random variable Y in IRm, its (marginal) distribution is determined
by P1, which we denote as PY (y). For B ∈ Bn and C ∈ Bm, the conditional
distribution is defined by identifying a probability measure, denoted as
PX|Y (·|y), on (IRn, σ(Bn)) for any fixed y ∈ IRm.
The joint probability measure of (X,Y ) over IRn × IRm is defined as

PXY =
∫

C

PX|Y (·|y)dPY (y),

where C ∈ Bm.
• Conditional entropy.

We define the conditional entropy of X given Y in two ways. The first
meaning just follows the definition of entropy in equation (1.7) on page 10
with the conditional PDF pX|Y used in place of the marginal PDF pX .
This leads to an entropy that is a random variable or an entropy for a
fixed value Y = y. In the more common usage, we define the conditional
entropy of X given Y (which is also called the equivocation of X about
Y ) as the expected value of the term described above; that is,

H(X |Y ) = −
∑

y

pY (y)
∑

x

pX|Y (x|y) log(pX|Y (x|y)). (1.86)

As before, the basic definition is made in terms of a PDF dominated by a
counting measure, but we extend it to any PDF.
From the definition we see that

H(X |Y ) = H(X,Y )−H(Y ) (1.87)

or
H(X,Y ) = H(X |Y ) +H(Y ).

Compare the latter with equation (1.85).

1.6 Stochastic Processes

Many interesting statistical problems concern stochastic processes, which we
can think of as a measurable function

X : I ×Ω 7→ IRd,

where I is some index set (I could be any ordered set). In many cases of
interest, d = 1; that is, the process is univariate.

In the expression above, X is a random variable, and for each i ∈ I, Xi is
a random variable. If the stochastic process is viewed as evolving in time, we
usually denote the index by t and we may denote the process as {Xt} or as
X(t).
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The sequences we discussed in Section 1.2 are of course stochastic processes.
The sequences considered in that section did not have any particular struc-
ture, however. In some cases, we required that they have no structure; that
is, that the elements in the sequence were independent. There are many spe-
cial types of interesting stochastic processes with various structures, such as
Markov chains, martingales, and other types of time series. In this section, we
will just give some basic definitions, and then discuss briefly two important
classes of stochastic process.

States, Times, Notation, and Basic Definitions

The smallest set of measure 1 is called the state space of a stochastic process;
that is, the range of X is called the state space. Any point in the state space
is called a state.

If the index set of a stochastic process is countable, we say the process
is a discrete time stochastic process. We often denote the set of indexes as
T , and we write the random variable at time t ∈ T as Xt. We can index a
discrete time process by 0, 1, 2, . . ., especially if there is a fixed starting point,
although sometimes . . . ,−2,−1, 0, 1, 2, . . . is more appropriate.

In many applications, the index of a stochastic process ranges over a con-
tinuous interval. In that case, we often use a slightly different notation for the
index set. Instead of T denoting that set, we consider index set to be the inter-
val [0, T ], which of course could be transformed into any finite closed interval.
If the index set is a real interval we say the process is a continuous time sto-
chastic process. For continuous time stochastic processes, we sometimes use
the notation X(t), although we also use Xt.

For a stochastic process over a continuous index set I we must first be
concerned about the continuity of the process in time. We can define conti-
nuity of a function (random variable) on I in the usual way at a given point
(ω0 ∈ Ω). Now we define sample continuity for a stochastic process. Sample
continuity must depend on a probability measure (because it is not relevant
over sets of probability 0), so first, assume a probability spaces (Ω,F , P ).
Given a function

X : I ×Ω 7→ IR,

we say X is sample continuous if X(ω) : I 7→ IR is continuous for almost all
ω (with respect to P ). We also use the phrase almost surely continuous or,
often, just continuous.

A property that seems to occur often in applications and, when it does,
affords considerable simplifications for analyses is the conditional indepen-
dence of the future on the past given the present. This property, called
the Markov property, can be made precise by considering for X(t) any set
t0 < t1 < · · · < tn < t and requiring for any x that

Pr(X(t) ≤ x | X(t0), X(t1), . . . , X(tn)) = Pr(X(t) ≤ x | X(tn)). (1.88)
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If the marginal distribution of X(t) is independent of t, the process is said
to be homogeneous.

Many concepts are more easily defined for discrete time processes, although
most have analogs for continuous time processes.

Given a discrete time stochastic process

X : {0, 1, 2, . . .} ×Ω 7→ IR,

a random variable
T : Ω 7→ {0, 1, 2, . . .}

is called a stopping time if the event {T = t} depends only on X0, . . . , Xt for
n = 0, 1, 2, . . ..

A special stopping time is the first passage time defined (for discrete time
processes) as

Tj = min{t ≥ 1 : Xt = j},

if this set is nonempty; otherwise, Tj =∞.
Stopping times have several important characteristics, such as the fact

that the Markov property holds at stopping times.

1.6.1 Probability Models for Stochastic Processes

A model for a stochastic process posits a sampling sequence over a sample
space Ω. This yields a path or trajectory, (ω1, ω2, . . .). In continuous time we
generally denote a path trajectory as ω(t). The sample space for the stochastic
process becomes the set of paths. We denote this by ΩT .

We think of a stochastic process in terms of a random variable, Xt, and
an associated σ-field Ft in which Xt is measurable.

In many applications, we assume an evolution of information. If Xs is
associated with the σ-field Fs and s ≤ t, then Fs ⊂ Ft, and in this case, the
sequence {Ft} is called a filtration. The stochastic process {Xt} is said to be
adapted to the filtration {Ft}.

1.6.2 Markov Chains

The simplest stochastic processes is a sequence of i.i.d. random variables; that
is, a sequence with no structure. In a simple, but useful structure we substitute
a simple conditioning for independence. A sequence of random variables with
the Markov property is called a Markov process. A Markov process in which
the state space is countable is called a Markov chain. (The term “Markov
chain” is also sometimes used to refer to any Markov process, as in the phrase
“Markov chain Monte Carlo”, in applications of which the state space is often
continuous.)
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The theory of Markov chains is usually developed first for discrete-time
chains, that is, those with a countable index set, and then extended to
continuous-time chains.

If the state space is countable, it is equivalent to X = {1, 2, . . .}. If X is a
random variable from some sample space to X , and

πi = Pr(X = i), (1.89)

then the vector π = (π1, π2, . . .) defines a distribution of X on X . Formally, we
define a Markov chain (of random variables) X0, X1, . . . in terms of an initial
distribution π and a conditional distribution for Xt+1 given Xt. Let X0 have
distribution π, and given Xt = j, let Xt+1 have distribution (pij ; i ∈ X ); that
is, pij is the probability of a transition from state j at time t to state i at time
t + 1, and K = (pij) is called the transition matrix of the chain. The initial
distribution π and the transition matrix K characterize the chain, which we
sometimes denote as Markov(π,K). It is clear that K is a stochastic matrix,
and hence ρ(K) = ‖K‖∞ = 1, and (1, 1) is an eigenpair of K.

If K does not depend on the time (and our notation indicates that we are
assuming this), the Markov chain is stationary.

A discrete-time Markov chain {Xt} with discrete state space {x1, x2, . . .}
can be characterized by the probabilities pij = Pr(Xt+1 = xi | Xt = xj).
Clearly,

∑
i∈I pij = 1. A vector such as p∗j whose elements sum to 1 is called

a stochastic vector or a distribution vector.
Because for each j,

∑
i∈I pij = 1, K is a right stochastic matrix.

The properties of a Markov chain are determined by the properties of the
transition matrix. Transition matrices have a number of special properties,
which we discuss in Section D.4.7, beginning on page 455.

(Note that many people who work with Markov chains define the transition
matrix as the transpose of K above. This is not a good idea, because in ap-
plications with state vectors, the state vectors would naturally have to be row
vectors. Until about the middle of the twentieth century, many mathematicians
thought of vectors as row vectors; that is, a system of linear equations would
be written as xA = b. Nowadays, almost all mathematicians think of vectors
as column vectors in matrix algebra. Even in some of my previous writings,
e.g., Gentle, 2007, I have called the transpose of K the transition matrix, and
I defined a stochastic matrix in terms of the transpose. The transpose of a
right stochastic matrix is a left stochastic matrix, which is what is commonly
meant by the unqualified phrase “stochastic matrix”. I think that it is time to
adopt a notation that is more consistent with current matrix/vector notation.
This is merely a change in notation; no concepts require any change.)

If we assume that Xt is a random variable taking values in {x1, x2, . . .}
and with a PDF (or probability mass function) given by

Pr(Xt = xi) = π
(t)
i , (1.90)

and we write π(t) = (π(t)
1 , π

(t)
1 , . . .), then the PDF at time t+ 1 is
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π(t+1) = Kπ(t). (1.91)

The properties of a Markov chain depend in large measure on whether the
transition matrix is reducible or not.

Because 1 is an eigenvalue and the vector 1 is the eigenvector associated
with 1, from equation (D.122), we have

lim
t→∞

Kt = 1πs, (1.92)

where πs is the Perron vector of KT.
This also gives us the limiting distribution for an irreducible, primitive

Markov chain,
lim

t→∞
π(t) = πs.

The Perron vector has the property πs = KTπs of course, so this distribution
is the invariant distribution of the chain.

The definition means that (1, 1) is an eigenpair of any stochastic matrix.
It is also clear that if K is a stochastic matrix, then ‖K‖∞ = 1, and because
ρ(K) ≤ ‖K‖ for any norm and 1 is an eigenvalue of K, we have ρ(K) = 1.

A stochastic matrix may not be positive, and it may be reducible or irre-
ducible. (Hence, (1, 1) may not be the Perron root and Perron eigenvector.)

If the state space is countably infinite, the vectors and matrices have in-
finite order; that is, they have “infinite dimension”. (Note that this use of
“dimension” is different from our standard definition that is based on linear
independence.)

We write the initial distribution as π(0). A distribution at time t can be
expressed in terms of π(0) and K:

π(t) = Ktπ(0). (1.93)

Kt is often called the t-step transition matrix.
The transition matrix determines various relationships among the states of

a Markov chain. State i is said to be accessible from state j if it can be reached
from state j in a finite number of steps. This is equivalent to (Kt)ij > 0 for
some t. If state i is accessible from state j and state j is accessible from
state i, states i and j are said to communicate. Communication is clearly an
equivalence relation. The set of all states that communicate with each other is
an equivalence class. States belonging to different equivalence classes do not
communicate, although a state in one class may be accessible from a state
in a different class. If all states in a Markov chain are in a single equivalence
class, the chain is said to be irreducible.

The limiting behavior of the Markov chain is of interest. This of course can
be analyzed in terms of limt→∞Kt. Whether or not this limit exists depends
on the properties of K.
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Continuous Time Markov Chains

K(t) = etR

R intensity rate. rii nonpositive, rij for i 6= j nonnegative,
∑

i∈I rij = 0
for all j.

1.6.3 Martingales

Martingales are an important class of stochastic processes. The concept of
conditional expectation is important in developing a theory of martingales.
Martingales are special sequences of random variables that have applications
in various processes that evolve over time.

We say that {Xt : t ∈ T} is a martingale relative to {Dt : t ∈ T} in
some probability space (Ω,F , P ), if

Xs = E(Xt|Dt) for s > t. (1.94)

An alternate definition is in terms of the pairs (Xt,Ft); that is, the def-
inition is for the random variable and an associated σ-field, rather than the
random variable relative to some sequence of σ-fields, as above. We say the
sequence {(Xt,Ft) : t ∈ T}, where Ft ⊂ Ft+1 ⊂ · · · , is a martingale if
E(Xn|Fn−1) = Xn−1 a.s. We often refer to this as a forward martingale, and
define a reverse martingale analogously with the conditions Ft ⊃ Ft+1 ⊃ · · ·
and E(Xn−1|Fn) = Xn a.s.

We say that {Xt : t ∈ T} is a submartingale relative to {Dt : t ∈ T} if

Xs ≤ E(Xt|Dt) for s > t. (1.95)

The sequence of sub-σ-fields, which is a filtration, is integral to the defin-
ition of martingales.

Shao gives an interesting sequence of likelihood ratios that form a martin-
gale (Example 1.25).

A common application of martingales is as a model for stock prices. As
a concrete example, we can think of a random variable X1 as an initial sum
(say, of money), and a sequence of events in which X2, X3, . . . represents a
sequence of sums with the property that each event is a “fair game”; that
is, E(X2|X1) = X1 a.s.,E(X3|X1, X2) = X2 a.s., . . .. We can generalize this
somewhat by letting Dn = σ(X1, . . . , Xn), and requiring that the sequence be
such that E(Xn|Dn−1) = Xn−1 a.s.

Doob’s Martingale Inequality

A useful property of submartingales is Doob’s martingale inequality. This
inequality is related to the Hájek-Rènyi inequality.
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Let {Xt : t ∈ [0, T ]} be a submartingale relative to {Dt : t ∈ [0, T ]}
taking nonnegative real values; that is, 0 ≤ Xs ≤ E(Xt|Dt) for s, t. Then for
any constant ε > 0 and r ≥ 1,

Pr
(

sup
0≤t≤T

Xt ≥ ε
)
≤ 1
εp

E(|XT |p). (1.96)

We also see that Kolmogorov’s inequality is a special case of Doob’s martin-
gale inequality, because the partial sums in that inequality form a martingale.

Martingale Central Limit Theorem

In Lindeberg’s central limit theorem, page 43, that applies to independent
sequences, can we relax the independence assumption? We focus on the partial
sums in equation (1.72). Let

Yn =





∑kn

j=1(Xnj − E(Xnj)) if n ≤ kn

∑kn

j=1(Xknj − E(Xknj)) if n > kn.

(The addends in Yn are called a triangular array.) Now, assume {Yn} is a
martingale.

Next, starting with a fixed value for each subsequence, say Xn0 = 0,
assume the sum of the normalized conditional variances converge to 1:

1
σn

kn∑

j=1

E
(
(Xnj − E(Xnj))2|Xn1, . . . , Xn,j−1

)
→p 1,

where, as before, σ2
n = V(

∑kn

j=1Xnj). Then we have

1
σn

kn∑

j=1

(Xnj − E(Xnj))→d N(0, 1), (1.97)

which is the same as equation (1.72).

1.7 Families of Probability Distributions

Given a measurable space, (Ω,F), different choices of a probability measure
lead to different probability triples, (Ω,F , P ). A set of measures P = {P}
associated with a fixed (Ω,F) is called a family of distributions. Families can
be defined in various ways. For example, for some (Ω,F), a very broad family
is Pc = {P : P � ν}, where ν is the Lebesgue measure. An example of
a very specific family for Ω = {0, 1} and F = 2Ω is the probability measure
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Pπ({1}) = π and Pπ({0}) = 1 − π. The distributions in this family, the
Bernoulli distributions, are dominated by the counting measure.

Certain families of distributions have proven to be very useful as models of
observable random processes. Familiar families include the normal or Gaussian
family of distributions, the Poisson family of distributions, the binomial family
of distributions, and so on.

At this time you should become familiar with the families of distributions
in Appendix C, beginning on page 337.

1.7.1 Characterizing a Family of Distributions

A probability family or family of distributions, P = {Pθ, θ ∈ Θ}, is a set
of probability distributions of a random variable that is defined over a given
sample space Ω. The index of the distributions may be just that, an arbitrary
index in some given set Θ which may be uncountable, or it may be some
specific point in a given set Θ in which the value of θ carries some descriptive
information about the distribution; for example, θ may be a 2-vector in which
one element is the mean of the distribution and the other element is the
variance of the distribution.

The distribution functions corresponding to the members of most inter-
esting families of distributions that we will discuss below do not constitute a
distribution function space as defined on page 403. This is because mixtures of
distributions in most interesting families of distributions are not members of
the same family. That is, distributions defined by convex linear combinations
of CDFs generally are not members of the same family of distributions. On
the other hand, often linear combinations of random variables do have distri-
butions in the same family of distributions as that of the individual random
variables. (The sum of two normals is normal; but a mixture of two normals
is not normal.)

Likelihood Functions

The problem of fundamental interest in statistics is to identify a particular
distribution within some family of distributions, given observed values of the
random variable. Hence, in statistics, we may think of θ or Pθ as a variable.
Given a PDF fθ, which is a function whose argument is a value of a random
variable x, we define a likelihood function as a function of θ for the fixed x:

L(θ |x) = fθ(x).

In statistical applications we may faced with the problem of choosing be-
tween two distributions Pθ1 and Pθ2 . For a given value of x, we may base
our choice on the two likelihoods, L(θ1 |x) and L(θ2 |x), perhaps using the
likelihood ratio

λ(θ) =
L(θ2 |x)
L(θ1 |x)

.
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Parametric Families

A family of distributions on a measurable space (Ω,F) with probability mea-
sures Pθ for θ ∈ Θ is called a parametric family if Θ ⊂ IRd for some fixed
positive integer d and θ fully determines the measure. In that case, we call θ
the parameter and Θ the parameter space.

A family that cannot be indexed in this way is called a nonparametric fam-
ily. In nonparametric methods, our analysis usually results in some general
description of the distribution, rather than in a specification of the distribu-
tion.

The type of a family of distributions depends on the parameters that
characterize the distribution. A “parameter” is a real number that can take on
more than one value within a parameter space. If the parameter space contains
only one point, the corresponding quantity characterizing the distribution is
not a parameter.

Many common families are multi-parameter, and specialized subfamilies
are defined by special values of one or more parameters. For example, in a very
widely-used notation, the family of gamma distributions is characterized by
three parameters, γ, called the “location”; β, called the “scale”; and α, called
the “shape”. Its PDF is (Γ(α))−1β−α(x − γ)α−1e−(x−γ)/βI[γ,∞)(x). This is
sometimes called the “three-parameter gamma”, because often γ is taken to
be a fixed value, usually 0. As noted above, if a parameter is assigned a fixed
value, then it ceases to be a parameter. This is important, because what
are parameters determine the class of a particular family. For example, the
three-parameter gamma is not a member of the exponential class; however,
the standard two-parameter gamma, with γ fixed at 0, is a member of the
exponential class.

Specific values of the parameters determine special subfamilies of distri-
butions. For example, in the three-parameter gamma, if α is fixed at 1, the
resulting distribution is the two-parameter exponential, and if, additionally, γ
fixed at 0, the resulting distribution is what most people call an exponential
distribution.

(Oddly, Lehmann many years ago chose the two-parameter exponential,
with location and scale, to be “the exponential”, and chose the two-parameter
gamma, with shape and scale, to be “the gamma”. The convenient result was
that he could use the exponential as an example of a distribution that is not
a member of the exponential class but is a member of the location-scale class,
and he could use the gamma as an example of a distribution that is a member
of the exponential class but is not a member of the location-scale class. Other
authors in mathematical statistics, such as Shao, followed this terminology. It
is not nonstandard; it is just odd to choose to include the location parameter in
the definition of the exponential family of distributions, where it is very rarely
used by anyone else, but not to include the location parameter in the definition
of the gamma family of distributions, where occasionally other people use it.
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As noted, of course, it is just so we can have convenient examples of specific
types of families of distributions.)

Types of Families

We identify certain collections of families of distributions for which we can de-
rive general results. Although I would prefer to call such a collection a “class”,
most people call it a “family”, and so I will too, at least sometimes. Calling
these collections of families “families” leads to some confusion, because we can
have a situation such as “exponential family” with two different meanings.

The most important class is the exponential class, or “exponential family”.
This family has a number of useful properties that involve complete sufficient
statistics, unbiased estimators, Bayes estimators, and maximum likelihood
estimators.

Another important type of family of distributions is a group family, of
which there are three important instances: a scale family, a location family,
and a location-scale family.

There are various other types of families characterized by their shape or by
other aspects useful in specific applications or that lead to optimal standard
statistical procedures.

Mixture Families

In applications it is often the case that a single distribution models the ob-
served data adequately. Sometimes two or more distributions from a single
family of distributions provide a good fit of the observations, but in other
cases, more than one distributional family is required to provide an adequate
fit. In some cases most of the data seem to come from one population but
a small number seem to be extreme outliers. Some distributions, such as a
Cauchy, are said to be “outlier-generating”, but often such distributions are
difficult to work with (because they have infinite moments, for example). Mix-
tures of distributions, such as the ε-mixture distribution (see page 285), are
often useful for modeling data with anomalous observations.

A mixture family can be defined in terms of a set of CDFs P0. The CDF of
a mixture is

∑
wiPi, where Pi ∈ P0, 0 ≤ wi ≤ 1, and

∑
wi = 1. The set P of

all such mixture CDFs is called a distribution function space (see page 403).

1.7.2 Families Characterized by the Shape of the Probability
Density

The general shape of a probability density may determine properties of sta-
tistical inference procedures. We can easily identify various aspects of a prob-
ability distribution that has a continuous density function. For discrete dis-
tributions, some of the concepts carry over in an intuitive fashion, and some
do not apply.
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In the following, we will use pθ(x) to represent a continuous PDF for a
distribution whose support is connected.

Symmetric family
A symmetric family is one for which for any given θ there is a constant τ
that may depend on θ, such that pθ(τ + x) = pθ(τ − x), for all x.

Unimodal family
The term “mode” is used in various ways; the most common of which
is to mean a point x0 such that pθ(x0) ≥ pθ(x), for all x. In this sense,
a family of distributions is unimodal if for any given θ the mode of the
distribution exists and is unique. Another more common definition calls
family of distributions unimodal if for any given θ, pθ(x) is concave in x.

Totally positive family
A totally positive family of distributions is defined in terms of the total
positivity of the PDF, treating it as a function of two variables, θ and x.
In this sense, a family is totally positive of order r iff for all x1 < · · · < xn

and θ1 < · · · < θn,
∣∣∣∣∣∣∣

pθ1(x1) · · · pθ1(xn)
...

...
...

pθn(x1) · · · pθn(xn)

∣∣∣∣∣∣∣
≥ 0 ∀ n = 1, . . . , r.

Logconcave family
If log pθ(x) is concave in x for any θ, the family is called a logconcave
family. It is also called a strongly unimodal family. A strongly unimodal
family is unimodal; that is, if log pθ(x) is concave in x pθ(x) is concave in
x (exercise!). Strong unimodality is a special case of total positivity. The
relevance of strong unimodality is that the likelihood ratio is monotone
in x iff the distribution is strongly unimodal. (See page 61 for a definition
of monotone likelihood ratio. In Chapter 6 we will see how monotone
likelihood ratios simplify the problem of testing statistical hypotheses.)

Heavy-tailed family
If for some constant b, either x ≥ b or x ≤ b implies p(x) > c exp(−x2)
where c is a positive constant, the distribution with PDF p is said to
be heavy-tailed. Such a distribution is also called an outlier-generating
distribution.

1.7.3 “Regular” Families

A reason for identifying a family of distributions is so that we can state inter-
esting properties that hold for all distributions within the family. The state-
ments that specify the family are the hypotheses for important theorems.
These statements may be very specific: “if X1, X2, . . . is a random sample
from a normal distribution...”, or they may be more general: “if X1, X2, . . . is
a random sample from a distribution with finite second moment...”
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Some simple characterization such as “having finite second moment” is
easy to state each time its need arises, so there is little to be gained by
defining such a class of distributions. On the other hand, if the characteristics
are more complicated to state in each theorem that refers to that family of
distributions, it is worthwhile giving a name to the set of characteristics.

Because in statistical applications we are faced with the problem of
choosing the particular distributions Pθ0 from a family of distributions,
P = {Pθ, θ ∈ Θ}, the behavior of the CDFs or PDFs as functions of θ are
of interest. It may be important, for example, that the PDFs in this family
be continuous with respect to θ or that derivatives of a specified order with
respect to θ exist.

Conditions that characterize a set of objects for which a theorem applies
are called “regularity conditions”. I do not know the origin of this term, but it
occurs in many areas of mathematics. In statistics there are a few sets of reg-
ularity conditions that define classes of interesting probability distributions.

Families Satisfying the Fisher Information Regularity Conditions

The most important set of regularity conditions in statistics are some that
allow us to put a lower bound on the variance of an unbiased estimator (see
inequality (1.45) and Section 4.1). Consider the family of distributions P =
{Pθ; θ ∈ Θ} that have densities pθ.

There are generally three conditions that together are called the Fisher
information regularity conditions:

• The parameter space Θ is an open interval (in one dimension, and a cross
product of open intervals in multidimensions).

• The support is independent of θ; that is, all Pθ have a common support.
• For any x in the support and θ ∈ Θ, ∂pθ(x)/∂θ exists and is finite.

The latter two conditions ensure that the operations of integration and dif-
ferentiation can be interchanged.

Because the Fisher information regularity conditions are so important,
the phrase “regularity conditions” is often taken to mean “Fisher information
regularity conditions”.

Families Satisfying the Le Cam Regularity Conditions

The Le Cam regularity conditions are the usual FI regularity conditions plus
the requirement that the FI matrix be positive definite and for any fixed
θ ∈ Θ, there exists a positive number cθ and a positive function hθ such that
E(hθ(X)) <∞ and

sup
γ:‖γ−θ‖<cθ

∥∥∥∥
∂2 log fγ(x)
∂γ(∂γ)T

∥∥∥∥
F

≤ hθ(x) a.e.

where fθ(x) is a PDF w.r.t. a σ-finite measure.
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Families with Monotone Likelihood Ratios

Let X be a random variable with distribution in the family P = {Pθ : θ ∈
Θ ⊂ IR} that is dominated by a σ-finite measure ν, and let fθ(x) = dPθ/dν.
Let y(x) be a scalar-valued function. The family P is said to have a monotone
likelihood ratio in y(x) iff for any θ1 < θ2, the likelihood ratio, fθ2(x)/fθ1(x) is
a nondecreasing function of y(x) for all values of x for which fθ1(x) is positive.

We could of course reverse the inequality and/or require the ratio be non-
increasing.

Families with monotone likelihood ratios are of particular interest because
they are easy to work with in testing composite hypotheses (see the discussion
beginning on page 236).

The concept of a monotone likelihood ratio family can be extended to fam-
ilies of distributions with multivariate parameter spaces, but the applications
in hypothesis testing are not as useful because we are usually interested in
each element of the parameter separately.

1.7.4 The Exponential Class

The exponential class is a set of families of distributions that have some partic-
ularly useful properties for statistical inference. The important characteristic
of a family of distributions in the exponential class is the way in which the pa-
rameter and the value of the random variable can be separated in the density
function. Another important characteristic of the exponential family is that
the support of a distribution in this family does not depend on any “unknown”
parameter.

A member of a family of distributions in the exponential class is one with
densities that can be written in the form

pθ(x) = exp
(
(η(θ))TT (x)− ξ(θ)

)
h(x), (1.98)

where θ ∈ Θ.
Notice that all members of a family of distributions in the exponential

class have the same support. Any restrictions on the range may depend on x
through h(x), but they cannot depend on the parameter.

A family of distributions in the exponential class is called an exponential
family, but do not confuse an “exponential family” in this sense with the
“exponential family”, that is, the parametric family with density of the form
1
b e−x/b I(0,∞)(x). (This is the usual form of the exponential family, and it is
a member of the exponential class. In courses in mathematical statistics, it is
common to define the exponential family to be the two-parameter family with
density 1

b e−(x−a)/b I(a,∞)(x). This two-parameter form is not used very often,
but it is popular in courses in mathematical statistics because this exponential
family is not an exponential family(!) because of the range dependency.)

The form of the expression depends on the σ-finite dominating measure
that defines the PDF. If the expression above results from
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pθ =
dPθ

dν

and we define a measure λ by λ(A) =
∫

A
hdν ∀A ∈ F , then we could write

the PDF as
dPθ

dλ
= exp

(
(η(θ))TT (x)− ξ(θ)

)
. (1.99)

One thing that keeps a parametric family from being in the exponential
class is dependence of the support of the distribution on a parameter.

The form of the expression also depends on the parametrization; that is,
the particular choice of the form of the parameters. First, notice that the only
identifiable parameters must be in the elements of η(θ). The other function of
the parameters, ξ(θ), cannot introduce any more identifiable parameters; in
fact, it can be written simply as

ξ(θ) = log
(∫

X
exp

(
(η(θ))TT (x)− ξ(θ)

)
h(x)dx

)
.

The expression
µ(θ) = E(T (x) (1.100)

is called the mean-value parameter, and use of µ(θ) is called the mean-value
parametrization.

If a family of distributions has parameters α and β, we could equivalently
say the family has parameters α and γ, where γ = α+ β; that is,

(
α
γ

)
=
[

1 0
1 1

](
α
β

)
.

In this case of course we would have to replace T (x) = (T (x)1, T (x)2)

T̃ (x) = (T (x)1 − T (x)2, T (x)2).

In fact, if η(θ) ∈ IRd, and D is any nonsingular d × d matrix, then with
η̃ = Dη(θ), we can write an equivalent form of (η(θ))TT (x). To do so of
course, we must transform T (x) also. So (η(θ))TT (x) = η̃TT̃ (x), where T̃ (x) =
(DT)−1T (x).

In the expression for the density, it might be more natural to think of the
parameter as η rather than θ; that way we would have an expression of form
ηTT (x) rather than (η(θ))TT (x). We call the form

pθ(x) = exp
(
(ηTT (x)− ζ(η)

)
h(x) (1.101)

the canonical exponential form, and we call

H = {η :
∫

eηTT (x)h(x)dx <∞} (1.102)

A Companion for Mathematical Statistics c©2008 James E. Gentle



1.7 Families of Probability Distributions 63

the natural parameter space. (Shao denotes this as Ξ; I use H, which is the
upper-case form of η.) The conditions in equation (1.102) are necessary to
ensure that a ζ(η) exists such that pθ(x) is a PDF. Another characterization
of H is

H = {η : η = η(θ), θ ∈ Θ}

(under the assumption that Θ is properly defined, of course).
We say the exponential family is of full rank if the natural parameter space

contains an open set.
*** curved exponential
A PDF of the form f(x; θ)I(x; θ) (where I(x; θ) is an indicator function

such that for some given x0, ∃θ1, θ2 ∈ Θ 3 I(x; θ1) = 0, I(x; θ2) = 1) cannot be
put in the form c exp(g(x; θ))h(x) because c exp(g(x; θ)) > 0 a.e. (because the
PDF must be bounded a.e.). Shao, following equation (2.7), presents a more
complicated argument to show that U(0, θ) is not a member of an exponential
family.

• Some families that are exponential: the normal, the log-normal, the stan-
dard double exponential (with fixed mean), the binomial and multinomial,
the Poisson, the negative binomial, the beta with fixed range (which in-
cludes the usual uniform) and the Dirichlet, and the usual fixed-range
gamma (which includes the usual exponential).

• Some that are not: two-parameter exponential or three-parameter gamma
whose range has an unknown lower limit, uniform with parametric ranges,
double exponential with unknown mean, and Cauchy.

Properties of Exponential Families

Fisher information regularity conditions **** prove
Differentiate the identity

∫
pθ(x) = exp

(
(ηTT (x)− ζ(η)

)
h(x)dx = 1

w.r.t. η. Get
Eη(T (X)) = ∇ζ(η). (1.103)

Then differentiate (1.103) and get

Vη(T (X)) = Hζ(η), (1.104)

where Hζ(η) is the matrix of second derivatives of ζ with respect to η.
It is often a simple matter to determine if a member of the exponential

class of distributions is a monotone likelihood ratio family. If η(θ) and T (x)
in equation (1.98) for the PDF of a distribution in the exponential class are
scalars, and if η(θ) is monotone in θ, then the family has a monotone likelihood
ratio in T (x).
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1.7.5 Parametric-Support Families

Parametric-support families have simple range dependencies, that is, these are
distributions whose supports depend on parameters. A distribution in any of
these families has a PDF in the general form

pθ(x) = c(θ)f(x)I[f1(θ),f2(θ)](x).

Shao calls these families “truncation families”. Most people use the term
“truncated family” to refer to a family that is artificially truncated (for ex-
ample, due to censoring). In his terminology, the three-parameter gamma
would be a truncated distribution. In more standard terminology, a trun-
cated gamma is the distribution formed from a two-parameter distribution
with PDF c(Γ(α))−1β−αxα−1e−x/βI[τ1,τ2)(x), where c is just the normalizing
constant, which is a function of α, β, τ1, and τ2.

Parametric-support families, such as the family of two-parameter expo-
nentials, are not exponential families. Exponential families, such as the family
of one-parameter exponentials, are not parametric-support families.

1.7.6 Group Families

“Group” families are distributions that have a certain invariance with respect
to a group of transformations on the random variable.

The most common group is the group of linear transformations, and this
yields a location-scale group family, or just location-scale family, the general
form of which is defined below.

A (multivariate) location-scale family of distributions is defined in terms of
a given distribution on (IRk,Bk) as all distributions for which the probability
measure is invariant under linear transformations.

• Let P be a a probability measure on (IRk,Bk). Let V ⊂ IRk and let Mk

be a collection of k × k symmetric positive definite matrices. The family

{P(µ,Σ) : P(µ,Σ)(B) = P (Σ1/2(B − µ)), for µ ∈ V , Σ ∈Mk, B ∈ Bk}

is called a location-scale family.

If the PDF of a distribution in a location-scale family is f(x), the PDF of any
other distribution in that family is f((x − µ)/σ)/σ, for some choice of µ and
σ; hence, we often use f((x − µ)/σ)/σ generically to represent the PDF of a
distribution in a location-scale family.

Clearly, a location-scale family must have enough parameters and parame-
ters of the right form in order for the location-scale transformation to result
in a distribution in the same family. For example, a three-parameter gamma
distribution is a location-scale family, but a two-parameter gamma (without
the range dependency) is not.
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Some standard parametric families that are location-scale group families:
normal, double exponential, and Cauchy with parametric centers, and expo-
nential and uniform with parametric ranges.

A family that is a member of the group family may also be a member of
the exponential family.

1.7.7 Complete Families

A family of distributions P is said to be complete iff for any Borel function h
that does not involve P ∈ P

E(h(X)) = 0 ∀P ∈ P =⇒ h(t) = 0 a.e. P .

A slightly weaker condition, “bounded completeness”, is defined as above,
but only for bounded Borel functions h.

Let

P1 = {distributions with densities of the form (
√

2πσ)−1 exp(x2/(2σ2))}.

(This is the N(0, σ2) family.) It is clear that E(h(X)) = 0 for h(x) = x, yet
clearly it is not the case that h(t) = 0 a.e.. Hence, this family, the family of
normals with known mean, is not complete.

With some work, we can see that the family

P2 = {distributions with densities of the form (
√

2πσ)−1 exp((x−µ)2/(2σ2))}

is complete. Note that P1 ⊂ P2; and P2 is complete, but P1 is not. This is a
common situation.

Going in the opposite direction, let P2 be the family of distributions
w.r.t. which E is defined and P2 is complete. Now let P2 ⊂ P1, where all
distributions in P1 have common support. Then P1 is complete.

Completeness of a Statistic

Complete families are defined in terms of properties of any Borel function of
a random variable that does not involve the particular distribution. Such a
function is called a statistic. Some particular statistics, such as T (X) in the
definition of exponential families above, may be of interest, and a particular
interesting property of a given statistic is the one of general statistics that
defines a complete family. We say a statistic T (X) is complete iff for any
Borel function h that does not involve P ∈ P

E(h(T (X))) = 0 ∀P ∈ P ⇒ h(T (x)) = 0 a.e. P .

As above slightly weaker condition, “bounded completeness of a statistic”,
is defined in a similar manner, but only for bounded Borel functions h.
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We will later define completeness of a class of statistics (in terms of an
optimality property called admissibility), and in that context, define minimal
completeness of the class.

The statistic T (X) in the expression for the PDF of a member of an
exponential family is complete if the family is of full rank.

In a parametric-support family, there may be a complete statistic. If so, it
is usually an extreme order statistic.

Notes

We have developed the concept of probability by first defining a measurable
space, then defining a measure, and finally defining a special measure as a
probability measure. Alternatively, the concept of probability over a given
measurable space could be stated as axioms. In this approach, there would
be four axioms: nonnegativity, additivity over disjoint sets, probability of 1
for the sample space, and equality of the limit of probabilities of a monotonic
sequence of sets to the probability of the limit of the sets. The axiomatic
development of probability theory is due to Kolmogorov in the 1920s and
1930s. In Kolmogorov (1956), he starts with a sample space and a collection
of subsets and gives six axioms that characterize a probability space. (Four
axioms are the same or similar to those above, and the other two characterize
the collection of subsets as a σ-field.)

Although the measurable spaces of Sections 1.1.1 and D.2 (beginning on
page 368) do not necessarily consist of real numbers, we defined real-valued
functions (random variables) that would be the basis of further development
of probability theory. From the axioms characterizing probability (or equiva-
lently from the definition of the concept of a probability measure), we devel-
oped expectation and various unifying objects such as distributions of random
variables.

In order to develop an idea of conditional probability and conditional dis-
tributions, however, we began from a different starting point; we defined con-
ditional expectation and then defined conditional probability.

An alternate approach to developing a probability theory can begin with
a sample space and random variables defined on it. (Recall our definition
of random variables did not require a definition of probability.) From this
beginning, we can base a development of probability theory on expectation,
rather than on a probability measure as we have done in this chapter. (This
would be somewhat similar to our development of conditional probability
from conditional expectation in Section 1.5.) We characterize an expectation
operator E on a random variable X (and X1 and X2) by four axioms:

1. If X ≥ 0, then E(X) ≥ 0.
2. If c is a constant in IR, then E(cX1 +X2) = cE(X1) + E(X2).
3. E(1) = 1.
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4. If a sequence of random variables {Xn(ω)} increases monotonically to a
limit {X(ω)}, then E(X) = limn→∞ E(Xn).

(In these axioms, we have assumed a scalar-valued random variable, although
with some modifications, we could have developed the axioms in terms of
random variables in IRd.) From these axioms, after defining the probability of
a set as

Pr(A) = E(IA(ω)),

we can develop the same probability theory as we did starting from a char-
acterization of the probability measure. An interesting text that takes this
approach is Whittle (2000).

Markov Chains

There are many other interesting properties of Markov chains that follow from
various properties of nonnegative matrices (see Gentle, 2007, in the general
references). For more information on the properties of Markov chains, we refer
the interested reader to a text on Markov chains, such as Norris (1997).

Inequalities

Pages 633 to 687 of DasGupta (2008), in the general references, is a very
extensive compendium of inequalities. None are proved there, but each is
accompanied by a reference to a proof.

The Exponential Class

Extensive discussions of exponential families are provided by Barndorff-
Nielson (1978) and Brown (1986).

Exercises in Shao

• For practice and discussion
1.12, 1.14, 1.30, 1.31, 1.36, 1.38, 1.51, 1.53, 1.55, 1.60, 1.70, 1.85, 1.91,
1.97, 1.128, 1.161, 2.9, 2.13, 2.19, 2.23
(Solutions in Shao, 2005)

• To turn in
1.4, 1.5, 1,8, 1.18, 1.23, 1.43, 1.58, 1.78, 1.90, 1.101, 1.102, 1.103, 1.127,
1.158, 2.3, 2.4, 2.8, 2.20, 2.28
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Basic Statistical Concepts
(Shao Ch 2, Sec 4.3, Sec 5.1, Sec 5.5; TPE2 Ch

1, Ch 5; TSH3 Ch 1, Ch 8)

In this chapter we give a brief overview of statistical inference. We begin with
a high-level consideration of the issues in statistical inference and what kinds
of approaches may be intellectually or heuristically sound. We then formu-
late statistical analysis as a decision problem, which allows us to approach
statistical methods as optimization problems.

Statistical inference is based on an observed sample. Often the precision
with which we can state conclusions depends on the size of the sample, so for
any statistical procedure, it is of interest to know how the precision improves
with increasing sample size. Although we cannot have an infinite sample size,
we often carry the mathematical analysis to the limit. Another reason that
we often consider limiting cases is that asymptotic properties are often more
mathematically tractable than properties for finite samples.

This chapter provides the basic approach that will be followed in later
chapters. Definitions are given of many of the basic concepts that will be
discussed more thoroughly later.

2.1 Inferential Information in Statistics

In statistics, we generally assume that we have a sample of observations
X1, . . . , Xn on a random variable X . A random sample, which we will usually
just call a “sample”, is a set of i.i.d. random variables. We will often use X
to denote a random sample on the random variable X . (This may sound con-
fusing, but it is always clear from the context.) A statistic is any function of
X that does not involve any unobservable values.

We assume that the sample arose from some distribution Pθ, which is a
member of some family of probability distributions P . We fully specify the
family P (it can be a very large family), but we assume some aspects of Pθ

are unknown. (If the distribution Pθ that yielded the sample is fully known,
while there may be some interesting questions about probability, there are
no interesting statistical questions.) Our objective in statistical inference is
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to determine a specific Pθ ∈ P , or some subfamily Pθ ⊂ P , that could likely
have generated the sample.

The distribution may also depend on other observable variables. In general,
we assume we have observations X1, . . . , Xn on X , together with associated
observations on any related variable Z or z. We denote the observed values
as (x1, z1), . . . , (xn, zn), or just as x1, . . . , xn. In this context, a statistic is any
function that does not involve any unobserved values.

In statistical inference, we distinguish observable random variables and
“parameters”, but we are not always careful in referring to parameters. We
think of two kinds of parameters; “known” and “unknown”. A statistic is a
function of observable random variables that does not involve any unknown
parameters.

2.1.1 Types of Statistical Inference

There are three different types of inference related to the problem of determin-
ing the specific Pθ ∈ P : point estimation, hypothesis tests, and confidence sets.
Hypothesis tests and confidence sets are associated with probability state-
ments that depend on Pθ.

In parametric settings, each type of inference concerns a parameter, θ, in
a parameter space, Θ ⊂ IRk. If Θ is not a closed set, it is more convenient
to consider the closure of Θ, Θ, because sometimes a good estimator may
actually be outside of the open set Θ. (If Θ is closed, Θ is the same set, so we
can always just consider Θ.)

A related problem in inference is prediction, in which in addition to the
random variable X with the probability triple (Ω,F , P ) we have a measurable
function Y that maps (Ω,F , P ) to (Λ,G), and, given an observed value of Y
we wish to predict X . The problem of predicting X is to find a Borel function
g such that E(g(Y )) is “close to” E(X).

We make inferences using observations on X and any covariate.

The Basic Paradigm of Point Estimation

A real-valued (to me, that does not necessarily mean a scalar) observable
random variable X has a distribution that depends in some way on a real-
valued parameter θ that takes a value in the set Θ. We assume we have
observations X1, . . . , Xn on X , together with associated observations on any
related variable Z or z, (x1, z1), . . . , (xn, zn), or just as x1, . . . , xn.

The object to be estimated is called the estimand. Although it may be an
underlying natural parameter, sometimes it is a Borel function of that para-
meter. Some authors, such as Shao, use the symbol ϑ to indicate a relationship
to θ, but also to indicate that the estimand may be a function of θ. We will
use g(θ), or sometimes g(θ; z) when there is a covariate z, to represent the
estimand. We want to estimate g(θ) or g(θ; z) using observations on X and
any covariate. We denote the estimator as T (X), or T (X, z). We think of T as
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a rule or formula. We also use T to denote a decision in hypothesis testing. We
also denote the rule as δ(X), or δ(X, z), especially if the rule is randomized.

Optimal Point Estimators

We seek an estimator with “good” properties. “Good” can be defined in several
ways.

One of the most commonly required desirable properties is unbiasedness.
The estimator as T (X) is unbiased for g(θ) if E(T (X)) = g(θ) for any θ ∈ Θ.
Unbiasedness as we have just defined it is a uniform property of the expected
value. The bias of T (X) for estimating g(θ) is E(T (X))− g(θ).

We can also define other types of unbiasedness in terms of other aspects
of a probability distribution. For example, an estimator whose median is the
estimand is said to be median-unbiased.

Unbiasedness has different definitions for other types of statistical inference
(testing, see page 108, and determining confidence sets, see page 112), but the
meanings are similar.

If two estimators are unbiased, we would reasonably prefer one with smaller
variance.

Another measure of the goodness of a scalar estimator is the mean-squared
error or MSE,

MSE(T (x)) = E((T (X)− g(θ))2), (2.1)

which is the square of the bias plus the variance:

MSE(T (x)) = (E(T (X))− g(θ))2 + V(T (X)).

C. R. Rao gives an example that causes us to realize that we often
face a dilemma in finding a good estimate. Suppose we have n observations
X1, . . . , Xn from a distribution with mean µ1 and finite standard deviation σ.
We wish to estimate µ1. An obvious estimator is the sample mean X. (We will
see that this is generally a good estimator under most criteria.) The MSE of
X is σ2/n. Now, suppose we have m observations Y1, . . . , Ym from a different
distribution with mean µ2 = µ1 + δσ and the same standard deviation σ. Let

T = (nX +mY )/(n+m),

so we have

E((T − µ1)2) =
σ2

n+m

(
1 +

m2δ2

n+m

)
.

Now if δ2 < m−1 + n−1, then

MSE(T ) < MSE(X);

that is, in this case, the MSE is improved by using spurious observations. If
δ < 1, just using a single spurious observation improves the MSE.
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While the MSE gives us some sense of how “close” the estimator is to the
estimand, another way of thinking about closeness is terms of the probability
that |T (X) − g(θ)| is less than some small value ε. This type of measure is
called Pitman closeness. Given two estimators T1(X) and T2(X) of g(θ), we
say that T1(X) is Pitman-closer than T2(X), if

Pr
(
|T1(x)− g(θ)| ≤ |T2(x) − g(θ)|

∣∣θ
)
≥ 1

2
(2.2)

for all θ ∈ Θ and for some θ0 ∈ Θ

Pr
(
|T1(x)− g(θ)| < |T2(x) − g(θ)|

∣∣θ0
)
≥ 1

2
.

We say that T1(X) is the Pitman-closest estimator, if T1(X) is Pitman-closer
than T (X) for any other statistic T (X).

Pitman closeness is affected more by the properties of the distribution in
the region of interest, rather than by the behavior of statistics in the tail
regions. Measures such as MSE, for example, may be unduly affected by the
properties of the distribution in the tail regions.

Although Pitman closeness is a useful measure in evaluating an estimator,
the measure lacks the desirable property of transitivity; that is, T1(X) may
be Pitman-closer than T2(X) and T2(X) Pitman-closer than T3(X), but yet
T3(X) may be Pitman-closer than T1(X). It is easy to construct an example
to illustrate that this is possible. Rather than trying to construct a realistic
distribution and statistics, let us just consider three independent random vari-
ables T1, T2, and T3 and assign probability distributions to them (following
Colin Blyth, 1972):

Pr(T1 = 3) = 1.0
Pr(T2 = 1) = 0.4, Pr(T2 = 4) = 0.6
Pr(T3 = 2) = 0.6, Pr(T3 = 5) = 0.4

We see that

Pr(T1 < T2) = 0.6, Pr(T2 < T3) = 0.64, Pr(T3 < T1) = 0.6.

Efron (1975) gives an example of an otherwise “good” estimator that is
not as close in the Pitman sense as a biased estimator. Consider the problem
of estimating the mean µ in a normal distribution N(µ, 1), given a random
sample X1, . . . , Xn. The usual estimator, the sample mean X , is unbiased and
has minimum variance among all unbiased estimators. Consider, however, the
estimator

T (X) = X −∆n(X), (2.3)

where

∆n(u) =
min(u

√
n,Φ(−u

√
n)

2
√
n

, for u ≥ 0, (2.4)

in which Φ(·) is the standard normal CDF. This “shrinkage” of X toward 0
yields an estimator that is Pitman-closer to the population mean µ than the
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sample mean X . On page 100, we will encounter a more dramatic example of
the effect of shrinking the sample mean in a multivariate normal distributional
model.

If the goodness of an estimator does not depend on the parameter, we say
the estimator is uniformly good (and, of course, in this statement we would
be more precise in what we mean by “good”). All discussions of statistical
inference are in the context of some family of distributions, and when we speak
of a “uniform” property, we mean a property that holds for all members of
the family.

There are several approaches to estimation of g(θ). We generally assume
a specific estimate of g(θ), say ĝ(θ), results in a specific distribution for X , or
at least a specific family of distributions, with CDF P

ĝ(θ)
. A good estimation

scheme is one that specifies a distribution of X that corresponds in some
sense to the observed values of X . We start on the problem by defining some
computable, heuristic estimation procedure, and then analytically study the
properties of that procedure under various scenarios, that is, under different
assumed distributions.

Prediction

In addition to the three different types of inference related to the problem of
determining the specific Pθ ∈ P , we may also want to predict the value that
a random variable will realize.

In the prediction problem, we have a random variable X with the prob-
ability triple (Ω,F , P ) and a measurable function Y that maps (Ω,F , P ) to
(Λ,G). Given an observed value of Y we wish to predict X ; that is, to find a
Borel function g such that E((g(Y ))2) < ∞ and E(g(Y )) is “close to” E(X).
A useful measure of closeness in the prediction problem is the mean squared
prediction error or MSPE:

MSPE(g) = E((X − g(Y ))2). (2.5)

Conditional expectation plays a major role in prediction. If E(X2) < ∞,
it may be of interest to determine the best predictor in the sense of minimiz-
ing the mean squared prediction error. Letting T be the class of all functions
g(Y ) such that E((g(Y ))2) < ∞ and assuming E(X2) < ∞, we expand the
mean-squared prediction error in a manner similar to the operations in in-
equality (1.25) on page 23:
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E((X − g(Y ))2) = E((X − E(X |Y ) + E(X |Y )− g(Y ))2)
= E((X − E(X |Y ))2) + E((E(X |Y )− g(Y ))2) +

2E((X − E(X |Y ))(E(X |Y )− g(Y )))
= E((X − E(X |Y ))2) + E((E(X |Y )− g(Y ))2) +

2E (E((X − E(X |Y ))(E(X |Y )− g(Y )))|Y )
= E((X − E(X |Y ))2) + E((E(X |Y )− g(Y ))2)
≥ E((X − E(X |Y ))2). (2.6)

Statements of Probability Associated with Statistics

Although much of the development of inferential methods emphasize the ex-
pected value of statistics, often it is useful to consider the probabilities of
statistics being in certain regions. Pitman closeness is an example of the use
of probabilities associated with estimators. Two other approaches involve the
probabilities of various sets of values that the statistics may take on. These
approaches lead to statistical tests of hypotheses and determination of confi-
dence sets. These topics will be discussed in Section 2.4, and more thoroughly
in later chapters.

2.1.2 Sufficiency, Ancillarity, Minimality, and Completeness

There are important properties of statistics, such as sufficiency and complete
sufficiency, that determine the usefulness of those statistics in statistical in-
ference.

sufficiency
Let X be a sample from a population P ∈ P . A statistic T (X) is sufficient
for P ∈ P if and only if the conditional distribution of X given T does
not depend on P .
In general terms, this involves the conditional independence from the pa-
rameter of the distribution of any other function of the random variable,
given the sufficient statistic. Sufficiency depends on
• P , the family of distributions w.r.t. which E is defined. If a statistic is

sufficient for P , it may not be sufficient for a larger family, P1, where
P ⊂ P1.

Sufficiency may allow reduction of data without sacrifice of information.
We can establish sufficiency by the factorization criterion:
A necessary and sufficient condition for a statistic T to be sufficient for a
family P of distributions of a sample X dominated by a σ-finite measure
ν is that there exist nonnegative Borel functions gP and h, where h does
not depend on P , such that

dP/dν(x) = gP (T (x))h(x) a.e. ν. (2.7)
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An important consequence of sufficiency in an estimation problem with
convex loss is the Rao-Blackwell theorem (see Section 2.3.2).
When the density can be written in the separable form c(θ)f(x), unless
c(θ) is a constant, the support must be a function of θ, and a sufficient
statistic must be an extreme order statistic. When the support depends
on the parameter, the extreme order statistic(s) at the boundary of the
support determined by the parameter carry the full information about the
parameter.

ancillarity
Ancillarity is, in a way, the opposite of sufficiency: A statistic U(X) is
called ancillary for P (or θ) if the distribution of U(X) does not depend
on P (or θ).
If E(U(X)) does not depend on P (or θ), then U(X) is said to be first-
order ancillary for P (or θ)
nuisance parameter

Often a probability model contains a parameter of no interest for
inference. Such a parameter is called a nuisance parameter. A statistic
to be used for inferences about the parameters of interest should be
ancillary for a nuisance parameter.

minimal sufficiency
Let T be a given sufficient statistic for P ∈ P . The statistic T is minimal
sufficient if for any sufficient statistic for P ∈ P , S, there is a measurable
function h such that T = h(S) a.s. P .
Minimal sufficiency has a heuristic appeal: it relates to the greatest
amount of data reduction.
An easy way of establishing minimality when the range does not depend
on the parameter is by use of the following facts:
Let P be a family with densities p0, p1, . . . , pk, all with the same support.
The statistic

T (X) =
(
p1(X)
p0(X)

, . . . ,
pk(X)
p0(X)

)
(2.8)

is minimal sufficient.
This follows from the following corollary of the factorization theorem:
A necessary and sufficient condition for a statistic T to be sufficient for a
family P of distributions of a sample X dominated be a σ-finite measure
ν is that for any two densities p1 and p2 in P , the ratio p1(x)/p2(x) is a
function only of T (x).
Then, the other important fact is
Let P be a family of distributions with the common support, and let
P0 ⊂ P . If T is minimal sufficient for P0 and is sufficient for P , then it is
minimal sufficient for P .
We see this by considering any statistic U that is sufficient for P . It must
also be sufficient for P0, and since T is minimal sufficient for P0, T is a
function of U .

A Companion for Mathematical Statistics c©2008 James E. Gentle



76 2 Basic Statistical Concepts

completeness
A sufficient statistic T is particularly useful in a complete family or a
boundedly complete family of distributions. In this case, for every Borel
(bounded) function h that does not involve P ,

EP (h(T )) = 0 ∀P ∈ P ⇒ h(t) = 0 a.e. P .

In a complete family, we often refer to the completeness of a statistic,
rather than the completeness of the family. We often call a sufficient sta-
tistic in a complete family, a “complete sufficient” statistic.
Complete sufficiency depends on
• P , the family of distributions w.r.t. which E is defined. If a statistic is

complete and sufficient with respect to P , and if it is sufficient for P1,
where P ⊂ P1 and all distributions in P1 have common support, then
it is complete and sufficient for P1, because in this case, the condition
a.s. P implies the condition a.s. P1.

Complete sufficiency is useful in UMVUE and for establishing indepen-
dence using Basu’s theorem.
It is important to remember that completeness and sufficiency are different
properties; you can have either one without the other.
Sufficiency relates to a statistic and a sample. There is always a sufficient
statistic: the sample itself.
There may or may not be a complete statistic within a given family.
If there is a complete statistic and it is sufficient, then it is minimal suffi-
cient. That is, completeness implies minimality.
Complete sufficiency implies minimal sufficiency, but minimal sufficiency
does not imply completeness. Consider a sample X of size 1 from U(θ, θ+
1). Clearly, X is minimal sufficient. Any bounded periodic function h(x)
with period 1 that is not a.e. 0 serves to show that X is not complete. Let
h(x) = sin(2πx). Then

E(h(X)) =
∫ θ+1

θ

dx = 0.

Clearly, however h(X) is not 0 a.e., so X is not complete.
Basu’s Theorem

Complete sufficiency, ancillarity, and independence are related.
Basu’s theorem (Theorem 2.4 in Shao) states that if T is a boundedly
complete sufficient statistic for θ, and if U is ancillary for θ, then T and
U are independent.
An interesting example with U(θ− 1/2, θ+1/2) shows the importance of
completeness in Basu’s theorem. This example also shows that minimality
does not imply completeness. Let X1, . . . , Xn, with n ≥ 2, be a random
sample from U(θ − 1/2, θ + 1/2). It is clear that T = {X(1), X(n)} is
sufficient; in fact, it is minimal sufficient. Now consider U = X(n) −X(1),
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which we easily see is ancillary. It is clear that T and U are not independent
(U is a function of T ).
Writing U = h(T ), where h is a measurable function, we can see the T is
not complete (although it is minimal.)
If T were complete, then Basu’s theorem would say that T and U are
independent.

Sufficiency, Minimality, and Completeness in Various Families

We can use general properties of specific families of distributions to establish
properties of statistics quickly and easily.

Complete sufficiency is often easy to show in exponential family or in
distributions whose range depends on θ in a simple way. (We can relate any
such range-dependent distribution to U(θ1, θ2).)

In general, proof of sufficiency is often easy, but proof of minimality or
completeness is often difficult. We often must rely on the awkward use of the
definitions of minimality and completeness. Completeness of course implies
minimality.

Truncation families have simple range dependencies. A distribution in any
of these families has a PDF in the general form

pθ(x) = c(θ)f(x)IS(θ)(x).

The two most useful examples of distributions whose support depends
on the parameter are the uniform U(0, θ) and the exponential E(η, 1). Many
other distributions can be transformed into these; and, in fact, they can be
transformed into each other. IfX1, . . . , Xn are i.i.d. E(η, 1), and Yi = e−Xi and
θ = e−η, then Y1, . . . , Yn are i.i.d. U(0, θ); hence if we can handle one problem,
we can handle the other. We can also handle distributions like U(θ1, θ2) and
E(a, b), as well as some other related distributions, such as a shifted gamma.

We can show completeness using the fact that
∫

A

|f | dµ = 0 ⇐⇒ f = 0 a.e. on A.

Another result we often need in going to a multiparameter problem is Fubini’s
theorem.

The sufficient statistic in the simple univariate case where S(θ) = (θ1, θ2)
is T (X) = (X(1), X(n)), as we can see from the the factorization theorem by
writing the joint density of a sample as

c(θ)f(x)I(x(1),x(n))(x).

For example, for a distribution such as U(0, θ) we see that X(n) is sufficient
by writing the joint density of a sample as

1
θ
I(0,x(n)).
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The properties of a specific family of distributions are useful in identifying
optimal methods of statistical inference. Exponential families are particularly
useful for finding UMVU estimators. A group family is useful in identifying
equivariant and invariant statistical procedures.

2.2 Statistical Inference: Approaches and Methods

If we assume that we have a random sample of observations X1, . . . , Xn on
a random variable X from some distribution Pθ, which is a member of some
family of probability distributions P , our objective in statistical inference is
to determine a specific Pθ ∈ P , or some subfamily Pθ ⊂ P , that could likely
have generated the sample.

How should we approach this problem?

Five Approaches to Statistical Inference

Five approaches to statistical inference are

• use of the empirical cumulative distribution function (ECDF)
for example, method of moments

• use of a likelihood function
for example, maximum likelihood

• fitting expected values
for example, least squares

• fitting a probability distribution
for example, maximum entropy

• definition and use of a loss function
for example, uniform minimum variance unbiased estimation.

We will briefly discuss the first four of these approaches in the follow-
ing four subsections. The “decision theory” approach to statistical inference
is based on a loss function, and we will discuss this important approach in
Section 2.3.

Sometimes we must use approximations or second-order estimation in sta-
tistical inference. We discuss this briefly in Section 2.2.6, and later in Sec-
tion 2.5, we discuss one type of approximate inference, asymptotic inference
in more detail.

2.2.1 The Empirical Cumulative Distribution Function

From observations on a random variable,X1, . . . , Xn, we can form an empirical
cumulative distribution function, or ECDF, that corresponds in a natural way
with the CDF of the random variable.

For the sample, X1, . . . , Xn, the ECDF is defined as
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Pn(x) =
#{Xi ≤ x}

n
. (2.9)

The ECDF is a random simple function, and sometimes it is appropriate to
treat the ECDF as a random variable. It is clear that the ECDF conditional
on a given sample is itself a CDF. (Conditionally it is not a random variable.)
It has the three properties that define a CDF:

• limx→−∞ Pn(x) = 0 and limx→∞ Pn(x) = 1.
• Pn(x) is monotone increasing.
• Pn(x) is continuous from the right.

The ECDF defines a discrete population with mass points at each value in
the sample.

The ECDF is particularly useful in nonparametric inference.

Plug-In Measures

As discussed in Section 1.1.4, many distribution parameters and other mea-
sures can be represented as a statistical function, that is, as a functional of the
CDF. The functional of the CDF that defines a parameter defines a plug-in
estimator of that parameter when the functional is applied to the ECDF. A
functional of a population distribution function, Θ(P ), defining a parameter
θ can usually be expressed as

θ = Θ(P )

=
∫
g(y) dP (y).

The plug-in estimator T is the same functional of the ECDF:

T = T (Pn)
= Θ(Pn)

=
∫
g(y) dPn(y).

(In both of these expressions, we are using the integral in a general sense. In
the second expression, the integral is a finite sum. It is also a countable sum
in the first expression if the random variable is discrete. Note also that we use
the same symbol to denote the functional and the random variable.)

We may base inferences on properties of the distribution with CDF P
by identifying the corresponding properties of the ECDF Pn. In some cases,
it may not be clear what we mean by “corresponding”. If a property of a
distribution can be defined by a functional on the CDF, the corresponding
property is the same functional applied to the ECDF. This is the underlying
idea of the method of moments, for example. In the method of moments,
sample moments, which are moments of the discrete population represented
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by the sample, are used for making inferences about population moments. The
method-of-moments estimator of the population mean, E(X), is the sample
mean, X. The thing to be estimated is the functional M in equation (1.10),
and the estimator is M applied to the ECDF:

M(Pn) =
∑

XiPn(Xi).

The plug-in estimator Θ(Pn) in general is not unbiased for the associated
statistical function Θ(P ). A simple example is the variance, Θ(P ) = σ2 =∫
(x −

∫
x dP )2 dP . The plug-in estimator Θ(Pn), which in this case is also a

method-of-moments estimator, is (n− 1)S2/n, where

S2 =
1

n− 1

n∑

i=1

(Xi −X)2

is the usual sample variance.
On the other hand, the plug-in estimator may have smaller MSE than an

unbiased estimator, and, in fact, that is the case for the plug-in estimator of σ2.
Also, plug-in estimators often have good limiting and asymptotic properties,
as we might expect based on convergence properties of the ECDF.

Convergence of the ECDF

The ECDF is one of the most useful statistics, especially in nonparametric
and robust inference. It is essentially the same as the set of order statistics,
so like them, it is a sufficient statistic. Its distribution at a point is binomial,
and so its pointwise properties are easy to see. Its global relationship to the
most fundamental measure of a probability model, however, accounts for its
usefulness. The basic facts regard the convergence of the sup distance of the
ECDF from the CDF, ρ∞(Fn, F ), to zero.

The Dvoretzky/Kiefer/Wolfowitz inequality provides a bound for the prob-
ability that the sup distance of the ECDF from the CDF exceeds a given value.
In one-dimension, for any positive z, there is a positive constant C that does
not depend on F , z, or n, such that

Pr(ρ∞(Fn, F ) > z) ≤ Ce−2nz2
. (2.10)

Of course, in any event, ρ∞(Fn, F ) < 1.
This inequality is useful in proving convergence results for the ECDF. Some

important results are given in Theorems 5.1 and 5.2 in Shao. A simple and
more common statement of the convergence is the so-called Glivenko-Cantelli
theorem.

When we consider the convergence of metrics on functions, the arguments
of the functions are sequences of random variables, yet the metric integrates
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out the argument. One way of handling this is just to use the notation Fn

and F , as Shao does. Another way is to use the notation Fn(x, ω) to indicate
that the ECDF is a random variable, yet to allow it to have an argument just
as the CDF does. I will use this notation occasionally, but usually I will just
write Fn(x). The randomness comes in the definition of Fn(x), which is based
on the random sample.

Theorem 2.1 (Glivenko-Cantelli) If X1, . . . , Xn be i.i.d. with CDF F and
ECDF Fn, and if Dn(ω) = ρ∞(Fn, F ) = supx(|Fn(x, ω) − F (x)|), then
Dn(ω) −→ 0 wp1.

Proof. First, note by the SLLN and the binomial distribution of Fn, ∀ (fixed) x,
Fn(x, ω) −→ F (x) wp1; that is,

lim
n→∞

Fn(x, ω) = F (x)

∀x, except x ∈ Ax, where Pr(Ax) = 0.
The problem here is that Ax depends on x and so there are uncountably

many such sets. The probability of their union may possibly be positive. So
we must be careful.

We will work on the CDF and ECDF from the other side of x (the discon-
tinuous side). Again, by the SLLN, we have

lim
n→∞

Fn(x−, ω) = F (x−)

∀x, except x ∈ Bx, where Pr(Bx) = 0.
Now, let

φ(u) = inf{x ; u ≤ F (x)} for 0 < u ≤ 1.

(Notice F (φ(u)−) ≤ u ≤ F (φ(u)). Sketch the picture.)
Now consider xm,k = φ(k/m) for positive integers m and k with 1 ≤ k ≤

m. (There are countably many xm,k, and so when we consider Fn(xm,k, ω) and
F (xm,k), there are countably many null-probability sets, Axm,k

and Bxm,k
,

where the functions differ in the limit.)
We immediately have the three relations:

F (xm,k−)− F (xm,k−1) ≤ m−1

F (xm,1−) ≤ m−1

and
F (xm,m) ≥ 1−m−1,

and, of course, F is nondecreasing.
Now let Dm,n(ω) be the maximum over all k = 1, . . . ,m of

|Fn(xm,k, ω)− F (xm,k)|

and
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|Fn(xm,k−, ω)− F (xm,k−)|.

(Compare Dn(ω).)
We now consider three ranges for x:

(−∞ , xm,1)
[xm,k−1 , xm,k) for k = 1, . . . ,m

[xm,m , ∞)

Consider [xm,k−1 ≤ x < xm,k). In this interval,

Fn(x, ω) ≤ Fn(xm,k−, ω)
≤ F (xm,k−) +Dm,n(ω)
≤ F (x) +m−1 +Dm,n(ω)

and

Fn(x, ω) ≥ Fn(xm,k−1, ω)
≥ F (xm,k−1)−Dm,n(ω)
≥ F (x) −m−1 −Dm,n(ω)

Hence, in these intervals, we have

Dm,n(ω) +m−1 ≥ sup
x
|Fn(x, ω)− F (x)|

= Dn(ω).

We can get this same inequality in each of the other two intervals.
Now, ∀m, except on the unions over k of Axm,k

and Bxm,k
, limnDm,n(ω) =

0, and so limnDn(ω) = 0, except on a set of probability measure 0 (the
countable unions of the Axm,k

and Bxm,k
.) Hence, we have the convergence

wp1; i.e., a.s. convergence.

The Bootstrap Principle

The ECDF plays a major role in a bootstrap method, in which the population
of interest is studied by sampling from the population defined by a given
sample from the population of interest. This is a method of resampling.

Resampling methods involve the use of many samples, each taken from a
single sample that was taken from the population of interest. Inference based
on resampling makes use of the conditional sampling distribution of a new
sample (the “resample”) drawn from a given sample. Statistical functions on
the given sample, a finite set, can easily be evaluated. Resampling methods
therefore can be useful even when very little is known about the underlying
distribution.

A basic idea in bootstrap resampling is that, because the observed sample
contains all the available information about the underlying population, the
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observed sample can be considered to be the population; hence, the distribu-
tion of any relevant test statistic can be simulated by using random samples
from the “population” consisting of the original sample.

Suppose that a sample y1, . . . , yn is to be used to estimate a population
parameter, θ. For a statistic T that estimates θ, as usual, we wish to know
the sampling distribution so as to correct for any bias in our estimator or to
set confidence intervals for our estimate of θ. The sampling distribution of T
is often intractable in applications of interest.

A basic bootstrapping method formulated by Efron (1979) uses the discrete
distribution represented by the sample to study the unknown distribution from
which the sample came. The basic tool is the empirical cumulative distribution
function. The ECDF is the CDF of the finite population that is used as a model
of the underlying population of interest.

For a parameter θ of a distribution with CDF P defined as θ = Θ(P ),
we can form a plug-in estimator T as T = T (Pn). Various properties of the
distribution of T can be estimated by use of “bootstrap samples”, each of
the form {y∗1 , . . . , y∗n}, where the y∗i ’s are chosen from the original yi’s with
replacement.

We define a resampling vector, p∗, corresponding to each bootstrap sample
as the vector of proportions of the elements of the original sample in the given
bootstrap sample. The resampling vector is a realization of a random vector
P ∗ for which nP ∗ has an n-variate multinomial distribution with parameters
n and (1/n, . . . , 1/n). The resampling vector has random components that
sum to 1. For example, if the bootstrap sample (y∗1 , y∗2 , y∗3 , y∗4) happens to be
the sample (y2, y2, y4, y3), the resampling vector p∗ is

(0, 1/2, 1/4, 1/4).

The bootstrap replication of the estimator T is a function of p∗, T (p∗).
The resampling vector can be used to estimate the variance of the bootstrap
estimator. By imposing constraints on the resampling vector, the variance of
the bootstrap estimator can be reduced.

The bootstrap principle involves repeating the process that leads from a
population CDF to an ECDF. Taking the ECDF Pn to be the CDF of a
population, and resampling, we have an ECDF for the new sample, P (1)

n . (In
this notation, we could write the ECDF of the original sample as P (0)

n .) The
difference is that we know more about P (1)

n than we know about Pn. Our
knowledge about P (1)

n comes from the simple discrete uniform distribution,
whereas our knowledge about Pn depends on knowledge (or assumptions)
about the underlying population.

The bootstrap resampling approach can be used to derive properties of
statistics, regardless of whether any resampling is done. Most common uses of
the bootstrap involve computer simulation of the resampling; hence, bootstrap
methods are usually instances of computational inference.
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2.2.2 Likelihood

Given a sampleX1, . . . , Xn from distributions with probability densities pi(x),
where all PDFs are defined with respect to a common σ-finite measure, the
likelihood function is

Ln(pi ; X) =
n∏

i=1

pi(Xi). (2.11)

(Any nonnegative function proportional to Ln(pi ; X) is a likelihood function,
but it is common to speak of Ln(pi ; X) as “the” likelihood function.) We can
view the sample either as a set of random variables or as a set of constants, the
realized values of the random variables, in which case we usually use lower-case
letters.

The log-likelihood function is the log of the likelihood:

lLn(pi ; x) = logLn(pi |xi), (2.12)

It is a sum rather than a product.
The n subscript serves to remind us of the sample size, and this is often

very important in use of the likelihood or log-likelihood function particularly
because of their asymptotic properties. We often drop the n subscript, how-
ever.

In many cases of interest, the sample is from a single parametric family. If
the PDF is p(x ; θ) then the likelihood and log-likelihood functions are written
as

L(θ ; x) =
n∏

i=1

p(xi ; θ), (2.13)

and
l(θ ; x) = logL(θ ; x). (2.14)

The Parameter Is the Variable

Note that the likelihood is a function of θ for a given x, while the PDF is
a function of x for a given θ. We sometimes write the expression for the
likelihood without the observations: L(θ). I like to think of the likelihood as a
function of some dummy variable t, and write L(t ; x) or l(t ; x). While if we
think of θ as a fixed, but unknown, value, it does not make sense to think of
a function of that particular value, and if we have an expression in terms of
that value, it does not make sense to perform operations such as differentiation
with respect to that quantity.

The likelihood function arises from a probability density, but it is not a
probability density function. It does not in any way relate to a “probability”
associated with the parameters or the model.

Although non-statisticians will often refer to the “likelihood of an obser-
vation”, in statistics, we use the term “likelihood” to refer to a model or a
distribution given observations.
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In a multiparameter case, we may be interested in only some of the para-
meters. There are two ways of approaching this, use of a profile likelihood or
of a conditional likelihood.

If θ = (θ1, θ2), if θ2 is fixed, the likelihood L(θ1 ; θ2, x) is called a profile
likelihood or concentrated likelihood of θ1 for given θ2 and x.

If the PDFs can be factored so that one factor includes θ2 and some func-
tion of the sample, S(x), and the other factor, given S(x), is free of θ2, then
this factorization can be carried into the likelihood. Such a likelihood is called
a conditional likelihood of θ1 given S(x).

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) of θ, θ̂, is defined as

θ̂ = argmax
θ∈Θ

L(θ ; x). (2.15)

The MLE in general is not unbiased for its estimand. A simple example
is the MLE of the variance σ2 in a normal distribution with unknown mean.
The MLE for σ2 in a normal distribution with unknown mean is the same as
the plug-in estimator or method-of-moments estimator, (n−1)S2/n, where S
is the usual sample variance (the sum of squares divided by n− 1). Note that
the plug-in estimator (or method-of-moments estimator) is not based on an
assumed underlying distribution, but the MLE is.

On the other hand, the MLE may have smaller MSE than an unbiased
estimator, and, in fact, that is the case for the MLE of σ2 in the case of a
normal distribution with unknown mean.

Score Function

In statistical inference, we use the information in how the likelihood or log-
likelihood would vary if θ were to change. For a likelihood function (and hence,
a log-likelihood function) that is differentiable with respect to the parameter, a
function that represents this change and plays an important role in statistical
inference is the score function:

sn(θ ; x) =
∂l(θ ; x)
∂θ

. (2.16)

Likelihood Equation

In statistical estimation, the point at which the likelihood attains its maximum
(which is, of course, the same point at which the log-likelihood attains its
maximum) is of interest. We will consider this approach to estimation more
thoroughly in Chapter 5.
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If the likelihood is differentiable with respect to the parameter, the roots
of the score function are of interest. The score function equated to zero,

∂l(θ ; x)
∂θ

= 0, (2.17)

is called the likelihood equation. The derivative of the likelihood equated to
zero, ∂L(θ ; x)/∂θ = 0, is also called the likelihood equation.

Equation (2.17) is an estimating equation; that is, its solution, if it exists,
is an estimator. (Note that it is not necessarily MLE; it is a root of the like-
lihood equation, or RLE. We will see in Chapter 5 that RLEs have desirable
asymptotic properties.)

It is often useful to define an estimator as the solution of some estimating
equation. We will see other examples of estimating equations in subsequent
sections.

Likelihood Ratio

When we consider two different distributions for a sample x, we have two dif-
ferent likelihoods, say L0 and L1. (Note the potential problems in interpreting
the subscripts; here the subscripts refer to the two different distributions. For
example L0 may refer to L(θ0 |x) in a notation consistent with that used
above.) In this case, it may be of interest to compare the two likelihoods in
order to make an inference about the two possible distributions. A simple
comparison, of course, is the ratio, and indeed

L(θ0 ; x)
L(θ1 ; x)

, (2.18)

or L0/L1 in the simpler notation, is called the likelihood ratio with respect
to the two possible distributions. Although in most contexts we consider the
likelihood to be a function of the parameter for given, fixed values of the
observations, it may also be useful to consider the likelihood ratio to be a
function of x. On page 61, we defined a family of distributions based on
their having a “monotone” likelihood ratio. Monotonicity in this case is with
respect to a function of x. In a family with a monotone likelihood ratio, for
some scalar-valued function y(x) and for any θ1 < θ0, the likelihood ratio is a
nondecreasing function of y(x) for all values of x for which fθ1(x) is positive.

The most important use of the likelihood ratio is as the basis for a statis-
tical test.

Under certain conditions that we will detail later, with L0 and L1, with
corresponding log-likelihoods l0 and l1, based on a random variable (that is,
Li = L(pi ; X), instead of being based on a fixed x), the random variable

λ = −2 log
(
L0

L1

)
(2.19)

= −2(l0 − l1)
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has an approximate chi-squared distribution with degrees of freedom whose
number depends on the numbers of parameters. (We will discuss this more
fully in Chapter 6.)

This quantity in a different setting is also called the deviance. We encounter
the deviance in the analysis of generalized linear models, as well as in other
contexts.

The likelihood ratio, or the log of the likelihood ratio, plays an important
role in statistical inference. Given the data x, the log of the likelihood ratio is
called the support of the hypothesis that the data came from the population
that would yield the likelihood L0 versus the hypothesis that the data came
from the population that would yield the likelihood L1. The support clearly
is relative and ranges over IR. The support is also called the experimental
support.

Likelihood Principle

The likelihood principle in statistical inference asserts that all of the informa-
tion which the data provide concerning the relative merits of two hypotheses
(two possible distributions that give rise to the data) is contained in the likeli-
hood ratio of those hypotheses and the data. An alternative statement of the
likelihood principle is that if for x and y,

L(θ ; x)
L(θ ; y)

= c(x, y) ∀θ,

where c(x, y) is constant for given x and y, then any inference about θ based
on x should be in agreement with any inference about θ based on y.

2.2.3 Fitting Expected Values

Given a random sample X1, . . . , Xn from distributions with probability den-
sities p(xi; θ), where all PDFs are defined with respect to a common σ-finite
measure, if we have that E(Xi) = gi(θ), a reasonable approach to estimation
of θ may be to choose a value θ̂ that makes the differences E(Xi)− gi(θ) close
to zero.

We must define the sense in which the differences are close to zero. A
simple way to do this is to define a nonnegative scalar-valued Borel function
of scalars, ρ(u, v), that is increasing in the absolute difference of its arguments.
One simple choice is ρ(u, v) = (u− v)2. We then define

Sn(θ, x) =
n∑

i=1

ρ(xi, θ). (2.20)

A reasonable estimator is
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θ̂ = argmin
θ∈Θ

Sn(θ, x). (2.21)

Compare this with the maximum likelihood estimate of θ, defined in equa-
tion (2.15).

If the Xi are i.i.d., then all gi(θ) are the same, say g(θ).
In common applications, we have covariates, Z1, . . . , Zn, and the E(Xi)

have a constant form that depends on the covariate: E(Xi) = g(Zi, θ).
As with solving the maximization of the likelihood, the solution to the

minimization problem (2.21) may be obtained by solving

∂Sn(θ ; x)
∂θ

= 0. (2.22)

2.2.4 Fitting Probability Distributions

In an approach to statistical inference based on information theory, the true
but unknown distribution is compared with information in the sample. The
focus is on “information” of “entropy”, in the sense discussed on page 10. The
basic quantity is of the form E(− log(dP )). The principle underlying methods
of statistical inference using these concepts and quantities is called maximum
entropy.

**************

d(P,Q) =
∫

IR

φ

(
dP
dQ

)
dQ, (2.23)

if it exists, is called the φ-divergence from Q to P . The φ-divergence is also
called the f -divergence.

The φ-divergence is in general not a metric because it is not symmetric.
One function is taken as the base from which the other function is measured.
The expression often has a more familiar form if both P and Q are dominated
by Lebesgue measure and we write p = dP and q = dQ.

A specific instance of φ-divergence is the Kullback-Leibler measure,
∫

IR

p(x) log
(
p(x)
q(x)

)
dx. (2.24)

(Recall from page 26 that this quantity is nonnegative.)
functionals ***
***** Fisher information
***** move some material from SectionD.2.6 in 00b basicmeasure.inc

2.2.5 Estimating Equations

Equation (2.22) is an estimating equation; that is, its solution, if it exists, is
an estimator. Likewise, equation (2.17) is an estimating equation. Note that

A Companion for Mathematical Statistics c©2008 James E. Gentle



2.2 Statistical Inference 89

the solution to equation (2.22) is not necessarily the solution to the mini-
mization problem (2.21), nor is the solution to equation (2.17) necessarily a
solution to the maximization problem (2.15). They are both merely roots of es-
timating equations. We will consider some asymptotic properties of solutions
to estimating equations in Section 2.5.1 (consistency) and in Section 5.3.4
(asymptotic normality).

A common example of equation (2.22) and equation (2.17), in which we
have covariates, is the set of “normal equations”, encountered in linear regres-
sion.

Generalized Estimating Equations

We have called the likelihood equation, equation (2.17), and equation (2.22)
estimating equations. Such equations arise often in statistical inference. There
are also several modifications of the basic equations; for example, sometimes
we cannot form a tractable likelihood, so we form some kind of “quasi-
likelihood”. We therefore consider a generalized class of estimating equations.

We consider an independent sample X1, . . . , Xn of random vectors with
orders d1, . . . , dn, with sup di <∞. We assume the distributions of the Xi are
defined with respect to a common parameter θ ∈ Θ ⊂ IRk. We now define
Borel functions ψi(Xi, γ) and let

sn(γ) =
n∑

i=1

ψi(Xi, γ) γ ∈ Θ. (2.25)

We call
sn(γ) = 0 (2.26)

a generalized estimating equation (GEE) and its root(s) a GEE estimator. If
we take ψi(Xi, γ) as ∂ρ(Xi, γ)/∂γ note the similarity to equation (2.22).

The GEE is usually chosen so that

Eθ(sn(θ)) = 0. (2.27)

The normal equations can serve as a prototype of a GEE. Notice that equa-
tion (2.27) holds for the left-hand side of the normal equations.

2.2.6 “Approximate” Inference

When the exact distribution of a statistic is known (based, of course, on an
assumption of a given underlying distribution of a random sample), use of
the statistic for inferences about the underlying distribution is called exact
inference.

Often the exact distribution of a statistic is not known, or is too compli-
cated for practical use. In that case, we may resort to approximate inference.
There are basically three types of approximate inference.
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One type occurs when a simple distribution is very similar to another dis-
tribution. For example, the Kumaraswamy distribution (with PDF αβxα−1(1−
x)β−1 over [0, 1]) may be used as an approximation to the beta distribution.

Another type of approximate inference, called computational inference, is
used when an unknown distribution can be simulated by resampling of the
given observations.

Asymptotic inference is probably the most commonly used type of approx-
imate inference. In asymptotic approximate inference we are interested in the
properties of Tn as the sample size increases. We focus our attention on the
sequence {Tn} for n = 1, 2, . . ., and, in particular, consider the properties of
{Tn} as n→∞.

2.2.7 Statistical Inference in Parametric Families

A real-valued observable random variable X has a distribution that may de-
pend in some way on a real-valued parameter θ that takes a value in the set
Θ, called the parameter space. This random variable is used to model some
observable phenomenon.

As the parameter ranges over Θ it determines a family of distributions, P .
We denote a specific member of that family as Pθ for some fixed value of θ.

We often want to make inferences about the value of θ or about some
function or transformation of an underlying parameter θ. To generalize our
object of interest, we often denote it as ϑ, or g(θ) or g(θ; z), where g is some
Borel function.

Here are some general estimation procedures following the general ap-
proaches mentioned above:

• estimation based on the ECDF
– estimate g(θ) so that the quantiles of P

ĝ(θ)
are close to the quantiles

of the data
How many and which quantiles to match?
Use of a plug-in estimator from the empirical cumulative distribution
function follows this approach, and in that case all quantiles from the
data are used.
This approach may involve questions of how to define sample quantiles.
An example of this approach is the requirement of median-unbiasedness
(one specific quantile).

– estimate g(θ) so that the moments of P
ĝ(θ)

are close to the sample
moments
How many and which moments to match?
Do the population moments exist?
Method-of-moments estimators may have large variances; hence, while
this method may be simple (and widely-used), it is probably not a good
method generally.
An example of this approach is the requirement of unbiasedness (one
specific moment).
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• use the likelihood
– estimate g(θ) as g(θ̂), where θ̂ maximizes the likelihood function,

L(θ, x, z).
Maximum likelihood estimation is closely related to minimum-residual-
norm estimation. For the normal distribution, for example, MLE is the
same as LS, and for the double exponential distribution, MLE is the
same as LAV.
If there is a sufficient statistic, a MLE is a function of it. (This does
not say that every MLE is a function of the sufficient statistic.)
MLEs often have very good statistical properties. The are particularly
easy to work with in exponential families.

• estimation by fitting expected values
– estimate g(θ) so that residuals ‖xi − E

ĝ(θ)
(Xi, zi)‖ are small.

An example of this approach is least squares (LS) estimation (the
Euclidean norm of the vector of residuals, or square root of an in-
ner product of the vector with itself). If the expectation exists, least
squares yields unbiasedness.
Another example of this approach is least absolute values (LAV) esti-
mation, in which the L1 norm of the vector of residuals is minimized.
This yields median-unbiasedness.

• define a loss function that depends on how much the estimator differs from
the estimand, and then estimate g(θ) so as to minimize the expected value
of the loss function (that is, the “risk”) at points of interest in the sample
space. (This is an approach based on “decision theory”, which we introduce
formally in Section 2.3. The specific types of estimators that result from
this approach are the subjects of several later chapters.)
– require unbiasedness and minimize the variance at all points in the

sample space (this is UMVU estimation, which we discuss more fully
in Chapter 4)

– require equivariance and minimize the risk at all points in the sample
space (this is MRE or MRI estimation, which we discuss more fully in
Chapter 8)

– minimize the maximize the maximum risk over the full sample space
– define an a priori averaging function for the parameter, use the observed

data to update the averaging function and minimize the risk defined
by the updated averaging function.

2.3 The Decision Theory Approach to Statistical
Inference

2.3.1 Decisions, Losses, Risks, and Optimal Actions

In the decision-theoretic approach to statistical inference, we call the inference
a decision or an action, and we identify a cost or loss that depends on the
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decision and the true (but unknown) state of nature modeled by P ∈ P .
Instead of loss, we could use its opposite, called utility.

Obviously, we try to take an action that minimizes the expected loss, or
conversely maximizes the expected utility.

We call the set of allowable actions or decisions the action space or decision
space, and we denote it as A. We base the inference on the random variable
X ; hence, the decision is a mapping from X , the range of X , to A.

If we observe X , we take the action T (X) = a ∈ A.

Decision Rules

Given a random variable X with associated measurable space (X ,FX ) and an
action space A with a σ-field FA, a decision rule is a function, T , from X to
A that is measurable FX/FA.

Decision rules are often denoted by δ.
A randomized decision rule is a function is a mapping from X to the class

of probability measures on (A,FA). A randomized decision rule can also be
defined as a function δ over X × FA such that for every A ∈ FA, δ(·, A) is
a Borel function, and for every x ∈ X , δ(x, ·) is a probability measure on
(A,FA).

To evaluate a randomized decision rule requires the realization of an addi-
tional random variable. In practice, this would be accomplished by simulation.

Shao uses δ to denote a randomized decision rule, but he usually uses an
upper-case Latin letter to denote a nonrandomized decision rule.

Loss Function

A loss function, L, is a mapping from P × A to [0,∞). The value of the
function at a given distribution P for the action a is L(P, a).

If P indexed by θ, we can write the value of the function at a given value
θ for the action a as L(θ, a).

The loss function is defined with respect to the objectives of the statistical
inference in such a way that a small loss is desired.

Depending on Θ, A, and our objectives, the loss function often is a function
only of a− g(θ) or of a/g(θ); that is, we may have L(θ, a) = Ll(a− g(θ)), or
L(θ, a) = Ls(a/g(θ)). For example,

L(θ, a) = |g(θ)− a|.

In this case, which might be appropriate for estimating g(θ),

L(θ, a) ≥ 0 ∀θ, a
L(θ, a) = 0 if a = g(θ).

Notice that the loss function is just a mathematical function associated with
another function g. There are no assumed underlying random variables. It
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does not matter what θ and a are; they are just mathematical variables, or
placeholders, taking values in Θ and A. In this case, the loss function generally
should be nondecreasing in |g(θ)− a|. A loss function that is convex has nice
mathematical properties. (There is some heuristic appeal to convexity, but we
like it because of its mathematical tractability. There are lots of other proper-
ties of statistical procedures that are deemed interesting for this nonreason.)
A particularly nice loss function, which is strictly convex, is the “squared-error
loss”: L2(θ, a) = (g(θ) − a)2. Another loss function that is often appropriate
is the “absolute-error loss”: L1(θ, a) = |g(θ) − a|. The “absolute-error loss”,
which is convex but not strictly convex, is not as mathematically tractable as
the squared-error loss.

Any strictly convex loss function over an unbounded interval is unbounded.
It is not always realistic to use an unbounded loss function. A common
bounded loss function is the 0-1 loss function, which may be

L0−1(θ, a) = 0 if |g(θ)− a| ≤ α(n)
L0−1(θ, a) = 1 otherwise.

Risk Function

To choose an action rule T so as to minimize the loss function is not a well-
defined problem. We can make the problem somewhat more precise by con-
sidering the expected loss based on the action T (X), which we define to be
the risk:

R(P, T ) = E
(
L(P, T (X))

)
. (2.28)

The risk depends on

• L
• P , the distribution w.r.t. which E is defined
• the decision rule; we may write R(P, T ) as RT (P ).

The problem may still not be well defined. For example, to estimate g(θ)
so as to minimize the risk function is still not a well-defined problem. We can
make the problem precise either by imposing additional restrictions on the
estimator or by specifying in what manner we want to minimize the risk.

Optimal Decision Rules

We compare decision rules based on their risk with respect to a given loss
function and a given family of distributions. If a decision rule T∗ has the
property

R(P, T∗) ≤ R(P, T ) ∀P ∈ P ,
for all T , then T∗ is called an optimal decision rule.

Often we limit the set of possible rules. If

R(P, T∗) ≤ R(P, T ) ∀P ∈ P and ∀T ∈ T ,

then T∗ is called a T -optimal decision rule.
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Admissibility

Before considering specific definitions of a minimum-risk procedure, we define
another general desirable property for a decision rule.

Given decision rules T∗ and T . The rule T is said to dominate the rule T∗
iff

R(P, T ) ≤ R(P, T∗) ∀P ∈ P ,

and
R(P, T ) < R(P, T∗) for some P ∈ P .

A decision rule T∗ is admissible if there does not exist a decision rule T
that dominates T∗. Admissibility depends on

• L
• P , the family of distributions w.r.t. which E is defined

For a given problem there may be no admissible estimator.
Often we limit the set of possible rules to a set T . If the definition above

is restricted to T ∈ T , then T∗ is called a T -admissible decision rule.
Optimality implies admissibility.

Completeness of a Class of Decision Rules

We have defined completeness of distributions and of statistics. We now define
completeness of a class of decision rules. A class of decision rules T is said
to be complete if for any decision rule T /∈ T , there exists a rule in T that
dominates T . A class is said to be minimal complete if it does not contain a
complete proper subclass.

If two decision rules have identical risk functions, we would like to think
of them as equivalent, but we do not want necessarily to include all such
equivalent rules in a class of interest. We therefore define a class of rules T
to be essentially complete if for any rule T there is a rule T0 ∈ T such that
R(P, T0) ≤ R(P, T ) ∀P .

Let T be a class of decision rules and let T0 ⊂ T . The class T0 is said to
be T -complete if ∀T ∈ T − T0, ∃T0 ∈ T0 that dominates T .

The class T0 is said to be T -minimal complete if T0 is T -complete and no
proper subset of T0 is T -complete.

It is easy to see (using the method of proving one set is equal to another
by showing each is a subset of the other) that if a T -minimal complete class
exists, it is identical to the class of T -admissible decision rule.

L-Unbiasedness

Admissibility involves the relationship between the expected values of the loss
function with different decision rules at the same distribution in the family
being considered. We can also consider the expected values taken at a given
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point in the distribution space of the loss function of a given decision rule
at the given value of the parameter compared with the loss at some other
distribution. This leads to the concept of L-unbiasedness. A decision rule T
is L-unbiased if for all P and P̃ ,

EP

(
L(P̃ , T (X))

)
≥ EP

(
L(P, T (X))

)
.

This is the basis for defining unbiasedness for statistical tests and confi-
dence sets.

Unbiasedness for estimators has a simple definition. For squared error loss
for estimating g(θ), if T is L-unbiased, then, and only then, it is unbiased.

Uniformly Minimizing the Risk

All discussions of statistical inference are in the context of some family of
distributions, and when we speak of a “uniform” property, we mean a property
that holds for all members of the family.

If we have the problem of estimating g(θ) under some given loss function
L, it is often the case that for some specific value of θ, say θ1, one particular
estimator, say T1, has the smallest expected loss, while for another value of
θ, say θ2, another estimator, say T2, has a smaller expected loss. Neither T1

nor T2 is uniformly optimal.
The risk is a function of the parameter being estimated; therefore, to

minimize the risk is not a well-posed problem. A solution is to seek a decision
rule that is uniformly best within some restricted class of decision rules.

2.3.2 Approaches to Minimizing the Risk

We use the principle of minimum risk in the following restricted ways. In all
cases, the approaches depend, among other things, on a given loss function.

• If there is a sufficient statistic and if the loss function is convex, we can
condition any given statistic on the sufficient statistic. For a convex loss
function, we have the Rao-Blackwell theorem:
Let T be a sufficient statistic for P ∈ P .
Let T0 be a statistic with finite expectation.
Let T1 = E(T0|T ).
Then

R(P, T1) ≤ R(P, T0) ∀P ∈ P .
If the loss function is strictly convex and T0 is not a function of T , then
T0 is inadmissible.
Finding a statistic with a smaller risk by this method is called “Rao-
Blackwellization”.

• We may first place a restriction on the estimator and then minimize risk
subject to that restriction.
For example:
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– require unbiasedness
In this case, we can often eliminate θ from consideration; that is, we
can uniformly minimize the risk.
In a common situation we define loss as squared-error (because unbi-
ased, this means variance), and this yields UMVU.
Sufficiency and completeness play a major role in UMVUE.
The information inequality is important in unbiased estimation.
This approach is great for exponential families.

– require equivariance
This must be made more precise (unlike unbiasedness, “equivariance”
requires more qualification).
Equivariance implies independence of the risk from θ; we can uniformly
minimize the risk by just minimizing it anywhere.
This yields UMRE, or just MRE because uniformity is implied.
This approach is especially useful for group families.

• We may minimize some global property of the risk (“global” over the values
of θ).
For example:
– minimize “average” risk

How to average? Let Λ(θ) be such that
∫
Θ

dΛ(θ) = 1, then average risk
is
∫
ΘR(θ, T )dΛ(θ).

The estimator that minimizes the average risk w.r.t. Λ(θ), TΛ, is called
the Bayes estimator, and the minimum risk,

∫
Θ
R(θ, TΛ)dΛ(θ), is called

the Bayes risk.
The averaging function allows various interpretations, and it allows the
flexibility of incorporating prior knowledge or beliefs. The regions over
which Λ(θ) is large will be given more weight; therefore the estimator
will be pulled toward those regions.
In formal Bayes procedures, we call Λ(θ) the prior probability density
for θ. We then form the joint distribution of θ and X , and then the
conditional distribution of θ given X , called the posterior distribution.
The Bayes estimator is determined by minimizing the risk, where the
expectation is taken with respect to the posterior distribution. Because
the Bayes estimator is determined by the posterior distribution, the
Bayes estimator must be a function of a sufficient statistic.

– minimize maximum risk
The maximum risk may not exist, so we consider

sup
θ∈Θ

R(θ, T (X)). (2.29)

The estimator that yields

inf
T

sup
θ∈Θ

R(θ, T (X)) (2.30)

is the minimax estimator.
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A comment about the supremum may be in order here. We mentioned
earlier that in parametric inference, we often consider the closure of the
parameter space, Θ, and in the maximum likelihood estimator in equa-
tion (2.15), for example, that allowed us to consider max{θ ∈ Θ}. We
cannot do this in considering the “maximum” risk in equation (2.29)
because we do not know how R behaves over Θ. (It could be discon-
tinuous anywhere within Θ.)

– combinations of global criteria
We could consider various combinations of the global criteria. For ex-
ample, we may see an estimator that generally minimizes the average
risk, but such that its maximum risk is not so large. An intuitively
reasonable bound on the maximum risk would bs some excess of the
minimum maximum bound. This approach is called restricted Bayes,
and results in the following constrained optimization problem:

minT

∫
R(θ, T )dΛ(θ)

s.t. supθ∈ΘR(θ, T (X)) ≤ (M + ε) infT supθ∈ΘR(θ, T (X))

• We may combine various criteria.
It is often appropriate to combine criteria or to modify them. This often
results in “better” estimators. For example, if for θ ∈ Θ, g(θ) ∈ [γ1, γ2],
and T (X) is an estimator of g(θ) such that Pr(T (X) /∈ [γ1, γ2]) 6= 0, then
T∗(X) defined as

T∗(X) =




T (X) if T (X) ∈ [γ1, γ2]
γ1 if T (X) < γ1

γ2 if T (X) > γ2

dominates T (X).
• We may focus on asymptotic criteria.

Sometimes we seek estimators that have good asymptotic properties, such
as consistency.

Relationships Among Estimators

There are interesting connections among Bayes estimators and other estima-
tion criteria:

• A Bayes estimator with a constant risk is minimax with respect to the
same loss function and distribution.

• A unique Bayes estimator is admissible with respect to the same loss func-
tion and distribution.

• An admissible estimator is either Bayes or limiting Bayes.

We will discuss these further in Section 3.2.
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Optimal Estimation under Squared-Error Loss

In estimation problems, squared-error loss functions are often the most logical
(despite the examples above!). A squared-error loss function is strictly convex,
so the useful properties of convex loss functions, such as those relating to
the use of sufficient statistics (Rao-Blackwell, for example), hold for squared-
error loss functions. Squared-error is of course the loss function in UMVU
estimation, and so we use it often.

Squared-error loss functions yield nice properties for linear functions of
estimands:

If T is





Bayes
UMVU
minimax

admissible





for g(θ), then aT + b is





Bayes
UMVU
minimax

admissible





for ag(θ) + b,

where all properties are taken under squared-error loss.

If in a Bayesian setup, the prior distribution and the posterior distribu-
tion are in the same parametric family, then a squared-error loss yield Bayes
estimators for E(X) that are linear in X . (If a prior distribution on the pa-
rameters together with a conditional distribution of the observables yield a
posterior in the same parametric family as the prior, the prior is said to be
conjugate with respect to the conditional distribution of the observables. We
will consider various types of priors more fully in Chapter 3.)

Because we use squared-error loss functions so often, we must be careful
not to assume certain common properties hold. Other types of loss functions
can provide useful counterexamples.

2.3.3 Minimaxity and Admissibility

Minimax Estimators

Instead of uniform optimality properties for estimators restricted to be unbi-
ased or equivariant or optimal average properties, we may just seek to find
one with the smallest maximum risk. This is minimax estimation.

For a given estimation problem, the maximum risk may not exist, so we
consider

sup
θ∈Ω

R(θ, δ(X)).

The estimator that yields

inf
δ

sup
θ∈Ω

R(θ, δ(X))

is the minimax estimator.
Minimaxity, as with most optimality properties, depends on the loss func-

tion.
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Minimax and Bayes Estimators

There are important, and not necessarily obvious, connections between min-
imax and Bayes estimators. One of the most important is given in Theorem
4.11 of Shao:

• A Bayes estimator with a constant risk is minimax with respect to the
same loss function and distribution.

Hence, one way of finding a minimax estimator is to find a Bayes estimator
with constant risk.

For a given loss function, and given distribution of the observable ran-
dom variable, the minimax estimator is the Bayes estimator for “worst” prior
distribution. (This is the implication of Theorem 4.12 in Shao.)

An Example

Theorem 4.14 in Shao provides a condition for identifying minimax estimators
in one-parameter exponential families. The minimax estimator is not always
the obvious one.

Lehmann gives a very interesting example of an UMVUE in a binomial
(π, n) distrbution that is not minimax. The binomial is a complete one-
parameter exponential family. The UMVUE of π is T = X/n, and under
the squared-error loss, the risk, that is, the variance in this case is π(1−π)/n.
The maximum risk is easily seen to be 1/(4n) (when π = 1/2). Now, consider
the estimator

δ∗ =
X

n

n1/2

1 + n1/2
+

1
2(1 + n1/2)

.

This has risk

R(δ∗, π) = Eπ((δ∗ − π)2)

= Eπ

((
X

n

n1/2

1 + n1/2
+

πn1/2

2(1 + n1/2)
− πn1/2

2(1 + n1/2)
+

1
2(1 + n1/2)

− π
)2
)

=
(

n1/2

1 + n1/2

)2

Eπ

((
X

n
− π

)2
)

+
(

πn1/2

1 + n1/2
+

1
2(1 + n1/2)

− π
)2

=
(

n1/2

1 + n1/2

)2
π(1− π)

n
+
(

1− 2π
2(1 + n1/2)

)2

=
1

4(1 + n1/2)2
,

which is constant.
The risk of δ∗ is less than the maximum risk of T ; therefore, T is not

minimax.
Note also that δ∗ is Bayes w.r.t. a beta prior. (Check this out and determine

the beta hyperparameters.)
Furthermore, because δ∗ is Bayes with a constant risk, it is a minimax

estimator.
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Admissible Estimators

An estimator δ∗ is admissible if there does not exist an estimator δ that
dominates δ∗, that is, such that

R(θ, δ) ≤ R(θ, δ∗) ∀θ ∈ Ω,

and
R(θ, δ) < R(θ, δ∗) for some θ ∈ Ω.

A slightly more general form of admissibility is λ-admissibility:
An estimator δ∗ is λ-admissible if it is admissible almost everywhere with
respect to the measure λ defined over the sample space.

• A unique Bayes estimator is admissible with respect to the same loss func-
tion and distribution.

• An admissible estimator is either Bayes or limiting Bayes.

Inadmissible Estimators

Some estimators that have generally good properties or that are of a standard
type, such as MLE or method of moments, may not be admissible. Sometimes,
a randomized estimator can be constructed to show that a given estimator is
not admissible.

The estimation of the mean of a normal distribution has interesting admis-
sibility properties. It is relatively straightforward to show that X is admissible
for estimating θ in N(θ, 1) (and you should be able to do this; the variance
is taken to be 1 without loss of generality). It can also be shown that X is
admissible for estimating θ in N2(θ, I2), and of course, in the simpler case of
n = 1, X is admissible for estimating θ.

However, for r > 2, X is not admissible for estimating θ in Nr(θ, Ir)!
For r > 2, the estimator

θ̂J =
(

1− c
r − 2
‖X‖2

)
X (2.31)

though biased, dominates X . This is called the James-Stein estimator.
The James-Stein estimator is generally shrunk toward 0. This type of

adjustment is called Stein shrinkage. Choice of c allows for different amounts
of bias and different amounts of reduction in the risk. (If you’re familiar with
ridge regression, compare it with this. The regularization parameter in ridge
regression is similar to the c in this expression.)

This fact is related to the outlyingness of data in higher dimensions. Al-
though for r ≤ 2, the ordinary mean is admissible with respect to MSE, we
have seen on page 72 that a certain shrunken estimator is Pitman-closer than
the mean for a normal distribution with r = 1.

There are many other surprising cases of inadmissibility.
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Consider the case of estimating θ in the finite population {1, . . . , θ}. Sup-
pose we sample from this population with replacement, obtaining X1, . . . , Xn.
Because E(X) = (θ + 1)/2, the method of moments estimator of θ is
T = 2X − 1. This estimator is inadmissible (for any reasonable loss func-
tion), since T ∗ = max(X(n), T ) is always at least as close to θ, and can be
closer. (Note also that the MoM estimator of θ may produce a value that
could never be the true value of θ.)

Consider another example from Lehmann for a one-parameter exponential
family. Let X have the density

pθ(x) = β(θ)eθxe−|x|,

where θ ∈ (−1, 1) and β(θ) = 1− θ2 (so it integrates to 1). Consider a sample
of size one,X , and the problem of estimating g(θ) = Eθ(X) with squared-error
loss. Now,

Eθ(X) = −β
′(θ)
β(θ)

=
2θ

1− θ2
,

and

Vθ(X) =
d
dθ

Eθ(X)

= 2
1 + θ2

(1− θ2)2
;

hence, the risk is

R(g(θ), X) = 2
1 + θ2

(1− θ2)2
.

Now, consider the estimator Ta = aX . Its risk under squared-error is

R(θ, Ta) = Eθ(L(θ, Ta))
= Eθ((g(θ)− Ta)2)

= 2a2 1 + θ2

(1− θ2)2
+ 4(1− a2)

θ2

(1− θ2)2
.

If a = 0, that is, it the estimator is the constant 0, the risk is 4θ2/(1− θ2)2,
which is smaller than the risk for X for all θ ∈ (−1, 1)!

The natural sufficient statistic in this one-parameter exponential family is
inadmissible for its expectation!

Other Forms of Admissibility

We have defined admissibility in terms of a specific optimality criterion,
namely minimum risk. Of course, the risk depends on the loss function, so
admissibility depends on the particular loss function.
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We can define admissibility in a similar fashion with respect to any op-
timality criterion; for example, the estimator T (X) is Pitman-admissible for
g(θ) if there does not exist an estimator that is Pitman-closer to g(θ).

2.3.4 Other Issues in Statistical Inference

We may also be interested in determining the conditional distribution of other
functions of X , given T (X) (Is Y (X) sufficient? What statistics are ancil-
lary?).

We generally seek estimators whose distributions have some optimal prop-
erties. We may also consider the performance over a class of probability fam-
ilies, {P ,Q,R, . . .}. (This is called “robustness”.)

Other approaches to estimation do not necessarily involve consideration
of the probability distributions of the estimators, but are based on desirable
heuristics: least squares, other minimal norms or minima of other functions
of model residuals, maximum likelihood, etc.

2.4 Probability Statements in Statistical Inference

There are two instances in statistical inference in which statements about
probability are associated with the decisions of the inferential methods. In
hypothesis testing, under assumptions about the distributions, we base our
inferential methods on probabilities of two types of errors. In confidence sets
the decisions are associated with probability statements about coverage of the
parameters.

In both of these types of inference, the basic set up is the standard one
in statistical inference. We have a random sample of observations X1, . . . , Xn

on a random variable X that has a distribution Pθ, some aspects of which
are unknown. We assume some family of probability distributions P such
that Pθ ∈ P . We begin with some preassigned probability that, following the
prescribed method of inference, we will arrive at set of distributions Pθ that
contain the distribution Pθ. Our objective is to determine such methods, and
among a class of such methods, determine ones that have optimal properties
with respect to reasonable criteria.

After having completed such a process, it may not be appropriate to char-
acterize the relationship of the “true” unknown distribution Pθ to the set of
Pθ with any statement about “probability”. Presumably, either Pθ ∈ Pθ or
Pθ /∈ Pθ.

In these types of statistical inference, as we will describe below, we use
the terms “significance level”, “size”, “confidence level”, and “confidence co-
efficient” to describe our findings.
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Approximations

In some cases, we have a tractable probability model, so that we can perform
tests with exact levels of significance or determine exact confidence sets. In
other cases the problem is not tractable analytically, so we must resort to ap-
proximations, which may be base on asymptotic distributions, or to estimates,
which may be made using simulations.

Asymptotic inference uses asymptotic approximations. Computational in-
ference uses probabilities estimated by simulation an assumed or hypothesized
data generating process or by resampling of an observed sample.

2.4.1 Tests of Hypotheses

Given a set of data, X , and a family of possible distributions that gave rise
to the data, P , a common objective of statistical inference is to specify a
particular member or subclass of P that “likely” generated X . For example, if
P = {N(µ, σ2) : µ ∈ IR, σ2 ∈ IR+}, given X = x, we may choose N(x̄, s2) as
a good candidate for the population from which the data arose. This choice
is based on statistical estimators that we know to be “good” ones.

In another kind of statistical inference, given a set of data X and a family
of distributions P , we are to decide whether the data “likely” came from
some hypothesized subfamily P0 of P . Our possible decisions are “yes” or
“no”. Rather than a general “no”, a specific alternative may be hypothesized.

This kind of statistical inference is called “testing statistical hypotheses”.
We will discuss this topic more fully in Chapter 6. In Chapter 3 we discuss
testing from a Bayesian perspective. Here, we just introduce some terms and
consider some simple cases.

Statistical Hypotheses

The hypotheses concern a specific member P ∈ P . This is the distribution
that generated the observed data.

We have a null hypothesis

H0 : P ∈ P0

and an alternative hypothesis

H1 : P ∈ P1,

where P0 ⊂ P , P1 ⊂ P , and P0 ∩ P1 = ∅. If P0 ∪ P1 = P , the alternative
hypothesis is effectively “everything else”.

An hypothesis that specifies exactly one distribution is called a simple
hypothesis; otherwise it is called a composite hypothesis. H0 above is a simple
hypothesis if there is only one distribution in P0.
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If the family of distributions is associated with a parameter space Θ, we
may equivalently describe the tests as

H0 : θ ∈ Θ0

versus
H1 : θ ∈ Θ1.

An hypothesis H : θ ∈ ΘH in which #ΘH = 1 is a simple hypothesis;
if #ΘH > 1 it is a composite hypothesis. Of course we are often interested
in the case where Θ = Θ0 ∪ Θ1. An hypothesis of the form H0 : θ = θ0 is a
simple hypothesis, while Hi : θ ≥ θ0 is a composite hypothesis.

Test Statistics and Critical Regions

A straightforward way of performing the test involves use of a test statistic,
T (X), computed from a random sample of data. Associated with T (X) is a
rejection regionR, such that if the null hypothesis is true, for some preassigned
(small) value, α,

Pr (T (X) ∈ R) ≤ α.

We seek a statistic T (X) such that Pr (T (X) ∈ R) is large if the null
hypothesis is not true. Thus, R is a region of more “extreme” values of the
test statistic if the null hypothesis is true.

If T (X) ∈ R, the null hypothesis is rejected. The rejection region is also
called the critical region. The complement of the rejection region is called the
acceptance region.

It is desirable that the test have a high probability of rejecting the null
hypothesis if indeed the null hypothesis is not true.

p-Values

A procedure for testing that is mechanically equivalent to this is to compute
the test statistic T (X)← t and then to determine the probability that T (X)
is more extreme than t. In this approach, the realized value of the test statistic
determines a region Rt of more extreme values. The probability that the test
statistic is in Rt if the null hypothesis is true, Pr (T ∈ Rt), is called the “p-
value” or “significance level” of the realized test statistic. ***** discuss this!
and size

In this framework we are testing one hypothesis versus another hypothe-
sis. The two hypotheses are not treated symmetrically, however. We are still
directly testing the null hypothesis. This asymmetry allows us to focus on two
kinds of losses that we might incur. The losses relate to the two kinds of errors
that we might make.
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Test Rules

Instead of thinking of a test statistic T and a rejection region R, as above, we
can formulate the testing procedure in a slightly different way. We can think of
the test as a decision rule, δ(X), which is a statistic that relates more directly
to the decision about the hypothesis. We sometimes refer to the statistic δ(X)
as “the test”, because its value is directly related to the outcome of the test;
that is, there is no separately defined rejection region.

A nonrandomized test procedure is a rule δ(X) that assigns two decisions
to two disjoint subsets, C0 and C1, of the range of X . In general, we require
C0 ∪ C1 be the support of X . We equate those two decisions with the real
numbers d0 and d1, so δ(X) is a real-valued function,

δ(x) =
{
d0 for x ∈ C0

d1 for x ∈ C1.

For simplicity, we choose d0 = 0 and d1 = 1. Note for i = 0, 1,

Pr(δ(X) = i) = Pr(X ∈ Ci).

We call C1 the critical region, and generally denote it by just C. (It is not
my intent to distinguish C from R above; they’re both “critical regions”. I
have used C to denote a set of values of X , and R to denote a set of values
of T (X).)

If δ(X) takes the value 0, the decision is not to reject; if δ(X) takes the
value 1, the decision is to reject. If the range of δ(X) is {0, 1}, the test is a
nonrandomized test. Sometimes, however, it is useful to expand the range of
δ(X) to be [0, 1], where we can interpret a value of δ(X) as the probability
that the null hypothesis is rejected. If it is not the case that δ(X) equals 0 or
1 a.s., we call the test a randomized test.

Power of the Test

We now can focus on the test under either hypothesis (that is, under either
subset of the family of distributions) in a unified fashion. We define the power
function of the test, for any given P ∈ P as

β(δ, P ) = EP (δ(X)). (2.32)

We also often use the notation βδ(P ) instead of β(δ, P ). In general, the prob-
ability of rejection of the null hypothesis is called the power of the test.

An obvious way of defining optimality for tests is in terms of the power for
distributions in the class of the alternative hypothesis; that is, we seek “most
powerful” tests.
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Errors

If P ∈ P0 and δ(X) = 1, we make an error; that is, we reject a true hypothesis.
We call that a “type I error”. For a randomized test, we have the possibility
of making a type I error if δ(X) > 0. In general, if P ∈ P0, βδ(P ) is the
probability of a type I error. Conversely, if P ∈ P1, then 1 − βδ(P ) is the
probability of a “type II error”, that is failing to reject a false hypothesis.

Testing as a Decision Problem

For a statistical hypothesis that involves the distribution of the random vari-
able X , a nonrandomized test procedure is a rule δ(X) that assigns two de-
cisions to two disjoint subsets, C0 and C1, of the range of X . In general, we
require C0 ∪C1 be the support of X . We equate those two decisions with the
real numbers 0 and 1, so δ(X) is a real-valued function,

δ(x) =
{

0 for x ∈ C0

1 for x ∈ C1.

Note for i = 0, 1, Pr(δ(X) = i) = Pr(X ∈ Ci). We call C1 the critical region,
and generally denote it by just C.

We also write
φ(x) = Pr(δ(X) = 1 | X = x).

Notice that this is the same as the power, except φ here is a function of the
observations, while we think of the power as a function of the true distribution.
Assuming only the two outcomes, we have

1− φ(x) = Pr(δ(X) = 0 | X = x).

For this decision problem, an obvious choice of a loss function is the 0-1
loss function:

L(θ, i) = 0 if θ ∈ Θi

L(θ, i) = 1 otherwise.

It may be useful to consider a procedure with more than just two outcomes;
in particular, a third outcome, γ, may make sense. In an application in analy-
sis of data, this decision may suggest collecting more data; that is, it may
correspond to “no decision”, or, usually only for theoretical analyses, it may
suggest that a decision be made randomly. We will, at least in the beginning,
however, restrict our attention to procedures with just two outcomes.

For the two decisions and two state of nature case, there are four possibil-
ities:

• the test yields 0 and H0 is true (correct decision);
• the test yields 1 and H1 is true (correct decision);
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• the test yields 1 and H0 is true (type I error); and
• the test yields 0 and H1 is true (type II error).

We obviously want a test procedure that minimizes the probabiltiy of either
type of error. It is clear that we can easily decrease the probability of one
(if its probability is positive) at the cost of increasing the probability of the
other.

We do not treat H0 and H1 symmetrically; H0 is the hypothesis to be
tested and H1 is the alternative. This distinction is important in developing
a methodology of testing.

We adopt the following approach for choosing δ (under the given assump-
tions on X , and the notation above):

1. Choose α ∈ (0, 1) and require that δ(X) be such that

Pr(δ(X) = 1 | θ ∈ Θ0) ≤ α.

α is called the level of significance.
2. Subject to this, find δ(X) so as to minimize

Pr(δ(X) = 0 | θ ∈ Θ1).

The definition of significance level is not as ambiguous as it may appear at
first glance.

One chooses α; that is the level of significance.
For some α̃ > α, although Pr(T (X) = 1 | θ ∈ Θ0) ≤ α̃, we would not say

that α̃ is the level (or a level) of significance.
Notice that the restriction on the type I error in the first step applies

∀θ ∈ Θ0. We call
sup
θ∈Θ0

Pr(δ(X) = 1 | θ)

the size of the test. If the size is less than the level of significance, the test is
said to be conservative, and in that case, we often refer to α as the “nominal
size”.

Approximate Tests

If the distribution of the test statistic T or δ under the null hypothesis is
known, the critical region or the p-value can be determined. If the distribu-
tion is not known, some other approach must be used. A common method is to
use some approximation to the distribution. The objective is to approximate
a quantile of δ under the null hypothesis. In asymptotic inference, the approx-
imation is often based on an asymptotic distribution of the test statistic.

In computational inference, a Monte Carlo test may be used. In Monte
Carlo tests the quantile of δ is estimated by simulation of the distribution.
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Unbiased Tests

A test of H0 : P ∈ P0 versus H1 : P ∈ P1 is said to be unbiased at level α if
the power function satisfies

βT (P ) ≤ α for P ∈ P0

βT (P ) ≥ α for P ∈ P1

Uniformly Best Tests

The risk or the expected error in a test depends on the specific distribution
within the family of distributions assumed. We may seek a test that has
minimum expected errors of both types, or, in a practical approach to this
objective, we may cap the probability of a type I error and seek the most
powerful test for distributions within the class of the alternative hypothesis.

As we have seen in the estimation problem, optimality generally depends
on the specific distribution, and it may not be possible to achieve it uniformly;
that is, for all distributions within a given family.

We may then take the approach mentioned on page 96 for estimation and
restrict the allowable tests in some way. We may require that the tests be
unbiased, for example. That approach leads us to seek a UMPU test, that is,
a uniformly most powerful unbiased test.

2.4.2 Confidence Sets

In a problem of statistical inference for a family of distributions P , or equiv-
alently, for a parameter space Θ, given a sample X , a level 1 − α confidence
set, or confidence region (the terms are synonymous), is a is a random subset
of P , A(X), such that

PrP (A(X) 3 P ) ≥ 1− α ∀P ∈ P .

More precisely, we call A(X) a random family of level 1− α confidence sets.
This definition obviously leaves many issues to be examined because of the
≥ relationship. A family of 1 − α1 confidence sets is also a family of 1 − α2

confidence set for α2 ≥ α1; and if A(X) is a level 1 − α confidence set, then
B(X) is also a level 1− α confidence set if B(X) ⊃ A(X).

We call
inf

P∈P
PrP (A(X) 3 P )

the confidence coefficient of A(X).
The confidence coefficient is also called the coverage probability.
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Equivalently, we can define a random family S(X) of 1−α confidence sets
for the parameter space Θ by

Prθ (S(X) 3 θ) ≥ 1− α ∀θ ∈ Θ.

A realization of a confidence set, say A(x), is also called a confidence
set. Although it may seem natural to state that the “probability that θ is in
A(x) is 1− α”, this statement can be misleading unless a certain underlying
probability structure is assumed.

We will introduce and discuss other terms in Chapter 7. In Chapter 3 we
discuss confidence sets from a Bayesian perspective. Here, we just define the
term and consider some simple cases.

Pivot Functions

For forming confidence sets, we often can use a function of the sample that
also involves the parameter of interest, f(T, θ). The confidence set is then
formed by separating the parameter from the sample values.

A class of functions that are particularly useful for forming confidence sets
are called pivotal values, or pivotal functions. A function f(T, θ) is said to be
a pivotal function if its distribution does not depend on any unknown para-
meters. This allows exact confidence intervals to be formed for the parameter
θ.

Confidence Intervals

Our usual notion of a confidence leads to the definition of a 1− α confidence
interval for the (scalar) parameter θ as the random interval (TL, TU ), that
has the property

Pr (TL ≤ θ ≤ TU ) ≥ 1− α. (2.33)

This is also called a (1−α)100% confidence interval. The interval (TL, TU ) is
not uniquely determined.

The concept extends easily to vector-valued parameters. Rather than tak-
ing vectors TL and TU , however, we generally define an ellipsoidal region,
whose shape is determined by the covariances of the estimators.

A realization of the random interval, say (tL, tU ), is also called a confidence
interval.

In practice, the interval is usually specified with respect to an estimator
of θ, T . If we know the sampling distribution of T − θ, we may determine c1
and c2 such that

Pr (c1 ≤ T − θ ≤ c2) = 1− α;

and hence
Pr (T − c2 ≤ θ ≤ T − c1) = 1− α.
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If either TL or TU is infinite or corresponds to a bound on acceptable
values of θ, the confidence interval is one-sided. Suppose Θ = (a, b), where
a or b may be infinite. In equation (2.33), if TL = a, then TU is called an
upper confidence bound, and if TU = b, then TL is called a lower confidence
bound. (It is better not to use the terms “upper confidence interval” or “lower
confidence interval”, because of the possible ambiguity in these terms.

For two-sided confidence intervals, we may seek to make the probability
on either side of T to be equal, to make c1 = −c2, and/or to minimize |c1| or
|c2|. This is similar in spirit to seeking an estimator with small variance.

We can use a pivot function f(T, θ) to form confidence intervals for the
parameter θ. We first form

Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α,

where f(α/2) and f(1−α/2) are quantiles of the distribution of f(T, θ); that is,

Pr(f(T, θ) ≤ f(π)) = π.

If, as in the case considered above, f(T, θ) = T − θ, the resulting confidence
interval has the form

Pr
(
T − f(1−α/2) ≤ θ ≤ T − f(α/2)

)
= 1− α.

For example, suppose Y1, Y2, . . . , Yn is a random sample from a N(µ, σ2)
distribution, and Y is the sample mean. The quantity

f(Y , µ) =

√
n(n− 1) (Y − µ)√∑ (

Yi − Y
)2

has a Student’s t distribution with n− 1 degrees of freedom, no matter what
is the value of σ2. This is one of the most commonly-used pivotal values.

The pivotal value can be used to form a confidence value for θ by first
writing

Pr
(
t(α/2) ≤ f(Y , µ) ≤ t(1−α/2)

)
= 1− α,

where t(π) is a percentile from the Student’s t distribution. Then, after making
substitutions for f(Y , µ), we form the familiar confidence interval for µ:

(
Y − t(1−α/2) S/

√
n, Y − t(α/2) S/

√
n
)
,

where S2 is the usual sample variance,
∑

(Yi − Y )2/(n− 1).
(Note the notation: t(π), or for clarity, tν,(π) is the π quantile of a Student’s

t distribution. That means that

Pr(Y ≤ tν,(π)) = π.
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Other authors sometimes use a similar notation to mean the 1 − π quantile
and other times to mean the π quantiles. I mean the same authors use it both
ways. I always use the notation in the way I indicate above. The reasons for
the different symbols go back to the fact that tν,(π) = −tν,(1−π), as for any
distribution that is symmetric about 0.)

Other similar pivotal functions have F distributions. For example, consider
the usual linear regression model in which the n-vector random variable Y has
a Nn(Xβ, σ2I) distribution, where X is an n×m known matrix, and the m-
vector β and the scalar σ2 are unknown. A pivotal value useful in making
inferences about β is

g(β̂, β) =

(
X(β̂ − β)

)T
X(β̂ − β)/m

(Y −Xβ̂)T(Y −Xβ̂)/(n−m)
,

where
β̂ = (XTX)+XTY.

The random variable g(β̂, β) for any finite value of σ2 has an F distribution
with m and n−m degrees of freedom.

For a given parameter and family of distributions there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use. Alternatively, it may not be possible to identify a pivotal quantity for
a particular parameter. In that case, we may seek an approximate pivot. A
function is asymptotically pivotal if a sequence of linear transformations of
the function is pivotal in the limit as n→∞.

If the distribution of T is known, c1 and c2 can be determined. If the
distribution of T is not known, some other approach must be used. A common
method is to use some numerical approximation to the distribution. Another
method is to use bootstrap resampling.

Optimal Confidence Sets

We seek confidence sets that are “small” or “tight” in some way. We want
the region of the parameter space that is excluded by the confidence set to
be large; that is, we want the probability that the confidence set exclude
parameters that are not supported by the observational evidence to be large.
This is called “accuracy”. We see most accurate confidence sets.

As with point estimation and tests of hypotheses, the risk in setting a
confidence region depends on the specific distribution within the family of
distributions assumed. We, therefore, seek uniformly most accurate confidence
sets.

As in other cases where we seek uniform optimality, such procedures may
not exist. We, therefore, may then take a similar approach for setting confi-
dence regions, and restrict the allowable regions in some way. We may require
that the confidence sets be unbiased, for example.
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Unbiased Confidence Sets

A family of confidence sets S(X) for θ is said to be unbiased (without regard
to the level) if

Prθ0 (S(X) 3 θ1) ≤ Prθ0 (S(X) 3 θ0) ∀θ0, θ1 ∈ Θ.

Prediction Sets and Tolerance Sets

We often want to identify a set in which a future observation on a random
variable has a high probability of occurring. This kind of set is called a pre-
diction set.
For example, we may assume a given sample X1, . . . , Xn is from a N(µ, σ2)
and we wish to determine a measurable set S(X) such that for a future ob-
servation Xn+1

inf
P∈P

PrP (Xn+1 ∈ S(X)) ≥ 1− α.

More generally, instead of Xn+1, we could define a prediction interval for
any random variable V .

The difference in this and a confidence set for µ is that there is an addi-
tional source of variation. The prediction set will be larger, so as to account
for this extra variation.

We may want to separate the statements about V and S(X). A tolerance
set attempts to do this.

Given a sample X , a measurable set S(X), and numbers δ and α in (0, 1),
if

inf
P∈P

( inf
P∈P

PrP (V ∈ S(X)|X) ≥ δ) ≥ 1− α,

then S(X) is called a δ-tolerance set for V with confidence level 1− α.

2.5 Asymptotic Inference

In the standard problem in statistical inference, we are given some family of
probability distributions, we take random observations on a random variable,
and we use some function of the random sample to estimate some aspect of
the underlying probability distribution or to test some statement about the
probability distribution.

The approach to statistical inference that we would like to follow is to
identify a reasonable statistic to use as an estimator or a test statistic, then
work out its distribution under the given assumptions and under any null hy-
pothesis, and, knowing that distribution, assess its goodness for the particular
application and determine levels of confidence to associate with our inference.
In many of interesting problems in statistical inference we cannot do this,
usually because the distributions are not tractable.
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There are two ways to proceed. One is to use computer simulation to
estimate properties of our statistic. This approach is called computational
inference. The other approach is to make some approximations, either of the
underlying assumptions or for the unknown distribution.

Some approximations are just based on known similarities between two
distributions. The most common kind of approximation, however, is based on
the asymptotic properties of the statistic. This is asymptotic inference.

The Basic Setup and Notation

As usual in statistical inference, we have a family of probability distributions
P = {Pθ}, where θ may be some parameter in a real-valued parameter space
Θ (“parametric inference”), or θ may just be some index in an index set
I to distinguish one distribution, Pθ1 , from another, Pθ2 (“nonparametric
inference”). The parameter or the index is not observable; however, we assume
Pθ1 6= Pθ2 if θ1 6= θ2 (“identifiability”).

We have an observable random variable X . We have a random sample,
X1, . . . , Xn, which we may also denote by X ; that is, we may use X not just
as the random variable (that is, a Borel function on the sample space) but
also as the sample: X = X1, . . . , Xn.

Both θ and X may be vectors. (I use “real-valued” to mean either a scalar
(that is, an element in IR) or a real-valued vector (that is, an element in IRk,
where k is a positive integer possibly larger than 1)).

The canonical problem in parametric inference is to estimate g(θ) or to
test some hypothesis concerning g(θ), where g is some real-valued measurable
function. We denote our statistic (either an estimator or a test statistic) as
Tn(X), or just Tn.

2.5.1 Consistency

Consistency is a general term used for various types of asymptotic conver-
gence. Unless it is clear from the context, we must qualify the word “consis-
tency” with the type of convergence and with the type of inference. We speak
of consistent point estimators, confidence sets, and tests.

We’ll begin with consistency of point estimators. This relates to the con-
vergence of the estimator Tn(X) to the estimand g(θ).

Convergence is defined with respect to a distribution. In a problem of
statistical inference we do not know the distribution, only the distributional
family, P . To speak of consistency, therefore, we require that the convergence
be with respect to every distribution in P .

The three most common kinds of consistency for point estimators are

weak consistency Tn(X) is said to be weakly consistent for g(θ) iff

Tn(X)→p g(θ) w.r.t. any P ∈ P .
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This kind of consistency involves a weak convergence. We often refer to
weak consistency as just consistency, without the qualifier.

strong consistency Tn(X) is said to be strongly consistent for g(θ) iff

Tn(X)→a.s. g(θ) w.r.t. any P ∈ P .

Lr-consistency Tn(X) is said to be Lr-consistent for g(θ) iff

Tn(X)→Lr g(θ) w.r.t. any P ∈ P .

Lr-convergence applies to convergence in expectation: limn→∞ E(‖Tn(X)−
g(θ)‖rr) = 0.
For r = 1, Lr-consistency is convergence in mean.
For r = 2, Lr-consistency is convergence in mean-squared error, and hence
L2-consistency is called consistency in mean-squared error.

There are relationships among these types of consistency that are similar
to those among the types of convergence. We have

Lr strong
Q

Q
QQs

�
�

��+
weak

Another kind of consistency is a convergence in probability defined in
terms of a divergent sequence.

an-consistency Given a sequence of positive constants {an}with limn→∞ an =
∞, Tn(X) is said to be an-consistent for g(θ) iff an(Tn(X)−g(θ)) = OP(1)
w.r.t. any P ∈ P , that is,

∀ε > 0 ∃ constant Cε > 0 3 sup
n

Pr(an‖Tn(X)− g(θ)‖ ≥ Cε) < ε.

Notice that this is a kind of weak consistency.
The most common kind of an-consistency that we consider is

√
n-consistency;

that is, an =
√
n.

In asymptotic inference, we often encounter a sequence {an} with

lim
n→∞

an =∞,

like that in the definition of an-consistency above. We are interested the lim-
iting behavior of such properties of statistics as the variance, the bias, and the
mean-squared error. These quantities are defined in terms of expectations, so
firstly, we need to be precise in our meaning of asymptotic expectation. In
the following we will distinguish asymptotic expectation from limiting expec-
tation. A related term is “approximate” expectation. This term is sometimes
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used in different ways. For example, Shao (p. 135) uses the term “approxi-
mately unbiased” in reference to a limiting expectation. Other authors and I
prefer the term “unbiased in the limit” to refer to this property. This property
is different from asymptotically unbiased, as we will see.

Some points to remember:

• Consistency does not imply unbiasedness.
• E(|Tn − g(θ)|)→ 0 implies consistency.
• Consistency is often proved by use of a Chebyshev-type inequality.

Consistency of a Sequence to a Sequence

In some cases, rather than a fixed estimand g(θ), we are interested in a se-
quence of estimands gn(θ). In such cases, it may not be adequate just to con-
sider |Tn − gn(θ)|. This would not be meaningful if, for example, gn(θ) → 0.
This kind of situation occurs when gn(θ) is the variance of the mean of a sam-
ple of size n from a population with finite variance. In such cases we could
define any of the types of consistency defined above using the appropriate
type of convergence in this expression,

|Tn/gn(θ)− 1| → 0. (2.34)

2.5.2 Asymptotic Expectation

Let {Xn} be a sequence of random variables and Xn →d X , with E(|X |) <∞.
(Recall that this type of convergence is defined in terms of the conver-
gence of the CDFs at each point of continuity t of the CDF of X , F :
limn→∞ Fn(t) = F (t), and an expectation can be defined in terms of a CDF.)
Then an asymptotic expectation of {Xn} is E(X). The resaon we call this “an”
asymptotic expectation will become apparent below.

The limiting expectation is limn→∞ E(Xn). It is important to recognize the
difference in limiting expectation and asymptotic expectation.

Because {Xn} may converge to a degenerate random variable, it may be
more useful to generalize the definition of asymptotic expectation slightly.

Let {Xn} be a sequence of random variables, and let {an} be a sequence
of positive constants with limn→∞ an = ∞ or with limn→∞ an = a > 0, and
such that anXn →d X , with E(|X |) <∞. Then an asymptotic expectation of
{Xn} is E(X/an).

Notice that this latter definition may allow us to address more general sit-
uations. For example, we may consider the asymptotic variance of a sequence
of estimators

√
nTn(X). The asymptotic variance may be of the form V(T/n)

(which we should not be tempted to say is just 0, because n→∞).
**** choice of sequence {an} ********** Shao Proposition 2.3, p 136.
The multivariate generalization of asymptotic expectation is straightfor-

ward:
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Let {Xn} be a sequence of random k-vectors, and let {An} be a sequence of
k×k positive definite matrices such that either limn→∞An diverges (that is, in
the limit has no negative diagonal elements and some diagonal elements that
are positively infinite) or else limn→∞An = A, where A is positive definite and
such that AnXn →d X , with E(|X |) <∞. Then an asymptotic expectation of
{Xn} is E(A−1

n X).

2.5.3 Asymptotic Properties and Limiting Properties

After defining asymptotic expectation, we noted an alternative approach
based on a limit of the expectations, which we distinguished by calling it
the limiting expectation. These two types of concepts persist in properties of
interest that are defined in terms of expectations, such as bias and variance
and their combination, the mean-squared error.

One is based on the asymptotic distribution and the other is based on
limiting moments. Although in some cases they may be the same, in general
they are different, as we will see.

Asymptotic Bias and Limiting Bias

Now consider a sequence of estimators {Tn(X)} for g(θ) in the family of
distributions P = {Pθ}. Suppose Tn(X) →d T and E(|T |) < ∞. We define
the asymptotic bias of {Tn} within the family P to be E(T )− g(θ).

Notice that the bias may be a function of θ; that is, it may depend on the
specific distribution within P .

If the asymptotic bias is 0 for any distribution within P , we say {Tn(X)}
is asymptotically unbiased for g(θ).

We also generalize the asymptotic bias to an asymptotic bias of {Tn}
given a sequence of positive constants {an} with limn→∞ an = ∞ or with
limn→∞ an = a > 0, and such that anTn(X) →d T . An asymptotic bias of
{Tn} is E(T − g(θ))/an.

We define the limiting bias of {Tn} to be limn→∞ E((Tn)− g(θ)).
We can easily construct an estimator that is biased in any finite sample,

but is unbiased in the limit. Suppose we want an estimator of the mean µ
(which we assume is finite). Let

Tn = Xn +
c

n
,

for some c 6= 0. Now, the bias for any n is c/n. The limiting bias of Tn for µ,
however, is 0, and since this does not depend on µ, we say it is unbiased in
the limit.

To carry this further, suppose X1, . . . , Xn ∼ i.i.d. N(µ, σ2), and with Tn as
above, form

√
n(Tn−µ) =

√
n(Xn−µ)+c/

√
n. Now, we know

√
n(Xn−µ)→d

N(0, σ2) and c/
√
n→ 0, so by Slutsky’s theorem,
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√
n(Tn − µ)→d N(0, σ2).

Hence, the asymptotic bias of Tn for µ is also 0, and since this does not depend
on µ, we say it is asymptotically unbiased.

To illustrate the difference in asymptotic bias and limiting bias, con-
sider X1, . . . , Xn ∼ i.i.d. U(0, θ), and the estimator X(n) (which we know
to be sufficient for g(θ) = θ). We can work out the asymptotic distribution
of n(θ − X(n)) to be exponential with parameter θ. (The distributions of
the order statistics from the uniform distribution are betas. These distrib-
utions are interesting and you should become familiar with them.) Hence,
X(n) is asymptotically biased. We see, however, that the limiting bias is
limn→∞ E(X(n) − θ) = n−1

n θ − θ = 0; that is, X(n) is unbiased in the limit.
Notice the role that the sequence {an} plays. This would allow us to con-

struct a sequence that is biased in the limit, but is asymptotically unbiased.
There are also, of course, relationships between consistency and limiting

bias. Consider again X1, . . . , Xn ∼ i.i.d. N(µ, σ2), and an estimator of the
mean

Sn = Xn +
c√
n
,

for some c 6= 0. (Notice this estimator is slightly different from that above.)
As above, we see that this is unbiased in the limit (consistent in the mean),
and furthermore, we have the mean-squared error

MSE(Sn, µ) = E((Sn − µ)2)

=
σ2

n
+
(

c√
n

)2

tending to 0, hence we see that this is consistent in mean-squared error. How-
ever,

√
n(Sn −µ) =

√
n(Xn − µ) + c has limiting distribution N(c, σ2); hence

Sn is asymptotically biased.
We also note that an estimator can be asymptotically unbiased but not

consistent in mean-squared error. In the above example, we immediately see
that X1 is asymptotically unbiased for µ, but it is not consistent in mean-
squared error for µ.

For a more interesting example, consider a distribution with slightly heav-
ier tails than the normal, that is, the double exponential distribution with
θ = 1 (Shao, p.21), and the estimator of the mean

Rn(X) =
X(n) +X(1)

2
.

(This is the mid-range.) We can see that Rn is unbiased for any finite sample
size (and hence, is unbiased in the limit); however, we can show that

V(Rn) =
π2

12
,

and, hence, Rn is not consistent in mean-squared error.
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Asymptotic and Limiting Variance and Efficiency

We define the asymptotic variance and the limiting variance in similar ways
as in defining the asymptotic bias and limiting bias, and we also note that
they are different from each other. We also define asymptotic mean-squared
error and the limiting mean-squared error in a similar fashion. The limiting
mean-squared error is of course related to consistency in mean-squared error.

Our interest in asymptotic (not “limiting”) variance or mean-squared error
is as they relate to optimal properties of estimators. The “efficiency” of an
estimator is related to its mean-squared error.

Usually, rather than consider efficiency in a absolute sense, we use it to
compare two estimators, and so speak of the relative efficiency. (When we
restrict our attention to unbiased estimators, the mean-squared error is just
the variance, and in that case we use the phrase efficient or Fisher efficient to
refer to an estimator that attains its Cramér-Rao lower bound (the right-hand
side of inequality (1.45) on page 30.) Notice the slight difference in “efficiency”
and “efficient”; while one meaning of “efficiency” is a relative term that is not
restricted to unbiased estimators (or other unbiased procedures, as we will see
later), “efficient” is absolute. “Efficient” only applies to unbiased estimators,
and an estimator either is or is not efficient. The state of being efficient, of
course is called “efficiency”. This is another meaning of the term. The phrase
“Fisher efficiency” helps to emphasis this difference.)

As before, assume a family of distributions P , a sequence of estimators
{Tn} of g(θ, and a sequence of positive constants {an} with limn→∞ an =∞
or with limn→∞ an = a > 0, and such that anTn(X) →d T and 0 <
E(T ) < ∞. We define the asymptotic mean-squared error of {Tn} for esti-
mating g(θ) w.r.t. P as an asymptotic expectation of (Tn − g(θ))2; that is,
E((T − g(θ))2)/an, which we denote as AMSE(Tn, g(θ),P).

For comparing two estimators, we may use the asymptotic relative effi-
ciency. The asymptotic relative efficiency of the estimators Sn and Tn for
g(θ) w.r.t. P is defined as

ARE(Sn, Tn) = AMSE(Sn, g(θ),P)/AMSE(Tn, g(θ),P). (2.35)

The ARE is essentially a scalar concept; for vectors, we usually do one at
a time, ignoring covariances.

Asymptotic Significance

For use of asymptotic approximations for confidence sets and hypothesis test-
ing, we need a concept of asymptotic significance. As for exact significance,
the concepts in confidence sets and hypothesis tests are essentially the same.

We assume a family of distributions P , a sequence of statistics {Tn}
{δ(Xn)} based on a random sample X1, . . . , Xn. The test statistic δ(·) is
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defined in terms the decisions; it takes the value 1 for the case of deciding to
reject H0 and conclude H1, and the value 0 for the case of deciding not to
reject H0.

Tests
In hypothesis testing, the standard setup is that we have an observable
random variable with a distribution in the family P . Our hypotheses con-
cern a specific member P ∈ P . We have a null hypothesis

H0 : P ∈ P0

and an alternative hypothesis

H1 : P ∈ P1,

where P0 ⊂ P , P1 ⊂ P , and P0 ∩ P1 = ∅.
Asymptotic size and asymptotic significance

Now, letting
β(δ(Xn), P ) = PrP (δ(Xn) = 1),

we define lim supn β(δ(Xn), P ) ∀P ∈ P0, if it exists, as the asymptotic
size of the test. If lim supn β(δ(Xn), P ) ≤ α ∀P ∈ P0, then α is an
asymptotic significance level of the test.

Consistency
δ(Xn) is consistent for the test iff lim supn(1−β(δ(Xn), P )) = 0 ∀P ∈
P1.

Chernoff consistency
δ(Xn) is Chernoff-consistent for the test iff δ(Xn) is consistent and
furthermore, lim supn β(δ(Xn), P ) = 0 ∀P ∈ P0.

Confidence sets
Let C(X) be a confidence set for g(θ).
Asymptotic significance level .

If lim infn Pr(g(θ) ∈ C(X)) ≥ 1−α∀P ∈ P , then 1−α is an asymptotic
significance level of C(X).

Limiting confidence coefficient .
If lim infn Pr(g(θ) ∈ C(X)) exists ∀P ∈ P , then it is the limiting
confidence coefficient of C(X).

“The” Asymptotic Distribution

In determining asymptotic confidence sets or asymptotic relative efficiencies,
we need expressions that do not depend on unknown parameters. This fact
determines which asymptotic expectations are useful.

The asymptotic expectation of some sequence of statistics, or of pivotal
quantities, is determined by the sequence {an} (used above in the definitions).

In the univariate delta method, for example, we find a quantity an(g(Xn)−
g(c)) that converges in distribution to N(0, v), where v does not depend on
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an unknown parameter. In that case, we can set a confidence interval based
on the approximate distribution of g(Xn) as N(g(c), v/a2

n).
To speak of the asymptotic distribution of an(g(Xn) − g(c)) is clear; but

to refer to “the” asymptotic distribution of g(Xn) is somewhat less so.
Because it is the useful approximate distribution resulting from asymp-

totic expectations, we often say that “the asymptotic distribution” of g(Xn)
is N(g(c), v/a2

n). You should recognize that “the” in this statement is some-
what arbitrary. It might be better to call it “the asymptotically approximate
distribution that I’m going to use in this application”.

Again, we should distinguish “asymptotic” from “limiting”.
In the example of the delta method above, it is likely that

g(Xn))→d g(c);

that is, g(Xn) converges in distribution to the constant g(c); or the limiting
distribution of g(Xn) is degenerate at g(c). “The” asymptotic variance is 0.

This would not be very useful in asymptotic inference. We therefore seek
“an” asymptotic variance that is more useful. In asymptotic estimation using
g(Xn), we begin with an expression of the form an(g(Xn) − g(c)) that has
a limiting distribution of the desired form (usually that means such that the
variance does not involve any unknown parameters and it does not involve n).
If this distribution is in a location-scale family, then we make the appropriate
linear transformation (which probably results in a variance that does involve
n).

We then often refer to this as the asymptotic distribution of g(Xn). Often,
as mentioned above, however, the limiting distribution of g(Xn) is degenerate.

This is not to imply that asymptotic expectations are entirely arbitrary.
Proposition 2.3 in Shao shows that there is a certain uniqueness in the asymp-
totic expectation. This proposition involves three cases regarding whether the
expectation of g(Xn) (without the an sequence) is 0. In the example above,
we have a degenerate distribution, and hence the asymptotic expectation that
defines the asymptotic variance is 0.

2.6 Variance Estimation

Statistical inferences that involve or are derived from statements of probabil-
ity, such as hypothesis testing and setting confidence regions, require knowl-
edge of the distribution of the statistic that is used. Often we know or can
work out that distribution exactly, given the assumptions in the underlying
probability model. In other cases we use approximate distributions. In either
case, we are often faced with the problem of estimating the variance of a
statistic.

In this section we first restrict our attention to the case in which the
statistic of interest is a scalar; that is, the case in which the variance itself is
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a scalar. We describe two general methods, the jackknife and the bootstrap,
based on resampling. We then consider the more general problem of estimating
the variance-covariance matrix for a vector statistic. The first consideration
for estimators of a variance-covariance matrix is the meaning of consistency of
a variance-covariance estimator. The jackknife and bootstrap can be used to
estimate a variance-covariance matrix, and we also consider a “substitution”
estimator.

2.6.1 Jackknife

Jackknife methods make use of systematic partitions of a dataset to estimate
properties of an estimator computed from the full sample.

Suppose that we have a random sample, Y1, . . . , Yn, from which we com-
pute a statistic T as an estimator of a parameter θ in the population from
which the sample was drawn. In the jackknife method, we partition the given
dataset into r groups, each of size k. (For simplicity, we will assume that the
number of observations n is kr.)

Now, we remove the jth group from the sample and compute the estimator
from the reduced sample. Let T(−j) denote the estimator computed from the
sample with the jth group of observations removed. (This sample is of size
n−k.) The estimator T(−j) has properties similar to those of T . For example,
if T is unbiased, so is T(−j). If T is not unbiased, neither is T(−j); its bias,
however, is likely to be different.

The mean of the T(−j),

T (•) =
1
r

r∑

j=1

T(−j), (2.36)

can be used as an estimate of θ. The T(−j) can also be used in some cases
to obtain more information about the estimator T from the full sample. (For
the case in which T is a linear functional of the ECDF, then T (•) = T , so the
systematic partitioning of a random sample will not provide any additional
information.)

Consider the weighted differences in the estimate for the full sample and
the reduced samples:

T ∗
j = rT − (r − 1)T(−j). (2.37)

The T ∗
j are called “pseudovalues”. (If T is a linear functional of the ECDF

and k = 1, then T ∗
j = T (xj); that is, it is the estimator computed from the

single observation, xj .) We call the mean of the pseudovalues the “jackknifed”
T and denote it as J(T ):

J(T ) =
1
r

r∑

j=1

T ∗
j

= T ∗. (2.38)
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We can also write J(T ) as

J(T ) = T + (r − 1)
(
T − T (•)

)

or
J(T ) = rT − (r − 1)T (•). (2.39)

In most applications of the jackknife, it is common to take k = 1, in
which case r = n. It has been shown that this choice is optimal under certain
assumptions about the population.

Jackknife Variance Estimate

Although the pseudovalues are not independent (except when T is a linear
functional), we treat them as if they were independent, and use V(J(T )) as
an estimator of the variance of T , V(T ). The intuition behind this is simple:
a small variation in the pseudovalues indicates a small variation in the esti-
mator. The sample variance of the mean of the pseudovalues can be used as
an estimator of V(T ):

V̂(T )J =

∑r
j=1

(
T ∗

j − J(T )
)2

r(r − 1)
. (2.40)

(Notice that when T is the mean and k = 1, this is the standard variance
estimator.) From expression (2.40), it may seem more natural to take V̂(T )J
as an estimator of the variance of J(T ), and indeed it often is.

A variant of this expression for the variance estimator uses the original
estimator T : ∑r

j=1(T
∗
j − T )2

r(r − 1)
. (2.41)

How good a variance estimator is depends on the estimator T and on
the underlying distribution. Monte Carlo studies indicate that V̂(T )J is often
conservative; that is, it often overestimates the variance.

The alternate expression (2.41) is greater than or equal to V̂(T )J, as is
easily seen; hence, it is an even more conservative estimator.

2.6.2 Bootstrap

From a given sample y1, . . . , yn, suppose that we have an estimator T (y). The
estimator T ∗ computed as the same function T , using a bootstrap sample
(that is, T ∗ = T (y∗)), is a bootstrap observation of T .

The bootstrap estimate of some function of the estimator T is a plug-in
estimate that uses the empirical distribution Pn in place of P . This is the
bootstrap principle, and this bootstrap estimate is called the ideal bootstrap.
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For the variance of T , for example, the ideal bootstrap estimator is the
variance V(T ∗). This variance, in turn, can be estimated from bootstrap sam-
ples. The bootstrap estimate of the variance, then, is the sample variance of
T ∗ based on the m samples of size n taken from Pn:

V̂(T ) = V̂(T ∗) (2.42)

=
1

m− 1

∑
(T ∗j − T ∗)2, (2.43)

where T ∗j is the jth bootstrap observation of T . This, of course, can be com-
puted by Monte Carlo methods by generating m bootstrap samples and com-
puting T ∗j for each.

If the estimator of interest is the sample mean, for example, the bootstrap
estimate of the variance is V̂(Y )/n, where V̂(Y ) is an estimate of the variance
of the underlying population. (This is true no matter what the underlying
distribution is, as long as the variance exists.) The bootstrap procedure does
not help in this situation.

2.6.3 Consistency of Estimators of a Variance-Covariance Matrix

If the statistic is a vector, we need an estimator of the variance-covariance ma-
trix. Because a variance-covariance matrix is positive definite, it is reasonable
to consider only positive definite estimators a.s.

We first define what it means for such an estimator to be consistent. Be-
cause a variance-covariance matrix is positive definite and any positive definite
matrix is a variance-covariance matrix (for some distribution), we can con-
sider consistency of a sequence of positive definite matrices for a sequence of
given positive definite matrices.

Let {Vn} be a sequence of k × k positive definite matrices and V̂n be a
positive definite matrix estimator of Vn for each n. Then V̂n is said to be
consistent for Vn if ∥∥∥V −1/2

n V̂nV
−1/2
n − Ik

∥∥∥→p 0. (2.44)

Also V̂n is said to be strongly consistent for Vn if
∥∥∥V −1/2

n V̂nV
−1/2
n − Ik

∥∥∥→a.s. 0. (2.45)

Note the similarity of these expressions to expression (2.34). In many cases of
interest ‖Vn‖ → 0, so these expressions are not the same as

∥∥∥V̂n − Vn

∥∥∥→ 0.

2.6.4 Methods of Estimating Variance-Covariance Matrices

The jackknife and bootstrap can be used to estimate a variance-covariance
estimator. Another widely used type of estimator is called a substitution es-
timator or sandwich estimator.
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Substitution Method

The idea in the “substitution method” for estimating Vn is to arrive at an
expression for Vn that involves a simpler variance along with quantities that
are known functions of the sample. Often that simpler variance can be esti-
mated by an estimator with known desirable properties. An estimator of Vn in
which the simpler estimator and the known sample functions are used is called
a substitution estimator. A simple example is the estimator of the variance
of β̂ in a linear regression. The variance-covariance matrix is (ZTZ)−1σ2 (in
Shao’s usual notation). A substitution estimator is one in which the regression
MSE is substituted for σ2.

The so-called “sandwich estimators” are often substitution estimators.

(ZTZ)−1V (ZTZ)−1

V is some variance-covariance estimator that probably includes a scalar
multiple of σ̂2.

Theorem 5.15 in Shao (page 374) gives conditions for the consistency of
substitution estimators.

Notes

The general problem of statistical inference, that is, the use of observed data
for which we have a family of probability distributions to provide information
about those probability distributions, is an “inverse problem”. Nineteenth and
twentieth century scientists who made inferences about probability models
referred to the problem as one of “inverse probability”. Statisticians in the
early twentieth century also used this term. Although the maximum likelihood
approach could be thought of as a method of inverse probability, R. A. Fisher,
who developed likelihood methods, made a distinction between the methods
and “inverse probability” as a general term fell into disuse.

Optimal Properties

Although unbiasedness is most often encountered in the context of point esti-
mation, the term “unbiased” was actually first used by statisticians to refer to
tests (Neyman and Pearson, 1936, cited in Lehmann, 1951), then used to re-
fer to confidence regions (Neyman, 1937, cited in Lehmann, 1951), and lastly
introduced to refer to point estimators (David and Neyman, 1938, cited in
Lehmann, 1951). See Lehmann (1951) for general discussions, and see page 108
for unbiased tests and page 112 for unbiased confidence sets.

Ideas and approaches developed by engineers and physical scientists lead
to statistical methods characterized by maximum entropy. Much of this work
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dates back to Claude Shannon in the 1930’s. E. T. Jaynes in the 1950’s formal-
ized the approach and incorporated it in a Bayesian framework. His posthu-
mous book edited by G. Larry Bretthorst (Jaynes, 2003) is a very interesting
discussion of a view toward probability that leads to a Bayesian maximum
entropy principle for statistical inference. Pardo (2005), listed in the general
references, gives an extensive overview of the use of functionals from infor-
mation theory in statistical inference. In some disciplines, such as electrical
engineering, this approach seems more natural.

Pitman’s measure of closeness was introduced in 1937. The idea did not
receive much attention until the article by Rao (1981), in which was given the
definition we have used, which is slightly different from Pitman’s. Pitman’s
original article was reproduced in a special issue of Communications in Sta-
tistics (Pitman, 1991) devoted to the topic of Pitman closeness. The lack of
transitivity of Pitman’s closeness follows from Arrow’s “impossibility theo-
rem”, and is a natural occurrence in paired comparisons (see David, 1988).
The example on page 72 is called a “cyclical triad”.

David and Salem had considered estimators similar to (2.3) for a normal
mean in 1973, and in David and Salem (1991) they generalized these shrunken
estimators to estimators of the means that are Pitman-closer than the sample
mean in a broad class of location families.

Variance Estimation

The idea of the jackknife goes back to Quenouille in 1949. It was popularized
by John Tukey, and is currently widely-used, especially in sample surveys.
Shao and Tu (1995) provide an extensive discussion.

The theory and methods of the bootstrap were largely developed by Efron,
and Efron and Tibshirani (1993) introduce the principles and discuss many
extensions and applications.

A sandwich-type estimator was introduced introduced by Eiker (1963) for
estimation of the variance-covariance matrix of the least-squares estimator
of the coefficient vector in linear regression in the case where the errors are
uncorrelated, but possibly have different distributions. Huber (1967) used a
similar kind of estimator as a robust estimator. White (1980) introduced a
similar estimator for heteroscedastic situations in economics. The term “sand-
wich estimator” was introduced in the context of estimation of the variance-
covariance matrix for the solution of a generalized estimation equation, and
it is widely used in that type of problem.

Exercises in Shao

• For practice and discussion
2.25, 2.30, 2.44, 2.56, 2.66, 2.74, 2.84, 2.93, 2.101, 2.115, 2.121, 4.89, 4.91
(Solutions in Shao, 2005)
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• To turn in
2.33, 2.55, 2.63, 2.81, 2.116, 2.123
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Bayesian Inference
(Shao Sec 4.1, Sec 6.4.4, Sec 7.1.3; TPE2 Ch 4;

TSH3 Sec 5.7)

In the decision-theoretic approach to statistical inference, we first quantify
the loss relative to the true state of nature in any decision that we make.
Of course, since we do not know the true state of nature, we must use an
expectation of the loss; and in fact, that is exactly what we do: we take the
expected value of the loss under some assumed family of distributions. This
is the risk.

Then we see an inference procedure that minimizes the risk.
How to minimize?
Generally, we cannot minimize the risk uniformly; that is, for all states of

nature. The optimal procedure at one state of nature or one value of the true
parameter is different from the optimal procedure at another state.

We can put restrictions on our inference procedure (for example, we may
require that an estimator be unbiased) and maybe we can get an optimal
solution by minimizing the risk under the restriction.

We could also minimize some global property of the risk, such as its maxi-
mum value (a “minimax procedure”) or we could minimize the “average” risk
over the full parameter space Θ.

How to average?
Choose a function Π(θ), such that

∫
Θ dΠ(θ) = 1. Then the average risk

with respect to Π , for a given X is

r(Π,X) =
∫

Θ

R(θ,X)dΠ(θ). (3.1)

3.1 The Bayesian Paradigm

The function Π(θ) in equation (3.1) is effectively a CDF over Θ, and with that
interpretation, the average risk is the conditional expectation with respect to
the distribution. In our usual notation, we might denoteΠ as PΘ to emphasize
that it is the CDF of Θ. We likewise denote the CDF of the conditional
distribution as PΘ|x.
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The estimator that minimizes the average risk w.r.t. Π(θ), say δΠ(X),
is called the Bayes estimator. The minimum risk, which is achieved at that
point,

∫
ΘR(θ, δΠ(X))dΠ(θ), is called the Bayes risk.

The action that minimizes the posterior risk, that is, the action that
achieves the Bayes risk, is called a Bayes rule.

The averaging function allows various interpretations, and it allows the
flexibility of incorporating prior knowledge or beliefs. The regions over which
Π(θ) is large will be given more weight; therefore the estimator will be pulled
toward those regions.

Because the averaging function is essentially a probability density, we
might formally consider the parameter to be a random variable. This is the
paradigm of “Bayesian statistics”.

In formal Bayes procedures, we callΠ(θ) the prior probability density for θ,
and to emphasize that perspective, we may write it as PΘ . The distribution of
Θ may depend on parameters. Such parameters are called “hyperparameters”.

We next form the joint distribution of θ and X , and then the conditional
distribution of θ given X , called the posterior distribution. The Bayes estima-
tor is determined by minimizing the risk, where the expectation is taken with
respect to the posterior distribution. Because the Bayes estimator is deter-
mined by the posterior distribution, the Bayes estimator must be a function
of a sufficient statistic.

The relationships among the conditional, marginal, and joint distributions
can be stated formally in the “Bayes formula” (Theorem 4.1 in Shao). We
begin with a distributional family as usual, except we emphasize that it is a
conditional distribution, given the parameter: P = {Px|θ : θ ∈ Θ}, which we
assume is dominated by a σ-finite measure ν.

Now, keeping the θ in the picture, we assume the density, pX|θ(x) =
dPX|θ(x)/dν is Borel on the product measure space, (X × Θ, σ(BX × BΘ)).
We have that the posterior distribution PΘ|x is dominated by PΘ , and if
pX(x) =

∫
Θ
pX|θ(x)dPΘ > 0,

dPθ|x

dPΘ
=
pX|θ(x)
pX(x)

.

(Shao calls the marginal density of x m(x).)
Furthermore, if λ is a σ-finite measure such that PΘ � λ and pΘ(θ) = dPΘ

dλ ,
then

dPΘ|x

dλ
=
pX|θ(x)pΘ(θ)

pX(x)
.

Steps in a Bayesian Analysis

We can summarize the approach in a Bayesian statistical analysis as beginning
with these steps:
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1. identify the conditional distribution of the observable random variable;
assuming the density exists, call it

pX|θ(x|θ) (Shao calls this fθ(x))

2. identify the prior (marginal) distribution of the parameter; assuming the
density exists, call it

pΘ(θ) (Shao calls this π(θ))

3. identify the joint distribution; if densities exist, it is

pX,Θ(x, θ) = pX|θ(x|θ)pΘ(θ)

4. determine the marginal distribution of the observable; if densities exist, it
is

pX(x) =
∫

Θ

pX,Θ(x, θ)dθ (Shao calls this m(x))

5. determine the posterior conditional distribution of the parameter given
the observable random variable; this is the posterior; if densities exist, it
is

pΘ|x(θ|x) = pX,Θ(x, θ)/pX (x)

The posterior conditional distribution is then the basis for whatever deci-
sions are to be made.

Interpretations of Probability Statements in Statistical Inference

Some methods of statistical inference are based on probabilities of a statis-
tic taking on certain values given a specific member of a family of probability
distributions; that is, perhaps, given a value of a parameter. The two main sta-
tistical methods that rely on statements of probability are hypothesis testing
and setting of confidence regions. In these methods we assume a model Pθ for
the state of nature and then consider probabilities of the form Pr(T (X) = 1|θ)
or Pr(T (X) 3 θ|θ). The proper interpretation of a confidence region, for ex-
ample, is “[... given the assumptions, etc. ...] the probability that a random
region formed in this manner includes true value of the parameter is ...”

These kinds of probability statements are somewhat awkward for use in
interpreting the results of a statistical analysis.

Instead of a statement about Pr(δ(X)|θ), many people would prefer a
statement about Pr(Θ ∈ T (X)|X = x), that is,

Pr(Θ ∈ T (x))

even if they don’t think of Θ as a random variable. In the Bayesian approach
to testing and setting confidence regions, we do think of the parameter as a
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random variable and so we can make statements about the probability of the
parameter taking on certain values.

If the parameter is a random variable, point estimation of the parameter or
testing an hypothesis that a parameter takes a specific value when the para-
meter is modeled as a continuous random variable does not make much sense.
The idea of a point estimator that formally minimizes the Bayes risk, however,
remains viable. Going beyond point estimation, the Bayesian paradigm pro-
vides a solid theoretical infrastructure for other aspects of statistical inference,
such as confidence intervals and tests of hypotheses. The parameter random
variable is different in a fundamental way from the other random variable in
the estimation problem: the parameter random variable is not observable; the
other random variable is — that is, we can observe and record realizations of
this random variable of interest, and those observations constitute the sample
which is the basis for the statistical inference.

The starting point in ordinary Bayesian inference is the conditional distri-
bution of the observable random variable. (In a frequentist approach, this is
just the distribution — not the “conditional” distribution.)

The prior density represents a probability distribution of the parameter
assumed a priori, that is, without the information provided by a random
sample. Bayesian inference depends on the conditional distribution of the
parameter, given data from the random variable of interest.

Prior Distributions

The prior distribution obviously has an effect on Bayesian decisions. It is
important, therefore, to choose a reasonable prior distribution that reflects
our prior information or beliefs about the phenomenon of interest.

Various families of prior distributions can provide both flexibility in rep-
resenting prior beliefs and computational simplicity. For many families of dis-
tributions of the observable random variable, there are corresponding families
of prior distributions that yield a family of posterior distributions that is the
same as the family of priors. We call a member of such a family of priors a
conjugate prior with respect to the conditional distributional family of the
observables.

Example 3.1 Binomial with Beta Prior
The Bayesian approach can be represented nicely by a problem in which
we model the conditional distribution of an observable random variable as
a binomial(π, n) distribution, conditional on π, of course. Suppose we assume
π comes from a beta(α, β) prior distribution. This is a conjugate prior, as we
will see.

We work out the density functions in the following order:
The conditional distribution of X given π has density (probability function)

fX|π(x) =
(
n
x

)
πx(1− π)n−x x = 1, . . . , n.
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The marginal (prior) distribution of Π has density

fΠ(π) =
Γ(α+ β)
Γ(α)Γ(β)

πα−1(1− π)β−1, π ∈ (0, 1).

Suppose the hyperparameters in the beta prior as α = 3 and β = 5. The prior,
that is, the marginal distribution of Π , is as shown in Figure 3.1.
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Fig. 3.1. Prior; α = 3 and β = 5

The joint distribution of X and π has density

fX,Π(x, π) =
(
n
x

)
Γ(α + β)
Γ(α)Γ(β)

πx+α−1(1− π)n−x+β−1.

The marginal distribution of X is beta-binomial, with density

fX(x) =
(
n
x

)
Γ(α+ β)Γ(x + α)Γ(n− x+ β)

Γ(α)Γ(β)Γ(n + α+ β)
.

Finally, the conditional distribution of π given x (the posterior) has density,

fΠ|x(π) =
Γ(n+ α+ β)

Γ(x+ α)Γ(n− x+ β)
πx+α−1(1− π)n−x+β−1.

Now, suppose n is 10 and we take one observation, and we observe x =
2. With the beta(3,5) prior, we get the posterior, that is, the conditional
distribution of Π , as a beta with parameters x + α = 5 and n − x + β = 13.
The posterior density is shown in Figure 3.2.
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Fig. 3.2. Posterior after Observing x = 2

In a Bayesian analysis, sometimes it it worthwhile to consider the effects
of various possible outcomes of the experiment. (Bayesians usually refer to
the taking of observations as an “experiment”; most people would just refer
to it as “taking a sample”.)

Assessing the Problem Formulation

In any statistical analysis, the formulation of a model is important. In the
example above, it must be reasonable to assume that the observable data
follows some kind of binomial distribution. From first principles, this means
that we are willing to assume that there is a set of n independent outcomes
that may be 0 or 1, in each case with a constant probability π.

The purpose of our analysis is to gain more knowledge about π.
In the Bayesian approach taken in the example, we assume that while the

n observations were being collected, some random variableΠ had a fixed value
of π. We are interested both in that value and in the conditional distribution of
the random variable Π , given what we have observed. For a particular choice
of hyperparameters characterizing the prior distribution on Π , we obtain the
posterior distribution shown in Figure 3.2. Does this seem reasonable? What
if instead of observing x = 2, we had observed some other value?

Without actually taking any observations, we can determine the posterior
density. In Figure 3.3, we plot the posterior distribution of Π given various
values of that we might have observed.

Assessing the effect on the posterior of various possible observations may
give us some feeling of confidence in our choice of a prior distribution.
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Fig. 3.3. Posteriors after Various Possible Observations

Choice of Hyperparameters

Usually in a Bayesian analysis, it is instructive to consider various priors and
particularly various hyperparameters in some detail.

Of course, in most cases, we must also take into account the loss function.
Recall the effects in this problem of different hyperparameter values on the
point estimation problem (that is, the choice of the Bayes action to minimize
the posterior risk) when the loss is squared error.

We might also consider what might be the effect of different hyperparame-
ters. There are several possibilities we could consider. Let’s just look at one
possibility, which happens to be bimodal, as shown in Figure 3.4. In this case,
we have chosen α = 0.1 and β = 0.2. This would correspond to a general prior
belief that π is probably either close to 0 or close to 1.

Now, again we might consider the effect of various observations on our
belief about Π . We get the posteriors shown in Figure 3.5 for various possible
values of the observations.
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Fig. 3.4. Bimodal Prior

In each case in this example we see that our posterior belief is unimodal
instead of bimodal, as our prior belief had been. Although in general a pos-
terior may be multimodal, in the case of a binomial (π, n) distribution with
a beta(α, β) prior, the posterior is unimodal, because as we have seen, the
posterior is beta with parameters x+ α and n− x+ β, both of which cannot
be less than 1.

Generalized Bayes Actions and Limits of Bayes Actions

Suppose we rewrite the risk slightly. A generalized Bayes action is one that
minimizes ∫

Θ

L(θ, δ(x))pX|Θ(x|θ)dΠ(θ),

if the integral exists, even if Π is not a distribution function. If Π is not a
distribution function, it is called an improper prior.

An example is one in which dΠ(θ) = dν where ν is Lebesgue and Θ is the
reals, or some unbounded interval subset of the reals. This is a “noninforma-
tive” prior, in the sense that it gives equal weights to equal-length intervals
for Θ.

Another type of noninformative prior is Jeffreys’s noninformative prior,
which is proportional to

√
det(I(θ)), where det(I(θ)) is the determinant of

the Fisher information matrix. If Θ is the reals, or some unbounded interval
subset of the reals, Jeffreys’s noninformative prior is improper.
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Fig. 3.5. Posteriors from the Bimodal Prior

Another variation on Bayes actions is the limit of the Bayes action as
some hyperparameters approach some limits. These are called limiting Bayes
actions.

3.2 Bayesian Estimation

In Bayesian estimation we begin with the standard steps on page 128.
After getting the posterior conditional distribution of the parameter given

the observable random variable, for a given loss function L, we determine the
estimator δ that minimizes the posterior risk, which is the expected value of
the loss w.r.t. the posterior distribution on the parameter:

∫

Θ

L(θ, δ(x))pΘ|x(θ|x)dθ

The Bayes estimator depends on
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• the conditional distribution of the observable
• the prior distribution of the parameter
• the function of the parameter to be estimated, that is, the estimand
• the loss function

The expected loss with respect to the posterior distribution of the parameter
is the objective to be minimized.

A useful fact is that if the loss is squared error, the Bayes estimator is
the posterior mean; that is, the expected value of the estimand, where the
expected value is taken w.r.t. the posterior conditional distribution.

3.2.1 Properties of Bayes Estimators

Squared-error loss and a conjugate prior yield Bayes estimators for E(X) that
are linear in X .

• A Bayes estimator with a constant risk is minimax with respect to the
same loss function and distribution.

• A unique Bayes estimator is admissible with respect to the same loss func-
tion and distribution.

• An admissible estimator is either Bayes or limiting Bayes.

3.2.2 Examples

There are two standard examples of Bayesian analyses that serve as models.
These examples should be in the student’s bag of easy pieces. In both of these
examples, the prior is conjugate.

Example 3.2 (Continuation of Example 3.1) Binomial with Beta
Prior
A loss function was not used in deriving the posterior distribution, but to get
the Bayes estimator, we must use a loss function.

Let us choose the loss to be squared-error. In this case we know the risk is
minimized by choosing the estimate as δ(x) = E(Π |x), where the expectation
is taken w.r.t. the distribution with density fΠ|x.

We recognize the posterior conditional distribution as a beta(x + α, n −
x+ β), so we have the Bayes estimator

α+X

α+ β + n
.

We should study this estimator from various perspectives.

• First, we note that it is a weighted average of the mean of the prior and
the standard UMVUE:

(
α+ β

α+ β + n

)
α

α+ β
+
(

n

α+ β + n

)
X

n
.
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This is a useful insight, but we should not suppose that all Bayes estimators
work that way.

• We see that the Bayes estimator is unbiased if and only if α = β = 0
in the prior beta distribution. In this case, however, the integral of the
prior density above does not converge. This is an improper prior, and the
estimator is a generalized Bayes estimator, because it is not really a Bayes
estimator.

• Because
lim

α→0+,β→0+

α+X

α+ β + n
=
X

n
,

and for α > 0 and β > 0, the prior is proper, we see that the UMVUE is
a limit of Bayes estimators.

• What about a Jeffreys’s (noninformative) prior? The Jeffreys’s prior in
this case is proportional to

√
I(π). Because the binomial is a member of

the exponential family, we know I(π) = 1/V(T ), where E(T ) = π. So
I(π) = n/π(1− π). Jeffreys’s prior is therefore beta(1/2, 1/2). The Bayes
estimator corresponding to the noninformative prior is

X + 1
2

n+ 1
.

This is often used as an estimator of π in situations where X = 1 is rare.
• For the group invariant problem in which g(X) = n−X and g̃(π) = 1−π,

we see that the Bayes estimator is equivariant if the prior is symmetric,
that is, if α = β.

• We can make an interesting empirical Bayes model from this example if
we consider the observable random variable to be one of a set, Xk, each
with conditional distribution binomial(πk, n), where the πk are all distrib-
uted independently as beta(α, β). An empirical Bayes procedure involves
estimating α and β, and proceeding as before. Although any (reasonable)
estimates of α and β would work, we generally use the MLEs. We get
those by forming the conditional likelihood of x given α and β, and then
maximizing to get α̂ and β̂. (We do this numerically because it cannot be
done in closed form. We get the conditional likelihood of x given α and β
by first forming the joint of x and the πk’s, and integrating out the πk’s.)
The Bayes estimator for πk is

α̂+Xk

α̂+ β̂ + n
.

• If we put prior distributions on α and β, say gamma distributions with
different parameters, we could form a hierarchical Bayes model and use
iterative conditional simulated sampling to compute the estimates. (This
type of approach is called Markov chain Monte Carlo, or specifically in this
cases, Gibbs sampling. We discuss this approach in general in Section 3.3,
and Gibbs sampling specifically beginning on page 146.) We would do this
by working out the full conditionals.

A Companion for Mathematical Statistics c©2008 James E. Gentle



138 3 Bayesian Inference

• Could the Bayes estimator with this prior and squared-error loss function
be minimax? Work out the risk,

1
(α+ β + n)2

(
nπ(1− π) +

(
α(1− π)− βπ

)2)
,

and determine values of α and β such that it is constant. This will be
minimax. The solution (to make it independent of π) is α = β =

√
n/2.

Notice what this does: it tends to push the estimator toward 1/2, which
could have a maximum loss of 1/2, and we would expect that to be the
minimum maximum.

The squared-error loss function is a very simple, and common loss function,
of course. (In fact, the student must be very careful to remember that many
simple properties of statistical methods depend on this special loss function.)
What about other loss functions?

• Could we define a loss function so that the Bayes estimator is unbiased for
a proper prior? Yes. Take

L(π, d) =
(d− π)2

π(1− π)
,

and take a uniform(0,1) prior.
• For any loss function other than the squared-error, will the Bayes estimator

be minimax? Yes, the loss function above yields this property. The Bayes
estimator X/n has constant risk; therefore, it is minimax.

The prior in this case is called a “conjugate” prior (when it exists; that
is when α > 0 and β > 0), because the posterior is in the same parametric
family.

A conjugate prior and a squared-error loss function always yield Bayes
estimators for E(X) that are linear in X , as we have seen in this specific case.
Other priors may not be as easy to work with.

The statistics student should make the binomial/beta example above one
of the “easy pieces” that can be pulled from memory. (This does not mean
“rote memory” of the steps and equations; it means “process memory”, which
comes from understanding the process.)

Example 3.3 Normal with Inverted Chi-Squared and Conditional
Normal Priors
For estimating both θ and σ2 in N(θ, σ2), a conjugate prior family can be
constructed by first defining a marginal prior on σ2 and then a conditional
prior on θ|σ2. From consideration of the case of known variance, we choose
an inverted chi-squared distribution for the prior on σ2:
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πσ2(σ2) ∝ 1
σ
σ−(ν0/2+1)e(ν0σ2

0)/(2σ2)

where we identify the parameters ν0 and σ2
0 as the degrees of freedom and the

scale for σ2. (People who work with simple Bayes procedures began calling the
distribution of the reciprocal of a chi-squared random variable an “inverse”
chi-squared distribution. Because “inverse” is used in the names of distri-
butions in a different way (“inverse Gaussian”), I prefer the term inverted
chi-squared, or, in general, inverted gamma.)

Given σ2, let us choose a normal distribution for the conditional prior of
θ|σ2:

πθ|σ2(θ;σ2) ∝ exp
(
−

1
2
(θ − µ0)2/(σ2/κ0)

)
,

where we identify the parameters µ0 and σ2/κ0 as the location and the scale
for θ.

Following the standard steps of forming the joint density of (X, θ, σ2) and
then the marginal of X , we get the joint posterior as

pθ,σ2|x(θ, σ2;x) ∝ 1
σ
σ−(ν0/2+1) exp

(
− 1

2σ2

(
ν0σ

2
0 + κ0(θ − µ0)2

))
.

For the estimators, we minimize the expected loss with respect to this
probability distribution.

Another way this problem is sometimes approached is to reparametrize
the normal, and in place of σ2, use 1/(2τ).

3.3 Markov Chain Monte Carlo

Monte Carlo techniques often allow us to make statistical inferences when the
statistical method involves intractable expressions.

Monte Carlo methods involve sampling, usually artificially, in the sense
that the samples are generated on the computer.

The raw samples are from a U(0, 1) distribution (or an approximate U(0, 1)
distribution, in the sense that the samples are generated on the computer).

A raw sample of uniforms, U1, U2, . . ., is transformed into a sequence {Xj}
of (pseudo)random variables from a distribution of interest.

We often want the sequence {Xj} to be i.i.d. As part of the transformation
process, however, we may use a sequence {Yi} that has internal dependencies.

Inverse CDF

Assume that the CDF of the distribution of interest is FX , and further, sup-
pose that FX is continuous and strictly monotone.
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In that case, if X is a random variable with CDF FX , then U = FX (X)
has a U(0, 1) distribution.

In the inverse CDF method, we transform each Ui to an Xi by

Xi = F−1
X (Ui).

If FX is not continuous or strictly monotone, we can modify this transfor-
mation slightly.

Acceptance/Rejection

To understand a slightly more complicated process that is often used, consider
the problem of transforming an i.i.d. sequence {Ui} of uniforms into an i.i.d.
sequence {Xj} from a distribution that has a probability density p(·).

We use an intermediate sequence {Yk} from a distribution that has a
probability density g(·). (It could also be the uniform distribution.)

Further, suppose for some constant c that h(x) = cg(x) is such that h(x) ≥
p(x).

1. Generate a variate y from the distribution having pdf g.
2. Generate independently a variate u from the uniform (0,1) distribution.
3. If u ≤ p(y)/h(y), then accept y as the variate, otherwise, reject y and

return to step 1.

See Figure 3.6.
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Fig. 3.6. Acceptance/Rejection
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Why It Works

Let X be the random variable delivered. For any x, because Y (from the
density g) and U are independent, we have

Pr(X ≤ x) = Pr
(
Y ≤ x |U ≤ p(Y )

cg(Y )

)

=

∫ x

−∞
∫ p(t)/cg(t)

0
g(t) ds dt

∫∞
−∞

∫ p(t)/cg(t)

0 g(t) ds dt

=
∫ x

−∞
p(t) dt,

the distribution function corresponding to p. Differentiating this quantity with
respect to x yields p(x).

The acceptance/rejection method can be visualized as choosing a subse-
quence from a sequence of independently and identically distributed (i.i.d.)
realizations from the distribution with density gY in such a way the subse-
quence has density pX .

i.i.d. from gY yi yi+1 yi+2 yi+3 · · · yi+k · · ·
accept? no yes no yes · · · yes · · ·

i.i.d. from pX xj xj+1 · · · xj+l · · ·

Obviously, the closer cg(x) is to p(x), the faster the acceptance/rejection
algorithm will be, if we ignore the time required to generate y from the dom-
inating density g. A good majorizing function would be such that the l is
almost as large as k.

Often, g is chosen to be a very simple density, such as a uniform or
a triangular density. When the dominating density is uniform, the accep-
tance/rejection method is similar to the “hit-or-miss” method.

Variations of Acceptance/Rejection

There are many variations of the basic acceptance/rejection.
One is called transformed rejection. In the transformed acceptance/rejection

method, the steps of the algorithm are combined and rearranged slightly.
There are various ways that acceptance/rejection can be used for discrete

distributions.
It is clear from the description of the algorithm that the acceptance/rejection

method also applies to multivariate distributions. (The uniform random num-
ber is still univariate, of course.)
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Dependent Random Variables

The methods described above use a sequence of i.i.d. variates from the majoriz-
ing density. It is also possible to use a sequence from a conditional majorizing
density.

A method using a nonindependent sequence is called a Metropolis method,
and there are variations of these, with their own names.

There are two related cases:
Suppose {Xj : j = 0, 1, 2, . . .} is such that for j = 1, 2, . . . we know the

conditional distributions of Xj |X0, . . . , Xj−1.
Alternatively, suppose we know the functional form (up to the normaliz-

ing constant) of the joint density of X1, X2, . . . , Xk, and that we know the
distribution of at least one Xi|Xj(i 6= j).

Markov Chain Monte Carlo

If the density of interest, p, is the density of the stationary distribution of a
Markov chain, correlated samples from the distribution can be generated by
simulating the Markov chain.

This appears harder than it is.
A Markov chain is the basis for several schemes for generating random

samples. The interest is not in the sequence of the Markov chain itself.
The elements of the chain are accepted or rejected in such a way as to

form a different chain whose stationary distribution or limiting distribution is
the distribution of interest.

Markov Chains

Markov chains are
An aperiodic, irreducible, positive recurrent Markov chain is associated

with a stationary distribution or invariant distribution, which is the limiting
distribution of the chain.

Convergence?

An algorithm based on a stationary distribution of a Markov chain is an
iterative method because a sequence of operations must be performed until
they converge; that is, until the chain has gone far enough to wash out any
transitory phase that depends on where we start.

Several schemes for assessing convergence have been proposed. For exam-
ple, we could use multiple starting points and then use an ANOVA-type test
to compare variances within and across the multiple streams.
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The Metropolis Algorithm

For a distribution with density p, the Metropolis algorithm, introduced by
Metropolis et al. (1953) generates a random walk and performs an accep-
tance/rejection based on p evaluated at successive steps in the walk.

In the simplest version, the walk moves from the point yi to a candidate
point yi+1 = yi + s, where s is a realization from U(−a, a), and accepts yi+1

if
p(yi+1)
p(yi)

≥ u,

where u is an independent realization from U(0, 1).
This method is also called the “heat bath” method because of the context

in which it was introduced.
The random walk of Metropolis et al. is the basic algorithm of simulated

annealing, which is currently widely used in optimization problems.
If the range of the distribution is finite, the random walk is not allowed to

go outside of the range.

Example 3.4 Simulation of the von Mises Distribution with the
Metropolis Algorithm
Consider, for example, the von Mises distribution, with density,

p(x) =
1

2πI0(c)
ec cos(x), for − π ≤ x ≤ π,

where I0 is the modified Bessel function of the first kind and of order zero.
The von Mises distribution is an easy one to simulate by the Metropolis

algorithm. This distribution is often used by physicists in simulations of lattice
gauge and spin models, and the Metropolis method is widely used in these
simulations.

It is not necessary to know the normalizing constant, because it is can-
celed in the ratio. The fact that all we need is a nonnegative function that is
proportional to the density of interest is an important property of this method.

If c = 3, after a quick inspection of the amount of fluctuation in p, we may
choose a = 1. The R statements below implement the Metropolis algorithm
to generate n− 1 deviates from the von Mises distribution.

Notice the simplicity of the algorithm in the R code. We did not need to
determine a majorizing density, nor even evaluate the Bessel function that is
the normalizing constant for the von Mises density.

n <- 1000
x <- rep(0,n)
a <-1
c <-3
yi <-3
j <-0

A Companion for Mathematical Statistics c©2008 James E. Gentle



144 3 Bayesian Inference

i <- 2
while (i < n) {
i <- i + 1
yip1 <- yi + 2*a*runif(1)- 1
if (yip1 < pi & yip1 > - pi) {
if (exp(c*(cos(yip1)-cos(yi))) > runif(1)) yi <- yip1
else yi <- x[i-1]

x[i] <- yip1
}

}

The Metropolis method can be visualized as choosing a subsequence from
a sequence of realizations from a random walk with density gYi+1|Yi

in such a
way that the subsequence selected has density pX .

random walk yi yi+1 = yi+3 = yi+2 =
yi + si+1 yi+1 + si+2 yi+2 + si+3 · · ·

accept? no yes no yes · · ·
i.i.d. from pX xj xj+1 · · ·

A histogram is not affected by the sequence of the output in a large sample.
The Markov chain samplers generally require a “burn-in” period; that is,

a number of iterations before the stationary distribution is achieved.
In practice, the variates generated during the burn-in period are discarded.
The number of iterations needed varies with the distribution, and can be

quite large, sometimes several hundred.
The von Mises example is unusual; no burn-in is required. In general,

convergence is much quicker for univariate distributions with finite ranges
such as this one.

It is important to remember what convergence means; it does not mean
that the sequence is independent from the point of convergence forward. The
deviates are still from a Markov chain.

The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm uses a more general chain for the accep-
tance/rejection step.

To generate deviates from a distribution with density pX it uses deviates
from a Markov chain with density gYt+1|Yt

. The conditional density gYt+1|Yt
is

chosen so that it is easy to generate deviates from it.

0. Set k = 0.
1. Choose x(k) in the range of pX . (The choice can be arbitrary.)
2. Generate y from the density gYt+1|Yt

(y|x(k)).
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3. Set r:

r = pX(y)
gYt+1|Yt

(x(k)|y)
pX(x(k))gYt+1|Yt

(y|x(k))
4. If r ≥ 1, then

4.a. set x(k+1) = y;
otherwise

4.b. generate u from uniform(0,1) and
if u < r, then

4.b.i. set x(k+1) = y,
otherwise

4.b.ii. set x(k+1) = x(k).
5. If convergence has occurred, then

5.a. deliver x = x(k+1);
otherwise

5.b. set k = k + 1, and go to step 2.

Compare the Metropolis-Hastings algorithm with the basic acceptance/rejection
method.

The majorizing function in the Metropolis-Hastings algorithm is

gYt+1|Yt
(x|y)

pX(x) gYt+1|Yt
(y|x)

.

r is called the “Hastings ratio”, and step 4 is called the “Metropolis re-
jection”. The conditional density, gYt+1|Yt

(·|·) is called the “proposal density”
or the “candidate generating density”. Notice that because the majorizing
function contains pX as a factor, we only need to know pX to within a con-
stant of proportionality. As we have mentioned already, this is an important
characteristic of the Metropolis algorithms.

As with the acceptance/rejection methods with independent sequences,
the acceptance/rejection methods based on Markov chains apply immediately
to multivariate random variables.

We can see why this algorithm works by using the same method as we
used to analyze the acceptance/rejection method; that is, determine the CDF
and differentiate.

The CDF is the probability-weighted sum of the two components corre-
sponding to whether the chain moved or not. In the case in which the chain
does move, that is, in the case of acceptance, for the random variable Z whose
realization is y, we have

Pr(Z ≤ x) = Pr
(
Y ≤ x

∣∣U ≤ p(Y )
g(xi|Y )

p(xi)g(Y |xi)

)

=

∫ x

−∞
∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0 g(t|xi) ds dt
∫∞
−∞

∫ p(t)g(xi|t)/(p(xi)g(t|xi))

0
g(t|xi) ds dt

=
∫ x

−∞
pX(t) dt.
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Gibbs Sampling

An iterative method, somewhat similar to the use of marginals and condition-
als, can also be used to generate multivariate observations. It was first used
for a a Gibbs distribution (Boltzmann distribution), and so is called the Gibbs
method.

In the Gibbs method, after choosing a starting point, the components of
the d-vector variate are generated one at a time conditionally on all others.

If pX is the density of the d-variate random variable X , we use the condi-
tional densities pX1|X2,X3,··· ,Xd

, pX2|X1,X3,··· ,Xd
, and so on.

At each stage the conditional distribution uses the most recent values of
all the other components.

As with other MCMC methods, it may require a number of iterations
before the choice of the initial starting point is washed out.

Gibbs sampling is often useful in higher dimensions. It depends on the
convergence of a Markov chain to its stationary distribution, so a burn-in
period is required.

0. Set k = 0.
1. Choose x(k) ∈ S.
2. Generate x(k+1)

1 conditionally on x(k)
2 , x

(k)
3 , . . . , x

(k)
d ,

Generate x(k+1)
2 conditionally on x(k+1)

1 , x
(k)
3 , . . . , x

(k)
d ,

. . .
Generate x(k+1)

d−1 conditionally on x(k+1)
1 , x

(k+1)
2 , . . . , x

(k)
d ,

Generate x(k+1)
d conditionally on x(k+1)

1 , x
(k+1)
2 , . . . , x

(k+1)
d−1 .

3. If convergence has occurred, then
3.a. deliver x = x(k+1);

otherwise
3.b. set k = k + 1, and go to step 2.

Example 3.5 Gibbs Sampling to Generate Independent Normals
Consider Xt+1 normal with a mean of Xt and a variance of σ2.

We will generate an i.i.d. sample from a standard normal distribution; that
is, a normal with a mean of 0 and a variance of 1. In this example, the target
distribution is simpler than the proposal.

We start with a x0, chosen arbitrarily.
We take logs and cancel terms in the expression for r.
The following simple Matlab statements generate the sample.

x(1) = x0;

while i < n

i = i + 1;

yip1 = yi + sigma*randn;

lr2 = yi^2 - yip1^2;

if lr2 > 0
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yi = yip1;

else

u = rand;

if lr2 > log(u)*2

yi = yip1;

else

yi = x(i-1);

end

end

x(i) = yi;

end

plot (x)

There are several variations of the basic Metropolis-Hastings algorithm.
Two common related methods are Gibbs sampling and hit-and-run sampling.
Those methods are particularly useful in multivariate simulation.

Markov chain Monte Carlo has become one of the most important tools in
statistics in recent years. Its applications pervade Bayesian analysis, as well
as many Monte Carlo procedures in the frequentist approach to statistical
analysis.

Whenever a correlated sequence such as a Markov chain is used, variance
estimation must be performed with some care. In the more common cases
of positive autocorrelation, the ordinary variance estimators are negatively
biased. The method of batch means or some other method that attempts to
account for the autocorrelation should be used.

Convergence

Some of the most important issues in MCMC concern the rate of convergence,
that is, the length of the burn-in, and the frequency with which the chain
advances.

In many applications of simulation, such as studies of waiting times in
queues, there is more interest in transient behavior than in stationary behav-
ior.

This is usually not the case in use of MCMC methods. The stationary
distribution is the only thing of interest.

The issue of convergence is more difficult to address in multivariate distri-
butions. It is for multivariate distributions, however, that the MCMC method
is most useful.

This is because the Metropolis-Hastings algorithm does not require knowl-
edge of the normalizing constants, and the computation of a normalizing con-
stant may be more difficult for multivariate distributions.

Various diagnostics have been proposed to assess convergence. Most of
them use multiple chains in one way or another. Use of batch means from
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separate streams can be used to determine when the variance has stabilized.
A cusum plot on only one chain to help to identify convergence.

Various methods have been proposed to speed up the convergence.
Methods of assessing convergence is currently an area of active research.
The question of whether convergence has practically occurred in a finite

number of iterations is similar in the Gibbs method to the same question in
the Metropolis-Hastings method.

In either case, to determine that convergence has occurred is not a simple
problem.

Once a realization is delivered in the Gibbs method, that is, once con-
vergence has been deemed to have occurred, subsequent realizations can be
generated either by starting a new iteration with k = 0 in step 0, or by
continuing at step 1 with the current value of x(k).

If the chain is continued at the current value of x(k), we must remember
that the subsequent realizations are not independent.

Effects of Dependence

This affects variance estimates (second order sample moments), but not means
(first order moments).

In order to get variance estimates we may use means of batches of subse-
quences or use just every mth (for some m > 1) deviate in step 3. (The idea
is that this separation in the sequence will yield subsequences or a systematic
subsample with correlations nearer 0.)

If we just want estimates of means, however, it is best not to subsample the
sequence; that is, the variances of the estimates of means (first order sample
moments) using the full sequence is smaller than the variances of the estimates
of the same means using a systematic (or any other) subsample (so long as
the Markov chain is stationary.)

To see this, let x̄i be the mean of a systematic subsample of size n consisting
of every mth realization beginning with the ith realization of the converged
sequence. Now, we observe that

|Cov(x̄i, x̄j)| ≤ V(x̄l)

for any positive i, j, and l less than or equal to m. Hence if x̄ is the sample
mean of a full sequence of length nm, then

V(x̄) = V(x̄l)/m+
m∑

i6=j;i,j=1

Cov(x̄i, x̄j)/m2

≤ V(x̄l)/m+m(m− 1)V(x̄l)/m
= V(x̄l).

In the Gibbs method the components of the d-vector are changed system-
atically, one at a time. The method is sometimes called alternating conditional
sampling to reflect this systematic traversal of the components of the vector.
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Ordinary Monte Carlo and Iterative Monte Carlo

The general objective in Monte Carlo simulation is to calculate the expec-
tation of some function g of a random variable X . In ordinary Monte Carlo
simulation, the method relies on the fact that for independent, identically
distributed realizations X1, X2, . . . from the distribution P of X ,

1
n

n∑

i=1

g(Xi)→ Eg(X)

almost surely as n goes to infinity. This convergence is a simple conse-
quence of the law of large numbers.

In Monte Carlo simulation, the sample is simulated with a random num-
ber generator. When X is multivariate or a complicated stochastic process,
however, it may be difficult or impossible to simulate independent realizations.

A Hierarchical Bayesian Model

Following custom, we use brackets to denote densities; [X,Y ], [X |Y ], and [X ]
represent the joint, conditional, and marginal densities, respectively.

In a hierarchical Bayesian model, the joint distribution of the data and
parameters is

[X |θ1]× [θ1|θ2]× [θ2|θ3]× · · · × ×[θk−1|θk]× [θk]

The thing of interest is [θ1|X ].
The hierarchical structure implies

[θ1|X, θi,(i6=1)] = [θ1|X, θ2]
= [θi|θi−1, θi+1]
= [θk|θk−1]

Gibbs sampling can be used to estimate the marginal posterior densities.

Example 3.6 Gibbs Sampling Example from Gelfand and Smith,
JASA
The paper by Gelfand and Smith (1990) was very important in popularizing
the Gibbs method.

Consider an exchangeable Poisson model in which independent counts are
observed over differing periods of time.

The data are {(si, ti)}. Each yields a rate ri.
Assume [si|λi] = P(λiti).
Assume a gamma prior distribution on the λi’s with density

1
βαΓ(α)

λα−1
i e−λi/β
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Further, assume β has an inverse gamma distribution with density

1
βγ+1Γ(γ)

δγe−δ/β

Beginning with X = (s1, s2, . . . , sk), the conditional distribution of λi

given X, β, and λj(j 6=i) is merely the gamma with parameters α + sj and
β/(tj + 1), and the conditional distribution of β given X and the λi’s is an
inverse gamma with parameters γ + kα and

∑
λi + δ.

The various parameters (α, δ, γ) have interpretions that can be used to
select reasonable values.

The Gibbs sampling method would estimate the marginal density of λi by
generating λ(1)

i from the appropriate gamma distribution, i.e., with parame-
ters α+ si and β(0)/(ti + 1) for i = 1, . . . , k, and then generating β(1) for the
first iteration.

Continue this for k iterations.
Do it m times to have a density.

Miscellaneous Results and Comments

Markov chain Monte Carlo has special applications when dealing with distri-
butions that have densities known up to a constant of proportionality, that is
densities specified as follows. Let h be a nonnegative integrable function that
is not zero almost everywhere. Then h specifies a probability distribution, all
we need to do to get the density f is normalize it.

f(x) = h(x)/c

where

c =
∫
h(x)dµ(x)

The Hastings algorithm only uses h to simulate realizations from f , knowl-
edge of the integral c is not required.

In Bayesian inference, h is the likelihood times the prior. This is always
known, but the integral c is generally hard. MCMC permits easy simulations
of realizations from the posterior (no knowledge of c necessary).

In most cases where there is complex dependence in the data, there is no
simple probability model with c known, but it is easy to specify a model up
to a constant of proportionality using an h. These are just very complicated
exponential families.

Let t be a vector-valued statistic on the sample space and

h(x) = exp(t(x)Tθ)

Then these specify a family of densities
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fθ(x) = exp(t(x)Tθ)/c(θ).

In the expression
exp(t(x)Tθ)/c(θ),

c(θ) =
∫

exp(t(x)Tθ)dµ(x),

but in MCMC it does not need to be known.
This is just an exponential family with canonical statistic t(x) and canon-

ical parameter θ.
Using Markov chain Monte Carlo we can simulate realizations from any

distribution in the model, and using the simulations from any one distribution,
we can calculate maximum likelihood estimates, bootstrap estimates of their
sampling distribution and so forth.

There are also ways to get (randomized) significance tests with exact p-
values using Markov chain Monte Carlo.

The output of the sampler is a Markov chainX1, X2, . . . whose equilibrium
distribution is the distribution of interest, the one you want to sample from.

Averages with respect to that distribution are approximated by averages
over the chain.

3.4 Bayesian Testing

In statistical hypothesis testing, the basic problem is to decide whether or not
to reject a statement about the distribution of a random variable. The state-
ment must be expressible in terms of membership in a well-defined class. The
hypothesis can therefore be expressed by the statement that the distribution
of the random variable X is in the class PH = {Pθ : θ ∈ ΘH}. An hypothesis
of this form is called a statistical hypothesis.

The basic paradigm of statistical hypothesis testing was described in Sec-
tion 2.4.1, beginning on page 103.

We usually formulate the testing problem as one of deciding between two
statements:

H0 : θ ∈ Θ0

and
H1 : θ ∈ Θ1,

where Θ0 ∩Θ1 = ∅.
We do not treat H0 and H1 symmetrically; H0 is the hypothesis to be

tested and H1 is the alternative. This distinction is important in developing a
methodology of testing. We sometimes also refer toH0 as the “null hypothesis”
and to H1 as the “alternative hypothesis”.
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In the Bayesian framework, we are interested in the probability that H0 is
true. The prior distribution provides an a priori probability, and the posterior
distribution based on the data provides a posterior probability that H0 is true.
Clearly, we would choose to reject H0 when the probability that it is true is
small.

A First, Simple Example

Suppose we wish to test
H0 : P = P0

versus
H1 : P = P1,

and suppose that known probabilities p0 and p1 = 1− p0 can be assigned to
H0 and H1 prior to the experiment. We see

• The overall probability of an error resulting from the use of the test δ is

p0E0(δ(X)) + p1E1(1− δ(X)).

• The Bayes test that minimizes this probability is given by

δ(x) =





1 when p̂1(x) > kp̂0(x)

0 when p̂1(x) < kp̂0(x),

for k = p0/p1.
• The conditional probability of Hi given X = x, that is, the posterior

probability of Hi is
pip̂i(x)

p0p̂0(x) + p1p̂1(x)

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability.

Testing as an Estimation Problem

In the general setup above, we can define an indicator function IΘ0(θ). The
testing problem, as we have described it, is the problem of estimating IΘ0(θ).
Let us use a statistic S(X) as an estimator of IΘ0(θ). The estimand is in {0, 1},
and so S(X) should be in {0, 1}, or at least in [0, 1].

Notice the relationship of S(X) to δ(X). For the estimation approach using
S(X) to be equivalent to use of the test rule δ(X), it must be the case that

S(X) = 1⇔ δ(X) = 0 (i.e., don’t reject)

and
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S(X) = 0⇔ δ(X) = 1 (i.e., reject)

Following a decision-theoretic approach to the estimation problem, we de-
fine a loss function. In the classical framework of Neyman and Pearson, the
loss function is 0-1. Under this loss, using S(X) = s as the rule for the test
we have

L(θ, t) =
{

0 if s = IΘ0(θ)
1 otherwise.

The Bayes estimator of IΘ0(θ) is the function that minimizes the posterior
risk, EΘ|x(L(Θ, s)). The risk is just the posterior probability, so the Bayesian
solution using this loss is

S(x) =
{

1 if Pr(θ ∈ Θ0|x) > Pr(θ /∈ Θ0|x)
0 otherwise,

where Pr(·) is evaluated with respect to the posterior distribution PΘ|x.

The 0-1-c Loss Function

In a Bayesian approach to hypothesis testing using the test δ(X) ∈ {0, 1}, we
often formulate a loss function of the form

L(θ, d) =
{
cd for θ ∈ Θ0

bd for θ ∈ Θ1

where c1 > c0 and b0 > b1.
A common loss function has c0 = b1 = 0, b0 = 1, and c1 = c > 0.
This is called a 0-1-c loss function.
A Bayesian solution to hypothesis testing with a 0-1-c loss function is

fairly easy to determine. The posterior risk for choosing δ(X) = 1, that is, for
rejecting the hypothesis, is

cPr(Θ ∈ ΘH0 |X = x),

and the posterior risk for choosing δ(X) = 0 is

Pr(Θ ∈ ΘH1 |X = x),

hence the optimal decision is to choose δ(X) = 1 if

cPr(Θ ∈ ΘH0 |X = x) < Pr(Θ ∈ ΘH1 |X = x),

which is the same as

Pr(Θ ∈ ΘH0 |X = x) <
1

1 + c
.

In other words, the Bayesian approach says to reject the hypothesis if its
posterior probability is small. The Bayesian approach has a simpler interpre-
tation than the frequentist approach. It also makes more sense for other loss
functions.
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The Weighted 0-1 or a0-a1 Loss Function

Another approach to account for all possibilities and to penalize errors differ-
ently when the null hypothesis is true or false, is to define a weighted 0-1 loss
function. Using the estimator S(X) = s ∈ {0, 1}, as above, we define

L(θ, s) =





0 if s = IΘ0(θ)
a0 if s = 0 and θ ∈ Θ0

a1 if s = 1 and θ /∈ Θ0.

This is sometimes called a a0-a1 loss. The 0-1-c loss and the a0-a1 loss could
be defined either in terms of the test rule δ or the estimator S; I chose to do
one one way and the other another way just for illustration.

The Bayes estimator of IΘ0(θ) using this loss is

S(x) =
{

1 if Pr(θ ∈ Θ0|x) > a1
a0+a1

0 otherwise,

where again Pr(·) is evaluated with respect to the posterior distribution. To
see that this is the case, we write the posterior loss

∫

Θ

L(θ, s)dPΘ|x = a0Pr(θ ∈ Θ0|x)I{0}(s) + a1Pr(θ /∈ Θ0|x)I{1}(s),

and then minimize it.
Under a a0-a1 loss, the null hypothesis H0 is rejected whenever the pos-

terior probability of H0 is too small. The acceptance level, a1/(a0 + a1), is
determined by the specific values chosen in the loss function. The Bayes test,
which is the Bayes estimator of IΘ0(θ), depends only on a0/a1. The larger
a0/a1 is the smaller the posterior probability of H0 that allows for it to be
accepted. This is consistent with the interpretation that the larger a0/a1 is
the more important a wrong decision under H0 is relative to H1.

Examples

Let us consider two familiar easy pieces using a a0-a1 loss.

Example 3.7 Binomial with Uniform Prior
First, let X |π ∼ binomial(n, π) and assume a prior on Π of U(0, 1) (a special
case of the conjugate beta prior from Example 3.1). Suppose Θ0 = [0, 1/2].

The posterior probability that H0 is true is

(n+ 1)!
x!(n− x)!

∫ 1/2

0

πx(1− π)n−xdπ.

This is computed and then compared to the acceptance level. (Note that the
integral is a sum of fractions.)
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Example 3.8 Normal with Known Variance and Normal Prior on
Mean
For another familiar example, consider X |θ ∼ N(θ, σ2), with σ2 known, and
θ ∼ N(µ, τ2). We recall that Θ|x ∼ N(µ(x), ω2), where

µ(x) =
σ2µ+ τ2x

σ2 + τ2
and ω2 =

σ2τ2

σ2 + τ2
.

To test H0, we compute the posterior probability of H0. Suppose the null
hypothesis is H0 : θ < 0. Then

Pr(H0|x) = Pr
(
θ − µ(x)

ω
<
−µ(x)
ω

)

= Φ(−µ(x)/ω).

The decision depends on the a1/(a0 + a1) quantile of N(0, 1). Let za0,a1 be
this quantile; that is, Φ(za0,a1) = a1/(a0 + a1). The H0 is accepted if

−µ(x) > za0,a1ω.

Rewriting this, we see that the null hypothesis is rejected x is greater than

−σ
2

τ2
µ−

(
1 +

σ2

τ2

)
ωza0,a1 .

Notice a very interesting aspect of these tests. There is no predetermined
acceptance level. The decision is based simply on the posterior probability
that the null hypothesis is true.

A difficulty of the a0-a1 loss function, of course, is the choice of a0 and a1.
Ideally, we would like to choose these based on some kind of utility consider-
ations, but sometimes this takes considerable thought.

3.4.1 The Bayes Factor

Given a prior distribution PΘ , let p0 be the prior probability that H0 is true,
and p1 be the prior probability that H1 is true. The prior odds then is p0/p1.
Similarly, let p̂0 be the posterior probability that H0 is true given x, and p̂1

be the posterior probability that H1 is true, yielding the posterior odds p̂0/p̂1.
The posterior probability of the event can be related to the relative odds.

The posterior odds is
p̂0

p̂1
=
p0

p1

pX|θ(x|θ0)∫
pX|θ(x|θ)dPΘ

.

The term

BF(x) =
pX|θ(x|θ0)∫
pX|θ(x|θ)dPΘ

(3.2)
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is called the Bayes factor. The Bayes factor obviously also depends on the
prior pΘ(θ).

Rather than computing the posterior odds directly, we emphasize the
Bayes factor, which for any stated prior odds yields the posterior odds. The
Bayes factor is the posterior odds in favor of the hypothesis if p0 = 0.5.

Note that, for the simple hypothesis versus a simple alternative, the Bayes
factor simplifies to the likelihood ratio:

pX|θ(x|θ0)
pX|θ(x|θ1)

.

One way of looking at this likelihood ratio is to use MLEs under the two
hypotheses:

supΘ0
pX|θ(x|θ)

supΘ1
pX|θ(x|θ)

.

This approach, however, assigns Dirac masses at the MLEs, θ̂0 and θ̂1.
The Bayes factor is more properly viewed as a Bayesian likelihood ratio,

BF(x) =
p0

∫
Θ0
pX|θ(x|θ0)dθ

p1

∫
Θ1
pX|θ(x|θ1)dθ

,

and, from a decision-theoretic point of view, it is entirely equivalent to the
posterior probability of the null hypothesis. Under the a0-a1 loss function, H0

is accepted when
BF(x) >

a1

a0
/
p0

p1

From this, we see that the Bayesian approach effectively gives an equal
prior weight to the two hypotheses, p0 = p1 = 1/2 and then modifies the error
penalties as ãi = aipi, for i = 0, 1, or alternatively, incorporates the weighted
error penalties directly into the prior probabilities:

p̃0 =
a0p0

a0p0 + a1p1
p̃1 =

a1p1

a0p0 + a1p1
.

The ratios such as likelihood ratios and relative odds that are used in test-
ing carry the same information content if they are expressed as their recipro-
cals. These ratios can be thought of as evidence in favor of one hypothesis or
model versus another hypothesis or model. The ratio provides a comparison
of two alternatives, but there can be more than two alternatives under con-
sideration. Instead of just H0 and H1 we may contemplate Hi and Hj , and
follow the same steps using pi/pj . The Bayes factor then depends on i and
j, and of course whether we use the odds ratio pi/pj or pj/pi. We therefore
sometimes write the Bayes factor as BFij(x) where the subscript ij indicates
use of the ratio pi/pj . In this notation, the Bayes factor (3.2) would be written
as BF01(x).

A Companion for Mathematical Statistics c©2008 James E. Gentle



3.4 Bayesian Testing 157

Jeffreys (1961) suggested a subjective “scale” to judge the evidence of the
data in favor of or against H0. Kass and Raftery (1995) discussed Jeffreys’s
scale and other issues relating to the Bayes factor. They modified his original
scale (by combining two categories), and suggested

• if 0 < log10(BF10) < 0.5, the evidence against H0 is “poor”,
• if 0.5 ≤ log10(BF10) < 1, the evidence against H0 is “substantial”,
• if 1 ≤ log10(BF10) < 2, the evidence against H0 is “strong”, and
• if 2 ≤ log10(BF10), the evidence against H0 is “decisive”.

Note that the Bayes factor is the reciprocal of the one we first defined in
equation (3.2). While this scale makes some sense, the separations are of course
arbitrary, and the approach is not based on a decision theory foundation.
Given such a foundation, however, we still have the subjectivity inherent in
the choice of a0 and a1, or in the choice of a significance level.

Kass and Raftery (1995) also gave an interesting example illustrating the
Bayesian approach to testing of the “hot hand” hypothesis in basketball. They
formulate the null hypothesis (that players do not have a “hot hand”) as the
distribution of good shots by a given player, Yi, out of ni shots taken in game
i as binomial(ni, π), for games i = 1, . . . , g; that is, the probability for a given
player, the probability of making a shot is constant in all games (within some
reasonable period). A general alternative is H1 : Yi ∼ binomial(ni, πi). We
choose a flat U(0, 1) conjugate prior for the H0 model. For the H1 model, we
choose a conjugate prior beta(α, β) with α = ξ/ω and β = (1− ξ)/ω. Under
this prior, the prior expectation E(πi|ξ, ω) has an expected value of ξ, which
is distributed as U(0, 1) for fixed ω. The Bayes factor is is very complicated,
involving integrals that cannot be solved in closed form. Kass and Raftery use
this to motivate and to compare various methods of evaluating the integrals
that occur in Bayesian analysis. One simple method is Monte Carlo.

Often, however, the Bayes factor can be evaluated relatively easily for a
given prior, and then it can be used to investigate the sensitivity of the results
to the choice of the prior, by computing it for another prior.

From Jeffreys’s Bayesian viewpoint, the purpose of hypothesis testing is
to evaluate the evidence in favor of a particular scientific theory. Kass and
Raftery make the following points in the use of the Bayes factor in the hy-
pothesis testing problem:

• Bayes factors offer a straightforward way of evaluating evidence in favor
of a null hypothesis.

• Bayes factors provide a way of incorporating external information into the
evaluation of evidence about a hypothesis.

• Bayes factors are very general and do not require alternative models to be
nested.

• Several techniques are available for computing Bayes factors, including
asymptotic approximations that are easy to compute using the output
from standard packages that maximize likelihoods.
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• In “nonstandard” statistical models that do not satisfy common regularity
conditions, it can be technically simpler to calculate Bayes factors than to
derive non-Bayesian significance tests.

• The Schwarz criterion (or BIC) gives a rough approximation to the log-
arithm of the Bayes factor, which is easy to use and does not require
evaluation of prior distributions. The BIC is

BIC = −2 log(L(θm|x)) + k logn,

where θm is the value of the parameters that specify a given model, k is
the number of unknown or free elements in θm, and n is the sample size.
The relationship is

−BIC/2− log(BF)
log(BF)

→ 0,

as n→∞.
• When one is interested in estimation or prediction, Bayes factors may be

converted to weights to be attached to various models so that a composite
estimate or prediction may be obtained that takes account of structural
or model uncertainty.

• Algorithms have been proposed that allow model uncertainty to be taken
into account when the class of models initially considered is very large.

• Bayes factors are useful for guiding an evolutionary model-building process.
• It is important, and feasible, to assess the sensitivity of conclusions to the

prior distributions used.

The Bayes Risk Set

A risk set can be useful in analyzing Bayesian procedures when the parameter
space is finite. If

Θ = {θ1, . . . , θk},

the risk set for a procedure T is a set in IRk:

{(z1, ..., zk) : zi = R(θi, T )}.

In the case of 0-1 loss, the risk set is a subset of the unit hypercube;
specifically, for Θ = {0, 1}, it is a subset of the unit square: [0, 1]× [0, 1].

3.4.2 Bayesian Tests of a Simple Hypothesis

Although the test of a simple hypothesis versus a simple alternative, as in the
first example in this section, is easy to understand and helps to direct our
thinking about the testing problem, it is somewhat limited in application. In
a more common application, we may have a dense parameter space Θ, and
hypotheses that specify different subsets of Θ. A common situation is the
“one-sided” test for H0 : θ ≤ θ0 versus H1 : θ > θ0. We can usually develop
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meaningful approaches to this problem, perhaps based on some boundary
point ofH0. A “two-sided” test, in which, for example, the alternative specifies

Θl = {θ : θ < θ0} ∪Θu = {θ : θ > θ0},

presents more problems for the development of reasonable procedures.
In a Bayesian approach, when the parameter space Θ is dense, but either

hypothesis is simple, there is a particularly troubling situation. This is because
of the Bayesian interpretation of the problem as one in which a probability
is to be associated with a statement about a specific value of a continuous
random variable.

Consider the problem in a Bayesian approach to deal with an hypothesis of
the form H0 : Θ = θ0, that is Θ0 = {θ0}; versus the alternative H1 : Θ 6= θ0.

A reasonable prior for Θ with a continuous support would assign a prob-
ability of 0 to Θ = θ0.

One way of getting around this problem may be to modify the hypothesis
slightly so that the null is a small interval around θ0. This may make sense,
but it is not clear how to proceed.

Another approach is, as above, to assign a positive probability, say p0,
to the event Θ = θ0. Although it may not appear how to choose p0, just as
it would not be clear how to choose an interval around θ0, we can at least
proceed to simplify the problem following this approach. We can write the
joint density of X and Θ as

pX,Θ(x, θ) =
{
p0pX|θ(x|θ0) if θ = θ0,
(1− p0)pX|θ(x|θ) if θ 6= θ0.

There are a couple of ways of simplifying. Let us proceed by denoting the
prior density of Θ over Θ\θ0 as λ. We can write the marginal of the data (the
observable X) as

pX(x) = p0pX|θ(x|θ0) + (1− p0)
∫
pX|θ(x|θ)dλ(θ).

We can then write the posterior density of Θ as

pΘ|x(θ|x) =

{
p1 if θ = θ0,

(1− p1)
pX|θ(x|θ)

pX (x) if θ 6= θ0,

where

p1 =
p0pX|θ(x|θ0)

pX(x)
.

This is the posterior probability of the event Θ = θ0.
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3.4.3 Interpretations of Probability Statements in Statistical
Inference

In developing methods for hypothesis testing and for setting confidence re-
gions, we can assume a model Pθ for the state of nature and develop proce-
dures by consideration of probabilities of the form Pr(T (X) ◦ C(θ)|θ), where
T (X) is a statistic, C(θ) is some region determined by the true (unknown)
value of θ, and ◦ is some relationship. The forms of T (X) and C(θ) vary de-
pending on the statistical procedure. The procedure may be a test, in which
case we may have T (X) = 1 or 0, according to whether the hypothesis is re-
jected or not, or it may by a procedure to define a confidence region, in which
case T (X) is a set. For example, if θ is given to be in ΘH , and the procedure
T (X) is an α-level test of H , then Pr(T (X) = 1|θ ∈ ΘH) ≤ α. In a procedure
to define a confidence set, we may be able to say Pr(T (X) 3 θ) = 1− α.

These kinds of probability statements are somewhat awkward, and a per-
son without training in statistics may find them particularly difficult to in-
terpret. Instead of a statement of the form Pr(T (X)|θ), many people would
prefer a statement of the form Pr(Θ ∈ ΘH |X = x).

In order to make such a statement, however, we first must think of the
parameter as a random variable and then we must formulate a conditional
distribution for Θ, given X = x. The usual way is to use a model that has
several components: a marginal (prior) probability distribution for the un-
observable random variable Θ; a conditional probability distribution for the
observable random variable X , given Θ = θ; and other assumptions about the
distributions. We denote the prior density of Θ as pΘ, and the conditional den-
sity of X as pX|θ. The procedure is to determine the conditional (posterior)
distribution of Θ, given X = x.

IfM is the model or hypothesis andD is the data, the difference is between
Pr(D|M) (a “frequentist” interpretation), and Pr(M |D) (a “Bayesian” inter-
pretation). People who support the latter interpretation will sometimes refer
to the “prosecutor’s fallacy” in which Pr(E|H) is confused with Pr(H |E),
where E is some evidence and H is some hypothesis.

Some Bayesians do not think hypothesis testing is an appropriate statisti-
cal procedure. Because of the widespread role of hypothesis testing in science
and in regulatory activities, however, statistical testing procedures must be
made available.

3.4.4 Least Favorable Prior Distributions

In testing composite hypotheses, we often ask what is the “worst case” within
the hypothesis. In a sense, this is the attempt to reduce the composite hypoth-
esis to a simple hypothesis. This is the idea behind a p-value. In a Bayesian
testing problem, this corresponds to a bound on the posterior probability.

Again, consider the problem of testing H0 : Θ = θ0 versus the alternative
H1 : Θ 6= θ0.
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3.4.5 Lindley’s Paradox

Consider a null hypothesis H0, the result of an experiment x, and a prior
distribution that favors H0 weakly. Lindley’s paradox occurs when the result
x is significant by a frequentist test, indicating sufficient evidence to reject H0

at a given level, but the posterior probability of H0 given x is high, indicating
strong evidence that H0 is in fact true.

This can happen at the same time when the prior distribution is the sum
of a sharp peak at H0 with probability p and a broad distribution with the
rest of the probability 1− p. It is a result of the prior having a sharp feature
at H0 and no sharp features anywhere else.

Consider the problem of testing **********************************************************

3.5 Bayesian Confidence Sets

Statements about Probabilities

In developing methods for setting confidence regions, we have assumed a model
Pθ for the state of nature and have developed procedures by consideration of
probabilities of the form Pr(T (X) ◦ S(θ)|θ), where T (X) is a statistic, S(θ)
is some region determined by the true (unknown) value of θ, and ◦ is some
relationship. The forms of T (X) and S(θ) vary depending on the statistical
procedure. The procedure may by a procedure to define a confidence region,
in which case T (X) is a set. For example, in a procedure to define a confidence
set, we may be able to say Pr(T (X) 3 θ) = 1− α.

These kinds of probability statements are somewhat awkward, and a per-
son without training in statistics may find them particularly difficult to in-
terpret. Instead of a statement of the form Pr(T (X)|θ), many people would
prefer a statement of the form Pr(Θ ∈ ΘH |X = x).

The standard terminology for a Bayesian analogue of a confidence set is
credible set.

IfM is the model or hypothesis andD is the data, the difference is between

Pr(D|M)

(a “frequentist” interpretation), and

Pr(M |D)

(a “Bayesian” interpretation).
In order to make such a statement, however, we first must think of the

parameter as a random variable and then we must formulate a conditional
distribution for Θ, given X = x.
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3.5.1 Credible Regions

In a Bayesian setup, we define a random variable Θ that corresponds to the
parameter of interest, and the usual steps in a Bayesian analysis allows us
to compute Pr(Θ ∈ ΘH0 |X = x). The problem in setting a confidence region
is an inverse problem; that is, for a given α, we determine Cα such that
Pr(Θ ∈ Cα|X = x) = 1 − α. Of course there may be many sets with this
property. We need some additional condition(s).

In the frequentist approach, we add the property that the region be the
smallest possible. “Smallest” means with respect to some simple measure such
as the usual Lebesgue measure; in the one-dimensional continuous case, we
seek the shortest interval. In the Bayesian approach, we so something similar,
except we use the posterior density as a measure.

The mechanics of determining credible regions begin with the standard
Bayesian steps that yield the conditional distribution of the parameter given
the observable random variable. If the density exists, we denote it as pΘ|x.
At this point, we seek regions of θ in which pΘ|x(θ|x) is large. In general, the
problem may be somewhat complicated, but in many situations of interest it is
relatively straightforward. Just as in the frequentist approach, the identifica-
tion of the region often depends on pivotal values, or pivotal functions. (Recall
that a function f(T, θ) is said to be a pivotal function if its distribution does
not depend on any unknown parameters.)

It is often straightforward to determine one with posterior probability
content of 1− α.

3.5.2 Highest Posterior Density Credible Regions

If the posterior density is pΘ|x(θ|x), we determine a number c such that the
set

Cα(x) = {θ : pΘ|x(θ|x) ≥ cα} (3.3)

is such that Pr(Θ ∈ Cα|X = x) = 1− α. Such a region is called a level 1− α
highest posterior density or HPD credible set.

We may impose other conditions. For example, in a one-dimensional con-
tinuous parameter problem, we may require that one endpoint of the interval
be infinite (that is, we may seek a one-sided confidence interval).

An HPD region can be disjoint if the posterior is multimodal.
If the posterior is symmetric, all HPD regions will be symmetric about x.
For a simple example, consider a N(0, 1) prior distribution on Θ and a

N(θ, 1) distribution on the observable. The posterior given X = x is N(x, 1).
All HPD regions will be symmetric about x. In the case of a symmetric density,
the HPD is the same as the centered equal-tail credible region; that is, the
one with equal probabilities outside of the credible region. In that case, it is
straightforward to determine one with posterior probability content of 1− α.
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3.5.3 Decision-Theoretic Approach

We can also use a specified loss function to approach the problem of setting
a confidence region.

We choose a region so as to minimize the expected posterior loss.
For example, to form a two-sided interval in a one-dimensional continuous

parameter problem, a reasonable loss function may be

L(θ, [c1, c2]) =




k1(c1 − θ) if θ < c1,
0 if c1 ≤ θ ≤ c2,
k2(θ − c2) if θ > c2.

This loss function also leads to the interval between two quantiles of the
posterior distribution.

It may not be HPD, and it may not be symmetric about some pivot quan-
tity even if the posterior is symmetric.

3.5.4 Other Optimality Considerations

We may impose other conditions. For example, in a one-dimensional continu-
ous parameter problem, we may require that one endpoint of the interval be
infinite (that is, we may seek a one-sided confidence interval).

Alternatively, we may use the more fundamental concept of a loss function,
and determine a credible set to minimize the expected loss.

Example 3.9 Credible Regions for the Binomial Parameter with a
Beta Prior
Consider the problem of estimating π in a binomial(π, n) distribution with a
beta(α, β) prior distribution, as in Example 3.2 on page 136.

Suppose we choose the hyperparameters in the beta prior as α = 3 and
β = 5. The prior, that is, the marginal distribution of Π , is as shown in
Figure 3.1 and if n is 10 and we take one observation, x = 2 we have the
conditional distribution of Π , as a beta with parameters x + α = 5 and
n− x+ β = 13, as shown in Figure 3.2.

Now, given x = 2, and the original beta(3,5) prior, let’s find an equal-tail
95% credible region. Here’s some R code:

a<-3
b<-5
n<-10
x<-2
alpha<-0.05
lower<-qbeta(alpha/2,x+a,n-x+b)
upper<-qbeta(1-alpha/2,x+a,n-x+b)
pi<-seq(0,1,0.01)
plot(pi,dbeta(pi,x+a,n-x+b),type=’l’,
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main="95\% Credible Region with x=2",
ylab="Posterior",xlab=expression(pi))

lines(c(lower,lower),c(0,dbeta(lower,x+a,n-x+b)))
lines(c(upper,upper),c(0,dbeta(upper,x+a,n-x+b)))
lines(c(0,1),c(0,0))

We get the credible region shown in Figure 3.7. The probability in each
tail is 0.025.
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Fig. 3.7. 95% Credible Region after Observing x = 2

Because the posterior density is not symmetric, it is not an easy matter
to get the HPD credible region.

The first question is whether the credible region is an interval. This de-
pends on whether the posterior is unimodal. As we have already seen in Sec-
tion 3.1, the posterior in this case is unimodal if n > 0, and so the credible
region is indeed an interval.

We can determine the region iteratively by starting with the equal-tail
credible region. At each step in the iteration we have a candidate lower bound
and upper bound. We determine which one has the higher value of the density,
and then shift the interval in that direction. We continue this process, keeping
the total probability constant at each step. Doing this we get the credible
region shown in Figure 3.8. The probability in the lower tail is 0.014 and that
in the upper tail is 0.036. The density is 0.642 at each endpoint; that is, in
equation (3.3), cα = 0.642.
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Fig. 3.8. HPD 95% Credible Region after Observing x = 2

Here’s the R code that yielded the HPD:

a<-3
b<-5
n<-10
x<-2
alpha<-0.05
# start by determining the equal-tail CR, using the posterior
lower<-qbeta(alpha/2,x+a,n-x+b)
upper<-qbeta(1-alpha/2,x+a,n-x+b)
# set a tolerance for convergence
tol <- 0.005 # to get the density values to agree to 3 decimal places
a10 <- 0
a20 <- 0
a1 <- alpha/2
a2 <- 1-alpha/2
adj <- a1
d <- 1
while (abs(d)>tol){
# determine difference in the density at the two candidate points
d <- dbeta(lower,x+a,n-x+b)-dbeta(upper,x+a,n-x+b)
# halve the adjustment in each iteration
adj <- adj/2
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# if density at lower boundary is higher, shift interval to the left
s <- 1
if(d>0) s <- -1
a1 <- a1 + s*adj
a2 <- a2 + s*adj
lower<-qbeta(a1,x+a,n-x+b)
upper<-qbeta(a2,x+a,n-x+b)
}

Notes

Berger (1985) and Robert (2001) provide extensive coverage of statistical in-
ference from a Bayesian perspective. Both of these books compare the “fre-
quentist” and Bayesian approaches and argue that the Bayesian paradigm
is more solidly grounded. Many of the ideas in the Bayesian approach derive
from Jeffreys (1961) book on probability, which emphasized a subjective view.

Ghosh and Sen (1991) have considered Pitman closeness in the context of
a posterior distribution, and defined posterior Pitman closeness in terms of
probabilities evaluated with respect to the posterior distribution. Interestingly,
the posterior Pitman closeness is transitive, while as we have seen on page 72,
Pitman closeness does not have the transitive property.

Bayesian methods for sampling from finite populations are discussed in
Ghosh and Meeden (1998).

***** stuff to add:
improper priors
pseudo-Bayes factors
training sample
arithmetic intrinsic Bayes factor
geometric intrinsic Bayes factor
median intrinsic Bayes factor

Exercises in Shao

• For practice and discussion
4.2(a)(b), 4.13, 4.14, 4.15, 4.19(b), 4.27, 4.30
(Solutions in Shao, 2005)

• To turn in
4.1(a)(b), 4.17, 4.18, 4.31, 4.32(a), 4.38(a)(b), 6.106, 6.107, 7.28, 7.29, 7.40
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4

Unbiased Point Estimation
(Shao Ch 3, Sec 4.5; TPE2 Ch 2)

In a decision-theoretic approach to statistical inference, we seek a method that
minimizes the risk no matter what is the true state of nature. In a problem of
point estimation, for example, we seek an estimator T (X) which for a given
loss function L(g(θ), T (X)) yields a minimum of Eθ(L(g(θ), T (X))).

For some specific value of θ, say θ1, one particular estimator, say T1, may
have the smallest expected loss, while for another value of θ, say θ2, another
estimator, say T2, may a smaller expected loss.

What we would like is an estimator with least expected loss no matter
what is the value of θ; that is, we would like an estimator with uniformly
minimum risk. Because the risk depends on the value of θ, however, we see that
we cannot devise such an estimator. The optimal estimator would somehow
involve θ. We would prefer a procedure that does not depend on the unknown
quantity we are trying to estimate.

4.1 Uniformly Minimum Variance Unbiased Estimation

A property of a statistic that relates to a parameter, but does not depend on
the value of the parameter, is unbiasedness. This leads us to require that the
estimator of a given estimand, g(θ), be unbiased with respect to θ; that is,

Eθ(T (X)) = g(θ) ∀ θ ∈ Θ.

The requirement of unbiasedness cannot always be met. An estimand for
which there is an unbiased estimator is said to be U-estimable. Remember
unbiasedness refers to the entire parameter space. Consider, for example, the
problem of estimating 1/π in binomial(n, π) for π ∈ (0, 1). Suppose T (X) is
an unbiased estimator of 1/π. Then

n∑

x=0

T (x)
(
n

x

)
πx(1− π)n−x = 1/π.
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Now as π → 0, the left side tends to T (0), which is finite, but the right
side tends to ∞; hence, 1/π is not U-estimable. If, 1/π were U-estimable, the
equation above would say that some polynomial in π is equal to 1/π for all
π ∈ (0, 1), and that clearly cannot be.

Another related example, but one that corresponds to a common parame-
ter, is an estimator of the odds, π/(1−π). We see that no unbiased estimator
exists, for the same reason as in the previous example.

4.1.1 Unbiasedness and Squared-Error Loss

A squared-error loss function is particularly nice for an unbiased estimator,
because in that case the expected loss is just the variance; that is, an unbi-
ased estimator with minimum risk is an unbiased estimator with minimum
variance.

If the unbiased estimator has minimum variance among all unbiased esti-
mators within the parameter space, we say that such an estimator is a uni-
formly (for all values of θ) minimum variance unbiased estimator, that is, a
UMVUE. (An unbiased estimator that has minimum variance among all un-
biased estimators within a subspace of the parameter space is called a locally
minimum variance unbiased estimator, or LMVUE.)

UMVU is a special case of uniform minimum risk (UMRU), which gener-
ally only applies to convex loss functions. In general, no UMRUE exists for
bounded loss functions. Such loss functions cannot be (strictly) convex.

Uniformity (the first “U”) means the MVU property is independent of the
estimand. “Unbiasedness” is itself a uniform property, because it is defined in
terms of an expectation for any distribution in the given family.

UMVU is closely related to complete sufficiency, which means that it is
related to exponential families.

How to find an UMVUE

We generally find an UMVUE by beginning with a “good” estimator and
manipulating it to make it UMVUE. It might be unbiased to begin with, and
we reduce its variance while keeping it unbiased. It might not be unbiased to
begin with but it might have some other desirable property, and we manipulate
it to be unbiased.

One of the most useful facts is the Lehmann-Scheffé theorem, which says
that if there is a complete sufficient statistic T for θ, and if g(θ) is U-estimable,
then there is a unique UMVUE of g(θ) of the form h(T ), where h is a
Borel function. (Notice that this follows from the Rao-Blackwell theorem.
The uniqueness comes from the completeness, and of course, means unique
a.e.) This fact leads to two methods:

• Find UMVU directly by finding h(T ) such that Eθ(h(T )) = g(θ).
Example (Lehmann):
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Given random sample of size n from Bernoulli(π). Want to estimate g(π) =
π(1− π). T =

∑
Xi is complete sufficient. The unbiasedness condition is

n∑

t=0

(
n

x

)
h(t)πt(1− π)n−t = π(1− π).

Rewriting this in terms of the odds ρ = π/(1 − π), we have, for all ρ ∈
(0,∞),

n∑

t=0

(
n

x

)
h(t)ρt = ρ(1 + ρ)n−2

=
n−1∑

t=1

(
n− 2
x− 1

)
ρt.

Now since for each t, the coefficient of ρt must be the same on both sides
of the equation, we have

h(t) =
t(n− t)
n(n− 1)

.

Also see examples 3.1 and 3.2 in Shao.
• If T0 is unbiased, find UMVU as h(T ) = Eθ(T0(X)|T ). (This process is

sometimes called “Rao-Blackwellization”.)
See example 3.3 in Shao.

An important property of unbiased estimators is the following.
If T0(X) is an unbiased estimator of g(θ), all unbiased estimators of g(θ)
belong to an equivalence class defined as {T0(X)−U(X)}, where Eθ(U(X)) =
0.

Unbiased estimators of 0 play a useful role in UMVUE problems.
We also see that useful estimators must have finite second moment, oth-

erwise, we cannot minimize a variance by combining the estimators.
This leads to two methods if we have U such that Eθ(U) = 0 and Eθ(U2) <

∞.

• Find UMVU by finding U to minimize E((T0 − U)2).
• If T is unbiased and has finite second moment, it is UMVU iff E(TU) = 0
∀θ ∈ Θ and ∀U 3 E(U) = 0 and E(U2) < ∞. (This is Theorem 3.2(i) in
Shao.)

Theorem 3.2(ii) in Shao is similar to Theorem 3.2(i), but applies to func-
tions of a sufficient statistic, T̃ .

Regularity Conditions

“Regularity conditions” apply to a family of distributions, P = {Pθ; θ ∈ Θ},
that have densities pθ. There are generally three conditions that together are
called the regularity conditions:
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• The parameter space Θ is an open interval (in one dimension, and a cross
product of open intervals in multidimensions).

• The support is independent of θ; that is, all Pθ have a common support.
• For any x in the support and θ ∈ Θ, ∂pθ(x)/∂θ exists and is finite.

The latter two conditions ensure that the operations of integration and dif-
ferentiation can be interchanged.

These three conditions play a major role in UMVUE. Fisher information
is so important in minimum variance considerations, that these are sometimes
called the Fisher information or FI regularity conditions.

4.1.2 Fisher Information

A fundamental question is how much information does a realization of the
random variable X contain about the scalar parameter θ.

For a random variable X with PDF p(x; θ), we define the “information”
(or “Fisher information”) that X contains about θ as

I(θ) = Eθ

((
∂ log p(X ; θ)

∂θ

)(
∂ log p(X ; θ)

∂θ

)T
)
.

(Why does this definition make sense?) This is called Fisher information.
(Another type of information is Shannon information, which for an event is
the negative of the log of the probability of the event.)

Our information comes through the estimator T (X). We are interested in
the maximum information we can get.

Information is larger when there is larger relative variation in the density
as the parameter changes, but the information available from an estimator is
less when the estimator exhibits large variation (i.e., has large variance), so
we want smaller variance.

There are several simple facts to know about log p(X ; θ):

E
(
∂ log(p(X, θ))

∂θ

)
=
∫

1
p(x, θ)

∂p(x, θ)
∂θ

p(x, θ)dx

=
∂

∂θ

∫
p(x, θ)dx

= 0;

therefore, the expectation in the information definition is also the variance:

E

((
∂ log p(X ; θ)

∂θ

)(
∂ log p(X ; θ)

∂θ

)T
)

= V
(
∂ log(p(X, θ))

∂θ

)
.

We also have a relationship with the second derivative:
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E

((
∂ log p(X ; θ)

∂θ

)(
∂ log p(X ; θ)

∂θ

)T
)

= −E
(
∂2 log(p(X, θ))

∂θ2

)
.

Consider the N(µ, σ2) distribution with θ = (µ, σ) (which is simpler than
for θ = (µ, σ2)):

log p(µ,σ)(x) = c− log(σ) − (x− µ)2/(2σ2).

We have
∂

∂µ
log p(µ,σ)(x) =

x− µ
σ2

and
∂

∂σ
log p(µ,σ)(x) = − 1

σ
+

(x− µ)2

σ3
,

so

I(θ) = Eθ

((
∂ log p(X ; θ)

∂θ

)(
∂ log p(X ; θ)

∂θ

)T
)

= E(µ,σ2)






(X−µ)2

(σ2)2
X−µ

σ2

(
− 1

σ + (x−µ)2

σ3

)

x−µ
σ2

(
− 1

σ + (X−µ)2

σ3

)
+
(
− 1

σ + (X−µ)2

σ3

)2






=
[

1
σ2 0
0 2

σ2

]
.

Notice that the Fisher information matrix is dependent on the parametriza-
tion. The parametrization of the normal distribution in either the canonical
exponential form or even θ = (µ, σ2) would result in a different Fisher infor-
mation matrix.

This parametrization of the normal is rather unusual among common mul-
tiparameter distributions in that the information matrix is diagonal.

Consider the general canonical exponential form for a distribution in the
exponential class:

pθ(x) = exp
(
(ηTT (x)− ζ(η)

)
h(x)

(See page 62).) If µ(θ) is the mean-value parameter (see equation (1.100)),
then

I(θ) = V −1,

where
V = V(T (X)).

***************** prove this
The Fisher information for the two parameters θ = (µ, σ) in a location-

scale family with Lebesgue PDF
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1
σ
f

(
x− µ
σ

)

has a particularly simple form:

I(θ) =
n

σ2



∫ (f ′(x)

f(x)

)2

f(x)dx
∫
x
(

f ′(x)
f(x)

)2

f(x)dx
∫
x
(

f ′(x)
f(x)

)2

f(x)dx)
∫ (xf ′(x)

f(x) + 1
)2

f(x)dx


 .

The prime on f ′(x) indicates differentiation with respect to x of course. (The
information matrix is defined in terms of differentiation with respect to the
parameters followed by an expectation.)

Another expression for the information matrix for a location-scale family
is

I(θ) =
n

σ2




∫ (f ′(x))2

f(x) dx
∫ f ′(x)(xf ′(x)+f(x))

f(x) dx
∫ f ′(x)(xf ′(x)+f(x))

f(x) dx
∫ (xf ′(x)+f(x))2

f(x) dx


 .

This is given in a slightly different form in Example 3.9 of Shao, which is
Exercise 3.34, which is solved in his Solutions, using the form above, which is
a more straightforward expression from the derivation that begins by defining
the function g(µ, σ, x) = log(f((x − µ)/σ)/σ), and the proceeding with the
definition of the information matrix.

Also we can see that in the location-scale family, if it is symmetric about
the origin (that is about µ), the covariance term is 0.

Consider the gamma(α, β) distribution. We have for x > 0

log p(α,β)(x) = − log(Γ(α)) − α log(β) + (α− 1) log(x)− x/β.

This yields the Fisher information matrix

I(θ) =

[
ψ′(α) 1

β
1
β

α2

β2

]
,

where ψ(α) is the digamma function, d log(Γ(α))/dα, and ψ′(α) is the
trigamma function, dψ(α)/dα.

In the natural parameters, α−1 and 1/β, obviously the Fisher information
would be different. (Remember, derivatives are involved, so we cannot just
substitute the transformed parameters in the information matrix.)

You should have in your repertoire of easy pieces the problem of working
out the information matrix for θ = (µ, σ) in the N(µ, σ2) distribution using
all three methods; that is, (1) the expectation of the product of first derivatives
with respect to the parameters, (2) the expectation of the second derivatives
with respect to the parameters, and (3) the integrals of the derivatives with
respect to the variable (which, in the first form above, is an expectation).
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4.1.3 Lower Bounds on the Variance of Unbiased Estimators

The Information Inequality (CRLB) for Unbiased Estimators

How small can we get? For an unbiased estimator T of g(θ) in a family of
densities satisfying the regularity conditions and such that T has a finite
second moment, we have the matrix relationship

V(T (X)) �
(
∂

∂θ
g(θ)

)T

(I(θ))−1 ∂

∂θ
g(θ),

where we assume the existence of all quantities in the expression.
Note the meaning of this relationship in the multiparameter case: it says

that the matrix

V(T (X))−
(
∂

∂θ
g(θ)

)T

(I(θ))−1 ∂

∂θ
g(θ)

is nonnegative definite. (The zero matrix is nonnegative definite.)
This is called the information or the Cramér-Rao lower bound (CRLB).

The CRLB results from the covariance inequality. The proof of the CRLB is
an “easy piece” that every student should be able to provide quickly.

Consider a random sample X1, . . . , Xn, n > 1, from the N(µ, σ2) distri-
bution. In this case, let’s use the parametrization θ = (µ, σ2). The joint log
density is

log p(µ,σ)(x) = c− n

2
log(σ2)−

∑

i

(xi − µ)2/(2σ2).

The information matrix is diagonal, so the inverse of the information matrix
is particularly simple:

I(θ)−1 =

[
σ2

n 0
0 σ4

2(n−1)

]
.

For the simple case of g(θ) = (µ, σ2), we have the unbiased estimator, T (X) =
(X,

∑n
i=1(Xi −X)2/(n− 1)), and

V(T (X)) =

[
σ2

n 0
0 σ4

2(n−1)

]
,

which is the same as the inverse of the information matrix. The estimators
are Fisher efficient.

A more general information inequality (that is, without reference to unbi-
asedness) is

V(T (X)) �
(
∂

∂θ
E(T (θ))

)T

(I(θ))−1 ∂

∂θ
E(T (θ)).
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It is important to know in what situations an unbiased estimator can
achieve the CRLB. Notice this would depend on both (p(X, θ)) and g(θ).
The necessary and sufficient condition that an estimator T of g(θ) attain the
CRLB is that (T − g(θ)) be proportional to ∂ log(p(X, θ))/∂θ a.e.; that is, for
some a that does not depend on X ,

∂ log(p(X, θ))
∂θ

= a(θ)(T − g(θ)) a.e.

For example, there are unbiased estimators of the mean in the normal, Pois-
son, and binomial families that attain the CRLB. There is no unbiased esti-
mator of θ that attains the CRLB in the family of distributions with densities
proportional to (1 + (x− θ)2)−1 (this is the Cauchy family).

If the CRLB is attained for an estimator of g(θ), it cannot be attained
for any other (independent) function of θ. For example, there is no unbiased
estimator of µ2 in the normal distribution that achieves the CRLB.

If the CRLB is not sharp, that is, if it cannot be attained, there may be
other (larger) bounds, for example the Bhattacharyya bound. These sharper
bounds are usually based on higher-order derivatives.

4.2 U Statistics

In estimation problems, as we have seen, it is often fruitful to represent the
estimand as some functional Υ of the CDF, P . The mean, for example, if it
exists is

Υ (P ) =
∫
x dP. (4.1)

Given a random sample X1, . . . , Xn, we can form a plug-in estimator of Υ (P )
by applying the functional to the ECDF.

In more complicated cases, the property of interest may be the quantile
associated with π, that is, the unique value yπ defined by

Ξπ(P ) = inf
y
{y : P (y) ≥ π}. (4.2)

There is a basic difference in the functionals in equations (4.1) and (4.2).
The first is an expected value, E(Xi) for each i. The second functional, how-
ever, cannot be written as an expectation. (Bickel and Lehmann, 1969, showed
this.)

In the following, we will consider the class of statistical functions that can
be written as an expectation of a function h of some subsample, Xi1 , . . . , Xim ,
where i1, . . . , im are distinct elements of {1, . . . , n}:

θ = Θ(P )
= E(h(Xi1 , . . . , Xim)). (4.3)
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Such θs are called expectation functionals. In the case of Υ , h is the identity
and m = 1.

Expectation functionals that relate to some parameter of interest are of-
ten easy to define. The simplest is just E(h(Xi)). The utility of expectation
functionals lies in the ease of working with them coupled with some useful
general properties.

Note that without loss of generality we can assume that h is symmetric
in its arguments because the Xis are i.i.d., and so even if h is not symmetric,
any permutation (i1, . . . , im) of the indexes has the same expectation, so we
could form a function that is symmetric in the arguments and has the same
expectation:

h̄(X1, . . . , Xm) =
1
m!

∑

all permutations
h(Xi1 , . . . , Xim).

Because of this, we will just need to consider h evaluated over the possible
combinations of m items from the sample of size n. Furthermore, because the
Xij are i.i.d., the properties of h(Xi1 , . . . , Xim) are the same as the properties
of h(X1, . . . , Xm).

Now consider the estimation of an expectation functional θ, given a random
sample X1, . . . , Xn, where n ≥ m.

Clearly h(X1, . . . , Xm) is an unbiased estimator of θ, and so is h(Xi1 , . . . , Xim)
for any m-tuple, 1 ≤ i1 < · · · < im ≤ n; hence, we have that

U =
1(
n
m

)
∑

all combinations
h(Xi1 , . . . , Xim) (4.4)

is unbiased for θ.
A statistic of this form is called a U-statistic. The U-statistic is a function

of all n items in the sample. The function h, which is called the kernel of the
U-statistic is a function of m arguments. The number of arguments of the
kernel is called the order of the kernel. We also refer to the order of the kernel
as the order of the U-statistic.

In the simplest U-statistic, the kernel is of order 1 and h is the identity,
h(xi) = xi. This is just the sample mean, which we can immediately generalize
by defining hr(xi) = xr

i , yielding the first order U-statistic

U(X1, . . . , Xn) =
1
n

n∑

i=1

Xr
i ,

the sample rth moment.
Another simple U-statistic has the kernel of order 2

h(x1, x2) =
1
2
(x1 − x2)2,
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and is

U(X1, . . . , Xn) =
2

n(n− 1)

n∑

i<j

h(Xi, Xj). (4.5)

This U-statistic is the sample variance S2, which is unbiased for the population
variance if it exists.

The quantile problem is related to an inverse problem in which the prop-
erty of interest is the π; that is, given a value a, estimate P (a). We can write
an expectation functional and arrive at the U-statistic

U(X1, . . . , Xn) =
1
n

n∑

i=1

I(−∞,a](Xi)

= Pn(a),

where Pn is the ECDF.
Occasionally, the kernel will include some argument computed from the

full sample; that is, an mth order kernel involves more than m items from the
sample. An example of such a kernel is h(Xi, X) = (Xi−X)2. The U-statistic
with this kernel is

∑
(Xi−X)2/n = (n−1)S2/n. If the population mean is µ,

the expected value of (Xi − µ)2 is the population variance, say σ2, so at first
glance, we might think that the expected value of this kernel is σ2. Because
Xi is included in X , however, we have

E
(
h(Xi, X)

)
= E





(n− 1)Xi/n−

∑

j 6=i

Xj/n




2



= E


(n− 1)2X2

i /n
2 − 2(n− 1)Xi

∑

j 6=i

Xj/n
2

+
∑

j 6=k 6=i6=j

XjXk/n
2 +

∑

j 6=i

X2
j /n

2




= (n− 1)2µ2/n2 + (n− 1)2σ2/n2 − 2(n− 1)(n− 1)µ2/n2

+(n− 1)(n− 2)µ2/n2 + (n− 1)µ2/n2 + (n− 1)σ2/n2

=
n− 1
n

σ2.

(We would, of course, expect this expectation to be less than σ2, because the
expectation of (Xi −µ)2, which does not have (n− 1)Xi/n subtracted out, is
σ2.)

If instead of the kernel h above, we used the kernel

g(Xi, X) =
n

n− 1
(Xi −X)2,
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we would have an expectation functional of interest; that is, one such that
E(g(X1, . . . , Xm)) is something of interest, namely σ2.

A familiar second order U-statistic is Gini’s mean difference, in which
h(x1, x2) = |x2 − x1|, for n ≥ 2,

U =
1(
n
2

)
∑

i<j

|Xj −Xi|. (4.6)

Another common second order U-statistic is the one-sample Wilcoxon sta-
tistic, in which h(x1, x2) = I(−∞,0](x1 + x2), for n ≥ 2,

U =
1(
n
2

)
∑

i<j

I(−∞,0](Xi +Xj). (4.7)

This is an unbiased estimator of Pr(X1 +X2 ≤ 0).
We can generalize U-statistics in an obvious way to independent random

samples from more than one population. We do not require that the number
of elements used as arguments to the kernel be the same; hence, the order of
the kernel is a vector whose number of elements is the same as the number
of populations. A common U-statistic involving two populations is the two-
sample Wilcoxon statistic. For this, we assume that we have two samples
X11, . . . , X1n1 and X21, . . . , X2n2 . The kernel is h(x1i, x2j) = I(−∞,0](x2j −
x1i). The two-sample Wilcoxon statistic is

U =
1

n1n2

n1∑

i=1

n2∑

j=1

I(−∞,0](X2j −X1i). (4.8)

This is an unbiased estimator of Pr(X11 ≤ X21).

4.2.1 Properties of U Statistics

U-statistics have a number of interesting properties. They are useful in non-
parametric inference because of, among other reasons, they are asymptotically
the same as the plug-in estimator that is based on the empirical CDF. Some
of the important statistics used in modern computational statistical methods
are U-statistics.

By conditioning on the order statistics, we can show that U-statistics are
UMVUE for their expectations.

A sequence of adjusted kernels forms a martingale
If E((h(X1, . . . , Xm)2) <∞, it is a simple matter to work out the variance

of the corresponding U-statistic. ********

4.2.2 Projections of U Statistics

4.2.3 V Statistics

As we have seen, a U-statistic is an unbiased estimator of an expectation func-
tional; specifically, if Θ(P ) = E(h(X1, . . . , Xm)) the U-statistic with kernel h
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is unbiased for Θ(P ). Applying the functional Θ to the ECDF Pn, we have

Θ(Pn) =
1
nm

n∑

i1=1

· · ·
n∑

im=1

(h(Xi1 , . . . , Xim))

= V (say), (4.9)

which we call the V-statistic associated with the kernel h, or equivalently
associated with the U-statistic with kernel h. Recalling that Θ(Pn) in general
is not unbiased for Θ(P ), we do not expect a V-statistic to be unbiased in
general. However, in view of the asymptotic properties of Pn, we might expect
V-statistics to have good asymptotic properties.

A simple example is the variance, for which the U-statistic in equation (4.5)
is unbiased. The V-statistic with the same kernel is

V =
1

2n2

n∑

i=1

n∑

j=1

(Xi −Xj)2

=
1

2n2

n∑

i=1

n∑

j=1

(X2
i +X2

j − 2XiXj

=
n− 1
n

S2,

where S2 is the sample variance. This V-statistic is the same as the plug-
in estimator of the population variance, and as with the plug-in estimator,
there is no particular underlying distribution assumed. It is also the same as
the MLE estimator given an assumed underlying normal distribution. The
V-statistic is biased for the population variance; but as we have seen, it has
a smaller MSE than the unbiased U-statistic.

4.3 Asymptotically Unbiased Estimation

There are many situations when an unbiased estimator does not exist, or
when we cannot form one easily, or when a biased estimator has better MSE
for any finite sample than an unbiased estimator. A biased estimator that
is asymptotically unbiased, and for which there is no dominating unbiased
estimator, is often considered optimal.

Three general kinds of estimators may be of this type: estimators based on
the method of moments, functions of unbiased estimators, and V statistics.
Some of these estimators arise as plug-in statistics in the ECDF, such as those
based on the method of moments, and others from a general plug-in rule, in
which individual estimators are used in different parts of the formula for the
estimand, such as ratio estimators.

We would like for such biased estimators to have either limiting bias or
asymptotic bias of zero.
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Method of Moments Estimators

A simple example of an estimator based on the method of moments is S̃2 =
(n−1)S2/n as an estimator of the population variance, σ2. This is the second
central moment of the sample, just as σ2 is of the population. We have seen
that, in certain conditions, the MSE of S̃2 is less than that of S2, and while
it is biased, its limiting and asymptotic bias is zero and is of order 1/n.

Although the second central sample moment is biased, the raw sample
moments are unbiased for the corresponding raw population moments, if they
exist.

Ratio Estimators

Ratio estimators, that is, estimators composed of the ratio of two separate
estimators, often arise in sampling applications. Another situation is when
an estimator is based on a linear combination of observations with different
variances. If we have some way of estimating the variances so we can form a
weighted linear combination, the resulting estimator may be (will be!) biased,
but its MSE may be better than the unweighted estimator. Also, it is often
the case that the biased estimator is asymptotically normal and unbiased.

V-Statistics

The development of V-statistics can be based on the idea of applying the same
functional to the ECDF Fn as the functional that defines the estimand when
applied to the CDF F , and which is the basis for the U-statistics. Since the
ECDF assigns probability 1/n to each point of the values X1, . . . , Xn, any
m independent variables with CDF Fn take on each of the possible m-tuples
(Xi1 , . . . , Xim) with probability 1/nm. The plug-in estimator, call it V, of θ
is therefore

V =
1
nm

n∑

i1=1

· · ·
n∑

im=1

h(Xi1 , . . . , Xim).

Notice for m = 1, V is a U-statistic; but consider m = 2, as above. We have

U =
1

n(n− 1)

∑

i

∑

j 6=i

h((Xi, Xj),

however

V =
1
n2

n∑

i=1

n∑

j=1

h((Xi, Xj)

=
1
n2

∑

i

∑

j 6=i

h((Xi, Xj) +
1
n2

n∑

i=1

h((Xi, Xi)
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While, as we have seen U is unbiased for θ, we see that V is biased:

E(V ) =
n− 1
n

θ +
1
n

E(h(X1, X1))

= θ +
1
n

(E(h(X1, X1))− θ) .

An example of a V statistic with m = 2 uses h(x1, x2) = (x1−x2)2/2 and
results in (n− 1)S2/m as an estimator of σ2, which we have discussed above.
This is of course asymptotically unbiased.

Theorem 3.16 in Shao shows that under certain general conditions, V sta-
tistics have limiting normal distributions and are asymptotically unbiased.

4.4 Asymptotic Efficiency

Often a statistical procedure does not have some desirable property for any
finite sample size, but the procedure does have that property asymptotically.
The asymptotic properties that are of most interest are those defined in terms
of a sequence that has a limiting standard normal distribution, N(0, 1), or more
generally, Nk(0, Ik). A standard normal distribution of a statistic is desirable
because in that case, it is easy to associate statements of probabilities with
values of the statistic. It is also desirable because it is often easy to work out
the distribution of functions of a statistic that has a normal distribution.

It is important to remember the difference in an asymptotic property and
a limiting property. An asymptotic distribution is the same as a limiting distri-
bution, but other asymptotic properties are defined, somewhat arbitrarily, in
terms of a limiting distribution of some function of the sequence of statistics
and of a finite divergent or convergent sequence, an. This seems to mean that
a particular asymptotic property, such as, say, the asymptotic variance, de-
pends on what function of the sequence of statistics that we choose. Although
there may be some degree of arbitrariness in “an” asymptotic expectation,
there is a certain uniqueness, as expressed in Proposition 2.3 in Shao.

4.4.1 Asymptotic Relative Efficiency

We assume a family of distributions P , a sequence of estimators {Tn} of g(θ),
and a sequence of constants {an} with limn→∞ an =∞ or with limn→∞ an =
a > 0, and such that anTn(X) →d T and 0 < E(T ) < ∞. We define the
asymptotic mean-squared error of {Tn} for estimating g(θ) w.r.t. P as an
asymptotic expectation of (Tn − g(θ))2; that is, E((T − g(θ))2)/an, which we
denote as AMSE(Tn, g(θ),P).

For comparing two estimators, we may use the asymptotic relative effi-
ciency, which for the estimators Sn and Tn of g(θ) w.r.t. P is

ARE(Sn, Tn,P) = AMSE(Sn, g(θ),P)/AMSE(Tn, g(θ),P).
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4.4.2 Asymptotically Efficient Estimators

Relative efficiency is a useful concept for comparing two estimators, whether or
not they are unbiased. When we restrict our attention to unbiased estimators
we use the phrase Fisher efficient to refer to an estimator that attains its
Cramér-Rao lower bound. Again, notice the slight difference in “efficiency”
and “efficient”; while one meaning of “efficiency” is a relative term that is not
restricted to unbiased estimators (or other unbiased procedures, as we will see
later), “efficient” is absolute. “Efficient” only applies to unbiased estimators,
and an estimator either is or is not efficient. The state of being efficient, of
course is called “efficiency”. This is another meaning of the term. The phrase
“Fisher efficiency” helps to emphasis this difference.

We consider the problem of estimating the k-vector θ based on a random
sample X1, . . . , Xn. We denote the sequence of estimators as {θ̂n}. Suppose

(Vn(θ))−
1
2

(
θ̂n − θ

)
→d Nk(0, Ik),

where, for each n, Vn(θ) is a k×k positive definite matrix. From the definition

of asymptotic expectation of
(
θ̂n − θ

)2

, Vn(θ) is the asymptotic variance-

covariance matrix of θ̂n. Note that this matrix may depend on θ. We should
note that for any fixed n, Vn(θ) is not necessarily the variance-covariance
matrix of θ̂n; that is, it is possible that Vn(θ) 6= V(θ̂n).

Just as we have defined Fisher efficiency for an unbiased estimator of fixed
size, we define a sequence to be asymptotically Fisher efficient if the sequence
is asymptotically unbiased, the Fisher information matrix In(θ) exists and is
positive definite for each n, and Vn(θ) = (In(θ))−1 for each n. The definition
of asymptotically (Fisher) efficiency is often limited even further so as to apply
only to estimators that are asymptotically normal. (Shao uses the restricted
definition.)

Being asymptotically efficient does not mean for any fixed n that θ̂n is
efficient. First of all, for fixed n, θ̂n may not even be unbiased; even if it is
unbiased, however, it may not be efficient.

As we have emphasized many times, asymptotic properties are different
from limiting properties. As a striking example of this, consider a very simple
example from Romano and Siegel (1986). Let X1, . . . , Xn ∼ i.i.d N1(µ, 1),
and consider a randomized estimator µ̂n of µ defined by

µ̂n =




Xn with probability 1− 1

n

n2 with probability 1
n .

It is clear that n1/2(µ̂n − µ) →d N(0, 1), and furthermore, the Fisher infor-
mation for µ is n−1/2. The estimator µ̂n is therefore asymptotically Fisher
efficient. The bias of µ̂n, however, is

A Companion for Mathematical Statistics c©2008 James E. Gentle



184 4 Unbiased Point Estimation

E(µ̂n − µ) = µ

(
1−

1
n

)
+ n− µ = n− µ/n,

which tends to infinity, and the variance is

V(µ̂n) = E(µ̂2)− (E(µ̂))2

=
(

1− 1
n

)
1
n

+
(

1
n

)
n4 −

(
µ

(
1− 1

n

)
+ n

)2

= n3 + O(n2),

which also tends to infinity. Hence, we have an asymptotically Fisher efficient
estimator whose limiting bias and limiting variance are both infinite.

The example can be generalized to any estimator Tn of g(θ) such that
V(Tn) = 1/n and n1/2(Tn − g(θ))→d N(0, 1). From Tn form the estimator

T̃n =




Tn with probability 1− 1

n

n2 with probability 1
n .

The estimator T̃n is also asymptotically Fisher efficient but has infinite limit-
ing bias and infinite limiting variance.

Asymptotic Efficiency and Consistency

Although asymptotic efficiency implies that the estimator is asymptotically
unbiased, even if the limiting variance is zero, asymptotic efficiency does not
imply consistency. The counterexample above shows this.

Likewise, of course, consistency does not imply asymptotic efficiency. There
are many reasons. First, asymptotic efficiency is only defined in the case of
asymptotic normality (of course, it is unlikely that a consistent estimator
would not be asymptotically normal). More importantly, the fact that both
the bias and the variance go to zero as required by consistency, is not very
strong. There are many ways both of these can go to zero without requiring as-
ymptotic unbiasedness or that the asymptotic variance satisfy the asymptotic
version of the information inequality.

The Asymptotic Variance-Covariance Matrix

In the problem of estimating the k-vector θ based on a random sample
X1, . . . , Xn with the sequence of estimators as {θ̂n}, if

(Vn(θ))−
1
2

(
θ̂n − θ

)
→d Nk(0, Ik),

where, for each n, Vn(θ) is a k × k positive definite matrix, then Vn(θ) is the
asymptotic variance-covariance matrix of θ̂n. As we have noted, for any fixed
n, Vn(θ) is not necessarily the variance-covariance matrix of θ̂n.
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If Vn(θ) = V(θ̂n), then under the information inequality regularity condi-
tions that yield the CRLB, we know that

Vn(θ) ≥ (In(θ))−1
,

where In(θ) is the Fisher information matrix.

Superefficiency

Although if Vn(θ) 6= V(θ̂n), the CRLB says nothing about the relationship
between Vn(θ) and (In(θ))−1, we might expect that Vn(θ) ≥ (In(θ))−1. That
this is not necessarily the case is shown by a simple example given by Hodges
in a lecture in 1951, published in Le Cam (1953) (see also Romano and Siegel,
1986).

Let X1, . . . , Xn ∼ i.i.d N1(µ, 1), and consider an estimator µ̂n of µ defined
by

µ̂n =




Xn if |Xn| ≥ n−1/4

tXn otherwise,

for some fixed t with |t| < 1.
What gives this example its kick is the dependence of the asymptotic

distribution of µ̂n on µ. If µ 6= 0, µ̂n has the same asymptotic distribution as
Xn, and obeys CRLB, both in its variance for finite n (even though it is biased)
and in its asymptotic variance. However, if µ = 0, µ̂n is still asymptotically
unbiased, but the asymptotic variance of µ̂n is t2/n, which is smaller than the
inverse of asymptotic Fisher information, 1/n.

A point in the parameter space at which this anomaly occurs is called a
point of superefficiency. Le Cam has shown that under certain regularity con-
ditions (that are slightly more stringent than the the information inequality
regularity conditions, see page 60) the number of points of superefficiency is
countable. (This is Theorem 4.16 in Shao.)

Superefficiency is not important in applications (that is, where n is finite)
any decrease in mean-squared error at a point of superefficiency is accompa-
nied by an increase in mean-squared error at nearby points (and, of course, if
we knew the parameter was a point of superefficiency, we would probably not
be estimating it.

4.5 Applications

4.5.1 Estimation in Linear Models

Many methods of statistical inference rely on samples of independent and
identically distributed random variables.
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Systematic and Random Components

In a simple variation on the i.i.d. requirement, we assume a model with two
components, one “systematic” and one random. The most common form is
one in which the random variable is the sum of a systematic component that
determines its expected value and random component that is the value of an
underlying unobservable random variable that has an expected value of 0.
The systematic component may be a function of some additional variables z
and parameters θ. If we represent the underlying unobservable random with
expectation 0, as ε, we have

X = f(z, θ) + ε.

In this setup the mean of the random variable X is determined by the para-
meter θ and the values of the z variables, which are covariates (also called re-
gressors, carriers, or independent variables). We generally treat the covariates
as fixed variables, that is, whether or not we could also model the covariates
as random variables, in the simplest cases, we will use their observed values
without regard to their origin.

Regression Models

The model above is a regression model. In the simplest variation, the observ-
able random variables are independent, and have distributions in the same
location family: P = {Pf(z,θ),Pε

}. The family Pε of distributions Pε of the
random component may be a parametric family, such as N(0, σ2), or it may
be a nonparametric family. Whatever other assumptions on Pε, we assume
E(ε) = 0.

Linear Models

Often we assume that the systematic component is a linear combination of
the covariates. This setup is called a linear model, and is usually written in
the form

Y = βTx+E,

where Y is the observable random variable, β is an unknown and unobservable
p-vector of parameters, x is an observable p-vector of covariates, and E is an
unobservable random variable with mean 0. The parameter space for β is
B ⊂ IRp.

An item of a random sample from this model may be denoted

Yi = βTxi +Ei,

and a random sample be written in the vector-matrix form

Y = Xβ +E,

A Companion for Mathematical Statistics c©2008 James E. Gentle



4.5 Applications 187

where y and ε are n-vectors, X is an n × p matrix whose rows are the xT
i ,

and β is the p-vector above. A sample of realizations may be written in the
vector-matrix form

y = Xβ + ε.

This is the most commonly used notation.
Shao’s Notation

Shao uses X in place of Y ; Z in place of x and also in place of X ; and ε
in place of E:

Inference in a Linear Model

Rather than formulating a decision problem and seeking a minimum risk es-
timator, for inference in a linear model, we usually begin with a different
approach. Estimation in a linear model is most commonly developed based
on two simple heuristics: least squares and unbiasedness.

The degree of β is p, meaning that the number of observations required for
unbiased estimation of β is p. Inferences about characteristics of the distrib-
ution of ε require additional observations, however, and so we assume n > p
in the following.

Linear Least Squares

We define a least squares estimator (LSE) of β as

β̂ = arg min
b∈B

‖X − Zb‖2,

where ‖c‖ = ‖c‖2 =
√
cTc =

√∑p
i=1 c

2
i for the p-vector c. A least squares

estimator of β may or may not be unique. Whether or not β is unique, ‖X −
Zβ̂‖2/(n− p) is unique.

An LSE of β yields LSEs of other quantities. If l ∈ IRp, then lTβ̂ is an
LSE of lTβ. Also, ‖X − Zβ̂‖2/(n− p) is the LSE of V(ε).

The least squares estimator is obtained by direct minimization of

s(b) = ‖X − Zb‖2

= XTX − 2bTZTX + bTZTZb.

First of all, we note that s(b) is differentiable, and

∂2

∂b2
s(b) = ZTZ

is nonnegative definitive. We therefore know that at the minimum, ∂s(b)/∂b =
0. This gives the normal equations:

ZTZb = ZTX.
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Gauss-Markov Theorem

The Gauss-Markov theorem provides a restricted optimality property for es-
timators of estimable functions of β under the condition that E(ε) = 0 and
V(ε) = σ2I ; that is, in addition to the assumption of zero expectation, which
we have used above, we also assume that the elements of ε have constant vari-
ance and that their covariances are zero. (We are not assuming independence
or normality.)

Given X = Zβ + ε and E(ε) = 0 and V(ε) = σ2I , the Gauss-Markov
theorem states that lTβ̂ is the unique best linear unbiased estimator (BLUE)
of the estimable function lTβ.

“Linear” estimator in this context means a linear combination of X ; that
is, an estimator in the form aTX . It is clear that lTβ̂ is linear, and we have
already seen that it is unbiased for lTβ. “Best” in this context means that
its variance is no greater than any other estimator that fits the requirements.
Hence, to prove the theorem, first let aTX be any unbiased estimator of lTβ,
and write l = ZTXt̃ as above. Because aTX is unbiased for any β, as we saw
above, it must be the case that aTZ = lT. Recalling that ZTZβ̂ = ZTX , we
have

V(aTX) = V(aTX − lTβ̂ + lTβ̂)

= V(aTX − t̃TZTX + lTβ̂)

= V(aTX − t̃TZTX) + V(lTβ̂) + 2Cov(aTX − t̃TZTX, t̃TZTX).

Now, under the assumptions on the variance-covariance matrix of ε, which is
also the (conditional, given Z) variance-covariance matrix of y, we have

Cov(aTy − t̃TZTX, lTβ̂) = (aT − t̃TZT)σ2IZt̃

= (aTZ − t̃TZTZ)σ2It̃

= (lT − lT)σ2It̃

= 0;

that is,
V(aTX) = V(aTX − t̃TZTX) + V(lTβ̂).

This implies that
V(aTX) ≥ V(lTβ̂);

that is, lTβ̂ has minimum variance among the linear unbiased estimators of
lTβ. To see that it is unique, we consider the case in which V(aTX) = V(lTβ̂);
that is, V(aTX − t̃TZTX) = 0. For this variance to equal 0, it must be the
case that aT − t̃TZT = 0 or aTX = t̃TZTX = lTβ̂; that is, lTβ̂ is the unique
linear unbiased estimator that achieves the minimum variance.

If we assume further that ε ∼ Nn(0, σ2I), we can show that lTβ̂ is the
uniformly minimum variance unbiased estimator (UMVUE) for lTβ. This is
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because (ZTX, (X − Zβ̂)T(X − Zβ̂)) is complete and sufficient for (β, σ2).
This line of reasoning also implies that (X − Zβ̂)T(X − Zβ̂)/(n− r), where
r = rank(Z), is UMVUE for σ2.

4.5.2 Estimation in Survey Samples of Finite Populations

A substantial proportion of all applications of statistics deal with sample
surveys in finite populations. Some aspects of this kind of application distin-
guish it from other areas of applied statistics. Särndal, Swensson, and Wret-
man (1997) provide a general coverage of the theory and methods. Valliant,
Dorfman, and Royall (2000) provide a different perspective on some of the
particular issues of inference in finite populations.

Finite Populations

We think of a finite population as being a finite set P = {y1, . . . , yN}. (Note
that here we use “population” in a different way from the use of the term as
a probability measure.) Our interest will be in making inferences about the
population using a sample X = {X1, . . . , Xn}. In discussions of sampling it
is common to use n to denote the size of the sample and N to denote the
size of the population. Another common notation used in sampling is Y to
denote the population total, Y =

∑N
i=1 yi. The total is one of the most basic

objectives in sampling applications.
The parameter that characterizes the population is θ = (y1, . . . , yN). The

parameter space, Θ, is the subspace of IRN containing all possible values of
the yi.

There are two approaches to the analysis of the problem. In one, which
is the more common and which we will follow, P is essentially the sample
space. In another approach P or θ is thought of as some random sample from
a sample space or parameter space, called a “superpopulation”.

The sample is completely determined by the set S = {i1, . . . , in} of indexes
of P that correspond to elements in X . (Shao uses s where I use S.)

“Sampling” can be thought of as selecting the elements of S.
Probability-based inferences about P are determined by the method of

selection of S. This determines the probability of getting any particular S,
which we will denote by p(S). If p(S) is constant for all S, we call the selected
sample a simple random sample.

A sample may be collected without replacement or with replacement. (The
meanings of these are just what the words mean. In sampling without replace-
ment, the elements of S are distinct.) Sampling with replacement is generally
easier to analyze, because it is the same as taking a random sample from a
discrete uniform distribution. Sampling without replacement is more common
and it is what we will assume throughout.
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There are many variations on the method of collecting a sample. Both a
general knowledge of the population and some consideration of the mechani-
cal aspects of collecting the sample may lead to the use of stratified sampling,
cluster sampling, multi-stage sampling, systematic sampling, or other varia-
tions.

Estimation

We are interested in “good” estimators, specifically UMVUEs, of estimable
functions of θ. An interesting estimable function of θ is Y =

∑N
i=1 θi.

The first important result is the Watson-Royall theorem (Shao’s Theorem
3.13):
(i) if p(S) > 0 for all S, then the set of order statistics X(1), . . . , X(n) is
complete for all θ ∈ Θ.
and
(ii) if p(S) is constant for all S, then the order statistics X(1), . . . , X(n) are
sufficient for all θ ∈ Θ.

This theorem is somewhat similar to Examples 2.12 and 2.17, which ap-
plied to the family of distributions dominated by Lebesgue measure. The
sufficiency is generally straightforward, and we expect it to hold in any i.i.d.
case.

The completeness is a little more complicated, and Shao’s proof is worth
looking at. The set of order statistics may be complete in some family, such as
the family of distributions dominated by Lebesgue measure, but may not be
complete in some subfamily, such as the family of normal distributions with
mean 0.

After we have (i) and (ii), we have
(iii): For any estimable function of θ, its unique UMVUE is the unbiased
estimator T (X1, . . . , Xn) that is symmetric in its arguments. (The symmetry
makes the connection to the order statistics.)

Consider estimation of Y = g(θ) =
∑N

i=1 yi, from the simple random
sample X1, . . . , Xn. We can see easily that Ŷ = NX is the UMVUE. This
statistic was considered in Example 2.27, where Shao showed that the variance
of Ŷ is composed of three parts, an expansion factor N2/n, a finite population
correction factor (1 − n/N), and the variance of a selection from a finite
population,

σ2 =
1

N − 1

N∑

i=1

(
yi −

Y

N

)2

.

It is a simple exercise (which I did not assign, but you should work out) to
show that the sample variance S2 is unbiased for σ2, and then from this we
have immediately the UMVUE of V(Ŷ ).
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Horvitz-Thompson Estimation

The properties of any statistic derived from a sample X1, . . . , Xn depend on
the sampling design; that is, on how the items in the sample were selected. The
two main properties of the design are the probability that a specific population
item, say yi, is selected, and the probability that two specific population items,
say yi and yj are both selected. Probabilities of combinations of larger sets
may also be of interest, but we can work out simple expectations and variances
just based on these two kinds of probabilities.

Let πi be the probability that yi is included in the sample, and let πij be
the probability that both yi and yj are included.

If πi > 0 for all i, the Horvitz-Thompson estimator of the population total
is

ŶHT =
∑

i∈S

yi

πi
.

It is easy to see that ŶHT is unbiased for Y .
The variance of the Horvitz-Thompson estimator depends on the πij as

well as the πi. It is given in equation (3.48). (The “advanced arithmetic” used
in the derivation of this formula is one thing that turns graduate students off
from pursuing research in sampling.) Expressions for other sampling estima-
tors are often shown in a similar manner. The other main thing that is used in
working out variances of sampling estimators is linearization, especially when
the estimator involves a ratio.

Notes

Unbiasedness

Although unbiasedness has a heuristic appeal, one of the main reasons for
requiring it is to be able to obtain uniformly minimum risk estimators for
squared error loss functions. For absolute error loss functions, a corresponding
approach would be to require median unbiasedness.

Exercises in Shao

• For practice and discussion
3.6, 3.19, 3.33, 3.34, 3.60, 3.70, 3.106, 3.107, 3.111 (Solutions in Shao, 2005)

• To turn in
3.3, 3.16, 3.32(a)(b)(c), 3.35(a)(b)(c), 3.44, 3.52, 3.91, 3.109, 3.114
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Maximum Likelihood Estimation
(Shao Sec 4.4, Sec 4.5, Sec 5.4; TPE2 Ch 6)

5.1 The Likelihood Function and Its Use in Parametric
Estimation

One of the most commonly-used approaches to statistical estimation is maxi-
mum likelihood. The concept has an intuitive appeal, and the estimators based
on this approach have a number of desirable mathematical properties, at least
for broad classes of distributions.

The Likelihood Function

Given a sample x1, . . . , xn from distributions with probability densities pi(x)
with respect to a common σ-finite measure, the likelihood function is

Ln(pi ; x) =
n∏

i=1

pi(xi).

(Any nonnegative function proportional to Ln(pi ; x) is a likelihood function,
but it is common to speak of Ln(pi ; x) as “the” likelihood function.) We
can view the sample either as a set of constants, or as a sample of random
variables.

The domain of the likelihood is some class of distributions specified by
their probability densities, {p}, where all PDFs are with respect to a common
σ-finite measure.

If the sample is from a distribution with probability density pθ(x), a rea-
sonable estimate of pθ is the nonnegative function pθ∗ that has an integral of
1 over the support of pθ(x) for which the likelihood function,

Ln(pθ ; x) =
n∏

i=1

pθ(xi), (5.1)

A Companion for Mathematical Statistics c©2008 James E. Gentle



194 5 Maximum Likelihood Estimation

is maximized. If this function is unbounded above, the maximum does not
exist.

This approach is called maximum likelihood, or ML.
Notice that this is an ill-posed problem. (Why?) In nonparametric models,

it may be difficult to resolve this quandary. (And, of course, in such models,
we may not know the support of the distribution, so a first step in non-
parametric estimation may be to change the normalization requirement to be
that the function has an integral of 1 over [min(xi),max(xi)].) An example
of a likelihood function that is not very useful without some modification is
in nonparametric probability density estimation. Suppose we assume that a
sample comes from a distribution with continuous PDF p(x). The likelihood
is
∏n

i=1 p(xi). Even under the assumption of continuity, there is no solution.
Another example in which the likelihood function is not very meaningful,

due to C. R. Rao, is the case of N balls labeled 1, . . . , N and also labeled
with distinct real numbers θ1, . . . , θN (with N known). For a sample without
replacement of size n < N where we observe (xi, yi) = (label, θlabel), what
is the likelihood function? It is either 0, if the label and θlabel for at least
one observation is inconsistent, or

(
N
n

)−1
, otherwise; and, of course, we don’t

know! This likelihood function is not informative, and could not be used, for
example, for estimating θ = θ1 + · · ·+ θN . (There is a pretty good estimator
of θ; it is N(

∑
yi)/n.)

Although the likelihood function has an intuitive appeal, one of the rea-
sons that it is important important in statistical inference is its asymptotic
properties. For that reason, it is very common to use the n subscript. In the
following, however, we will often find it convenient to drop the n.

What Likelihood Is Not

First of all:

• Likelihood is not a probability.
• Likelihood is not a probability density.

Although non-statisticians will often refer to the “likelihood of an obser-
vation”, in statistics, we use the term “likelihood” to refer to a model or a
distribution given observations.

The Log-Likelihood Function

The log-likelihood function,

lL(pθ ; x) = logLn(pθ ; x), (5.2)

is a sum rather than a product. The form of the log-likelihood in the expo-
nential family is particularly simple:
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lL(θ ; x) =
n∑

i=1

θTg(xi)− na(θ) + c,

where c depends on the xi, but is constant with respect to the variable of
interest.

The logarithm is monotone, so the optimization problem (5.1) can be
solved by solving the maximization problem with the log-likelihood function:

max
θ

lL(θ ; x). (5.3)

We will often work with the likelihood and log-likelihood as if there is
only one observation. (A general definition of a likelihood function is any
nonnegative function that is proportional to the density or the probability
mass function; that is, it is the same as the density or the probability mass
function except that the arguments are switched, and its integral or sum over
the domain of the random variable need not be 1.)

5.1.1 Parametric Estimation

Let us assume a parametric model; that is, a family of densities P = {pθ(x)}
where θ ∈ Θ, a known parameter space. In the parametric case, it is usually
more convenient to write pθ(x) as p(x ; θ). Let us also assume the “regular
case”, which is guaranteed by the Fisher information regularity conditions.
The important regularity conditions are that p(x ; θ) is twice differentiable
with respect to θ and that there is a common support of all distributions in
P . (Without this latter assumption, the varying support may effectively allow
the data to provide information that allows parameters to be estimated with
greater efficiency than is attainable in the regular case. Recall the discussion
on superefficiency on page 185.)

For a sample X1, . . . , Xn from a distribution with probability density
p(x ; θ), we write the likelihood function as a function of a variable in place
of the parameter:

L(t ; x) =
n∏

i=1

p(xi ; t). (5.4)

For a discrete distribution, the likelihood is defined with the probability mass
function in place of the density in equation (5.4).

It is important to specify the domain of the likelihood function. If Θ is the
domain of L in equation (5.4), we want to maximize L for t ∈ Θ.

Note the reversal in roles of variables and parameters. We sometimes write
the expression for the likelihood without the observations: L(θ).

While I really like to write the likelihood as a variable of something other
than the parameter, which I think of as fixed, I usually write it like everyone
else: L(θ ; x) =

∏n
i=1 p(xi ; θ).
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The data, that is, the realizations of the variables in the density function,
are considered as fixed and the parameters are considered as variables of the
optimization problem,

max
θ

L(θ ; x). (5.5)

If Θ is not a closed set, the maximum may not exist, so we consider the
closure of Θ, Θ. (If Θ is closed Θ is the same set, so we can always just consider
Θ.)

The maximum likelihood estimate of θ, written θ̂, is defined as

θ̂ = argmax
θ∈Θ

L(θ ; x),

if it exists. If the maximum does not exist because the likelihood is unbounded
from above, then the argmax does not exist, and the maximum likelihood
estimate does not exist.

Notice that θ̂ is a function of the observations, x. If θ̂(x) is a Borel function,
then θ̂ is called a maximum likelihood estimator of θ.

We use “MLE” to denote maximum likelihood estimate or estimator, or
the method of maximum likelihood estimation. The proper word can be de-
termined from the context. If in a statement is about a maximum likelihood
estimate or estimator, and the term MLE is used, then the statement can be
assumed to apply to both the estimate and the estimator.

If θ̂ is an MLE of θ, and g is a Borel function, then g(θ̂) is an MLE of the
estimand g(θ).

In some cases the MLE occurs at a stationary point, which can be identified
by differentiation. That is not always the case, however. A standard example
in which the MLE does not occur at a stationary point is a distribution in
which the range depends on the parameter, and the simplest such distribution
is the uniform U(0, θ).

In some cases the MLE may not be in Θ, for example in the Bernoulli
cases, Θ = (0, 1), but it is possible that θ̂ = 0 or 1. These values are in Θ,
of course, and so either of them could be chosen as an MLE. This solution is
preferable to saying that an MLE does not exist. It does, however, ignore the
problem of continuity of L(θ ; x) over Θ, and it allows an estimated PDF that
is degenerate.

Often estimation based on least squares is the same as MLE. We almost
always expect this to be the case when the underlying probability distribu-
tion is normal. There are situations, in analysis of mixed linear models, for
example, in which the least squares approach leads to estimates of certain
elements of the parameter θ that are not in Θ; specifically, some estimates
of variance components are negative. These are not MLEs, by the definition
above. One solution to this problem is called REML, “restricted maximum
likelihood”. This results from maximization restricted to Θ, which means it is
really just ML. In general, we often encounter the phrase “constrained maxi-
mum likelihood”. In most cases, this just means constrained to the closure of
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the parameter space; that is, it is just regular ML. The problem of obtaining
an MLE is often a constrained optimization problem.

Estimation of Parameters in an Open Parametric Range

Consider a distribution with PDF

pX(x) = h(x, θ)IS(θ)(x) (5.6)

where S(θ) is open. In this case, the likelihood has the form

L(θ ; x) = h(x, θ)IR(x)(θ),

where R(x) is open. It is quite possible that supL(θ ; x) will occur on R(x).
Consider, for example, X1, . . . , Xn i.i.d. with PDF

pX(x) =
1
θ
I(0,θ)(x),

where Θ = IR.
The likelihood is

L(θ ; x) =
1
θ
I(x(n),∞)(θ).

θ
x(n)

L

]

(

Fig. 5.1. Discontinuous Likelihood
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The maximum of the likelihood does not exist. The supremum of the
likelihood occurs at x(n) and it is finite.

We reasonably want to call x(n) the MLE of θ.
Because the distribution has a PDF w.r.t. a σ-finite measure ν such that

ν(A) = 0 if A does not contain an open set (Lebesgue has this property, for
example), we can define an a.e. equivalent PDF:

p̄X(x) =
1
θ
I[0,θ](x),

where Θ = IR. This yields the likelihood

L̄(θ ; x) =
1
θ
I[x(n),∞)(θ),

which is continuous from the right. Now, the max occurs at x(n) and so x(n)

is the MLE of θ, as we would want it to be.
This is the general approach. Given a PDF of the form (5.6) w.r.t. a

continuous measure like Lebesgue, we could just say the MLE does not exist,
but that would not be satisfactory.

Hence, we form an a.e. equivalent PDF,

p̄X(x) = h(x)IS(θ)(x).

(Notice that substituting S(θ) for S(θ) is very different from substituting Θ
for Θ in the definition of an MLE. The parameter space may or may not be
open.)

This approach is cleaner than solving the logical problem by defining the
MLE in terms of the sup rather than the max. A definition in terms of the sup
may not address problems that could arise due to various types of discontinuity
of L(θ ; x) at the boundary of S(θ).

Derivatives of the Likelihood and Log-Likelihood

In the regular case, the likelihood function and consequently the log-likelihood
are twice differentiable within Θ◦.

The derivatives of the log-likelihood function relate directly to useful con-
cepts in statistical inference. If it exists, the derivative of the log-likelihood
is the relative rate of change, with respect to the parameter placeholder θ, of
the probability density function at a fixed observation. If θ is a scalar, some
positive function of the derivative, such as its square or its absolute value, is
obviously a measure of the effect of change in the parameter, or of change in
the estimate of the parameter. More generally, an outer product of the deriv-
ative with itself is a useful measure of the changes in the components of the
parameter:

∇lL
(
θ(k) ; x

) (
∇lL

(
θ(k) ; x

))T

.
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Notice that the average of this quantity with respect to the probability density
of the random variable X ,

I(θ1 ; X) = Eθ1

(
∇lL

(
θ(k) ; X

) (
∇lL

(
θ(k) ; X

))T
)
, (5.7)

is the information matrix for an observation on Y about the parameter θ.
If θ is a scalar, the square of the first derivative is the negative of the

second derivative,
(
∂

∂θ
lL(θ ; x)

)2

= − ∂2

∂θ2
lL(θ ; x),

or, in general,

∇lL
(
θ(k) ; x

) (
∇lL

(
θ(k) ; x

))T

= −HlL

(
θ(k) ; x

)
. (5.8)

Evaluation of the Maximum of the Likelihood or Log-Likelihood

If the log-likelihood is twice differentiable and if the range does not depend
on the parameter, Newton’s method could be used to solve (5.3). Newton’s
equation

HlL(θ(k−1) ; x) d(k) = ∇lL(θ(k−1) ; x) (5.9)

is used to determine the step direction in the kth iteration. A quasi-Newton
method uses a matrix H̃lL(θ(k−1)) in place of the Hessian HlL(θ(k−1)). (See
notes on optimization in the Appendix.)

Equation (5.8) is interesting because the second derivative, or an approx-
imation of it, is used in a Newton-like method to solve the maximization
problem.

The Likelihood Equation

In the regular case, with the likelihood log-likelihood function differentiable
within Θ◦, we call

∇L(θ ; x) = 0

or
∇lL(θ ; x) = 0

the likelihood equations. If the maximum occurs within Θ◦, then every MLE
is a root of the likelihood equations.

A likelihood equation is sometimes called an “estimating equation”. Sim-
ilar equations are called “generalized estimating equations”, or GEEs.

Any root of the likelihood equations, which is called an RLE, may be an
MLE. A theorem from functional analysis, usually proved in the context of
numerical optimization, states that if θ∗ is an RLE and HlL(θ∗ ; x) is negative
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definite, then there is a local maximum at θ∗. This may allow us to determine
that an RLE is an MLE. There are, of course, other ways of determining
whether an RLE is an MLE. In MLE, the determination that an RLE is
actually an MLE is an important step in the process.

There are interesting open questions associated with determining if an
RLE yields a global maximum. (See, e.g., Christophe Biernacki, 2005, Testing
for a global maximum of the likelihood, JCGS 14, 657–674.)

Easy piece: Determine the MLEs of µ and σ2 in N(µ, σ2). (Don’t forget to
prove that your solution is actually a maximum.)

Nondifferentiable Likelihood Functions

The definition of MLEs does not depend on the existence of a likelihood
equation. The likelihood function may not be differentiable with respect to
the parameter, as in the case of the hypergeometric distribution, in which the
parameter must be an integer (see Shao, Example 4.32).

Another example in which the derivative is not useful in finding the MLE
is in a parametric-support family. For example, assume X1, . . . , Xn ∼ i.i.d.
exponential(α, 1). The likelihood is

L(α ; x) = e−
∑

(xi−α)I(−∞,x(1)](α).

Setting the derivative to 0 is not a useful way to find a stationary point. (Note
that the derivative of the indicator function is the Dirac delta function.) In
fact, the max does not occur at a stationary point. The MLE of α is x(1).
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Exponential(α,1)

(

]

α x(1)

L(
α;

x)

5.1.2 Properties of MLEs

As we have mentioned, MLEs have a nice intuitive property, and they also
often have good asymptotic properties, as we will see later.

If there is a sufficient statistic and an MLE exists, then an MLE is a
function of the sufficient statistic. We can see this very easily by use of the
factorization theorem. (Note that this statement hints at two issues: existence
of an MLE, and nonuniqueness of an MLE.)

Other properties are not always desirable.
First of all we note that an MLE may be biased. The most familiar example

of this is the MLE σ̂2 in N(µ, σ2). Another example is the MLE of the location
parameter in the exponential.

If two samples provide the same MLE for θ, say θ̂, then combining the
two samples provides the same estimate, θ̂. We can see this must be the
case because the likelihood for the combined sample is just the product of
the likelihoods. Suppose for our two samples, we have θ̂(1) and θ̂(2), with
θ̂
(1)
2 = θ̂

(2)
2 , but θ̂(1)1 6= θ̂

(2)
1 . In this case, after combining the two samples, we

may get θ̂(1+2)
2 6= θ̂

(1)
2 . As an example, due to Romano and Siegel, consider two

samples from a normal distribution, S1 = {9, 10, 11} and S2 = {29, 30, 31}.
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We get (σ̂2
2)(1) = (σ̂2

2)(2) = 2/3, but (σ̂2
2)

(1+2) = 200/3. (Look at the combined
dataset, with mean 20.)

Nonuniqueness

There are many cases in which the MLEs are not unique (and I’m not just
referring to RLEs). An example is the Cauchy distribution with location pa-
rameter θ. The likelihood equation is

n∑

i=1

2(xi − θ)
1 + (xi − θ)2

.

This may have multiple roots (depending on the sample), and so the one
yielding the maximum would be the MLE. Depending on the sample, however,
multiple roots can yield the same value of the likelihood function.

Another example in which the MLE is not unique is U(θ − 1/2, θ + 1/2).
The likelihood function is

I(x(n)−1/2,(x(1)+1/2)(θ).

Where is it maximized? (Any value between x(n) − 1/2 and (x(1) + 1/2.)

Nonexistence and Other Properties

We have already mentioned situations in which the likelihood approach does
not seem to be the logical way, and have seen that sometimes in nonparametric
problems, the MLE does not exist. This often happens when there are more
“things to estimate” than there are observations. This can also happen in
parametric problems. Consider N(µ, σ2) with one observation. The likelihood
function is

−1
2

log(2πσ2)− (x− µ)2

σ2
.

It is clear that no MLE exists because the function becomes unbounded as σ2

tends to zero and µ is fixed.
In this case, some people prefer to say that the likelihood function does not

exist; that is, they suggest that the definition of a likelihood function include
boundedness.

There are other interesting examples in which MLEs do not have desirable
(or expected) properties. For example,

• an MLE may be discontinuous
• an MLE may not be a function of a sufficient statistic (if the MLE is not

unique)
• an MLE may not satisfy the likelihood equation
• the likelihood equation has a unique root, but no MLE exists
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• an MLE may not be a MOM estimator; in particular an MLE of the
population mean may not be the sample mean.

Although the MLE approach is usually an intuitively logical one, it is not
based on a formal decision theory, so it is not surprising that MLEs may not
possess certain desirable properties.

5.1.3 MLE and the Exponential Class

If X has a distribution in the exponential class and we write its density in the
natural or canonical form, the likelihood has the form

L(η ; x) = exp(ηTT (x)− ζ(η))h(x).

The log-likelihood equation is particularly simple:

T (x)− ∂ζ(η)
∂η

= 0.

Newton’s method for solving the likelihood equation is

η(k) = η(k−1) −
(
∂2ζ(η)
∂η(∂η)T

∣∣
η=η(k−1)

)−1(
T (x)− ∂ζ(η)

∂η

∣∣
η=η(k−1)

)

Note that the second term includes the Fisher information matrix for η.
(The expectation is constant.) (Note that the FI is not for a distribution; it is
for a parametrization.)

We have

V(T (X)) =
∂2ζ(η)
∂η(∂η)T

|η=η .

Note η = η (true).
If we have a full-rank member of the exponential class then V is positive

definite, and hence there is a unique maximum.
If we write

µ(η) =
∂ζ(η)
∂η

,

in the full-rank case, µ−1 exists and so we have the solution to the likelihood
equation:

η̂ = µ−1(T (x)).

So MLE is very nice for the exponential class.
We also see that MLE and LSE are equivalent for normal distributions. In

particular, in the linear model X = Zβ + ε with normal errors β̂ is LSE and
MLE.
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5.1.4 Variations on the Likelihood

There are situations in which a likelihood equation either cannot be written
or else it is not solvable. This may happen because of too many parameters,
for example. In such cases an approximate likelihood equation may be more
appropriate. In other cases, there may be a nuisance parameter that compli-
cates the computation of the MLE for the parameter of interest. In both kind
of these situations, we use approximate likelihood methods.

In a multiparameter case, θ = (θ1, θ2), we may be interested in only some
of the parameters, or in some function of the parameters, perhaps a transfor-
mation into a lower-dimensional space. There are various ways of approaching
this.

Profile Likelihood

If θ = (θ1, θ2) and our interest is only in θ1, the simplest way of handling this
is just to consider θ2 to be fixed, perhaps at several different values, one at a
time. If θ2 is fixed, the likelihood L(θ1 ; θ2, x) is called a profile likelihood or
concentrated likelihood of θ1 for given θ2 and x.

In some cases, it turns out that the estimation of a subset of the para-
meters does not depend on the value of some other subset. A good method
of estimation of β in a linear model X = Zβ + ε where the residuals ε have
a common variance σ2 and zero correlation can be performed equally well
no matter what the value of σ2 is. (The Gauss-Markov theorem tells us that
the least-squares method yields a good estimator.) If the residuals are inde-
pendently distributed as normals with a common variance, we can formulate
the problem as a problem in maximum likelihood estimation. The MLE for β
(which just happens to be the same as the LSE) can be thought of in terms of
a profile likelihood, because a particular value of σ2 could be chosen a priori.
(This is of course not necessary because the maximum or the likelihood with
respect to β occurs at the same point regardless of the value of σ2.)

Induced Likelihood

We can approach the problem of estimation of a function of the parameters
by means of an induced likelihood. Given a family of PDFs with respect to a
common σ-finite measure that are indexed by a parameter θ ∈ Θ ⊂ IRk. Let
L(θ ; x) be the likelihood of θ given data x. Now let h be a Borel function
from Θ onto Λ ⊂ IRp, with 1 ≤ p ≤ k. Let

L̃(λ ; x) = sup
θ:h(θ)=λ

L(θ ; x).

Then L̃(λ ; x) is called the induced likelihood for the transformed parameter
λ ∈ Λ. It turns out that if θ̂ is an MLE of θ then λ̂ = h(θ̂) maximizes L̃(λ ; x).
(This is Exercise 4.6.95 in Shao.)

A Companion for Mathematical Statistics c©2008 James E. Gentle



5.1 The Likelihood Function 205

As we have noted before, we also speak of an MLE of a function of a
parameter without forming an induced likelihood function. If θ̂ is an MLE of
θ, and g is a Borel function, then g(θ̂) is called an MLE of the estimand g(θ),
even if does not formally maximize a likelihood in g(θ).

Conditional Likelihood

When there is a nuisance parameter for which we have a sufficient statistic,
a simple approach is to use the PDF conditional on the sufficient statistic to
form the likelihood function for the parameter of interest. After doing this, the
MLE procedure continues as in the usual case. If the PDFs can be factored
so that one factor includes θ2 and some function of the sample, S(x), and the
other factor, given S(x), is free of θ2, then this factorization can be carried
into the likelihood. Such a likelihood is called a conditional likelihood of θ1
given S(x).

Conditional likelihood methods often arise in applications in which the pa-
rameters of two different distributions are to be compared; that is, when only
their relative values are of interest. Suppose µ = (µ1, µ2) and let θ1 = µ1/µ2.
Although our interest is in θ1, we may not be able to write the lieklihood as
a function of θ1. If, however, we can find θ2 for which we have a sufficient sta-
tistic, T2(X), and we can factor the likelihood using the factorization theorem
so that the factor corresponding to conditional distribution of X given T2(X)
does not depend on θ2. This factor, as a function of θ1, is the conditional
likelihood function.

Sometimes a profile likelihood can be thought of as a particularly sim-
ple conditional likelihood. The linear model estimation problem referred to
above could be formulated as a conditional likelihood. The actual form of the
likelihood would be more complicated, but the solution is equivalent to the
solution in which we think of the likelihood as a profile likelihood.

Conditional Likelihood for the Exponential Class

If X has a distribution in the exponential class with θ = (η1, η2), and its
likelihood can be written in the form

L(θ ; x) = exp(ηT
1 T1(x) + ηT

2 T2(x) − ζ(η1, η2))h(x),

or, in the log-likelihood form,

lL(θ ; x) = ηT
1 T1(x) + ηT

2 T2(x) − ζ(η1, η2) + c(x),

we can easily write the conditional log-likelihood:

lL(η1 ; x ; T2) = ηT
1 T1(x) + ζ̃(η1, T2) + c(x).

Notice that this decomposition can be achieved iff η1 is a linear function of θ.
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If our interest is only in η1, we only determine the argument that maximizes
the function

ηT
1 T1(x) + ζ̃(η1, T2),

which is does not depend on η2.

Quasi-likelihood Methods

Another way we deal with nuisance parameters in maximum likelihood estima-
tion is by making some simplifying approximations. One type of simplification
is to reduce the dimensionality of the nuisance parameters by assuming some
relationship among them. This yields a “quasi-likelihood” function. This may
allow us to solve what otherwise might be a very difficult problem. In some
cases it may not affect the MLE for the parameters of interest. A common
application in which quasi-likelihood methods are useful is in estimation of
parameters in a generalized linear model.

5.2 EM Methods

Although EM methods do not rely on missing data, they can be explained
most easily in terms of a random sample that consists of two components, one
observed and one unobserved or missing.

Missing Data

A simple example of missing data occurs in life-testing, when, for example,
a number of electrical units are switched on and the time when each fails is
recorded.

In such an experiment, it is usually necessary to curtail the recordings
prior to the failure of all units.

The failure times of the units still working are unobserved, but the num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.

Mixtures

Another common example that motivates the EM algorithm is a finite mixture
model.

Each observation comes from an unknown one of an assumed set of distri-
butions. The missing data is the distribution indicator.

The parameters of the distributions are to be estimated. As a side benefit,
the class membership indicator is estimated.
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Applications of EM Methods

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods involve missing-data problems,
but this is not necessary.

Often, an EM method can be constructed based on an artificial “missing”
random variable to supplement the observable data.

Example 1

One of the simplest examples of the EM method was given by Dempster,
Laird, and Rubin (1977).

Consider the multinomial distribution with four outcomes, that is, the
multinomial with probability function,

p(x1, x2, x3, x4) =
n!

x1!x2!x3!x4!
πx1

1 πx2
2 πx3

3 πx4
4 ,

with n = x1+x2 +x3+x4 and 1 = π1 +π2+π3+π4. Suppose the probabilities
are related by a single parameter, θ, with 0 ≤ θ ≤ 1:

π1 =
1
2

+
1
4
θ

π2 =
1
4
− 1

4
θ

π3 =
1
4
− 1

4
θ

π4 =
1
4
θ.

Given an observation (x1, x2, x3, x4), the log-likelihood function is

l(θ) = x1 log(2 + θ) + (x2 + x3) log(1− θ) + x4 log(θ) + c

and
dl(θ)/dθ =

x1

2 + θ
− x2 + x3

1− θ
+
x4

θ
.

The objective is to estimate θ.
Dempster, Laird, and Rubin used n = 197 and x = (125, 18, 20, 34). (For

this simple problem, the MLE of θ can be determined by solving a simple
polynonial equation, but let’s proceed with an EM formulation.)

To use the EM algorithm on this problem, we can think of a multinomial
with five classes, which is formed from the original multinomial by splitting
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the first class into two with associated probabilities 1/2 and θ/4. The original
variable x1 is now the sum of u1 and u2. Under this reformulation, we now
have a maximum likelihood estimate of θ by considering u2 + x4 (or x2 + x3)
to be a realization of a binomial with n = u2 + x4 + x2 + x3 and π = θ
(or 1 − θ). However, we do not know u2 (or u1). Proceeding as if we had a
five-outcome multinomial observation with two missing elements, we have the
log-likelihood for the complete data,

lc(θ) = (u2 + x4) log(θ) + (x2 + x3) log(1− θ),

and the maximum likelihood estimate for θ is

u2 + x4

u2 + x2 + x3 + x4
.

The E-step of the iterative EM algorithm fills in the missing or unobserv-
able value with its expected value given a current value of the parameter, θ(k),
and the observed data. Because lc(θ) is linear in the data, we have

E (lc(θ)) = E(u2 + x4) log(θ) + E(x2 + x3) log(1− θ).

Under this setup, with θ = θ(k),

Eθ(k)(u2) =
1
4
x1θ

(k) /

(
1
2

+
1
4
x1θ

(k)

)

= u
(k)
2 .

We now maximize Eθ(k) (lc(θ)). This maximum occurs at

θ(k+1) = (u(k)
2 + x4)/(u

(k)
2 + x2 + x3 + x4).

The following Matlab statements execute a single iteration.

function [u2kp1,tkp1] = em(tk,x)
u2kp1 = x(1)*tk/(2+tk);
tkp1 = (u2kp1 + x(4))/(sum(x)-x(1)+u2kp1);

Example 2: A Variation of the Life-Testing Experiment Using an
Exponential Model

Consider an experiment described by Flury and Zoppè (2000). It is assumed
that the lifetime of light bulbs follows an exponential distribution with mean
θ. To estimate θ, n light bulbs were tested until they all failed. Their failure
times were recorded as x1, . . . , xn. In a separate experiment, m bulbs were
tested, but the individual failure times were not recorded. Only the number
of bulbs, r, that had failed at time t was recorded.

The missing data are the failure times of the bulbs in the second experi-
ment, u1, . . . , um. We have
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lc(θ ; x, u) = −n(log θ + x̄/θ)−
m∑

i=1

(log θ + ui/θ).

The expected value for a bulb still burning is

t+ θ

and the expected value of one that has burned out is

θ − te−t/θ(k)

1− e−t/θ(k) .

Therefore, using a provisional value θ(k), and the fact that r out of m
bulbs have burned out, we have EU |x,θ(k)(lc) as

q(k)(x, θ) = −(n+m) log θ

−1
θ

(
nx̄+ (m− r)(t+ θ(k)) + r(θ(k) − th(k))

)
,

where h(k) is given by

h(k) =
e−t/θ(k)

1− e−t/θ(k) .

The kth M step determines the maximum with respect to the variable θ,
which, given θ(k), occurs at

θ(k+1) =
1

n+m

(
nx̄+ (m− r)(t + θ(k)) + r(θ(k) − th(k))

)
. (5.10)

Starting with a positive number θ(0), equation (5.10) is iterated until conver-
gence. The expectation q(k) does not need to be updated explicitly.

To see how this works, let’s generate some artificial data and try it out.
Some R code to implement this is:

# Generate data from an exponential with theta=2,
# and with the second experiment truncated at t=3.
# Note that R uses a form of the exponential in
# which the parameter is a multiplier; i.e., the R
# parameter is 1/theta.
# Set the seed, so computations are reproducible.
set.seed(4)
n <- 100
m <- 500
theta <- 2
t <- 3
x <- rexp(n,1/theta)
r<-min(which(sort(rexp(m,1/theta))>=3))-1
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Some R code to implement the EM algorithm:

# We begin with theta=1.
# (Note theta.k is set to theta.kp1 at
# the beginning of the loop.)
theta.k<-.01
theta.kp1<-1
# Do some preliminary computations.
n.xbar<-sum(x)
# Then loop and test for convergence

theta.k <- theta.kp1
theta.kp1 <- (n.xbar +

(m-r)*(t+theta.k) +
r*(theta.k-

t*exp(-t/theta.k)/(1-exp(-t/theta.k))
)

)/(n+m)

The value of θ stabilizes to less than 0.1% change at 1.912 in 6 iterations.
This example is interesting because if we assume that the distribution of

the light bulbs is uniform, U(0, θ) (such bulbs are called “heavybulbs”!), the
EM algorithm cannot be applied.

Maximum likelihood methods must be used with some care whenever the
range of the distribution depends on the parameter.

In this case, however, there is another problem. It is in computing
q(k)(x, θ), which does not exist for θ < θ(k−1).

Example 3: Estimation in a Normal Mixture Model

A two-component normal mixture model can be defined by two normal distrib-
utions, N(µ1, σ

2
1) and N(µ2, σ

2
2), and the probability that the random variable

(the observable) arises from the first distribution is w.
The parameter in this model is the vector θ = (w, µ1, σ

2
1 , µ2, σ

2
2). (Note

that w and the σs have the obvious constraints.)
The pdf of the mixture is

p(y; θ) = wp1(y;µ1, σ
2
1) + (1− w)p2(y;µ2, σ

2
2),

where pj(y;µj , σ
2
j ) is the normal pdf with parameters µj and σ2

j . (I am just
writing them this way for convenience; p1 and p2 are actually the same para-
metrized function of course.)

In the standard formulation with C = (X,U), X represents the observed
data, and the unobserved U represents class membership.

Let U = 1 if the observation is from the first distribution and U = 0 if the
observation is from the second distribution.
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The unconditional E(U) is the probability that an observation comes from
the first distribution, which of course is w.

Suppose we have n observations on X , x1, . . . , xn.
Given a provisional value of θ, we can compute the conditional expected

value E(U |x) for any realization of X . It is merely

E(U |x, θ(k)) =
w(k)p1(x;µ

(k)
1 , σ2(k)

1 )

p(x;w(k), µ
(k)
1 , σ2(k)

1 , µ
(k)
2 , σ2(k)

2 )

The M step is just the familiar MLE of the parameters:

w(k+1) =
1
n

∑
E(U |xi, θ

(k))

µ
(k+1)
1 =

1
nw(k+1)

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

1 =
1

nw(k+1)

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
1 )2

µ
(k+1)
2 =

1
n(1− w(k+1))

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

2 =
1

n(1− w(k+1))

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
2 )2

(Recall that the MLE of σ2 has a divisor of n, rather than n− 1.)
To see how this works, let’s generate some artificial data and try it out.

Some R code to implement this is:

# Normal mixture. Generate data from nomal mixture with w=0.7,
# mu_1=0, sigma^2_1=1, mu_2=1, sigma^2_2=2.
# Note that R uses sigma, rather than sigma^2 in rnorm.
# Set the seed, so computations are reproducible.
set.seed(4)
n <- 300
w <- 0.7
mu1 <- 0
sigma21 <- 1
mu2 <- 5
sigma22 <- 2
x <- ifelse(runif(n)<w,
rnorm(n,mu1,sqrt(sigma21)),rnorm(n,mu2,sqrt(sigma22)))

First, assume that µ1, σ2
1 , µ2, and σ2

2 are all known:

# Initialize.
theta.k<-.1
theta.kp1<-.5
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# Then loop over the following
theta.k <- theta.kp1
tmp <- theta.k*dnorm(x, mu1,sqrt(sigma21))
ehat.k <- tmp/(tmp+(1-theta.k)*dnorm(x, mu2,sqrt(sigma22)))
theta.kp1<- mean(ehat.k)

This converges very quickly to 0.682, at which point the parameter esti-
mate changes less than 0.1%.

5.3 Asymptotic Properties of MLEs, RLEs, and GEE
Estimators

The argmax of the likelihood function, that is, the MLE of the argument of
the likelihood function, is obviously an important statistic.

In many cases, a likelihood equation exists, and often in those cases, the
MLE is a root of the likelihood equation. In some cases there are roots of the
likelihood equation (RLEs) that may or may not be an MLE.

5.3.1 Asymptotic Efficiency of MLEs and RLEs

One of the most important properties of roots of the likelihood equation,
given the Le Cam regularity conditions (see page 60), is asymptotic efficiency.
The regularity conditions are the same as those for Le Cam’s theorem on the
countability of superefficient estimators (Shao’s theorem 4.16).

There are two parts to Shao’s Theorem 4.17.
The first says that there is a sequence of estimators θ̂n such that

Pr(sn(θ̂n) = 0)→ 1,

where sn(θ̂n) is the score function sn(γ) = ∂L(γ)/∂γ evaluated at θ̂n, and

θ̂n →p θ.

The second part says that any consistent sequence of RLEs is asymptoti-
cally efficient.

5.3.2 Examples

Let’s consider a couple of examples from Shao.
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The E(α, θ) Distribution

We have a random sample X1, . . . , Xn from E(α, θ), with α and θ unknown.
The likelihood function is

L(α, θ;X) = θ−n exp
(
−1
θ

∑
(Xi − α)

)
I(0,X(1) ](α)I(0,∞)(θ).

This is 0 when α > X(1), but it is increasing in α on (0, X(1)] independently
of θ. Hence, the MLE of α is X(1).

Now, we substitute this back into L(α, θ;X) and maximize w.r.t. θ, i.e.
solve

max
θ

(
θ−n exp

(
−1
θ

∑
(Xi −X(1))

))
.

We do this by forming and solving the likelihood equation, noting that it
yields a maximum within the parameter space. We get

θ̂ =
1
n

∑
(Xi −X(1)).

In Exercise 3.6 (one of the practice exercises assigned last semester) we
found the UMVUEs:

Tα = X(1) −
1

n(n− 1)

∑
(Xi −X(1)).

and
Tθ =

1
n− 1

∑
(Xi −X(1)).

(Recall that we find a complete sufficient statistic and then manipulate it to
be unbiased.) Notice the similarity of these to the MLEs, which are biased.

Now let’s consider the ARE of the MLE to the UMVUE for these two
parameters. (Remember that the ARE is the ratio of two asymptotic expecta-
tions — not the asymptotic expectation of a ratio, and certainly not the limit
of a ratio; although of course sometimes these three things are the same.)

• ARE(MLE,UMVUE) for θ.
This is an easy case, because the estimators always differ by the ratio
n/(n− 1); hence the ARE is 1.
The distributions for θ̂ and Tθ are relatively easy. From Exercise 1.78, we
have that the distribution of

∑
Xi is Γ(n, θ) if Xi ∼ E(0, θ), hence for Tθ

above, if we let Y = 2(n− 1)Tθ/θ, we have Y ∼ χ2
2(n−1).

• ARE(MLE,UMVUE) for α.
We must work out the asymptotic expectations of U2 and V 2 where U =
α̂ − α and V = Tα − α. We get immediately that nU = n(α̂ − α) =
n(X(1) − α) has a E(0, θ) distribution. Now

nV = n(X(1) − α)− 1
n(n− 1)

∑
(Xi −X(1)),
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and because 1
n(n−1)

∑
(Xi − X(1)) →p θ, we have nV →d W − θ, where

W ∼ E(0, θ). Therefore, the ARE, which is E(V 2)/E(U2) is θ/(θ + θ2).

The Bernoulli Distribution

Consider a Bernoulli distribution with unknown π ∈ (0, 1), and suppose we are
interested in estimating g(π) = π(1−π). The MLE of g(π) is Tn = X(1−X).
(Why?)

Now, let’s look at its asymptotic distributions.
From the central limit theorem,

√
n(X − π)→ N(0, g(π)).

If π 6= 1/2, g′(π) 6= 0, we can use the delta method and the CLT to get
√
n(g(π)− Tn)→ N(0, π(1− π)(1− 2π)2).

(I have written (g(π) − Tn) instead of (Tn − g(π)) so the expression looks
more similar to one we get next.) If π = 1/2, this is a degenerate distribution.
(The limiting variance actually is 0, but the degenerate distribution is not
very useful.)

Let’s take a different approach for the case π = 1/2. We have from the CLT,√
n(X− 1

2 )→ N(0, 1
4 ). Hence, if we scale and square, we get 4n(X− 1

2 )2 →d χ
2
1,

or
4n(g(π)− Tn)→d χ

2
1.

This is a specific instance of a second order delta method. Following the
same methods using a Taylor series expansion as in Section 1.2, for the uni-
variate case, we can see that

√
n(Sn − c)→ N(0, σ2)

g′(c) = 0
g′′(c) 6= 0



 =⇒ 2n

(g(Sn)− g(c))
σ2g′′(c)

→d χ
2
1. (5.11)

5.3.3 Inconsistent MLEs

In previous sections, we have seen that sometimes MLEs do not have some
statistical properties that we usually expect of good estimators.

The discussion in this section has focused on MLEs (or RLEs) that are
consistent. Even for MLEs, however, they may not be consistent.

Rational, Irrational Estimand

Consider an example from Romano and Siegel:
Let X1, . . . , Xn be a sample from N(θ, 1). Define the estimand g(θ) as

g(θ) =
{
−θ if θ is irrational
θ if θ is rational.
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Because Xn is the MLE of θ, g(Xn) is the MLE of g(θ). Now Xn ∼ N(θ, 1/n)
and so is almost surely irrational; hence, g(Xn) = −Xn a.s. Now, by the
SLLN, we have g(Xn) = −θ a.s. Hence, if θ is a rational number 6= 0, then

g(Xn)→a.s. −θ 6= θ = g(θ).

Mixture

While that example may seem somewhat contrived, consider an example due
to Ferguson:
Let X1, . . . , Xn be a sample from from the distribution with PDF w.r.t.
Lebesgue measure

pX(x; θ) = (1− θ)pT(x; θ, δ(θ)) + θpU(x),

where θ ∈ [0, 1], δ(θ) is a continuous decreasing function of θ with δ(0) = 1
and 0 < δ(θ) ≤ 1− θ for 0 < θ < 1, and

pT(x; θ, δ(θ)) =
1
δ(θ)

(
1− |x− θ|

δ(θ)

)
I[θ−δ(θ),θ+δ(θ)](x)

and
pU(x) =

1
2
I[−1,1](x).

The distribution is a mixture of a triangular distribution centered on θ and
the U(−1, 1) distribution.

Note that the densities are continuous in θ for any x and is defined on
[0, 1] and therefore an MLE exists.

Let θ̂n = θ̂(X1, . . . , Xn) denote any MLE of θ. Now, if θ < 1, then

pX(x; θ) ≤ (1− θ)/δ(θ) + θ/2 < 1/δ(θ) +
1
2
,

and so for any α < 1

max
0≤θ≤α

ln(θ)
n
≤ log

(
1
δ(θ)

+
1
2

)
<∞.

Now, if we could choose δ(θ) so that

max
0≤θ≤1

ln(θ)
n
→a.s. ∞,

then θ̂n will eventually be greater than α for any α < 1, and so the MLE is
not consistent.

So, can we choose such a δ(θ)?
Let

Mn = max(X1, . . . , Xn),
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hence Mn →a.s. ∞, and

max
0≤θ≤1

ln(θ)
n
≥ ln(Mn)

n

≥ n− 1
n

log
(
Mn

2

)
+

1
n

log
(

1−Mn

δ(Mn)

)
,

and so

lim inf
n

max
0≤θ≤1

ln(θ)
n
≥ log

(
1
2

)
+ lim inf

n
log
(

1−Mn

δ(Mn)

)
a.s.

So we need to choose δ(θ) so that the last limit is infinite a.s. Now, ∀θMn →a.s.

∞, and the slowest rate is for θ = 1, because that distribution has the smallest
mass in a sufficiently small neighborhood of 1. Therefore, all we need to do is
choose δ(θ) → 0 as θ → 1 fast enough so that the limit is infinite a.s. when
θ = 0.

So now for 0 < ε < 1,
∑

n

Prθ=0(n1/4(1−Mn) > ε) =
∑

n

Prθ=0(Mn < 1− εn−1/4)

=
∑

n

(
1− ε2n

−1/4

2

)n

≤
∑

n

exp
(
−ε2n

−1/4

2

)

<∞.

Hence, by the Borel-Cantelli lemma, n1/4(1−Mn)→ 0 a.s. Finally, choosing

δ(θ) = (1− θ) exp
(
−(1− θ)−4 + 1

)
,

we have a function that satisfies the requirements above (it is continuous
decreasing with δ(0) = 1 and 0 < δ(θ) ≤ 1 − θ for 0 < θ < 1) and it is such
that

1
n

log
(

1−Mn

δ(Mn)

)
=

1
n(1−Mn)4

− 1
n

→a.s. ∞.

This says that any MLE must tend to 1 a.s.

Consistency of GEE Estimators

5.3.4 Asymptotic Normality of GEE Estimators

The class of estimators arising from the generalized estimating equations (2.25)
and (2.26), under very general assumptions have an asymptotic normal dis-
tribution. This is Theorem 5.13 in Shao.
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√
n(θ̂n − θ)→d N(0, σ2

F ),

where {θ̂n} is a sequence of GEE estimators and

σ2
F =

∫
(ψ(x, θ))2dF (x)/(ψ′(x, θ))2.

5.4 Application: Maximimum Likelihood Estimation in
Generalized Linear Models

In a very useful model for statistical applications, with observed data X as
an n-vector and Z as an n× p matrix, we have the relationship of the form

X = f(Z; θ) + ε,

where θ is a vector of parameters used in the specification of the function f ,
and ε is a deviation, usually assumed to be a random variable.

The expression “f(·)” represents a systematic effect related to the values
of “Z”, and “ε” represents a random effect, an unexplained effect, or simply
a “residual” that is added to the systematic effect.

A model in which the parameters are additively separable and with an
additive random effect is sometimes called an additive model:

X = f(Z)θ + ε.

A simple version of this is called a linear (additive) model:

X = Zβ + ε, (5.12)

where β is a p-vector of parameters.
Either form of the additive model can be generalized with a “link function”

to be a generalized additive model.
In the following, we will concentrate on the linear model, X = Zβ+ ε, and

we will discuss the link function and the generalization of the linear model,
which is called a generalized linear model (GLM or GLIM).

5.4.1 Linear Models

First, consider the random component in the model, and assume that the
elements are independent.

Let us assume that the distribution of the residual has a first moment and
that it is known. In that case, we can take its mean to be 0, otherwise, we can
incorporate it into Zβ. (If the first moment does not exist, we can work with
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the median.) Hence, assuming the mean of the residual exists, the model can
be written as

E(X) = Zβ,

that is, the expected value of X is the systematic effect in the model. More
generally, we can think of the model as being a location family with PDF

pε(ε) = pε(x+ Zβ),

w.r.t. a given σ-finite measure.

The Exponential Class

Let us now assume the happy case in which eachXi is distributed as a member
of the exponential class. (We are also assuming that they are independent.)
In the canonical formulation of the exponential form,

exp
(
ηT

i T (xi)− ζ(ηi)
)
h(xi), (5.13)

we have seen that the MLE of the natural parameter ηi has a particularly
simple form; it is just (

∂ζ

∂ηi

)−1

(ηi)
∣∣
ηi=T (xi) .

In the linear model (5.12), if ε N(0, σ2), as we usually assume, we can easily
identify ηi, T (xi), and ζ(ηi) in equation (5.13), and of course, h(xi) ≡ 1. This
is a location-scale family.

Location-Scale Family with the Scale a Nuisance Parameter

We can also consider a useful family of distributions in which the scale para-
meter is a nuisance parameter. We extend the distributional family of equa-
tion (5.13) slightly as a scale family with scale parameter φi > 0, but we will
not restrict the distribution to be in the exponential class if φi is unknown.

We now have the probability density of Xi as

pXi(xi|ηi, φi) = exp
(
ηT

i T (xi)− ζ(ηi)
φi

)
h(xi, φi), (5.14)

where ζ and h are known functions and w.r.t. the same σ-finite measure. The
scale φi is a nuisance parameter. (Notice, we could have made this slightly
more general, by considering the scale to be ξ(φi), some more function of the
basic parameter φi.)
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The Likelihood

The objective is to fit the model, that is, to estimate the parameters. The
model parameters are usually estimated either by a maximum likelihood
method or by minimizing some function of the residuals.

The likelihood, as a function of the parameters given realizations of the
random variable, is

L(ηi, φi|xi) = exp
{
xiηi − ζ(ηi)

φi
+ c(xi, φi)

}
.

As usual, we let
l(ηi, φi|xi) = log(L(ηi, φi|xi)).

Moments of X

Note, that if the FI regularity conditions are satisfied in the distribution with
PDF (5.14) where φi is known and θ is a function of ηi and φi, then

∂

∂θ
E(l) = E

(
∂l

∂θ

)
,

and so

E
(
∂l

∂θ

)
= 0,

and

E
(
∂2l

∂θ2

)
+ E

(
∂l

∂θ

)2

= 0.

Hence, for a random variable Xi with this density,

E(X) =
d

dηi
ζ(ηi)

and

V(X) =
d2

dη2
i

ζ(ηi)φi.

So, in terms of the individual observations, it is convenient to write

µi = E(Xi) =
d

dηi
ζ(ηi).
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5.4.2 Generalized Linear Models

A model as in equation (5.12) has limitations. Suppose, for example, that we
are interested in modeling a response that is binary, for example, two states of
a medical patient, “diseased” or “disease-free”. As usual, we set up a random
variable to map the sample space to IR:

X : {disease-free,diseased} 7→ {0, 1}.

The linear model X = Zβ + ε does not make sense. It is continuous and
unbounded.

A more useful model may address Pr(X = 0).
To make this more concrete, consider the situation in which several groups

of subjects are each administered a given dose of a drug, and the number
responding in each group is recorded. The data consist of the counts xi re-
sponding in the ith group, which received a level zi of the drug.

A basic model is
P(Xi = 0|zi) = 1− πi

P(Xi = 1|zi) = πi

The question is how does π depend on z?
A linear dependence, π = β0+β1z does not fit well in this kind of situation

– unless we impose restrictions, π would not be between 0 and 1.
We can try a transformation to [0, 1].
Suppose we impose an invertible function on

η = β0 + β1z

that will map it into [0, 1]:
π = h(η),

or
g(π) = η.

We call this a link function.
A common model following this setup is

πz = Φ(β0 + β1z),

where Φ is the normal cumulative distribution function, and β0 and β1 are
unknown parameters to be estimated. This is called a probit model. The link
function in this case is Φ−1.

The related logit model, in which the log odds ratio log(π/(1 − π)) is of
interest, has as link function

η = log
(

π

1− π

)
.
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Other possibilities are the complementary log-log function

η = log{− log(1− π)},

and the log-log function,

η = − log{− log(π)}.

Link Functions

The link function relates the systematic component to the mean of the random
variable.

In the case of the linear model, let ηi be the systematic component for a
given value of the independent variable,

ηi = β0 + β1z1i + · · ·βpzpi,

and let µi = E(X), as before. Let g be the link function:

ηi = g(µi).

In this case, the link function is linear in a set of parameters, βj , and it is
usually more natural to think in terms of these parameters rather than θ,

g(
d

dθ
b(θi)) = g(µi) = ηi = x′iβ.

The generalized linear model can now be thought of as consisting of three
parts:

1. the systematic component
2. the random component
3. the link between the systematic and random components.

In the context of generalized linear models, a standard linear model has a
systematic component of

β0 + β1x1i + · · ·βmxmi,

a random component that is an identical and independent normal distribution
for each observation, and a link function that is the identity.

5.4.3 Fitting Generalized Linear Models

Our initial objective is to fit the model, that is, to determine estimates of the
βj .

The model parameters are usually determined either by a maximum likeli-
hood method or by minimizing some function of the residuals. One approach
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is to use the link function and do a least squares fit of η using the residuals
yi−µi. It is better, however, to maximize the likelihood or, alternatively, the
log-likelihood,

l(θ, φ|y) =
n∑

i=1

yiθi − b(θi)
a(φ)

+ c(yi, φ).

The most common method of optimizing this function is “Fisher scoring”,
which is a method like Newton’s method, except that some quantities are
replaced by their expected values.

Newton’s Method

Problem: find the maximum of f(x).
Minimum: maximum −f(x).
What is f(·) like?
Suppose can expand in Taylor series:

f(x) = f(x0) + (x− x0)′∇f(x0) +
1
2!

(x− x0)′Hf (x0)(x− x0) + · · ·

Now, suppose f(·) is a quadratic (i.e., no · · · above).
Suppose its maximum (or minimum) is at x1. Then ∇f(x1) = 0, or

∇{(x1 − x0)′∇f(x0)}+∇{ 1
2!

(x1 − x0)′Hf (x0)(x1 − x0)} = 0,

i.e.,
∇f(x0) +Hf (x0)(x1 − x0) = 0.

If Hf is nonsingular, we have

x1 = x0 −H−1
f (x0)∇f(x0).

We can build a sequence of approximations, by expanding f about x1, and at
each stage assuming a quadratic fit.

This is also called Newton-Raphson. (Note we have to evaluate and invert
H at each step. Invertible? Positive-definite? How to approximate it?)

Fisher Scoring on the Log-Likelihood

The Hessian in Newton’s method is replaced by its expected value. The iterates
then are

θ̂k+1 = θ̂k −H−1
l (θ̂k |x)∇l(θ̂k|x)

In the generalized linear model, where the likelihood is linked to the pa-
rameters that are really of interest, this still must be cast in terms that will
yield values for β̂.
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Analysis of Deviance

Our approach to modeling involves using the observations (including the real-
izations of the random variables) as fixed values and treating the parameters
as variables (not random variables, however). The original model was then
encapsulated into a likelihood function, L(θ|y), and the principle of fitting
the model was maximization of the likelihood with respect to the parameters.
The log likelihood, l(θ|x), is usually used.

In model fitting an important issue is how well does the model fit the data?
How do we measure the fit? Maybe use residuals. (Remember, some methods
of model fitting work this way; they minimize some function of the residuals.)
We compare different models by means of the measure of the fit based on
the residuals. We make inference about parameters based on changes in the
measure of fit.

Using the likelihood approach, we make inference about parameters based
on changes in the likelihood. Likelihood ratio tests are based on this principle.

A convenient way of comparing models or making inference about the
parameters is with the deviance function, which is a likelihood ratio:

D(y|θ̂) = 2[l(θmax|y)− l(θ̂|y)],

where θ̂ is the fit of a potential model.
For generalized linear models the analysis of deviance plays a role similar

to that of the analysis of sums of squares (analysis of “variance”) in linear
models.

Under appropriate assumptions, when θ1 is a subvector of θ2, the difference
in deviances of two models, D(y|θ̂2)−D(y|θ̂1) has an asymptotic chi-squared
distribution with degrees of freedom equal to the difference in the number of
parameters.

For models with a binary response variable, we need a different measure of
residuals. Because we are measuring the model fit in terms of the deviance, D,
we may think of the observations as each contributing a quantity di, such that∑
di = D. (Exactly what that value is depends on the form of the systematic

component and the link function that are in the likelihood.) The quantity

ri = sign(yi − µ̂i)
√
di

increases in (yi − µ̂i) and
∑
r2i = D. We call ri the deviance residual.

For the logit model,

ri = sign(yi − µ̂i)
√
−2[yi log(π̂i) + (1− yi) log(1− π̂i)]

5.4.4 Generalized Additive Models

The mechanical process of dealing with generalized additive models parallels
that of dealing with generalized linear models. There are some very important
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differences, however. The most important is probably that the distribution of
the deviances is not worked out.

The meaning of degrees of freedom is also somewhat different.
So, first, we work out an analogous concept for degrees of freedom.
The response variable is Bernoulli (or binomial). We model the log odds

ratios as

log(
πi

1− πi
) = ηi

= β0 + β1x1i + · · ·+ β6x6i

= x′iβ.

For a binomial with number mi, we write the log-likelihood,

l(π|y) =
n∑

i=1

{yi log(πi/(1− πi)) +mi log(1− πi)},

where a constant involvingmi and yi has been omitted. Substituting, we have,

l(β|y) =
n∑

i=1

yix
′
iβ −

n∑

i=1

mi log{1 + exp(x′iβ)}.

The log likelihood depends on y only through X ′y.

∂l

∂πi
=
yi −miπi

πi(1− πi)

Using the chain rule, we have

∂l

∂βj
=

n∑

i=1

yi −miπi

πi(1− πi)
∂πi

∂βj

=
n∑

i=1

yi −miπi

πi(1− πi)
dπi

dηi
xij

The Fisher information is

−E
(

∂2l

∂βj∂βk

)
=

n∑

i=1

mi

πi(1− πi)
∂πi

∂βj

∂πi

∂βk

=
n∑

i=1

mi(dπi/dηi)2

πi(1− πi)
xijxik

= (X ′WX)jk,

where W is a diagonal matrix of weights,

mi(dπi/dηi)2

πi(1− πi)
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Notice
dπi

dηi
= πi(1− πi),

so we have the simple expression,

∂l

∂β
= X ′(y −mπ)

in matrix notation, and for the weights we have,

miπi(1− πi)

Use Newton’s method,

β̂(k+1) = β̂(k) −H−1
l (β̂(k))∇l(β̂(k)),

in which Hl is replaced by

E
(
− ∂2l

∂β∂β′ .

)

Using β̂(k), we form π̂(k) and η̂(k), and then, an adjusted y(k),

y
(k)
i = η̂(k) +

(y −miπ̂
(k)
i )

mi

dηi

dπi

This leads to
β̂(k+1) = (X ′W (k)X)−1X ′W (k)y(k),

and it suggests an iteratively reweighted least squares (IRLS) algorithm.

Residuals

For models with a binary response variable, we need a different measure of
residuals. Because we are measuring the model fit in terms of the deviance, D,
we may think of the observations as each contributing a quantity di, such that∑
di = D. (Exactly what that value is depends on the form of the systematic

component and the link function that are in the likelihood.) The quantity

rD
i = sign(yi − µ̂i)

√
di

increases in (yi − µ̂i) and
∑

(rD
i )2 = D. We call rD

i the deviance residual.
For the logit model,

rD
i = sign(yi − µ̂i)

√
−2[yi log(π̂i) + (1− yi) log(1− π̂i)].

Another kind of residual is called the “working” residual. It is

rW
i = (yi − µ̂i)

∂η̂i

∂µ̂i
,
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where the derivatives are evaluated at the final iteration of the scoring algo-
rithm.

In the logistic regression model, these working residuals are

yi − π̂i

π̂i(1− π̂i)

Residuals can be standardized by taking into account their different stan-
dard deviations that result from the influence.

This is the same kind of concept as influence in linear models. Here, how-
ever, we have

β̂(k+1) = (X ′W (k)X)−1X ′W (k)y(k),

where the weights are
miπ̂

(k)
i (1− π̂(k)

i ).

One measure is the diagonal of the hat matrix:

W
1
2X(X ′WX)−1X ′W

1
2

In the case of generalized linear models, the hat matrix is only the predic-
tion transformation matrix for the linear, systematic component.

Data consisting of counts, for example, the number of certain events within
a fixed period of time, give rise naturally to a Poisson model. The relationship
between the mean and the covariates is often assumed to be multiplicative,
giving rise to a log-linear model,

log(µ) = η = x′β.

Another possibility for count data is that the covariates have an additive
effect and the direct relation

µ = x′β

can be used.
Notice that the mean of the binomial and the Poisson distributions deter-

mine the variance.
In practice the variance of discrete response data, such as binomial or Pois-

son data, is observed to exceed the nominal variance that would be determined
by the mean.

This phenomenon is referred to as “over-dispersion”. There may be logical
explanations for over-dispersion, such as additional heterogeneity over and
above what is accounted for by the covariates, or some more complicated
variance structure arising from correlations among the responses.
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Quasi-likelihood Methods in Generalized Linear Models

Over-dispersion in the generalized linear model can often be accounted for
by the nuisance parameter φ in the likelihood. For example, we modify the
simple binomial model so the variance is

V(yi|xi) = φ
πi(1− πi)

ni
.

Notice the multiplier φ is constant, while π depends on the covariates and
n depends on the group size. This of course leads to a more complicated
likelihood function, but it may not be necessary to use the actual likelihood.

Quasi-likelihood and need not correspond to any particular distribution;
rather quasi can be used to combine any available link and variance function.

Wedderburn (1974) introduced a quasi-likelihood function to allow

E(y|x) = µ = h(x′β)

and
V(y|x) = σ2(µ) = φv(µ),

where φ is the (nuisance) dispersion parameter in the likelihood and v(µ) is
a variance function that is entirely separate from the likelihood.

McCullagh (1983) extended the concept of quasi-likelihood to allow for
a variance-covariance matrix V , and derived an asymptotic theory for the
resulting estimators. There may or may not be a true likelihood function with
corresponding mean and variance (see Morris, 1982).

Quasi-likelihood methods require only specification of a relationship be-
tween the mean and variance of the response.

Fahrmeir and Tutz (1994), following ideas of Gourieroux, Montfort, and
Trognon (1984), assume that the mean is indeed given by µ = h(x′β), but
that the variance is

V(y|x) = σ2
0(µ),

which may be different from σ2(µ) = φv(µ). They take φv(µ) to be a “working
variance”. Assuming that the responses are independent, they write a “quasi-
score function”,

s(β) =
∑

i

xiDi(β)σ2
i (β)(yi − µi(β)),

where µi(β) is the correct mean, i.e., h(x′iβ) and Di(β) is the derivative of h,
but σ2

i (β) is a working variance, φv(µ(β)), with v arbitrary. Obviously, to use
the quasi-score function for computing estimates, v must be somewhat close
to the true variance of the data.

In the ordinary quasi-likelihood methods, the variance function is assumed
known (or arbitrary, but not estimated directly). Nelder and Pregibon (1987)
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developed an extended quasi-likelihood approach, in which the variance func-
tion is also studied.

Green and Silverman (1994), using a roughness penalty approach, devel-
oped quasi-likelihood methods for semiparametric generalized linear models,
in which the penalized quasi-likelihood estimates are penalized least squares
estimates with a weight function corresponding to the inverse of the variance-
covariance matrix, V .

Morgenthaler (1992) and Jung (1996) considered quasi-likelihood methods
of estimation for generalized linear models using least absolute deviations and
other robust fitting methods.

Notes

Unbiasedness and Consistency

While many MLEs are biased, most of the ones encountered in common situa-
tions are at least consistent in mean-squared error. Neyman and Scott (1948)
give an example, which is a simplified version of an example due to Wald, of
an MLEs that is not consistent. The problem is the standard one-way ANOVA
model with two observations per class. The asymptotics are in the number
of classes, and hence, of course in the number of observations. The model is
Xij ∼ N(µj , σ

2) with i = 1, 2 and j = 1, 2, . . .. The asymptotic (and constant)
expectation of the MLE of σ2 is σ2/2. This example certainly shows that
MLEs may behave very poorly, but its special property should be recognized.
The dimension of the parameter space is growing at the same rate as the
number of observations.

Exercises in Shao

• For practice and discussion
4.96(a)(g)(h), 4.107, 4.151, 5.20, 5.21 (Solutions in Shao, 2005)

• To turn in
4.94, 4.95, 4.97, 4.109, 4.120, 4.152, 5.90

Additional References

Neyman, J., and E. L. Scott (1948) Consistent estimates based on partially
consistent observations, Econometrica 16, 1–32.
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6

Testing Statistical Hypotheses
(Shao Ch 6; TSH3 Ch 3, 4, 5)

In statistical hypothesis testing, the basic problem is to decide whether or not
to reject a statement about the distribution of a random variable. The state-
ment must be expressible in terms of membership in a well-defined class. The
hypothesis can therefore be expressed by the statement that the distribution
of the random variable X is in the class PH = {Pθ : θ ∈ ΘH}. An hypothesis
of this form is called a statistical hypothesis.

The basic paradigm of statistical hypothesis testing was described in Sec-
tion 2.4.1, beginning on page 103. We first review some of those ideas, and
then in Sections 6.1 and 6.2 we consider the issue of optimality of tests. As
we saw in the point estimation problem, it is often not possible to develop
a procedure that is uniformly optimal. As with the estimation problem, we
can impose restrictions, such as unbiasedness or invariance (Section 8.3), or
we can define uniformity in terms of a global averaging (Section 3.4). If we
impose restrictions, we then proceed to find uniformly most powerful tests
under those restrictions. We discuss uniformly most powerful unbiased tests
in Section 6.3. In Sections 6.4, 6.6, and 6.7, we discuss general methods for
constructing tests.

This kind of statement is usually broken into two pieces, one part an
assumption, “assume the distribution of X is in the class P = {Pθ : θ ∈ Θ}”,
and the other part the hypothesis, “θ ∈ ΘH , where ΘH ⊂ Θ.” Given the
assumptions, and the definition of ΘH , we often denote the hypothesis as H ,
and write it as

H : θ ∈ ΘH .

While, in general, to reject the hypothesis H would mean to decide that
θ /∈ ΘH , it is generally more convenient to formulate the testing problem as
one of deciding between two statements:

H0 : θ ∈ Θ0

and
H1 : θ ∈ Θ1,
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where Θ0 ∩Θ1 = ∅.
We do not treat H0 and H1 symmetrically; H0 is the hypothesis (or “null

hypothesis”) to be tested and H1 is the alternative. This distinction is impor-
tant in developing a methodology of testing.

To test the hypotheses means to choose one or the other; that is, to make
a decision, d. A nonrandomized test procedure is a rule δ(X) that assigns two
decisions to two disjoint subsets, C0 and C1, of the range of X . In general, we
require C0 ∪C1 be the support of X . We equate those two decisions with the
real numbers d0 and d1, so δ(X) is a real-valued function,

δ(x) =
{
d0 for x ∈ C0

d1 for x ∈ C1.

For simplicity, we choose d0 = 0 and d1 = 1. Note for i = 0, 1,

Pr(δ(X) = i) = Pr(X ∈ Ci).

We call C1 the critical region, and generally denote it by just C. (It is not
my intent to distinguish C from R above; they’re both “critical regions”. I
have used C to denote a set of values of X , and R to denote a set of values
of T (X).

If δ(X) takes the value 0, the decision is not to reject; if δ(X) takes the
value 1, the decision is to reject. If the range of δ(X) is {0, 1}, the test is a
nonrandomized test. Sometimes, however, it is useful to expand the range of
δ(X) to be [0, 1], where we can interpret a value of δ(X) as the probability
that the null hypothesis is rejected. If it is not the case that δ(X) equals 0 or
1 a.s., we call the test a randomized test.

Our standard approach in hypothesis testing is to control the level of the
probability of a type I error under the assumptions, and to try to find a test
subject to that significance level that has a small probability of a type II error.
We call the maximum allowable probability of a type I error the “significance
level”, and usually denote it by α. We will call the probability of rejecting the
null hypothesis the power of the test, and will denote it by β. If the alternate
hypothesis is the true state of nature, the power is one minus the probability
of a type II error.

It is clear that we can easily decrease the probability of one (if its proba-
bility is positive) at the cost of increasing the probability of the other.

Hence, in one approach to hypothesis testing under the given assumptions
on X , and the notation above), we choose α ∈ (0, 1) and require that δ(X)
be such that

Pr(δ(X) = 1 | θ ∈ Θ0) ≤ α. (6.1)

and, subject to this, find δ(X) so as to minimize

Pr(δ(X) = 0 | θ ∈ Θ1). (6.2)

Optimality of a test T is defined in terms of this constrained optimization
problem.
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Notice that the restriction on the type I error applies ∀θ ∈ Θ0. We call

sup
θ∈Θ0

Pr(δ(X) = 1 | θ) (6.3)

the size of the test. If the size is less than the level of significance, the test is
said to be conservative, and in that case, we often refer to α as the “nominal
size”.

Note that there is a difference in choosing the test procedure, and in using
the test. The question of the choice of α comes back. Does it make sense to
choose α first, and then proceed to apply the test just to end up with a decision
d0 or d1? It is not likely that this rigid approach would be very useful for most
objectives. In statistical data analysis our objectives are usually broader than
just deciding which of two hypotheses appears to be true. On the other hand,
if we have a well-developed procedure for testing the two hypotheses, the
decision rule in this procedure could be very useful in data analysis. One
common approach is to use the functional form of the rule, but not to pre-
define the critical region. Then, given the same setup of null hypothesis and
alternative, to collect data X = x, and to determine the smallest value α̂(x)
at which the null hypothesis would be rejected. The value α̂(x) is called the p-
value of x associated with the hypotheses. The p-value indicates the strength
of the evidence of the data against the null hypothesis.

We call the probability of rejecting H0 the power of the test, and denote
it by β, or for the particular test δ(X), βT . (Some authors define the power
only in the case that H1 is true, but we do not restrict the definition in that
way.) The power in the case that H1 is true is 1 minus the probability of
a type II error. The probability of a type II error is generally a function of
the true distribution of the sample Pθ, and hence so is the power, which we
may emphasize by the notation βδ(Pθ) or βδ(θ). Thus, the second step above
is equivalent to maximizing the power within Θ1. Because the probability of
a type II error is generally a function of θ, what does the second step to
minimize the probability mean; that is, to minimize it for what values of θ?
Ideally, we would like a procedure that yields the minimum for all values of θ;
that is, one that is most powerful for all values of θ. We call such a procedure
a uniformly most powerful or UMP test. For a given problem, finding such
procedures, or establishing that they do not exist, will be one of our primary
objectives.

Decision Theoretic Approach

As in any decision-theoretic formulation of a statistical procedure, we seek to
minimize the risk:

R(P, δ) = E
(
L(P, δ(X))

)
. (6.4)

In the case of the 0-1 loss function and the four possibilities, the risk is
just the probabiltiy of either type of error.

We obviously want a test procedure that minimizes the risk.
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Randomized Tests

Just as in the theory of point estimation, we found randomized procedures
useful for establishing properties of estimators or as counterexamples to some
statement about a given estimator, we can use randomized test procedures
to establish properties of tests. (While randomized estimators rarely have
application in practice, randomized test procedures can actually be used to
increase the power of a conservative test. Use of a randomized test in this
way would not make much sense in real-world data analysis, but if there are
regulatory conditions to satisfy, it might be useful.)

Let us define a random experiment R that has two outcomes, r0 and r1,
such that

Pr(R = r0) = 1− φ(x)

and so
Pr(R = r1) = φ(x).

We could also extend this to more than two outcomes, as we indicated above
for δ. This is a randomized test if we equate r0 with d0 and r1 with d1.

6.1 Optimal Tests

Optimal tests are those that minimize the risk (6.4). The risk considers the
total expected loss. In the testing problem, we generally prefer to restrict
the probability of a type I error as in inequality (6.1) and then, subject to
that, minimize the probability of a type II error as in equation (6.2), which is
equivalent to maximizing the power under the alternative hypothesis.

An Optimal Test in a Simple Situation

First, consider the problem of picking the optimal critical region C in a prob-
lem of testing the hypothesis that a discrete random variable has the prob-
abiltiy mass function p0(x) versus the alternative that it has the probabiltiy
mass function p1(x).

We will develop an optimal test for any given significance level based on
one observation. For x 3 p0(x) > 0, let

r(x) =
p1(x)
p0(x)

,

and label the values of x for which r is defined so that r(x1) ≥ r(x2) ≥ · · · .
Let N be the set of x for which p0(x) = 0 and p1(x) > 0. Assume that

there exists a j such that
j∑

i=1

p0(xi) = α.
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If S is the set of x for which we reject the test, we see that the significance
level is ∑

xi∈S

p0(xi).

and the power over the region of the alternative hypothesis is
∑

xi∈S

p1(xi).

Then it is clear that if C = {x1, . . . , xj} ∪N , then
∑

x∈S p1(x) is maximized
over all sets C subject to the restriction on the size of the test.

If there does not exist a j such that
∑j

i=1 p0(xi) = α, the rule is to put
x1, . . . , xj in C so long as

j∑

i=1

p0(xi) = α∗ < α.

We then define a randomized auxilliary test R

Pr(R = r1) = φ(xj+1)
= (α− α∗)/p0(xj+1)

It is clear in this way that
∑

x∈S p1(x) is maximized subject to the restriction
on the size of the test.

Example: Two Discrete Distributions

Consider two distributions with support on a subset of {0, 1, 2, 3, 4, 5}. Let
p0(x) and p1(x) be the probability mass functions. Based on one observation,
we want to test H0 : p0(x) is the mass function versus H1 : p1(x) is the
mass function.

Suppose the distributions are as shown in Table 6.1, where we also show
the values of r and the labels on x determined by r.

Table 6.1. Formulas for Some Vector Derivatives

x 0 1 2 3 4 5

p0 .05 .10 .15 0 .50 .20
p1 .15 .40 .30 .05 .05 .05

r 3 4 2 - 1/10 2/5
label 2 1 3 - 5 4

Thus, for example, we see x1 = 1 and x2 = 0. Also, N = {3}.
For given α, we choose C such that
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∑

x∈C

p0(x) ≤ α

and so as to maximize ∑

x∈C

p1(x).

We find the optimal C by first ordering r(xi1 ) ≥ r(xi2 ) ≥ · · · and then
satisfying

∑
x∈C p0(x) ≤ α. The ordered possibilities for C in this example

are
{1} ∪ {3}, {1, 0} ∪ {3}, {1, 0, 2} ∪ {3}, · · · .

Notice that including N in the critical region does not cost us anything (in
terms of the type I error that we are controlling).

Now, for any given significance level, we can determine the optimum test
based on one observation.

• Suppose α = .10. Then the optimal critical region is C = {1, 3}, and the
power for the null hypothesis is βδ(p1) = .45.

• Suppose α = .15. Then the optimal critical region is C = {0, 1, 3}, and the
power for the null hypothesis is βδ(p1) = .60.

• Suppose α = .05. We cannot put 1 in C, with probability 1, but if we put
1 in C with probability 0.5, the α level is satisfied, and the power for the
null hypothesis is βφ(p1) = .22.

• Suppose α = .05. We cannot put 1 in C, with probability 1, but if we put
1 in C with probability 0.5, the α level is satisfied, and the power for the
null hypothesis is βφ(p1) = .25.

• Suppose α = .20. We choose C = {0, 1, 3} with probability 2/3 and C =
{0, 1, 2, 3} with probability 1/3. The α level is satisfied, and the power for
the null hypothesis is βφ(p1) = .75.

All of these tests are most powerful based on one observations for the given
values of α.

Now, how would we extend this idea to tests based on two observations.
We see immediately that the ordered critical regions are

C1 = {(1, 3)} × {(1, 3)}, C1 ∪ {(1, 3)} × {(0, 3)}, · · · .

Extending this direct enumeration would be tedious, but, at this point we
have grasped the implication: the ratio of the likelihoods is the basis for the
most powerful test. The is the Neyman-Pearson Fundamental Lemma.

The Neyman-Pearson Fundamental Lemma

The example in the previous section illustrates the way we can approach the
problem of testing any simple hypothesis against another simple hypothesis.

Thinking of the hypotheses in terms of a parameter θ that indexes these
two densities by θ0 and θ1, for a sample X = x, we have the likelihoods
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associated with the two hypotheses as L(θ0;x) and L(θ1;x). We may be able
to define an α-level critical region for nonrandomized tests in terms of the
ratio of these likelihoods: Let us assume that a positive number k exists such
that there is a subset of the sample space C with complement with respect to
the sample space C̄, such that

L(θ1;x)
L(θ0;x)

≥ k ∀x ∈ C

L(θ1;x)
L(θ0;x)

≤ k ∀x ∈ C̄

(6.5)

and
α = Pr(X ∈ C | H0).

(Notice that such a k and C may not exist.)
The Neyman-Pearson Fundamental Lemma tells us this test based on the

likelihood ratio is the most powerful nonrandomized test of the simple null
H0 that specifies the density p0 for X versus the simple alternative H1 that
specifies the density p1. Let’s consider the form of the Lemma that does not
involve a randomized test; that is, in the case that an exact α-level nonran-
domized test exists, as assumed above. Let k and C be as above. Then the
Neyman-Pearson Fundamental Lemma states that C is the best critical region
of size α for testing H0 versus H1.
Proof. Let A be any critical region of size α. We want to prove

∫

C

L(θ1)−
∫

A

L(θ1) ≥ 0.

We can write this as
∫

C

L(θ1)−
∫

A

L(θ1) =
∫

C∩A

L(θ1) +
∫

C∩Ā

L(θ1)−
∫

A∩C

L(θ1)−
∫

A∩C̄

L(θ1)

=
∫

C∩Ā

L(θ1)−
∫

A∩C̄

L(θ1).

By the given condition, L(θ1;x) ≥ kL(θ0;x) at each x ∈ C, so
∫

C∩Ā

L(θ1) ≥ k
∫

C∩Ā

L(θ0),

and L(θ1;x) ≤ kL(θ0;x) at each x ∈ C̄, so
∫

A∩C̄

L(θ1) ≤ k
∫

A∩C̄

L(θ0).

Hence ∫

C

L(θ1)−
∫

A

L(θ1) ≥ k
(∫

C∩Ā

L(θ0)−
∫

A∩C̄

L(θ0)
)
.
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But∫

C∩Ā

L(θ0)−
∫

A∩C̄

L(θ0) =
∫

C∩Ā

L(θ0) +
∫

C∩A

L(θ0)−
∫

C∩A

L(θ0)−
∫

A∩C̄

L(θ0)

=
∫

C

L(θ0)−
∫

A

L(θ0)

= α− α
= 0.

Hence,
∫

C L(θ1)−
∫

A L(θ1) ≥ 0.
This simple statement of the Neyman-Pearson Lemma and its proof should

be in your bag of easy pieces.

The Lemma applies more generally by use of a random experiment so as
to achieve the level α. Shao gives a clear statement and proof.

Generalizing the Optimal Test to Hypotheses of Intervals

Although it applies to a simple alternative (and hence “uniform” properties
do not make much sense), the Neyman-Pearson Lemma gives us a way of
determining whether a uniformly most powerful (UMP) test exists, and if so
how to find one. We are often interested in testing hypotheses in which either
or both of Θ0 and Θ1 are continuous regions of IR (or IRk).

We must look at the likelihood ratio as a function both of θ and x. The
question is whether, for given θ0 and any θ1 > θ0 (or equivalently any θ1 < θ0),
the likelihood is monotone in some function of x; that is, whether the family
of distributions of interest is parameterized by a scalar in such a way that it
has a monotone likelihood ratio (see page 61). In that case, it is clear that we
can extend the test in (6.5) to test to be uniformly most powerful for testing
H0 : θ = θ0 against an alternative H1 : θ > θ0 (or θ1 < θ0).

The exponential class of distributions is important because UMP tests are
easy to find for families of distributions in that class. Discrete distributions
are especially simple, but there is nothing special about them. As an example,
work out the test for H0 : λ ≥ λ0 versus the alternative H1 : λ < λ0 in
a one-parameter exponential distribution. (The one-parameter exponential
distribution, with density over the positive reals λe−λx is a member of the
exponential class. Recall that the two-parameter exponential distribution used
is not a member of the exponential family.)

Two easy pieces you should have are construction of a UMP for the hy-
potheses in the one-parameter exponential (above), and the construction of
a UMP for testing H0 : π ≥ π0 versus the alternative H1 : π < π0 in a
binomial(n, π) distribution.

Use of Sufficient Statistics

It is a useful fact that if there is a sufficient statistic S(X) for θ, and δ̃(X) is
an α-level test for an hypothesis specifying values of θ, then there exists an
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α-level test for the same hypothesis, δ(S) that depends only on S(X), and
which has power at least as great as that of δ̃(X). We see this by factoring
the likelihoods.

Nuisance Parameters and Similar Regions

A situation in which a sufficient statistic may be important is when there are
additional parameters not specified by the hypotheses being tested. In this
situation we have θ = (θs, θu), and the hypothesis may be of the form

H0 : θs = θs0.

The problem is that the performance of the test, that is, E(δ(X)) may depend
on θu. There is nothing we can do about this. We might, however, seek to do
something about it in some cases; in particular, we might try to eliminate the
dependency under the null hypothesis. We think it is important to control the
size of the test; hence, we require, for given α,

EH0(δ(X)) ≤ α.

Is this possible? It certainly is if α = 1; that is if the rejection region is the
entire sample space. Are there regions similar to the sample space in this
regard? Maybe. If a critical region is such that EH0(δ(X)) ≤ α for all values
of θ the region is called an α-level similar region with respect to θ (or more
precisely with respect to θu), and the test is called an α-level similar test.

6.2 Uniformly Most Powerful Tests

The probability of a type I error is limited to α or less. We seek a procedure
that yields the minimum probability of a type II error. This would be a “most
powerful” test. Ideally, the test would be most powerful for all values of θ;
that is, one that is most powerful for all values of θ. We call such a proce-
dure a uniformly most powerful or UMP test. For a given problem, finding
such procedures, or establishing that they do not exist, will be one of our pri-
mary objectives. The Neyman-Pearson Lemma gives us a way of determining
whether a UMP test exists, and if so how to find one. The main issue is the
likelihood ratio as a function of the parameter in the region specified by a
composite H1. If the likelihood ratio is monotone, then we have a UMP based
on the ratio.

You should be able to develop UMP tests for a variety of problems using
this fact. You should also be able to identify when a UMP test cannot exist.
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UMP Tests when There Are Nuisance Parameters

Let U be a sufficient statistic for θu, suppose an α-level test δ(x) of an hy-
pothesis H0 specifying θs is such that

EH0(δ(X)|U) = α.

(This condition on the critical region is called “Neyman structure”.) Because
U is sufficient, taking the expectation over U , we have

EH0(EH0(δ(X)|U)) = EH0(δ(X))
= α

and so δ(X) is a similar test of size α.
Now suppose that U is boundedly complete sufficient for θu. If

EH0(EH0(δ(X)|U)) = α,

then the test has Neyman structure.
While the power may still depend on θu, this fact may allow us to determine

UMP tests of given size without regard to the nuisance parameters.
Unfortunately, in the presence of nuisance parameters, usually UMP tests

do not exist. (We must add other restrictions on the tests, as we see below.)

Nonexistence of UMP Tests

One of the most interesting cases in which a UMP test cannot exist is the
two-sided null hypothesis

H0 : θ = θ0

versus the alternative
H1 : θ 6= θ0.

This is easy to see, and you should reason through this statement to see that
it is true.

So what can we do?

There are basically two ways of approaching the problem. We can add a
requirement on the uniformity or we can introduce an additional criterion.

In point estimation when we realized we could not have an estimator that
would uniformly minimize the risk, we required unbiasedness or invariance, or
we added some global property of the risk, such as minimum averaged risk or
minimum maximum risk. We might introduce similar criteria for the testing
problem.

First, let’s consider a desirable property that we will call unbiasedness.
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6.3 UMP Unbiased Tests

Recall that there are a couple of standard definitions of unbiasedness.

• If a random variable X has a distribution with parameter θ, for a point
estimator T (X) of an estimand g(θ) to be unbiased means that

Eθ(T (X)) = g(θ).

Although no loss function is specified in this meaning of unbiasedness,
we know that such an estimator minimizes the risk based on a squared-
error loss function. (This last statement is not iff. Under squared-error loss
the conditions of minimum risk and unbiasedness defined in this way are
equivalent if g is continuous and not constant over any open subset of the
parameter space and if Eθ(T (X)) is a continuous function of θ.)

• Another definition of unbiasedness is given with direct reference to a loss
function. This is sometimes called L-unbiasedness. The estimator (or more
generally, the procedure) T (X) is said to be L-unbiased under the loss
function L, if for all θ and θ̃,

Eθ(L(θ, T (X))) ≤ Eθ(L(θ̃, T (X))).

Notice the subtle differences in this property and the property of an esti-
mator that may result from an approach in which we seek a minimum-risk
estimator; that is, an approach in which we seek to solve the minimization
problem,

min
T

Eθ(L(θ, T (X)))

for all θ. This latter problem does not have a solution. (Recall the approach
is to add other restrictions on T (X).)
L-unbiasedness under a squared-error also leads to the previous definition
of unbiasedness.

Unbiasedness in hypothesis testing is the property that the test is more
likely to reject the null hypothesis at any point in the parameter space specified
by the alternative hypothesis than it is at any point in the parameter space
specified by the null hypothesis. More formally, the α-level test δ with power
function β(θ) = Eθ(δ(X)) of the hypothesis H0 : θ ∈ ΘH0 versus H1 : θ ∈
ΘH1 is said to be unbiased if

β(θ) ≤ α ∀ θ ∈ ΘH0

and
β(θ) ≥ α ∀ θ ∈ ΘH1 .

Notice that this unbiasedness depends not only on the hypotheses, but also
on the significance level.
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This definition of unbiasedness for a test is L-unbiasedness if the loss
function is 0-1.

Notice that if an α-level UMP test exists, it is unbiased, because its power
is at least as great as the power of the constant test (for all x), δ(x) = α.

Similar UMPU tests remain so in the presence of nuisance parameters.

6.4 Likelihood Ratio Tests

We see that the Neyman-Pearson Lemma leads directly to use of the ratio of
the likelihoods in constructing tests. Now we want to generalize this approach
and to study the properties of tests based on that ratio. Although as we have
emphasized, the likelihood is a function of the distribution rather than of the
random variable, we want to study its properties under the distribution of the
random variable. Using the idea of the ratio as in the test (6.5) of H0 : θ ∈ Θ0,
but inverting that ratio and including both hypotheses in the denominator,
we define the likelihood ratio as

λ(X) =
supθ∈Θ0

L(θ;X)
supθ∈Θ L(θ;X)

. (6.6)

The test, similarly to (6.5), rejects H0 if λ(X) < c, where c is some value in
[0, 1]. (The inequality goes in the opposite direction because we have inverted
the ratio.) Tests such as this are called likelihood ratio tests. (We should note
that there are other definitions of a likelihood ratio; in particular, in TSH3
its denominator is the sup over the alternative hypothesis. If the alternative
hypothesis does not specify Θ−Θ0, such a definition requires specification of
both H0, and H1; whereas (6.6) requires specification only of H0.)

The likelihood ratio may not exist, but if if is well defined, clearly it is
in the interval [0, 1], and values close to 1 provide evidence that the null
hypothesis is true, and values close to 0 provide evidence that it is false.

6.5 Sequential Probability Ratio Tests

Wald (1945)

6.6 Asymptotic Likelihood Ratio Tests

Some of the most important properties of LR tests are asymptotic ones.
There are various ways of using the likelihood to build practical tests.

Some are asymptotic tests that use MLEs (or RLEs).
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Asymptotic Properties of Tests

For use of asymptotic approximations for hypothesis testing, we need a con-
cept of asymptotic significance, as discussed on page 118.

We assume a family of distributions P , a sequence of statistics {δn} based
on a random sample X1, . . . , Xn. In hypothesis testing, the standard setup
is that we have an observable random variable with a distribution in the
family P . Our hypotheses concern a specific member P ∈ P . We have a null
hypothesis

H0 : P ∈ P0

and an alternative hypothesis

H1 : P ∈ P1,

where P0 ⊂ P , P1 ⊂ P , and P0 ∩ P1 = ∅.
We often define the test statistic δ in regard to the decisions, which we

denote by 1 for the case of deciding to reject H0 and conclude H1, and by 0
for the case of deciding not to reject H0.

Letting
β(δn, P ) = Pr(δn = 1),

we define lim supn β(δn, P ) ∀P ∈ P0, if it exists, as the asymptotic size of the
test.

If lim supn β(δn, P ) ≤ α ∀P ∈ P0, then α is an asymptotic significance
level of the test.

δn is consistent for the test iff lim supn β(δn, P )− 0 ∀P ∈ P1.
δn is Chernoff-consistent for the test iff δn is consistent and furthermore,

lim supn β(δn, P )− 0 ∀P ∈ P0.
The asymptotic distribution of a maximum of a likelihood is a chi-squared

and the ratio of two is asymptotically an F .

Regularity Conditions

The interesting asymptotic properties of LR tests depend on the Le Cam reg-
ularity conditions, which go slightly beyond the Fisher information regularity
conditions. (See page 60.)

These are the conditions to ensure that superefficiency can only occur over
a set of Lebesgue measure 0 (Shao Theorem 4.16), the asymptotic efficiency
of RLEs (Shao Theorem 4.17), and the chi-squared asymptotic significance of
LR tests (Shao Theorem 6.5).

Asymptotic Significance of LR Tests

We consider a general form of the null hypothesis,

H0 : R(θ) = 0 (6.7)
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versus the alternative
H1 : R(θ) 6= 0, (6.8)

for a continuously differential function R(θ) from IRk to IRr. (Shao’s notation,
H0 : θ = g(ϑ) where ϑ is a (k − r)-vector, although slightly different, is
equivalent.)

The key result is Theorem 6.5 in Shao, which, assuming the Le Cam reg-
ularity conditions, says that under H0,

−2 log(λn)→d χ
2
r ,

where χ2
r is a random variable with a chi-squared distribution with r degrees

of freedom and r is the number of elements in R(θ). (In the simple case, r is
the number of equations in the null hypothesis.)

This allows us to determine the asymptotic significance of an LR test. It
is also the basis for constructing asymptotically correct confidence sets, as we
discuss beginning on page 259.

6.7 Wald Tests and Score Tests

There are two types of tests that arise from likelihood ratio tests. These are
called Wald tests and score tests. Score tests are also called Rao test or La-
grange multiplier tests. Buse (1982) gives an interesting exposition of the three
types of tests (The American Statistician 36, pages 153–157).

These tests are asymptotically equivalent. They are consistent under the
Le Cam regularity conditions, and they are Chernoff-consistent if α is chosen
so that as n→∞, α→ 0 and χ2

r,αn
= o(n).

Wald Tests

For the hypostheses (6.7) and (6.8), the Wald test uses the test statistics

Wn =
(
R(θ̂)

)>((
S(θ̂)

)> (
In(θ̂)

)−1

S(θ̂)
)−1

R(θ̂), (6.9)

where S(θ) = ∂R(θ)/∂θ and In(θ) is the Fisher information matrix, and these
two quantities are evaluated at an MLE or RLE θ̂. The test rejects the null
hypothesis when this value is large.

Notice that for the simple hypothesis H0 : θ = θ0, this simplifies to

(θ̂ − θ0)>In(θ̂)(θ̂ − θ0).

An asymptotic test can be constructed because Wn →d Y , where Y ∼ χ2
r

and r is the number of elements in R(θ). This is proven in Theorem 6.6 of
Shao, page 434.

The test rejects at the α level if Wn > χ2
r,1−α, where χ2

r,1−α is the 1 − α
quantile of the chi-squared distribution with r degrees of freedom. (Note that
Shao denotes this quantity as χ2

r,α.)
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Score Tests

A related test is the Rao score test, sometimes called a Lagrange multiplier
test. It is based on a MLE or RLE θ̃ under the restriction that R(θ) = 0
(whence the Lagrange multiplier), and rejects H0 when the following is large:

Rn = (sn(θ̃))>
(
In(θ̃)

)−1

sn(θ̃), (6.10)

where sn(θ) = ∂lL(θ)/∂θ, and is called the score function.
The information matrix can either be the Fisher information matrix (that

is, the expected values of the derivatives) evaluated at the RLEs or the “ob-
served” information matrix in which instead of expected values, the observed
values are used.

An asymptotic test can be constructed because Rn →d Y , where Y ∼ χ2
r

and r is the number of elements in R(θ). This is proven in Theorem 6.6 (ii)
of Shao.

The test rejects at the α level if Rn > χ2
r,1−α, where χ2

r,1−α is the 1 − α
quantile of the chi-squared distribution with r degrees of freedom.

Example of Tests

Consider a general regression model:

Xi = f(zi, β) + ε, where εi ∼ iid N(0, σ2).

For given k × r matrix L, we want to test

H0 : Lβ = β0

Let X be the sample (it’s an n-vector). Let Z be the matrix whose rows
are the zi.

The log likelihood is

log `(β;X) = c(σ2)− 1
2σ2

(X − f(Z, β))T(X − f(Z, β)).

The MLE is the LSE, β̂.
Let β̃ be the maximizer of the log likelihood under the restriction Lβ = β0.
The likelihood ratio is the same as the difference in the log likelihoods.
The maximum of the unrestricted log likelihood (minus a constant) is the

minimum of the residuals:

1
2σ2

(X − f(Z, β̂))T(X − f(Z, β̂)) =
1

2σ2
SSE(β̂)

and likewise, for the restricted:
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1
2σ2

(X − f(Z, β̃))T(X − f(Z, β̃)) =
1

2σ2
SSE(β̃).

Now, the difference,
SSE(β̂)− SSE(β̃)

σ2
,

has an asymptotic χ2(r) distribution. (Note that the 2 goes away.)
We also have that

SSE(β̂)
σ2

has an asymptotic χ2(n− k) distribution.
So for the likelihood ratio test we get an “F -type statistic”:

(SSE(β̂)− SSE(β̃))/r
SSE(β̂)/(n− k)

.

Use unrestricted MLE β̂ and consider Lβ̂ − β0.

V(β̂)→
(
JT

f(β̂)
Jf(β̂)

)−1

σ2,

and so
V(Lβ̂)→ L

(
JT

f(β̂)
Jf(β̂)

)−1

LTσ2,

where Jf(β̂) is the n× k Jacobian matrix.
Hence, we can write an asymptotic χ2(r) statistic as

(Lβ̂ − β0)T
(
L
(
JT

f(β̂)
Jf(β̂)

)−1

LTs2
)−1

(Lβ̂ − β0)

We can form a Wishart-type statistic from this.
If r = 1, L is just a vector (the linear combination), and we can take the

square root and from a “pseudo t”:

LTβ̂ − β0

s

√
LT
(
JT

f(β̂)
Jf(β̂)

)−1

L

.

Get MLE with the restriction Lβ = β0 using a Lagrange multiplier, λ of
length r.

Minimize

1
2σ2

(X − f(Z, β))T(X − f(Z, β)) +
1
σ2

(Lβ − β0)Tλ.

Differentiate and set = 0:
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−JT
f(β̂)

(X − f(Z, β̂)) + LTλ = 0

Lβ̂ − β0 = 0.

JT
f(β̂)

(X − f(Z, β̂)) is called the score vector. It is of length k.

Now V(X − f(Z, β̂)) → σ2In, so the variance of the score vector, and
hence, also of LTλ, goes to σ2JT

f(β)Jf(β).
(Note this is the true β in this expression.)

Estimate the variance of the score vector with σ̃2JT
f(β̃)

Jf(β̃),

where σ̃2 = SSE(β̃)/(n− k + r).
Hence, we use LTλ̃ and its estimated variance (previous slide).
Get

1
σ̃2
λ̃TL

(
JT

f(β̃)
Jf(β̃)

)−1

LTλ̃

It is asymptotically χ2(r).
This is the Lagrange multiplier form.
Another form:
Use JT

f(β̃)
(X − f(Z, β̃)) in place of LTλ̃.

Get

1
σ̃2

(X − f(Z, β̃))TJf(β̃)

(
JT

f(β̃)
Jf(β̃)

)−1

JT
f(β̃)

(X − f(Z, β̃))

This is the score form. Except for the method of computing it, it is the
same as the Lagrange multiplier form.

This is the SSReg in the AOV for a regression model.

An Anomalous Score Test

An interesting example of the use of a score test is discussed by Morgan,
Palmer, and Ridout, Verbeke and Molenberghs, and Freedman in The Amer-
ican Statistician 61 (2007), pages 285–295.

Morgan, Palmer, and Ridout (MPR) illustrate some interesting issues us-
ing a simple example of counts of numbers of stillbirths in each of a sample
of litters of laboratory animals.

MPR suggest that a zero-inflated Poisson is an appropriate model. This
distribution is an ω mixture of a point mass at 0 and a Poisson distribution.
The CDF (in a notation we will use often later) is

P0,ω(x|λ) = (1− ω)P (x|λ) + ωI[0,∞)(x),

where P (x) is the Poisson CDF with parameter λ.
(Write the PDF (under the counting measure). Is this a reasonable prob-

ability model? What are the assumptions? Do the litter sizes matter?)
If we denote the number of litters in which the number of observed still-

births is i by ni, the log-likelihood function is
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l(ω, λ) = n0 log
(
ω + (1− ω)e−λ

)
+

∞∑

i=1

ni log(1−ω)−
∞∑

i=1

niλ+
∞∑

i=1

ini log(λ)+c.

Suppose we want to test the null hypothesis that ω = 0.
The score test has the form

sTJ−1s,

where s is the score vector and J is either the observed or the expected
information matrix. For each we substitute ω = 0 and λ = λ̂0, where λ̂0 =∑∞

i=1 ini/n with n =
∑∞

i=0 ni, which is the MLE when ω = 0.
Let

n+ =
∞∑

i=1

ni

and

d =
∞∑

i=0

ini.

The frequency of 0s is important. Let

f0 = n0/n.

Taking the derivatives and setting ω = 0, we have

∂l

∂ω
= n0eλ − n,

∂l

∂λ
= −n+ d/λ,

∂2l

∂ω2
= −n− n0e2λ + n0eλ,

∂2l

∂ωλ
= n0eλ,

and
∂2l

∂λ2
= −d/λ2.

So, substituting the observed data and the restricted MLE, we have ob-
served information matrix

O(0, λ̂0) = n

[
1 + f0e2λ̂0 − 2f0eλ̂0 −f0eλ̂0

−f0eλ̂0 1/λ̂0

]
.

Now, for the expected information matrix when ω = 0, we first observe that
E(n0) = ne−λ, E(d) = nλ, and E(n+) = n(1− e−λ); hence
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I(0, λ̂0) = n

[
eλ̂0 − 1 −1
−1 1/λ̂0

]
.

Hence, the score test statistic can be written as

κ(λ̂0)(n0eλ̂0 − n)2,

where κ(λ̂0) is the (1,1) element of the inverse of either O(0, λ̂0) or I(0, λ̂0).
Inverting the matrices (they are 2 × 2), we have as the test statistic for

the score test, either

sI =
ne−λ̂0(1− θ)2

1− e−λ̂0 − λ̂0e−λ̂0

or

sO =
ne−λ̂0(1− θ)2

e−λ̂0 + θ − 2θe−λ̂0θ2λ̂0e−λ̂0
,

where θ = f0eλ̂0 , which is the ratio of the observed proportion of 0 counts to
the estimated probability of a zero count under the Poisson model. (If n0 is
actually the number expected under the Poisson model, then θ = 1.)

Now consider the actual data reported by MPR for stillbirths in each litter
of a sample of 402 litters of laboratory animals.

No. stillbirths 0 1 2 3 4 5 6 7 8 9 10 11
No. litters 314 48 20 7 5 2 2 1 2 0 0 1

For these data, we have n = 402, d = 185, λ̂0 = 0.4602, e−λ̂0 = 0.6312,
and θ = 1.2376.

What is interesting is the difference in sI and sO.
In this particular example, if all ni for i ≥ 1 are held constant at the

observed values, but different values of n0 are considered, as n0 increases the
ratio sI/sO increases from about 1/4 to 1 (when the n0 is the expected number
under the Poisson model; i.e., θ = 1), and then decreases, actually becoming
negative (around n0 = 100).

This example illustrates an interesting case. The score test is inconsistent
because the observed information generates negative variance estimates at the
MLE under the null hypothesis. (The score test can also be inconsistent if the
expected likelihood equation has spurious roots.)

6.8 Nonparametric Tests

Notes

Anomalies of the Score Test

Morgan et al. (2007) give an interesting example in which the score test does
not perform as we might expect.
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Exercises in Shao

• For practice and discussion
6.2, 6.3, 6.4, 6.6, 6.10, 6.17, 6.20, 6.29, 6.37, 6.51, 6.52, 6.58, 6.93, 6.98,
6.123 (Solutions in Shao, 2005)

• To turn in
6.1, 6.5(a),(b)(c), 6.12, 6.21, 6.23, 6.27(a)(b)(c), 6.38, 6.52(a)(b), 6.92(a)(b),
6.99(a)(b)

Additional References
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Verbeke, Geert, and Geert Molenberghs (2007), What can go wrong with the
score test? The American Statistician 61, 289–290.

Wald, Abraham (1945). Sequential Tests of Statistical Hypotheses, The An-
nals of Mathematical Statistics 16, 117–186.
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Confidence Sets
(Shao Ch 7; TSH3 Ch 3, Ch 5)

For statistical confidence sets, the basic problem is to use a random sample
X from an unknown distribution P to determine a random subfamily A(X)
of a given family of distributions P such that

PrP (A(X) 3 P ) ≥ 1− α ∀P ∈ P , (7.1)

for some given α. The set A(X) is called a 1− α confidence set or confidence
region. The “confidence level” is 1− α, so we sometimes call it a “level 1− α
confidence set”. Notice that α is given a priori. We call

inf
P∈P

PrP (A(X) 3 P ) (7.2)

the confidence coefficient of A(X).
If the confidence coefficient of A(X) is > 1−α, then A(X) is said to be a

conservative 1− α confidence set.
We generally wish to determine a region with a given confidence coefficient,

rather than with a given significance level.
If the distributions are characterized by a parameter θ in a given parameter

space Θ an equivalent 1−α confidence set for θ is a random subset S(X) such
that

Prθ (S(X) 3 θ) ≥ 1− α ∀θ ∈ Θ. (7.3)

The basic paradigm of statistical confidence sets was described in Sec-
tion 2.4.2, beginning on page 108. We first review some of those basic ideas
in Section 7.1, starting first with simple interval confidence sets. Then in Sec-
tion 7.2 we discuss optimality of confidence sets.

As we have seen in other problems in statistical inference, it is often not
possible to develop a procedure that is uniformly optimal. As with the esti-
mation problem, we can impose restrictions, such as unbiasedness, we discuss
in Section 7.2, or equivariance, which we discuss in Section 8.3.

We can define optimality in terms of a global averaging over the family
of distributions of interest. If the the global averaging is considered to be a
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true probability distribution, then the resulting confidence intervals can be
interpreted differently, and it can be said that the probability that the distri-
bution of the observations is in some fixed family is some stated amount. The
HPD Bayesian credible regions discussed in Section 3.5 can also be thought
of as optimal sets that address similar applications in which confidence sets
are used.

Because determining an exact 1− α confidence set requires that we know
the exact distribution of some statistic, we often have to form approximate
confidence sets. There are three common ways that we do this as discussed
in Section 2.2.6. In Section 7.3 we discuss asymptotic confidence sets, and in
Section 7.4, bootstrap confidence sets.

7.1 Introduction: Construction and Properties

Confidence Intervals

Our usual notion of a confidence interval relies on a frequency approach to
probability, and it leads to the definition of a 1−α confidence interval for the
(scalar) parameter θ as the random interval (TL, TU ), that has the property

Pr (TL ≤ θ ≤ TU ) = 1− α.

This is also called a (1−α)100% confidence interval. The interval (TL, TU ) is
not uniquely determined.

The concept extends easily to vector-valued parameters. A simple exten-
sion would be merely to let TL and TU , and let the confidence region be hyper-
rectangle defined by the cross products of the intervals. Rather than taking
vectors TL and TU , however, we generally define other types of regions; in
particular, we often take an ellipsoidal region whose shape is determined by
the covariances of the estimators.

A realization of the random interval, say (tL, tU ), is also called a confidence
interval. Although it may seem natural to state that the “probability that θ
is in (tL, tU ) is 1 − α”, this statement can be misleading unless a certain
underlying probability structure is assumed.

In practice, the interval is usually specified with respect to an estimator
of θ, T (X). If we know the sampling distribution of T − θ, we may determine
c1 and c2 such that

Pr (c1 ≤ T − θ ≤ c2) = 1− α;

and hence
Pr (T − c2 ≤ θ ≤ T − c1) = 1− α.

If either TL or TU is infinite or corresponds to a bound on acceptable values
of θ, the confidence interval is one-sided. For two-sided confidence intervals,
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we may seek to make the probability on either side of T to be equal. This
is called an equal-tail confidence interval. We may, rather, choose to make
c1 = −c2, and/or to minimize |c2 − c1| or |c1| or |c2|. This is similar in spirit
to seeking an estimator with small variance.

Prediction Sets

We often want to identify a set in which a future observation on a random
variable has a high probability of occurring. This kind of set is called a pre-
diction set.
For example, we may assume a given sample X1, . . . , Xn is from a N(µ, σ2)
and we wish to determine a measurable set C(X) such that for a future ob-
servation Xn+1

inf
P∈P

PrP (Xn+1 ∈ C(X)) ≥ 1− α.

More generally, instead of Xn+1, we could define a prediction interval for
any random variable V .

The difference in this and a confidence set for µ is that there is an addi-
tional source of variation. The prediction set will be larger, so as to account
for this extra variation.

We may want to separate the statements about V and S(X). A tolerance
set attempts to do this.

Given a sample X , a measurable set S(X), and numbers δ and α in (0, 1),
if

inf
P∈P

( inf
P∈P

PrP (V ∈ S(X)|X) ≥ δ) ≥ 1− α,

then S(X) is called a δ-tolerance set for V with confidence level 1− α.

Randomized confidence Sets

For discrete distributions, as we have seen, sometimes to achieve a test of a
specified size, we had to use a randomized test.

Confidence sets may have exactly the same problem – and solution – in
forming confidence sets for parameters in discrete distributions. We form ran-
domized confidence sets. The idea is the same as in randomized tests, and
we will discuss randomized confidence sets in the context of hypothesis tests
below.

Pivot Functions

A straightforward way to form a confidence interval is to use a function of
the sample that also involves the parameter of interest, but that does not
involve any nuisance parameters. The confidence interval is then formed by
separating the parameter from the sample values.
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A class of functions that are particularly useful for forming confidence
intervals are called pivotal values, or pivotal functions. A function f(T, θ)
is said to be a pivotal function if its distribution does not depend on any
unknown parameters. This allows exact confidence intervals to be formed for
the parameter θ. We first form

Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α,

where f(α/2) and f(1−α/2) are quantiles of the distribution of f(T, θ); that is,

Pr(f(T, θ) ≤ f(π)) = π.

If, as in the case considered above, f(T, θ) = T − θ, the resulting confidence
interval has the form

Pr
(
T − f(1−α/2) ≤ θ ≤ T − f(α/2)

)
= 1− α.

For example, suppose Y1, Y2, . . . , Yn is a random sample from a N(µ, σ2)
distribution, and Y is the sample mean. The quantity

f(Y , µ) =

√
n(n− 1) (Y − µ)√∑ (

Yi − Y
)2

has a Student’s t distribution with n− 1 degrees of freedom, no matter what
is the value of σ2. This is one of the most commonly-used pivotal values.

The pivotal value can be used to form a confidence interval for θ by first
writing

Pr
(
t(α/2) ≤ f(Y , µ) ≤ t(1−α/2)

)
= 1− α,

where t(π) is a percentile from the Student’s t distribution. Then, after making
substitutions for f(Y , µ), we form the familiar confidence interval for µ:

(
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
)
,

where s2 is the usual sample variance,
∑

(Yi − Y )2/(n− 1).
Other similar pivotal values have F distributions. For example, consider

the usual linear regression model in which the n-vector random variable Y
has a Nn(Xβ, σ2I) distribution, where X is an n×m known matrix, and the
m-vector β and the scalar σ2 are unknown. A pivotal value useful in making
inferences about β is

g(β̂, β) =

(
X(β̂ − β)

)T
X(β̂ − β)/m

(Y −Xβ̂)T(Y −Xβ̂)/(n−m)
,

where
β̂ = (XTX)+XTY.
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The random variable g(β̂, β) for any finite value of σ2 has an F distribution
with m and n−m degrees of freedom.

For a given parameter and family of distributions there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use.

Approximate Pivot Values

It may not be possible to identify a pivotal quantity for a particular parameter.
In that case, we may seek an approximate pivot. A function is asymptotically
pivotal if a sequence of linear transformations of the function is pivotal in the
limit as n→∞.

*** nuisance parameters ***** find consistent estimator
If the distribution of T is known, c1 and c2 can be determined. If the

distribution of T is not known, some other approach must be used. A common
method is to use some numerical approximation to the distribution. Another
method is to use bootstrap samples from the ECDF.

Relation to Acceptance Regions of Hypothesis Tests

A test at the α level has a very close relationship with a 1−α level confidence
set.

When we test the hypothesis H0 : θ ∈ ΘH0 at the α level, we form
a critical region for a test statistic or rejection region for the values of the
observable X . This region is such that the probability that the test statistic
is in it is ≤ α.

For any given θ0 ∈ Θ, consider the nonrandomized test Tθ0 for testing the
simple hypothesis H0 : θ = θ0, against some alternative H1. We let A(θ0) be
the set of all x such that the test statistic is not in the critical region; that is,
A(θ0) is the acceptance region.

Now, for any θ and any value x in the range of X , we let

C(x) = {θ : x ∈ A(θ)}.

For testing H0 : θ = θ0 at the α significance level, we have

sup Pr(X /∈ A(θ0) | θ = θ0) ≤ α;

that is,

1− α ≤ inf Pr(X ∈ A(θ0) | θ = θ0) = inf Pr(C(X) 3 θ0 | θ = θ0).

This holds for any θ0, so

inf
P∈P

PrP (C(X) 3 θ) = inf
θ0∈Θ

inf PrP (C(X) 3 θ0 | θ = θ0)

≥ 1− α.
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Hence, C(X) is a 1− α level confidence set for θ.
If the size of the test is α, the inequalities are equalities, and so the confi-

dence coefficient is 1− α.
For example, suppose Y1, Y2, . . . , Yn is a random sample from a N(µ, σ2)

distribution, and Y is the sample mean.
To test H0 : µ = µ0, against the universal alternative, we form the test

statistic

T (X) =

√
n(n− 1) (Y − µ0)√∑ (

Yi − Y
)2

which, under the null hypothesis, has a Student’s t distribution with n − 1
degrees of freedom.

An acceptance region at the α level is
(
t(α/2), t(1−α/2)

)
,

and hence, putting these limits on T (X) and inverting, we get
(
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
)
,

which is a 1− α level confidence interval.
The test has size α and so the confidence coefficient is 1− α.

Randomized confidence Sets

To form a 1 − α confidence level set, we form a nonrandomized confidence
set (which may be null) with 1 − α1 confidence level, with 0 ≤ α1 ≤ α, and
then we define a random experiment with some event that has a probability
of α− α1.

7.2 Optimal Confidence Sets

We often evaluate a confidence set using a family of distributions that does
not include the true parameter.

For example, “accuracy” is the (true) probability of the set including an
incorrect value.

The “volume” (or “length”) of a confidence set is the Lebesgue measure
of the set:

vol(C(x)) =
∫

C(x)

dθ̃.

This may not be finite.
If the volume is finite, we have ( Theorem 7.6 in Shao)

Eθ(vol(C(x))) =
∫

θ 6=θ̃

Prθ(C(x) 3 θ̃)dθ̃.
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We see this by a simple application of Fubini’s theorem to handle the integral
over the product space, and then an interchange of integration:

Want to minimize volume (if appropriate; i.e., finite.)
Want to maximize accuracy.
Uniformly most accurate 1− α level set:

Prθ(C(X) 3 θ̃) is minimum among all 1− α level sets and ∀θ̃ 6= θ.
This definition of UMA may not be so relevant in the case of a one-sided

confidence interval.
If Θ̃ is a subset of Θ that does not include θ, and

Prθ(C(X) 3 θ̃) ≤ Prθ(C1(X) 3 θ̃)

for any 1−α level set C1(X) and ∀θ̃ ∈ Θ̃, then C(X) is said to be Θ̃-uniformly
most accurate.

A confidence set formed by inverting a nonrandomized UMP test is UMA.
We see this easily from the definitions of UMP and UMA. (This is Theorem

7.4 in Shao.)
With tests, sometimes no UMP exists, and hence we added a criterion,

such as unbiasedness or invariance.
Likewise, sometimes we cannot form a UMA confidence interval, so we add

some criterion.
We define unbiasedness in terms of a subset Θ̃ that does not include the

true θ.
A 1− α level confidence set C(X) is said to be Θ̃-unbiased if

Prθ(C(X) 3 θ̃) ≤ 1− α ∀θ̃ ∈ Θ̃.

If Θ̃ = {θ}c, we call the set unbiased.
A Θ̃-unbiased set that is uniformly more accurate (“more” is defined simi-

larly to “most”) than any other Θ̃-unbiased set is said to be a uniformly most
accurate unbiased (UMAU) set.

Accuracy of Confidence Regions

Confidence regions can be thought of a a family of tests of hypotheses of the
form θ ∈ H0(θ̃) versus θ ∈ H1(θ̃). A confidence region of size 1−α is equivalent
to a critical region S(X) such that

Pr
(
S(X) 3 θ̃

)
≥ 1− α ∀ θ ∈ H0

(
θ̃
)
.

The power of the related tests is just

Pr
(
S(X) 3 θ̃

)

for any θ. In testing hypotheses, we are concerned about maximizing this for
θ ∈ H1(θ̃).
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This is called the accuracy of the confidence region, and so in this terminol-
ogy, we seek the most accurate confidence region, and, of course, the uniformly
most accurate confidence refion. Similarly to the case of UMP tests, the uni-
formly most accurate confidence refion may or may not exist.

The question of existence of uniformly most accurate confidence intervals
also depends on whether or not there are nuisance parameters. Just as with
UMP tests, in the presence of nuisance parameters, usually uniformly most
accurate confidence intervals do not exist. (We must add other restrictions on
the intervals, as we see below.) The nonexistence of uniformly most accurate
confidence regions can also be addressed by imposing unbiasedness.

The concept of unbiasedness in tests carries over immediately to confidence
regions. A family of confidence regions of size 1− α is said to be unbiased if

Pr
(
S(X) 3 θ̃

)
≤ 1− α ∀ θ ∈ H1

(
θ̃
)
.

In the case of nuisance parameters θu, unbiasedness means that this holds
for all values of the nuisance parameters. In this case, similar regions and
Neyman structure also are relevant, just as in the case of testing.

Volume of a Confidence Set

If there are no nuisance parameters, the expected volume of a confidence set
is usually known a priori, e.g., for µ in N(µ, 1).

What about a confidence set for µ in N(µ, σ2), with σ2 unknown?
The expected length is proportional to σ, and can be very long. (This is a

consequence of the fact that two normal distributions N(µ1, σ
2) and N(µ2, σ

2)
become indistinguishable as σ →∞.

The length of the considence interval is inversely proportional to
√
n. How

about a sequential procedure?

A Sequential Procedure for a Confidence Set

Let X1, X2, . . . be i.i.d. from N(µ, σ2).
Fix n0. Let x̄0 =

∑n0
i=1 xi/n0 and s20 =

∑n0
i=1(xi − x̄0)2/(n0 − 1).

Now, for measurable function of s, a and b, for n ≥ n0, let

a1 = · · · = an0 = a

and
an0+1 = · · · = an = b.

Then

Y =
∑n

i=1 ai(Xi − µ)√
S2

0

∑n
i=1 a

2
i

has a Student’s t distribution with n0 − 1 df.
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Controlling the Volume

Now compute s2 from an initial sample of size n0. Let c be a given positive
constant. Now choose n− n0 additional observations where

n = max
(
n0 + 1,

[
s2

c

]
+ 1
)
.

Then there exists numbers a1, . . . , an with a1 = · · · = an0 and an0+1 = · · · =
an such that

∑n
i=1 ai = 1 and

∑n
i=1 a

2
i = c/s2.

And so (from above),
∑n

i=1 ai(Xi − µ)/
√
c has a Student’s t distribution

with n0 − 1 df.
Therefore, givenX1, . . . , Xn0 the expected length of the confidence interval

can be controlled.

An Example of a Confidence Interval in Regression

Consider E(Y |x) = β0+β1x. Want to estimate the point at which β0+β1x has
a preassigned value; for example find dosage x = −β0/β1 at which E(Y |x) = 0.

This is equivalent to finding the value v = (x− x̄)/
√∑

(xi − x̄)2 at which

y = γ0 + γ1v = 0.

So we want to find v = −γ0/γ1.
The most accurate unbiased confidence sets for −γ0/γ1 can be obtained

from UMPU tests of the hypothesis −γ0/γ1 = v0.
Acceptance regions of these tests are given by

|v0
∑
viYi + Ȳ |/

√
1
n + v2

0√(∑
(Yi − Ȳ )2 − (

∑
viYi)2

)
/(n− 2)

≤ c

where ∫ c

−c

p(y)dy = 1− α,

where p is the PDF of t with n− 2 df.
So square and get quadratic inequalities in v:

v2
(
c2s2 − (

∑
viYi)2

)
− 2vȲ

∑
viYi +

1
n

(c2x2 − nȲ ) ≥ 0.

Now let v and v be the roots of the equation.
So the confidence statement becomes

v ≤ γ0

γ1
≤ v if

|
∑
viYi|
s

> c,
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γ0

γ1
< v or

γ0

γ1
> v if

|
∑
viYi|
s

< c,

and if = c, no solution.
If y = γ0 + γ1v is nearly parallel to the v-axis, then the intercept with the

v-axis will be large in absolute value and its sign is sensitive to a small change
in the angle.

Suppose in the quadratic that nȲ 2 + (
∑
viYi)2 < c2s2, then there is no

real solution.
For the confidence levels to remain valid, the confidence interval must be

the whole real line.

7.3 Asymptotic Confidence Sets

It is often difficult to determine sets with a specified confidence coefficient or
significance level, or with other specified properties.

In such cases it may be useful to determine a set that “approximately”
meets the specified requirements.

What does “approximately” mean?

• uses numerical approximations
• uses approximate distributions
• uses a random procedure
• uses asymptotics

Asymptotic Confidence Sets

We assume a random sample X1, . . . , Xn from P ∈ P
An asymptotic significance level of a confidence set C(X) for g(θ) is 1−α

if
lim inf

n
Pr(C(X) 3 θ) ≥ 1− α for any P ∈ P .

The limiting confidence coefficient of a confidence set C(X) for θ is

lim
n

inf
P∈P

Pr(C(X) 3 θ)

if it exists.
Example (Shao). Suppose X1, . . . , X−n are i.i.d. from a distribution with

CDF PX and finite mean µ and variance σ2. Suppose σ2 is known, and we
want to form a 1−α level confidence interval for µ. Unless PX is specified, we
can only seek a confidence interval with asymptotic significance level 1−α. We
have an asymptotic pivot T (X,µ) = (X − µ)/σ, and

√
nT has an asymptotic

N(0, 1) distribution. We then form an interval

C(X) = (C1(X), C2(X))
= (X − σz1−α/2/

√
:n, X + σz1−α/2/

√
:n),
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where z1−α/2 = Φ−1(1−α/2) and Φ is the N(0, 1) CDF. Now consider Pr(µ ∈
C(X)). We have

Asymptotic Correctness

A confidence set C(X) for θ is 1− α asymptotically correct if

lim
n

Pr(C(X) 3 θ) = 1− α.

A confidence set C(X) for θ is 1− α lth-order asymptotically correct if it
is 1− α asymptotically correct and

lim
n

Pr(C(X) 3 θ) = 1− α+ O(n−l/2).

Asymptotic Accuracy of Confidence Regions

**************************

Constructing Asymptotic Confidence Sets

There are two straightforward ways of constructing good asymptotic confi-
dence sets.

One is based on an asymptotically pivotal function, that is one whose lim-
iting distribution does not depend on any parameters other than the one of
the confidence set.

Another method is to invert the acceptance region of a test. The properties
of the test carry over to the confidence set.

The likelihood yields statistics with good asymptotic properties (for testing
or for confidence sets).

See Example 7.24.
Woodruff’s interval

7.4 Bootstrap Confidence Sets

A method of forming a confidence interval for a parameter θ is to find a pivotal
quantity that involves θ and a statistic T , f(T, θ), and then to rearrange the
terms in a probability statement of the form

Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α. (7.4)

When distributions are difficult to work out, we may use bootstrap methods
for estimating and/or approximating the percentiles, f(α/2) and f(1−α/2).
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Basic Intervals

For computing confidence intervals for a mean, the pivotal quantity is likely
to be of the form T − θ.

The simplest application of the bootstrap to forming a confidence interval
is to use the sampling distribution of T ∗−T0 as an approximation to the sam-
pling distribution of T − θ; that is, instead of using f(T, θ), we use f(T ∗, T0),
where T0 is the value of T in the given sample.

The percentiles of the sampling distribution determine f(α/2) and f(1−α/2)

in
Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1− α.

Monte Carlo to Get Basic Intervals

If we cannot determine the sampling distribution of T ∗ − T , we can easily
estimate it by Monte Carlo methods.

For the case f(T, θ) = T −θ, the probability statement above is equivalent
to

Pr
(
T − f(1−α/2) ≤ θ ≤ T − f(α/2)

)
= 1− α. (7.5)

The f(π) may be estimated from the percentiles of a Monte Carlo sample
of T ∗ − T0.

Bootstrap-t Intervals

Methods of inference based on a normal distribution often work well even
when the underlying distribution is not normal.

A useful approximate confidence interval for a location parameter can
often be constructed using as a template the familiar confidence interval for
the mean of a normal distribution,

(
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
)
,

where t(π) is a percentile from the Student’s t distribution, and s2 is the usual
sample variance.

A confidence interval for any parameter constructed in this pattern is
called a bootstrap-t interval. A bootstrap-t interval has the form

(
T − t̂(1−α/2)

√
V̂(T ), T − t̂(α/2)

√
V̂(T )

)
. (7.6)

In the interval
(
T − t̂(1−α/2)

√
V̂(T ), T − t̂(α/2)

√
V̂(T )

)

t̂(π) is the estimated percentile from the studentized statistic,
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T ∗ − T0√
V̂(T ∗)

.

For many estimators T , no simple expression is available for V̂(T ).
The variance could be estimated using a bootstrap. This bootstrap nested

in the bootstrap to determine t̂(π) increases the computational burden multi-
plicatively.

If the underlying distribution is normal and T is a sample mean, the inter-
val in expression (7.6) is an exact (1−α)100% confidence interval of shortest
length.

If the underlying distribution is not normal, however, this confidence in-
terval may not have good properties. In particular, it may not even be of size
(1 − α)100%. An asymmetric underlying distribution can have particularly
deleterious effects on one-sided confidence intervals.

If the estimators T and V̂(T ) are based on sums of squares of deviations,
the bootstrap-t interval performs very poorly when the underlying distribution
has heavy tails. This is to be expected, of course. Bootstrap procedures can
be no better than the statistics used.

Bootstrap Percentile Confidence Intervals

Given a random sample (y1, . . . , yn) from an unknown distribution with CDF
P , we want an interval estimate of a parameter, θ = Θ(P ), for which we have
a point estimator, T .

If T ∗ is a bootstrap estimator for θ based on the bootstrap sample
(y∗1 , . . . , y

∗
n), and if GT∗(t) is the distribution function for T ∗, then the

exact upper 1 − α confidence limit for θ is the value t∗(1−α), such that
GT∗(t∗(1−α)) = 1− α.

This is called the percentile upper confidence limit.
A lower limit is obtained similarly, and an interval is based on the lower

and upper limits.

Monte Carlo for Bootstrap Percentile Confidence Intervals

In practice, we generally use Monte Carlo and m bootstrap samples to esti-
mate these quantities.

The probability-symmetric bootstrap percentile confidence interval of size
(1− α)100% is thus (

t∗(α/2), t∗(1−α/2)

)
,

where t∗(π) is the [πm]th order statistic of a sample of size m of T ∗.
(Note that we are using T and t, and hence T ∗ and t∗, to represent estima-

tors and estimates in general; that is, t∗(π) here does not refer to a percentile
of the Student’s t distribution.)
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This percentile interval is based on the ideal bootstrap and may be esti-
mated by Monte Carlo simulation.

Confidence Intervals Based on Transformations

Suppose that there is a monotonically increasing transformation g and a con-
stant c such that the random variable

W = c(g(T ∗)− g(θ)) (7.7)

has a symmetric distribution about zero. Here g(θ) is in the role of a mean
and c is a scale or standard deviation.

Let H be the distribution function of W , so

GT∗(t) = H (c(g(t)− g(θ))) (7.8)

and
t∗(1−α/2) = g−1

(
g(t∗) + w(1−α/2)/c

)
, (7.9)

where w(1−α/2) is the (1−α/2) quantile of W . The other quantile t∗(α/2) would
be determined analogously.

Instead of approximating the ideal interval with a Monte Carlo sample, we
could use a transformation to a known W and compute the interval that way.
Use of an exact transformation g to a known random variable W , of course, is
just as difficult as evaluation of the ideal bootstrap interval. Nevertheless, we
see that forming the ideal bootstrap confidence interval is equivalent to using
the transformation g and the distribution function H .

Because transformations to approximate normality are well-understood
and widely used, in practice, we generally choose g as a transformation to
normality. The random variable W above is a standard normal random vari-
able, Z. The relevant distribution function is Φ, the normal CDF. The normal
approximations have a basis in the central limit property. Central limit ap-
proximations often have a bias of order O(n−1), however, so in small samples,
the percentile intervals may not be very good.

Bias in Intervals Due to Bias in the Estimator

It is likely that the transformed statistic g(T ∗) in equation (7.7) is biased for
the transformed θ, even if the untransformed statistic is unbiased for θ.

We can account for the possible bias by using the transformation

Z = c(g(T ∗)− g(θ)) + z0,

and, analogous to equation (7.8), we have

GT∗(t) = Φ (c(g(t)− g(θ)) + z0) .

The bias correction z0 is Φ−1 (GT∗(t)).

A Companion for Mathematical Statistics c©2008 James E. Gentle



7.4 Bootstrap Confidence Sets 263

Bias in Intervals Due to Lack of Symmetry

Even when we are estimating θ directly with T ∗ (that is, g is the identity),
another possible problem in determining percentiles for the confidence interval
is the lack of symmetry of the distribution about z0.

We would therefore need to make some adjustments in the quantiles in-
stead of using equation (7.9) without some correction.

Correcting the Bias in Intervals

Rather than correcting the quantiles directly, we may adjust their levels.
For an interval of confidence (1−α), instead of (t∗(α/2), t∗(1−α/2)), we take

(
t∗(α1)

, t∗(α2)

)
,

where the adjusted probabilities α1 and α2 are determined so as to reduce the
bias and to allow for the lack of symmetry.

As we often do, even for a nonnormal underlying distribution, we relate
α1 and α2 to percentiles of the normal distribution.

To allow for the lack of symmetry—that is, for a scale difference below
and above z0—we use quantiles about that point.

Efron (1987), who developed this method, introduced an “acceleration”,
a, and used the distance a(z0 + z(π)).

Using values for the bias correction and the acceleration determined from
the data, Efron suggested the quantile adjustments

α1 = Φ
(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)

and

α2 = Φ
(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)
.

Use of these adjustments to the level of the quantiles for confidence inter-
vals is called the bias-corrected and accelerated, or “BCa”, method.

This method automatically takes care of the problems of bias or asymmetry
resulting from transformations that we discussed above.

Note that if â = ẑ0 = 0, then α1 = Φ(z(α)) and α2 = Φ(z(1−α)). In this
case, the BCa is the same as the ordinary percentile method.

The problem now is to estimate the bias correction z0 and the acceleration
a from the data.

Estimating the Correction

The bias-correction term z0 is estimated by correcting the percentile near the
median of the m bootstrap samples:
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ẑ0 = Φ−1


 1
m

∑

j

I(−∞,T ]

(
T ∗j
)

 .

The idea is that we approximate the bias of the median (that is, the bias of a
central quantile) and then adjust the other quantiles accordingly.

Estimating the Acceleration

Estimating a is a little more difficult. The way we proceed depends on the
form the bias may take and how we choose to represent it.

Because one cause of bias may be skewness, Efron (1987) adjusted for the
skewness of the distribution of the estimator in the neighborhood of θ.

The skewness is measured by a function of the second and third moments
of T .

We can use the jackknife to estimate the second and third moments of T .
The expression is

â =
∑(

J(T )− T(i)

)3

6
(∑(

J(T )− T(i)

)2)3/2
. (7.10)

Bias resulting from other departures from normality, such as heavy tails,
is not addressed by this adjustment.

There are R and S-Plus functions to compute BCa confidence intervals.

Comparisons of Bootstrap-t and BCa Intervals

It is difficult to make analytic comparisons between these two types of boot-
strap confidence intervals.

In some Monte Carlo studies, it has been found that, for moderate and
approximately equal sample sizes,the coverage of BCa intervals is closest to
the nominal confidence level; however, for samples with very different sizes,
the bootstrap-t intervals were better in the sense of coverage frequency.

Because of the variance of the components in the BCa method, it gen-
erally requires relatively large numbers of bootstrap samples. For location
parameters, for example, we may need m = 1, 000.

Other Bootstrap Confidence Intervals

Another method for bootstrap confidence intervals is based on a delta method
approximation for the standard deviation of the estimator.

This method yields approximate bootstrap confidence, or ABC, intervals.
Terms in the Taylor series expansions are used for computing â and ẑ0

rather than using bootstrap estimates for these terms.
As with the BCa method, bias resulting from other departures from nor-

mality, such as heavy tails, is not addressed.
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There are R and S-Plus functions to compute ABC confidence intervals.
************************

7.5 Simultaneous Confidence Sets

If θ = (θ1, θ2) a 1− α level confidence set for θ is a region in IR2, C(X), such
that Prθ(C(X) 3 θ) ≥ 1− α.

Now consider the problem of separate intervals (or sets) in IR1, C(X) and
C2(X), such that Prθ(C1(X) 3 θ1 and C2(X) 3 θ2) ≥ 1− α.

These are called 1− α simultaneous confidence intervals.
This is equivalent to C(X) = C1(X) × C2(X) in the case above. Or, in

general × Ci(X).
(Of course, we may want to minimize expected area or some other geo-

metric measures of C(X).)
There are several methods. In linear models, many methods depend on

contrasts, e.g., Scheffé’s intervals or Tukey’s intervals.
General conservative procedures depend depend on inequalities of proba-

bilities of events.

7.5.1 Bonferroni’s Confidence Intervals

A common conservative procedure called a Bonferroni method is based on the
inequality

Pr (∪Ai) ≤
∑

Pr (Ai) ,

for any events A1, . . . , Ak. For each component of θ, θt, we choose αt with∑
αt = α, and we let Ct(X) be a level 1 − αt confidence interval. It is easy

to see that these are of level 1− α because

inf Pr(Ct(X) 3 θt ∀t) = Pr(∩{Ct(X) 3 θt})
= 1− Pr ((∩{θt ∈ Ct(X)})c)
= 1− Pr (∪{θt /∈ Ct(X)})
≥ 1−

∑
Pr ({θt /∈ Ct(X)})

≥ 1−
∑

αt

= 1− α.
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7.5.2 Scheffé’s Confidence Intervals

7.5.3 Tukey’s Confidence Intervals

Notes

Exercises in Shao

• For practice and discussion
7.9, 7.18, 7.29, 7.31, 7.48, 7.60, 7.63, 7.67 (Solutions in Shao, 2005)

• To turn in
7.1, 7.2, 7.22(a), 7.22(b), 7.44, 7.79, 7.82, 7.93, 7.95, 7.101
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Equivariant Statistical Procedures
(Shao Sec 4.2, Sec 6.3; TPE2 Ch 3; TSH3 Ch 6)

8.1 Transformations

Statistical decisions or actions based on data should not be affected by simple
transformations on the data or by reordering of the data, so long as these
changes on the data are reflected in the statement of the decision; that is,
the actions should be invariant. If the action is a yes-no decision, such as in
hypothesis testing, it should be completely invariant. If a decision is a point
estimate, its value is not unaffected, but it should be equivariant, in the sense
that it reflects the transformations in a meaningful way.

We can formalize this principle by defining appropriate classes of transfor-
mations, and then specifying rules that statistical decision functions must sat-
isfy. We identify “reasonable” classes of transformations on the sample space
and the corresponding transformations on other components of the statistical
decision problem. We will limit consideration to transformations that are one-
to-one and onto. Such transformations can easily be identified as members of
a group, which I will define more precisely below.

In this section we will consider only parametric inference; that is, we will
consider distributions PX|θ for θ ∈ Θ. We are interested in what happens
under a transformation of the random variable g(X); in particular, is there a
transformation of the parameter ḡ(θ) such that Pg(X)|ḡ(θ) is a member of the
same distributional family, and will the same optimal methods of inference
for PX|θ remain optimal for Pg(X)|ḡ(θ).

First, consider two simple cases.
If the conditional distribution of X − θ, given θ = θ0, is the same for all

θ0 ∈ Θ, then θ is called a location parameter. The family of distributions PX|θ
is called a location family.

If Θ ⊂ IR+, and if the conditional distribution of X/θ, given θ = θ0, is
the same for all θ0 ∈ Θ, then θ is called a scale parameter. The family of
distributions PX|θ is called a scale family.

A Companion for Mathematical Statistics c©2008 James E. Gentle



268 8 Equivariant Statistical Procedures

More generally, given a distribution with parameter θ, that distribution
together with a group of transformations on θ forms a “group family” of
distributions.

8.1.1 Transformation Groups

Definition. A group G is a nonempty set G together with a binary operation
◦ such that

• g1, g2 ∈ G⇒ g1 ◦ g2 ∈ G (closure);
• ∃ e ∈ G 3 ∀ g ∈ G, e ◦ g = g (identity);
• ∀ g ∈ G ∃ g−1 ∈ G 3 g−1 ◦ g = e (inverse);
• g1, g2, g3 ∈ G⇒ g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 (associativity).

Notice that the binary operation need not be commutative, but from these
defining properties, we can easily see that g ◦ e = e ◦ g and g ◦ g−1 = g−1 ◦ g.
(We see, for example, that g ◦ e = e ◦ g by writing g ◦ e = g ◦ (e ◦ e) =
g ◦ (e ◦ (g−1 ◦ g)) = g ◦ ((e ◦ g−1) ◦ g) = g ◦ (g−1 ◦ g) = (g ◦ g−1) ◦ g) = e ◦ g.)
We can also see that e is unique, and for a given g, g−1 is unique.

A group G is a structure of the form (G, ◦). (Sometimes the same symbol
that is used to refer to the set is used to refer to the group. The expression
g ∈ G is interpreted to mean g ∈ G.) Any subset of the set on which the
group is defined that is closed and contains the identity and all inverses forms
a group with the same operation as the original group. This subset together
with the operation is called a subgroup. We use the standard terminology of
set operations for operations on groups.

A set G1 together with an operation ◦ defined on G1 generates a group G
that is the smallest group (G, ◦) such that G1 ⊂ G. If G1 and G2 are groups
over G1 and G2 with a common operation ◦, the group generated by G1 and
G2 is (G, ◦), where G is the smallest set containing G1 and G2 so that (G, ◦)
is a group. Notice that the G may contain elements that are in neither G1 nor
G2.

If the elements of a set are transformations, function composition is a
binary operation. A set of one-to-one and onto functions with common domain
together with the operation of function composition is a group, referred to as
a transformation group. A transformation group has an associated set that is
the common domain of the transformations. This is called the domain of the
transformation group.

Both function composition and a function-argument pair are often indi-
cated by juxtaposition with no symbol for the operator or operation. For
example, the expression g∗Tg−1X means function composition on the argu-
ment X . Remember what the arguments of these individual functions are. We
can write

g∗(T (g−1(X̃))) = g∗(T (X)) (8.1)
= g∗(a) (8.2)
= ã. (8.3)
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Invariant Functions

A function f is said to be invariant under the transformation group G with
domain X if for all x ∈ X and g ∈ G,

f(g(x)) = f(x). (8.4)

We also use the phrases “invariant over ...” and “invariant with respect to ...”
to denote this kind of invariance.

A transformation group G defines an equivalence relation (identity, sym-
metry, and transitivity) for elements in its domain, X . If x1, x2 ∈ X and there
exists a g in G such that g(x1) = x2, then we say x1 and x2 are equivalent
under G, and we write

x1 ≡ x2 modG. (8.5)

Sets of equivalent points are called orbits of G. (In other contexts such sets are
called “residue classes”.) It is clear that a function that is invariant under the
transformation group G must be constant over the orbits of G. A transforma-
tion group G is said to be transitive over the set X if for any x1, x2 ∈ X , there
exists a g in G such that g(x1) = x2. (This terminology is not standard.) In
this case the whole domain is an orbit.

An invariant function M over G is called maximal invariant over G if

M(x1) = M(x2) ⇒ ∃ g ∈ G 3 g(x1) = x2. (8.6)

Maximal invariance can be used to characterize invariance. If M is maximal
invariant under G, then the function f is invariant under G if and only if it
depends on x only through M ; that is, if and only if there exists a function h
such that for all x, f(x) = h(M(x)).

Any invariant function with respect to a transitive group is maximal in-
variant.

The underlying concept of maximal invariance is similar to the concept
of sufficiency. A sufficient statistic may reduce the sample space; a maximal
invariant statistic may reduce the parameter space. (Maximal invariant sta-
tistics have some technical issues regarding measurability, however; X being
measurable does not guaranteeM(X) is measurable under the same measure.)

Equivariant Functions

A function f is said to be equivariant under the transformation group G with
domain X if for all x ∈ X and g ∈ G,

f(g(x)) = g(f(x)). (8.7)

We also use the phrases “equivariant over ...” and “equivariant with respect
to ...” to denote this kind of equivariance.
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8.1.2 Invariant and Equivariant Statistical Procedures

We will denote a general statistical decision function by T . This is a function
from the sample space (actually from the range X of the random variable X)
to the decision space A (which can be considered a subset of the reals); that
is, T : X 7→ A ⊆ IR. We write

T (X) = a. (8.8)

We are interested in the invariance or equivariance of T (x) in the context of
certain transformations. The context in which this has meaning is somewhat
limited. It has meaning in group families when the loss function is of an
appropriate type.

An estimator that changes appropriately (in ways that we will specify more
precisely below) so that the risk is invariant under changes in the random
variable is said to be equivariant. In testing statistical hypotheses, we often
denote the statistical decision function by φ, and define the decision space
as [0, 1]. We interpret φ(x) as the probability of rejecting the hypothesis for
a given x ∈ X . A test that does not change under changes in the random
variable is said to be invariant. We emphasize that invariance or equivariance
has meaning only in special contexts; both the family of distributions and the
form of the loss function must have properties that are similar in certain ways.

The invariance or equivariance of interest is with respect to a given class
of transformations. The most common class of interest is the group of linear
transformations of the form x̃ = Ax + c. A family of distributions whose
probability measures accommodate a group of transformations in a natural
way is called a group family. The group families of interest have a certain
invariance with respect to a group of linear transformations on the random
variable. We call such a group family a location-scale family. Formally, let
P be a a probability measure on (IRk,Bk), let V ⊂ IRk, and let Mk be a
collection of k × k symmetric positive definite matrices. The family

{P(µ,Σ) : P(µ,Σ)(B) = P (Σ1/2(B−µ)), for µ ∈ V , Σ ∈Mk, B ∈ Bk} (8.9)

is called a location-scale family.
Some standard parametric families that are group families: normal, dou-

ble exponential, exponential and uniform (even with parametric ranges), and
Cauchy.

A location-scale family of distributions can be defined in terms of a given
distribution on (IRk,Bk) as all distributions for which the probability measure
is invariant under linear transformations.

Whatever parameter θ may characterize the distribution, we often focus
on just µ and Σ, as above, or in the univariate case, µ and σ. (In most
other cases our object of interest has been a transformation on the parameter
space, g(θ). In the following, we will often denote a basic transformation of the
probability space as g(·), and we may denote a corresponding transformation
on the parameter space, as ḡ(·).)
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Transformations on the Sample Space, the Parameter Space, and
the Decision Space

To study invariance of statistical procedures we will now identify three groups
of transformations G, G, and G∗, and the relationships among the groups. This
notation is widely used in mathematical statistics, maybe with some slight
modifications.

• Let G be a group of transformations that map the probability space onto
itself. We write

g(X) = X̃. (8.10)

Note that X and X̃ are random variables, so the domain and the range
of the mapping are subsets of probability spaces; the random variables are
based on the same underlying measure, so the probability spaces are the
same; the transformation is a member of a transformation group, so the
domain and the range are equal and the transformations are one-to-one.

g : X 7→ X , 1 : 1 and onto

• For given g ∈ G above, let ḡ be a 1:1 function that maps the parameter
space onto itself, ḡ : Θ 7→ Θ, in such a way that for any set A,

Prθ(g(X) ∈ A) = Prḡ(θ)(X ∈ A).

If this is the case we say g preserves Θ. Any two functions that preserve
the parameter space form a group of functions that preserve the parameter
space. The set of all such ḡ together with the induced structure is a group,
Ḡ. We write

ḡ(θ) = θ̃. (8.11)

ḡ : Θ 7→ Θ, 1 : 1 and onto

We may refer to Ḡ as the induced group under G.
• For each g ∈ G above, there is a 1:1 function g∗ that maps the decision

space onto itself, g∗ : A 7→ A. The set of all such g∗ together with the
induced structure is a group, G∗.
We write

g∗(a) = ã. (8.12)

g∗ : A 7→ A, 1 : 1 and onto.

The relationship between G and G∗ is a homomorphism; that is, for g ∈ G
and g∗ ∈ G∗, if g∗ = k(g), then k(g1 ◦ g2) = k(g1) ◦ k(g2).

We are interested in a probability space, (Ω,F ,PΘ), that is invariant to
a class of transformations G; that is, one in which PΘ is a group family with
respect to G. The induced groups Ḡ and G∗ determine the transformations to
be applied to the parameter space and the action space.
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Invariance of the Loss Function

In most statistical decision problems, we assume a symmetry or invariance or
equivariance of the problem before application of any of these transformations,
and the problem that results from applying all of the transformations. For
given classes of transformations, we consider loss functions that are invariant
to those transformations; that is, we require that the loss function have the
property

L(θ̃, ã) = L(ḡ(θ), g∗(a))
= L(θ, a). (8.13)

This means that a good statistical procedure, T , for the original problem is
good for the transformed problem. Note that this is an assumption about the
class of meaningful loss functions for this kind of statistical problem.

From this assumption about the loss function, we have the risk property

Eθ(g(X)) = Eg̃(θ)(X). (8.14)

We have seen cases in which, for a univariate function of the parameter,
the loss function is a function only of a − g(θ) or of a/g(θ); that is, we may
have L(θ, a) = Ll(a − g(θ)), or L(θ, a) = Ls(a/g(θ)). In order to develop
equivariant procedures for a general location-scale family P(µ,Σ) we need a
loss function of the form

L((µ,Σ), a) = Lls(Σ1/2(a− µ)). (8.15)

Invariance of Statistical Procedures

The basic idea underlying invariance of statistical procedures naturally is
invariance of the risk under the given transformations.

We seek a statistical procedure T (x) that is an invariant function under
the transformations. Because if there is a maximal invariant function M all
invariant functions are dependent on M , our search for optimal invariant
procedures can use M .

A probability model may be defined in different ways. There may be an
equivalence between two different models that is essentially a result of a
reparametrization: θ̃ = ḡ(θ). A random variable in the one model may be
a function of the random variable in the other model: X̃ = g(X). There are
two ways of thinking of estimation under a reparametrization, both in the
context of an estimator T (X) of h(θ), and with the transformations defined
above:

• functional, g∗(T (X)) estimates g∗(h(θ));
• formal, T (g(X)) estimates g∗(h(θ)).

A Companion for Mathematical Statistics c©2008 James E. Gentle



8.2 Equivariant Point Estimation 273

Functional equivariance is trivial. This is the equivariance we expect under
a simple change of units, for example. If X is a random variable that mod-
els physical temperatures in some application, it should not make any real
difference whether the temperatures are always measured in degrees Celsius
or degrees Faharenheit. The random variable itself does not include units, of
course (it is a real number). If the meausrements are made in degrees Celsius
at a time when X is the random variable used to model the distribution of
the data and the estimator T (X) and the estimand h(θ) relates to X in a
linear fashion (if h(θ) is the mean of X , for example), and later in a simi-
lar application the meausrements are made in degrees Faharenheit, applying
g∗(t) = 9t/5 + 32 to both T (X) and h(θ) preserves the interpretation of the
model.

Formal equivariance, however, is not meaningful unless the problem itself
has fundamentally symmetric properties; the family of probability distribu-
tions is closed under some group of transformations on the sample space one
on the parameter space. In this case, we need a corresponding transformation
on the decision space. The statistical procedure is equivariant it the functional
eequivariance is the same as the formal equivariance; that is,

T (g(X)) = g∗(T (X)). (8.16)

Optimality

Equivariance can be combined with other properties such as minimum risk
or most powerfulness. As we have seen, there are situations where we cannot
obtain these properties uniformly. By restricting attention to procedures with
properties such as equivariance or unbiasedness, we may be able to achieve
uniformly best procedures. With unbiasedness, we seek UMVU estimators and
UMPU tests. Within a collection of equivariant estimators, we would choose
the one with some optimality property such as minimum risk.

The simplest and most interesting transformations are translations and
scalings, and the combinations of these two, that is linear transformations.
Consequently, the two most common types of invariant inference problems
are those that are location invariant (or equivariant) and those that are scale
invariant (or equivariant). A location invariant procedure is not invariant to
scale transformations, but a scale invariant procedure is invariant to location
transformations.

8.2 Equivariant Point Estimation

If the estimand under the untransformed problem is θ, the estimand after
the transformations is ḡ(θ). If T (X) is an estimator of θ, equivariance of the
estimator requires that g∗(T (X)) = T (g(X)) be an estimator of ḡ(θ) with the
same risk.
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The properties of the estimator in the untransformed problem are pre-
served under the transformations. An estimator that is equivariant except
possibly on a set of zero probability is said to be almost equivariant.

Within a collection of equivariant estimators, we would choose the one
with minimum risk. This is MRE estimation, and the estimator is an MREE.
(Some authors call it MRI and MRIE.)

By the definition of “equivariance” in this context, the MRE estimator is
UMRE, so the concept of uniformity does not arise as a separate issue here.

An estimator that is equivariant except possibly on a set of zero probability
is said to be almost equivariant.

To find an MREE, the methods are very similar for location equivariance
and scale equivariance. One method in both cases is first to characterize all
equivariant estimators in terms of a given one, and then identify the one that
minimizes the risk.

Location Equivariant Estimation

In location equivariant estimation, the basic transformation is a translation
on both the random variable and the location parameter: X̃ = X + c and
µ̃ = µ+ c. The estimand of interest is µ. A reasonable loss function must have
the property (8.15), that is, L(µ+c, a+c) = L(µ, a) for any c, µ and a; hence,
L(µ, a) is a function only of (a− µ):

L(µ, a) = ρ(a− µ). (8.17)

(To repeat the argument that led to equation (8.15) and to see it in this
particular case, let µ = −c, and so we have L(0, a) = L(0, a − µ), and this
equality must continue to hold as µ and c move in tandem.)

The estimator must have the property (8.16), that is,

T (x+ a) = T (x) + a. (8.18)

If T0 is a location equivariant estimator, then any location equivariant
estimator must be of the form T (x) = T0(x) + u(x), for any function u such
that u is invariant to translations: u(x + a) = u(x). (Notice the difference in
“invariant” and “equivariant”.) In particular, if n > 1,

T (x) = T0(x) + u(y), (8.19)

where
yi = xi − xn for i = 1, . . . , n− 1,

and if n = 1, any location equivariant estimator must be of the form

T (x) = T0(x) + c, (8.20)

where c is a constant. With this knowledge, we can seek an estimator with
minimum risk.
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If we have a location equivariant estimator T0 with finite risk, we determine
the MREE (if it exists) as

T∗(x) = T0(x) − u∗(y), (8.21)

where u∗(y) minimizes the conditional risk at c = 0:

E0

(
ρ(T0(x)− u(y)) | y

)
. (8.22)

Note that the loss function has a special form of equation (8.17). In particular,
for squared-error loss, which is of this form, we have

u∗(y) = E0

(
T0(x) | y

)
, (8.23)

and in this case, if a UMVUE exists and is equivariant, it is MRE.
An equivariant estimator under a squared-error loss is called a Pitman

estimator. For a sample X1, . . . , Xn from a location family with joint PDF
p, this Pitman estimator (that is, T∗(x) in equation (8.21), with u∗(x) from
equation (8.23)), can be written as

T∗(x) =
∫
t p(X1 − t, . . . , Xn − t)dt∫
p(X1 − t, . . . , Xn − t)dt

. (8.24)

(This is Theorem 4.6 in Shao.)
A location equivariant estimator is not invariant to scale transformations.

Scale Equivariant Estimation

In scale equivariant estimation, the basic transformation is a multiplication
on both the random variable and the a power nonzero power of the scale
parameter: X̃ = rX , for r > 0, and σ̃ = rhσh. This development parallels
that for location equivariant estimation in the previous section.

The estimand of interest is σ. A reasonable loss function must have the
property (8.15), L(rσ, rha) = L(σ, a), hence,

L(σ, a) = γ(a/σh), (8.25)

and the estimator must have the property

T (rx) = rhT (x). (8.26)

If T0 is a scale equivariant estimator, then any scale equivariant estimator
must be of the form

T (x) =
T0(x)
u(z)

, (8.27)

where
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zi =
x1

xn
, for i = 1, . . . , n− 1, and zn =

xn

|xn|
.

If we have a scale equivariant estimator T0 with finite risk, we determine
the MREE (if it exists) as

T∗(x) = T0(x)/u∗(z), (8.28)

where u∗(z) minimizes the conditional risk at r = 1:

E1

(
γ(T0(x)/u(z)) | z

)
. (8.29)

Note that the loss function has a special form. In the scale equivariant esti-
mation problem, there are a couple of special loss functions. One is a squared
error of the form

γ(a/σh) =
(a− σh)2

σ2h
, (8.30)

in which case

u∗(z) =
E1

(
(T0(x))2 | y

)

E1

(
T0(x) | y

) , (8.31)

and the estimator is a Pitman estimator.
Another special loss functions is of the form

γ(a/σh) = a/σh − log(a/σh)− 1, (8.32)

called “Stein’s loss”, in which case

u∗(z) = E1(T0(x) | y). (8.33)

Stein’s loss has the interesting property that it is the only scale-invariant loss
function for which the UMVUE is also the MREE (difficult proof).

A scale equivariant estimator is invariant to location transformations; that
is, if T is scale invariant, then T (x+ a) = T (x).

Location-Scale Equivariant Estimation

Location-scale equivariance involves the combination of the two separate de-
velopments. The basic transformations are location and scale: X̃ = bX + a
and θ̃ = bθ + a.

The estimator must have the property

T (bx+ a) = brT (x) + a. (8.34)

Analysis of these estimators does not involve anything fundamentally dif-
ferent from combinations of the ideas discussed separately for the location
and scale cases.
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Equivariant Estimation in a Normal Family

MRE estimation has particular relevance to the family of normal distributions,
which is a location-scale group family. The standard estimators of the location
and the scale are equivariant, and furthermore are independent of each other.
An interesting fact is that in location families that have densities with respect
to Lebesgue measure and with finite variance, the risk of a MRE location
estimator with squared error loss is larger in the normal family than in any
other such family.

8.3 Invariant Tests and Equivariant Confidence Regions

8.3.1 Invariant Tests

We generally want statistical procedures to be invariant to various transfor-
mations of the problem. For example, if the observables X are transformed
in some way, it should be possible to transform a “good” test for a certain
hypothesis in some obvious way so that the test remains “good” using the
transformed data. (This of course means that the hypothesis is also trans-
formed.)

To address this issue more precisely, we consider transformation groups G,
G, and G∗, defined and discussed beginning on page 271.

We are often able to define optimal tests under the restriction of invariance.
A test δ is said to be invariant under G, whose domain is the sample space

X , if for all x ∈ X and g ∈ G,

δ(g(x)) = δ(x). (8.35)

(This is just the definition of an invariant function, equation (8.4).)
We seek most powerful invariant tests. (They are invariant because the ac-

cept/reject decision does not change.) Because of the meaning of “invariance”
in this context, the most powerful invariant test is uniformly most powerful
(UMPI), just as we saw in the case of the equivariant minimum risk estimator.
The procedure for finding UMPI (or just MPI) tests is similar to the proce-
dure used in the estimation problem. For a given class of transformations, we
first attempt to characterize the form of φ, and then to determine the most
powerful test of that form. Because of the relationship of invariant functions
to a maximal invariant function, we may base our procedure on a maximal
invariant function.

As an example, consider the group G of translations, for x = (x1, . . . , xn):

g(x) = (x1 + c, . . . , xn + c).

Just as before, we see that for n > 1, the set of differences

yi = xi − xn for i = 1, . . . , n− 1,
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is invariant under G. This function is also maximal invariant. For x and x̃, let
y(x) = y(x̃). So we have for i = 1, . . . , n− 1,

x̃i − x̃n = xi − xn

= (xi + c)− (xn + c)
= g(x),

and therefore the function is maximal invariant. Now, suppose we have
the sample X = (X1, . . . , Xn) and we wish to test the hypothesis that
the density of X is p0(x1 − θ, . . . , xn − θ) versus the alternative that it is
p1(x1− θ, . . . , xn− θ). This testing problem is invariant under the group G of
translations, with the induced group of transformations G of the parameter
space (which are translations also). Notice that there is only one orbit of G,
the full parameter space. The most powerful invariant test will be based on
Y = (X1 −Xn, . . . , Xn−1 −Xn). The density of Y under the null hypothesis
is given by ∫

p0(y1 + z, . . . , yn−1 + z, z)dz,

and the density of Y under the alternate hypothesis is similar. Because
both densities are independent of θ, we have two simple hypotheses, and the
Neyman-Pearson lemma gives us the UMP test among the class of invariant
tests. The rejection criterion is

∫
p1(y1 + u, . . . , yn + u)du∫
p0(y1 + u, . . . , yn + u)du

> c,

for some c.
You should look over similar location and/or scale invariant tests for the

hypotheses about the parameters of a normal distribution and location and/or
scale invariant permutation tests using paired comparisons. The basic idea is
the same.

As we might expect, there are cases in which invariant procedures do not
exist. For n = 1 there are no invariant functions under G in the translation
example above. In such situations, obviously, we cannot seek UMP invariant
tests.

8.3.2 Equivariant Confidence Sets

The connection we have seen between a 1−α confidence region S(x), and the
acceptance region of a α-level test, A(θ), that is

S(x) 3 θ ⇔ x ∈ A(θ),

can often be used to relate UMP invariant tests to best equivariant confidence
sets.
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Equivariance for confidence sets is defined similarly to equivariance in
other settings.

Under the notation developed above, for the group of transformations G
and the induced transformation groups G∗ and G, a confidence set S(x) is
equivariant if for all x ∈ X and g ∈ G,

g∗(S(x)) = S(g(x)).

The uniformly most powerful property of the test corresponds to uniformly
minimizing the probability that the confidence set contains incorrect values,
and the invariance corresponds to equivariance.

An equivariant set that is Θ̃-uniformly more accurate (“more” is defined
similarly to “most”) than any other equivariant set is said to be a uniformly
most accurate equivariant (UMAE) set.

There are situations in which there do not exist confidence sets that have
uniformly minimum probability of including incorrect values. In such cases, we
may retain the requirement for equivariance, but impose some other criterion,
such as expected smallest size (w.r.t. Lebesgue measure) of the confidence
interval.

8.3.3 Invariance/Equivariance and Unbiasedness and Admissibility

In some problems, the principles of invariance and unbiasedness are com-
pletely different; and in some cases, one may be relevant and the other totally
irrelevant. In other cases there is a close connection between the two.

For the testing problem, the most interesting relationship between invari-
ance and unbiasedness is that if a unique up to sets of measure zero UMPU
test exists, and a UMPI test up to sets of measure zero exists, then the two
tests are the same up to sets of measure zero. (To be proven later.)

Admissibility of a statistical procedure means that there is no procedure
that is at least as “good” as the given procedure everywhere, and better than
the given procedure where. In the case of testing “good” means “powerful”,
and, of course, everything depends on the level of the test.

A UMPU test is admissible, but a UMPI test is not necessarily admissible.

Notes

Exercises in Shao

• For practice and discussion
4.47, 4.52 (Solutions in Shao, 2005)

• To turn in
4.57(a), 6.63, 6.69(a), 6.72, 6.74, 7.58, 7.59
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9

Robust Inference
(Shao Sec 5.1, Sec 5.2, Sec 5.3;

Staudte-Sheather)

A major concern is how well the statistical model corresponds to the data-
generating process. Analyses based on an inappropriate model are likely to
yield misleading conclusions. An important concern in the field of robust statis-
tics is the consequence of the differences in the model and the data-generating
process. A major objective of the field of robust statistics is to identify or de-
velop procedures that yield useful conclusions even when the data-generating
process differs in certain ways from the statistical model. Such procedures are
robust to departures within a certain class from the assumed model.

Our study of robust procedures begins with development of measures of
differences in probability distributions.

9.1 Statistical Functions

Functionals are functions whose arguments are functions. The value of a func-
tional may be any kind of object, a real number or another function, for ex-
ample. The domain of a functional is a set of functions. I will use notation of
the following form: for the functional, a capital Greek or Latin letter, Υ , M ,
etc.; for the domain, a calligraphic Latin letter, F , P , etc.; for a function, an
italic letter, f , F , g, etc.; and for the value, the usual notation for functions,
Υ (F ) where F ∈ F , for example.

Functionals have important uses in statistics. Functionals of CDFs can be
used as measures of the differences between two distributions. They can also
be used to define distributional measures of interest, and to define estima-
tors of those measures. The functionals used to measure differences between
two distributions can then be used to evaluate the statistical properties of
estimators that are defined in terms of functionals.

We often measure the difference in functions by a special kind of functional
called a norm.
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Distances between Probability Distributions

The difference in two probability distributions may be measured in terms of a
distance between the cumulative distribution functions such as the Hellinger
distance or the Kullback-Leibler measure as described on page 396, or it may
be measured in terms of differences in probabilities or differences in expected
values.

We are usually interested in using samples to make inferences about the
distances between probability distributions. If we measure the distance be-
tween probability distributions in terms of a distance between the cumulative
distribution functions, we may use the ECDFs from the samples. If the com-
parison is between a distribution of a sample and some family of distributions,
we use the ECDF from the sample and a CDF from the family; If the com-
parison is between the distributions of two samples, we use the ECDFs from
the samples.

It is important to note that even though the measure of the difference
between two CDFs may be small, there may be very large differences in prop-
erties of the probability distributions. For example, consider the difference
between the CDF of a standard Cauchy and a standard normal. The sup
difference is about 0.1256. (It occurs near ±1.85.) The sup dif between the
ECDFs for samples of size 20 will often be between 0.2 and 0.3. (That is a
significance level of 0.83 and 0.34 on a KS test.)

The Kolmogorov Distance; An L∞ Metric

If g and f are CDFs, the L∞ norm of their difference is called the Kolmogorov
distance between the two distributions. We sometimes write the Kolmogorov
distance between two CDFs P1 and P2, as ρK(P1, P2):

ρK(P1, P2) = sup |P1 − P2|. (9.1)

If one or both of P1 and P2 are ECDFs we can compute the Kolmogorov
distance fairly easily using the order statistics.

The Lévy Metric

Another measure of the distance between two CDFs is the Lévy distance,
defined for the CDFs P1 and P2 as

ρL(P1, P2) = inf{ε, s.t. ∀x, P1(x− ε)− ε ≤ P2(x) ≤ P1(x+ ε) + ε}.

It can be shown that ρL(P1, P2) is a metric over the set of distribution func-
tions. It can also be shown that for any CDFs P1 and P2,

ρL(P1, P2) ≤ ρK(P1, P2) ≤ 1.
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The Mallows Metric, or the “Earth Movers’ Distance”

Another useful measure of the distance between two CDFs is the Mallows
distance. For the CDFs P1 and P2, with random variables Y1 having CDF P1

and Y2 having CDF P2, if E(‖Y1‖p) and E(‖Y2‖p) are finite, this distance is

ρMp(P1, P2) = inf(E(‖Y1 − Y2‖p))1/p,

where the infimum is taken over all joint distributions with marginals P1 and
P2.

For scalar-valued random variables, we can show that

ρMp(P1, P2) = (E(‖P−1
1 (U)− P−1

2 (U)‖p))1/p,

where U is a random variable with a U(0, 1) distribution, and the “inverse
CDF” is defined as

P−1
i (t) = inf

x
{x : Pi(x) ≥ t}.

The inverse CDF has many useful applications in statistics. The basic fact
is that if X is an absolutely continuous random variable with CDF P , then
U = P (X) has a U(0, 1) distribution. A discrete random variable has a similar
property when we “spread out” the probability between the mass points. (One
of the most common applications is in random number generation, because the
basic pseudorandom variable that we can simulate has a U(0, 1) distribution.)

The first question we might consider given this definition is whether the
infimum exists, and then it is not clear whether this is indeed a metric. (The
triangle inequality is the only hard question.) Bickel and Freedman (1981) an-
swered both of these questions in the affirmative. The proof is rather compli-
cated for vector-valued random variables; for scalar-valued random variables,
there is a simpler proof in terms of the inverse CDF.

If P1 and P2 are univariate ECDFs based on the same number of observa-
tions, we have

ρMp(Pn1, Pn2) =
(

1
n

∑
(|y1(i) − y2(i)|p)

)1/p

.

Functionals of the CDF; Distribution Measures

We have often defined classes of probability distributions indexed by a para-
meter. This is the basic approach in parametric inference. Often, however, we
want to consider some general property or measure of a distribution without
identifying that measure as an index, or characterization of the distribution.

While the cumulative distribution function is the most basic function for
describing a probability distribution or a family of distributions, there are
a number of other, simpler descriptors of probability distributions that are
useful. Many of these are expressed as functionals of the CDF. For example,
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the mean of a distribution, if it exists, may be written as the functional M of
the CDF P :

M(P ) =
∫
y dP (y). (9.2)

Estimators Based on Statistical Functions

A natural way of estimating a distributional measure that is defined in terms
of a statistical function of the CDF is to use the same statistical function on
the ECDF. This leads us to a plug-in estimator.

For example, the functional M defining the mean of a distribution in equa-
tion (9.2), if it exists, can be applied to the ECDF to yield the sample mean:

M(Pn) =
∫
y dPn(y)

=
∑

yi
1
n

= ȳ.

As we know, this is a “good” estimator of the population mean. Likewise,
corresponding to the central moments defined in equation (1.12), we have the
sample central moments by applying Mr to the ECDF. Notice that this yields
(n− 1)s2/n as the second centralized sample moment.

Estimators based on statistical functions play major roles throughout non-
parametric and semiparametric inference. They are also important in robust
statistics. In robustness studies, we first consider the sensitivity of the statis-
tical function to perturbations in distribution functions. Statistical functions
that are relatively insensitive to perturbations in distribution functions when
applied to a ECDF should yield robust estimators.

These kinds of plug-in estimators should generally have good asymptotic
properties relative to the corresponding population measures because of the
global asymptotic properties of the ECDF.

9.2 Robust Inference

Although the statistical functions we have considered have intuitive interpre-
tations, the question remains as to what are the most useful distributional
measures by which to describe a given distribution. In a simple case such as
a normal distribution, the choices are obvious. For skewed distributions, or
distributions that arise from mixtures of simpler distributions, the choices of
useful distributional measures are not so obvious. A central concern in robust
statistics is how a functional of a CDF behaves as the distribution is per-
turbed. If a functional is rather sensitive to small changes in the distribution,
then one has more to worry about if the observations from the process of
interest are contaminated with observations from some other process.
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9.2.1 Sensitivity of Statistical Functions to Perturbations in the
Distribution

One of the most interesting things about a function (or a functional) is how its
value varies as the argument is perturbed. Two key properties are continuity
and differentiability.

For the case in which the arguments are functions, the cardinality of the
possible perturbations is greater than that of the continuum. We can be precise
in discussions of continuity and differentiability of a functional Υ at a point
(function) F in a domain F by defining another set D consisting of difference
functions over F ; that is the set the functions D = F1 − F2 for F1, F2 ∈ F .

Three kinds of functional differentials are defined on page 404.

Perturbations

In statistical applications using functionals defined on the CDF, we are in-
terested in how the functional varies for “nearby” CDFs in the distribution
function space.

A simple kind of perturbation of a given distribution is to form a mix-
ture distribution with the given distribution as one of the components of the
mixture.

We often consider a simple type of function in the neighborhood of the
CDF. These are CDFs formed by adding a single mass point to the given
distribution.

For a given CDF P (y), we can define a simple perturbation as

Px,ε(y) = (1− ε)P (y) + εI[x,∞)(y), (9.3)

where 0 ≤ ε ≤ 1. We will refer to this distribution as an ε-mixture distribu-
tion, and to the distribution with CDF P as the reference distribution. (This,
of course, is the distribution of interest, so I often refer to it without any
qualification.)

A simple interpretation of the perturbation in equation (9.3) is that it
is the CDF of a mixture of a distribution with CDF P and a degenerate
distribution with a single mass point at x, which may or may not be in the
support of the distribution. The extent of the perturbation depends on ε; if
ε = 0, the distribution is the reference distribution.

If the distribution with CDF P is continuous with PDF p, the PDF of the
mixture is

dPx,ε(y)/dy = (1− ε)p(y) + εδ(x− y),

where δ(·) is the Dirac delta function. If the distribution is discrete, the prob-
ability mass function has nonzero probabilities (scaled by (1 − ε)) at each
of the mass points associated with P together with a mass point at x with
probability ε.
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Figure 9.1 shows in the left-hand graph the PDF of a continuous reference
distribution (solid line) and the PDF of the ε-mixture distribution (dotted
line together with the mass point at x). (In Figure 9.1, although the specifics
are not important, the reference distribution is a standard normal, x = 1, and
ε = 0.1.) A statistical function evaluated at Px,ε compared to the function

p(y)

(1-ε)p(y) ε

x

Px, ε(y)

ε

x

Fig. 9.1. PDFs and the CDF of the ε-Mixture Distribution

evaluated at P allows us to determine the effect of the perturbation on the
statistical function. For example, we can determine the mean of the distribu-
tion with CDF Px,ε in terms of the mean µ of the reference distribution to be
(1− ε)µ+ εx. This is easily seen by thinking of the distribution as a mixture.
Formally, using the M in equation (9.2), we can write

M(Px,ε) =
∫
y d((1− ε)P (y) + εI[x,∞)(y))

= (1− ε)
∫
y dP (y) + ε

∫
yδ(y − x) dy

= (1− ε)µ+ εx. (9.4)

For a discrete distribution we would follow the same steps using summations
(instead of an integral of y times a Dirac delta function, we just have a point
mass of 1 at x), and would get the same result.

The π quantile of the mixture distribution, Ξπ(Px,ε) = P−1
x,ε (π), is some-

what more difficult to work out. This quantile, which we will call q, is shown
relative to the π quantile of the continuous reference distribution, yπ, for two
cases in Figure 9.2. (In Figure 9.2, although the specifics are not important,
the reference distribution is a standard normal, π = 0.7, so yπ = 0.52, and
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ε = 0.1. In the left-hand graph, x1 = −1.25, and in the right-hand graph,
x2 = 1.25.)

p(y)

(1-ε)p(y)

yπ

ε

x1 q

p(y)

(1-ε)p(y)

yπ

ε

x2q

Fig. 9.2. Quantile of the ε-Mixture Distribution

We see that in the case of a continuous reference distribution (implying P
is strictly increasing, as in the right-hand graph in Figure 9.1),

P−1
x,ε (π) =





P−1
(

π−ε
1−ε

)
, for (1− ε)P (x) + ε < π,

x, for (1− ε)P (x) ≤ π ≤ (1− ε)P (x) + ε,

P−1
(

π
1−ε

)
, for π < (1− ε)P (x).

(9.5)

The conditions in equation (9.5) can also be expressed in terms of x and quan-
tiles of the reference distribution. For example, the first condition is equivalent
to x < yπ−ε

1−ε .

The Influence Function

The extent of the perturbation depends on ε, and so we are interested in the
relative effect; in particular, the relative effect as ε approaches zero. Davies and
Gather (2004) discuss and give several examples of this kind of perturbation
to study the sensitivity of a functional to perturbations of the CDF at a given
point x.

The influence function for the functional Υ and the CDF P , defined at x
as
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φΥ,P (x) = lim
ε↓0

Υ (Px,ε)− Υ (P )
ε

(9.6)

if the limit exists, is a measure of the sensitivity of the distributional measure
defined by Υ to a perturbation of the distribution at the point x. The influence
function is also called the influence curve, and denoted by IC. The limit in
equation (9.6) is the right-hand Gâteaux derivative of the functional Υ at P
and x.

Staudte and Sheather (1990) point out that the influence function can also
be expressed as the limit of the derivative of Υ (Px,ε) with respect to ε:

φΥ,P (x) = lim
ε↓0

∂

∂ε
Υ (Px,ε). (9.7)

This form is often more convenient for evaluating the influence function.
Some influence functions are easy to work out, for example, the influence

function for the functional M in equation (9.2) that defines the mean of a
distribution, which we denote by µ. The influence function for this functional
operating on the CDF P at x is

φµ,P (x) = lim
ε↓0

M(Px,ε)−M(P )
ε

= lim
ε↓0

(1− ε)µ+ εx− µ
ε

= x− µ. (9.8)

We note that the influence function of a functional is a type of derivative of
the functional, ∂M(Px,ε)/∂ε. The influence function for other moments can
be computed in the same way as the steps in equation (9.8).

Note that the influence function for the mean is unbounded in x; that is,
it increases or decreases without bound as x increases or decreases without
bound. Note also that this result is the same for multivariate or univariate
distributions.

The influence function for a quantile is more difficult to work out. The
problem arises from the difficulty in evaluating the quantile. As I informally
described the distribution with CDF Px,ε, it is a mixture of some given distrib-
ution and a degenerate discrete distribution. Even if the reference distribution
is continuous, the CDF of the mixture, Px,ε, does not have an inverse over the
full support (although for quantiles we will write P−1

x,ε ).
Let us consider a simple instance: a univariate continuous reference distri-

bution, and assume p(yπ) > 0. We approach the problem by considering the
PDF, or the probability mass function.

In the left-hand graph of Figure 9.2, the total probability mass up to the
point yπ is (1−ε) times the area under the curve, that is, (1−ε)π, plus the mass
at x1, that is, ε. Assuming ε is small enough, the π quantile of the ε-mixture
distribution is the π − ε quantile of the reference distribution, or P−1(π − ε).

A Companion for Mathematical Statistics c©2008 James E. Gentle



9.2 Robust Inference 289

It is also the π quantile of the scaled reference distribution; that is, it is the
value of the function (1− ε)p(x) that corresponds to the proportion π of the
total probability (1− ε) of that component. Use of equation (9.5) directly in
equation (9.6) is somewhat messy. It is more straightforward to differentiate
P−1

x1,ε and take the limit as in equation (9.7). For fixed x < yπ, we have

∂

∂ε
P−1

(
π − ε
1− ε

)
=

1

p
(
P−1

(
π−ε
1−ε

)) (π − 1)(1− ε)
(1− ε)2

.

Likewise, we take the derivatives for the other cases in equation (9.5), and
then take limits. We get

φΞπ ,P (x) =





π − 1
p(yπ)

, for x < yπ,

0, for x = yπ,

π

p(yπ)
, for x > yπ.

(9.9)

Notice that the actual value of x is not in the influence function; only whether
x is less than, equal to, or greater than the quantile. Notice also that, un-
like influence function for the mean, the influence function for a quantile is
bounded; hence, a quantile is less sensitive than the mean to perturbations
of the distribution. Likewise, quantile-based measures of scale and skewness,
as in equations (1.17) and (1.18), are less sensitive than the moment-based
measures to perturbations of the distribution.

The functionals LJ and Mρ defined in equations (1.20) and (1.21), depend-
ing on J or ρ, can also be very insensitive to perturbations of the distribution.

The mean and variance of the influence function at a random point are of
interest; in particular, we may wish to restrict the functional so that

E(φΥ,P (X)) = 0

and
E
(
(φΥ,P (X))2

)
<∞.

9.2.2 Sensitivity of Estimators Based on Statistical Functions

If a distributional measure of interest is defined on the CDF as Υ (P ), we
are interested in the performance of the plug-in estimator Υ (Pn); specifically,
we are interested in Υ (Pn) − Υ (P ). This turns out to depend crucially on
the differentiability of Υ . If we assume Gâteaux differentiability, from equa-
tion (D.76), we can write
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√
n (Υ (Pn)− Υ (P )) = ΛP (

√
n(Pn − P )) +Rn

=
1√
n

∑

i

φΥ,P (Yi) +Rn

where the remainder Rn → 0.
We are interested in the stochastic convergence. First, we assume E(φΥ,P (X)) =

0 and E
(
(φΥ,P (X))2

)
< ∞. Then the question is the stochastic convergence

of Rn. Gâteaux differentiability does not guarantee that Rn converges fast
enough. However, ρ-Hadamard differentiability, does imply that that Rn is
oP (1), because it implies that norms of functionals (with or without random
arguments) go to 0. We can also get that Rn is oP (1) by assuming Υ is ρ-
Fréchet differentiable and that

√
nρ(Pn, P ) is OP (1). In either case, that is,

given the moment properties of φΥ,P (X) and Rn is oP (1), we have by Slutsky’s
theorem (Shao, page 60),

√
n (Υ (Pn)− Υ (P ))→d N(0, σ2

Υ,P ),

where σ2
Υ,P = E

(
(φΥ,P (X))2

)
.

For a given plug-in estimator based on the statistical function Υ , knowing
E
(
(φΥ,P (X))2

)
(and assuming E(φΥ,P (X)) = 0) provides us an estimator of

the asymptotic variance of the estimator.
The influence function is also very important in leading us to estimators

that are robust; that is, to estimators that are relatively insensitive to depar-
tures from the underlying assumptions about the distribution. As mentioned
above, the functionals LJ and Mρ, depending on J or ρ, can be very insensi-
tive to perturbations of the distribution; therefore estimators based on them,
called L-estimators and M-estimators, can be robust. A class of L-estimators
that are particularly useful are linear combinations of the order statistics.
Because of the sufficiency and completeness of the order statistics in many
cases of interest, such estimators can be expected to exhibit good statistical
properties.

Another class of estimators similar to the L-estimators are those based on
ranks, which are simpler than order statistics. These are not sufficient – the
data values have been converted to their ranks – nevertheless they preserve a
lot of the information. The fact that they lose some information can actually
work in their favor; they can be robust to extreme values of the data.

A functional to define even a simple linear combination of ranks is rather
complicated. As with the LJ functional, we begin with a function J , which
in this case we require to be strictly increasing, and also, in order to ensure
uniqueness, we require that the CDF P be strictly increasing. The RJ func-
tional is defined as the solution to the equation

∫
J

(
P (y) + 1− P (2RJ(P )− y)

2

)
dP (y) = 0. (9.10)
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A functional defined as the solution to this optimization problem is called an
RJ functional, and an estimator based on applying it to a ECDF is called an
RJ estimator or just an R-estimator.

Notes

Adaptive Procedures

Exercises in Shao

• For practice and discussion
5.5, 5.59, 5.61, 5.63, 5.74, 5.86, 5.111 (Solutions in Shao, 2005)

• To turn in
5.3, 5.9, 5.24, 5.27, 5.39, 5.96

Additional References

Hogg, Robert V. (1974), Adaptive robust procedures: A partial review and
some suggestions for future applications and theory (with discussion),
Journal of the American Statistical Association 69, 909–927.

Hogg, Robert V., and Russell V. Lenth (1984), A review of some adaptive sta-
tistical techniques, Communications in Statistics — Theory and Methods
13, 1551–1579.
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Nonparametric Estimation of Functions
(Shao Sec 5.1; Scott)

10.1 Estimation of Functions

An interesting problem in statistics, and one that is generally difficult, is the
estimation of a continuous function such as a probability density function.
The statistical properties of an estimator of a function are more complicated
than statistical properties of an estimator of a single parameter or even of
a countable set of parameters. In this chapter we will discuss the properties
of an estimator in the general case of a real scalar-valued function over real
vector-valued arguments (that is, a mapping from IRd into IR). One of the most
common situations in which these properties are relevant is in nonparametric
probability density estimation.

First, we say a few words about notation. We may denote a function by a
single letter, f , for example, or by the function notation, f(·) or f(x). When
f(x) denotes a function, x is merely a placeholder. The notation f(x), however,
may also refer to the value of the function at the point x. The meaning is
usually clear from the context.

Using the common “hat” notation for an estimator, we use f̂ or f̂(x) to
denote the estimator of f or of f(x). Following the usual terminology, we
use the term “estimator” to denote a random variable, and “estimate” to
denote a realization of the random variable. The hat notation is also used
to denote an estimate, so we must determine from the context whether f̂ or
f̂(x) denotes a random variable or a realization of a random variable. The
estimate or the estimator of the value of the function at the point x may
also be denoted by f̂(x). Sometimes, to emphasize that we are estimating the
ordinate of the function rather than evaluating an estimate of the function,
we use the notation f̂(x). In this case also, we often make no distinction in
the notation between the realization (the estimate) and the random variable
(the estimator). We must determine from the context whether f̂(x) or f̂(x)
denotes a random variable or a realization of a random variable. In most
of the following discussion, the hat notation denotes a random variable that
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depends on the underlying random variable that yields the sample from which
the estimator is computed.

The usual optimality properties that we use in developing a theory of
estimation of a finite-dimensional parameter must be extended for estimation
of a general function. As we will see, two of the usual desirable properties of
point estimators, namely unbiasedness and maximum likelihood, cannot be
attained in general by estimators of functions.

There are many similarities in estimation of functions and approximation
of functions, but we must be aware of the fundamental differences in the two
problems. Estimation of functions is similar to other estimation problems:
we are given a sample of observations; we make certain assumptions about
the probability distribution of the sample; and then we develop estimators.
The estimators are random variables, and how useful they are depends on
properties of their distribution, such as their expected values and their vari-
ances. Approximation of functions is an important aspect of numerical analy-
sis. Functions are often approximated to interpolate functional values between
directly computed or known values. Functions are also approximated as a pre-
lude to quadrature. Methods for estimating functions often use methods for
approximating functions.

10.1.1 General Methods for Estimating Functions

In the problem of function estimation, we may have observations on the func-
tion at specific points in the domain, or we may have indirect measurements
of the function, such as observations that relate to a derivative or an integral
of the function. In either case, the problem of function estimation has the
competing goals of providing a good fit to the observed data and predicting
values at other points. In many cases, a smooth estimate satisfies this latter
objective. In other cases, however, the unknown function itself is not smooth.
Functions with different forms may govern the phenomena in different regimes.
This presents a very difficult problem in function estimation, and it is one that
we will not consider in any detail here.

There are various approaches to estimating functions. Maximum likelihood
has limited usefulness for estimating functions because in general the likeli-
hood is unbounded. A practical approach is to assume that the function is of
a particular form and estimate the parameters that characterize the form. For
example, we may assume that the function is exponential, possibly because of
physical properties such as exponential decay. We may then use various esti-
mation criteria, such as least squares, to estimate the parameter. An extension
of this approach is to assume that the function is a mixture of other functions.
The mixture can be formed by different functions over different domains or
by weighted averages of the functions over the whole domain. Estimation of
the function of interest involves estimation of various parameters as well as
the weights.
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Another approach to function estimation is to represent the function of
interest as a linear combination of basis functions, that is, to represent the
function in a series expansion. The basis functions are generally chosen to be
orthogonal over the domain of interest, and the observed data are used to
estimate the coefficients in the series.

It is often more practical to estimate the function value at a given point.
(Of course, if we can estimate the function at any given point, we can effec-
tively have an estimate at all points.) One way of forming an estimate of a
function at a given point is to take the average at that point of a filtering
function that is evaluated in the vicinity of each data point. The filtering
function is called a kernel, and the result of this approach is called a kernel
estimator.

In the estimation of functions, we must be concerned about the properties
of the estimators at specific points and also about properties over the full
domain. Global properties over the full domain are often defined in terms of
integrals or in terms of suprema or infima.

Kernel Methods

Another approach to function estimation and approximation is to use a fil-
ter or kernel function to provide local weighting of the observed data. This
approach ensures that at a given point the observations close to that point
influence the estimate at the point more strongly than more distant obser-
vations. A standard method in this approach is to convolve the observations
with a unimodal function that decreases rapidly away from a central point.
This function is the filter or the kernel. A kernel has two arguments represent-
ing the two points in the convolution, but we typically use a single argument
that represents the distance between the two points.

Some examples of univariate kernel functions are shown below.

uniform: Ku(t) = 0.5, for |t| ≤ 1,
quadratic: Kq(t) = 0.75(1− t2), for |t| ≤ 1,
normal: Kn(t) = 1√

2π
e−t2/2, for all t.

The kernels with finite support are defined to be 0 outside that range. Of-
ten, multivariate kernels are formed as products of these or other univariate
kernels.

In kernel methods, the locality of influence is controlled by a window
around the point of interest. The choice of the size of the window is the most
important issue in the use of kernel methods. In practice, for a given choice of
the size of the window, the argument of the kernel function is transformed to
reflect the size. The transformation is accomplished using a positive definite
matrix, V , whose determinant measures the volume (size) of the window.

To estimate the function f at the point x, we first decompose f to have a
factor that is a probability density function, p,
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f(x) = g(x)p(x).

For a given set of data, x1, . . . , xn, and a given scaling transformation matrix
V , the kernel estimator of the function at the point x is

f̂(x) = (n|V |)−1
n∑

i=1

g(x)K
(
V −1(x− xi)

)
. (10.1)

In the univariate case, the size of the window is just the width h. The
argument of the kernel is transformed to s/h, so the function that is convolved
with the function of interest is K(s/h)/h. The univariate kernel estimator is

f̂(x) =
1
nh

n∑

i=1

g(x)K
(
x− xi

h

)
.

10.1.2 Pointwise Properties of Function Estimators

The statistical properties of an estimator of a function at a given point are
analogous to the usual statistical properties of an estimator of a scalar para-
meter. The statistical properties involve expectations or other properties of
random variables. In the following, when we write an expectation, E(·), or
a variance, V(·), the expectations are usually taken with respect to the (un-
known) distribution of the underlying random variable. Occasionally, we may
explicitly indicate the distribution by writing, for example, Ep(·), where p is
the density of the random variable with respect to which the expectation is
taken.

Bias

The bias of the estimator of a function value at the point x is

E
(
f̂(x)

)
− f(x).

If this bias is zero, we would say that the estimator is unbiased at the point
x. If the estimator is unbiased at every point x in the domain of f , we say
that the estimator is pointwise unbiased. Obviously, in order for f̂(·) to be
pointwise unbiased, it must be defined over the full domain of f .

Variance

The variance of the estimator at the point x is

V
(
f̂(x)

)
= E

((
f̂(x)− E

(
f̂(x)

))2
)
.

Estimators with small variance are generally more desirable, and an optimal
estimator is often taken as the one with smallest variance among a class of
unbiased estimators.
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Mean Squared Error

The mean squared error, MSE, at the point x is

MSE
(
f̂(x)

)
= E

((
f̂(x)− f(x)

)2)
. (10.2)

The mean squared error is the sum of the variance and the square of the bias:

MSE
(
f̂(x)

)
= E

((
f̂(x)

)2 − 2f̂(x)f(x) +
(
f(x)

)2)

= V
(
f̂(x)

)
+
(
E
(
f̂(x)

)
− f(x)

)2

. (10.3)

Sometimes, the variance of an unbiased estimator is much greater than
that of an estimator that is only slightly biased, so it is often appropriate to
compare the mean squared error of the two estimators. In some cases, as we
will see, unbiased estimators do not exist, so rather than seek an unbiased
estimator with a small variance, we seek an estimator with a small MSE.

Mean Absolute Error

The mean absolute error, MAE, at the point x is similar to the MSE:

MAE
(
f̂(x)

)
= E

(∣∣f̂(x) − f(x)
∣∣
)
. (10.4)

It is more difficult to do mathematical analysis of the MAE than it is for the
MSE. Furthermore, the MAE does not have a simple decomposition into other
meaningful quantities similar to the MSE.

Consistency

Consistency of an estimator refers to the convergence of the expected value of
the estimator to what is being estimated as the sample size increases without
bound. A point estimator Tn, based on a sample of size n, is consistent for θ
if

E(Tn)→ θ as n→∞.

The convergence is stochastic, of course, so there are various types of con-
vergence that can be required for consistency. The most common kind of
convergence considered is weak convergence, or convergence in probability.

In addition to the type of stochastic convergence, we may consider the
convergence of various measures of the estimator. In general, if m is a function
(usually a vector-valued function that is an elementwise norm), we may define
consistency of an estimator Tn in terms of m if

E(m(Tn − θ))→ 0. (10.5)
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For an estimator, we are often interested in weak convergence in mean
square or weak convergence in quadratic mean, so the common definition of
consistency of Tn is

E
(
(Tn − θ)T(Tn − θ)

)
→ 0,

where the type of convergence is convergence in probability. Consistency de-
fined by convergence in mean square is also called L2 consistency.

If convergence does occur, we are interested in the rate of convergence. We
define rate of convergence in terms of a function of n, say r(n), such that

E(m(Tn − θ)) = O(r(n)).

A common form of r(n) is nα, where α < 0. For example, in the simple case
of a univariate population with a finite mean µ and finite second moment, use
of the sample mean x̄ as the estimator Tn, and use of m(z) = z2, we have

E(m(x̄− µ)) = E
(
(x̄− µ)2

)

= MSE(x̄)
= O

(
n−1

)
.

In the estimation of a function, we say that the estimator f̂ of the function
f is pointwise consistent if

E
(
f̂(x)

)
→ f(x) (10.6)

for every x the domain of f . Just as in the estimation of a parameter, there
are various kinds of pointwise consistency in the estimation of a function. If
the convergence in expression (10.6) is in probability, for example, we say that
the estimator is weakly pointwise consistent. We could also define other kinds
of pointwise consistency in function estimation along the lines of other types
of consistency.

10.1.3 Global Properties of Estimators of Functions

Often, we are interested in some measure of the statistical properties of an
estimator of a function over the full domain of the function. The obvious way
of defining statistical properties of an estimator of a function is to integrate
the pointwise properties discussed in the previous section.

Statistical properties of a function, such as the bias of the function, are
often defined in terms of a norm of the function.

For comparing f̂(x) and f(x), the Lp norm of the error is

(∫

D

∣∣f̂(x) − f(x)
∣∣p dx

)1/p

, (10.7)

where D is the domain of f . The integral may not exist, of course. Clearly,
the estimator f̂ must also be defined over the same domain.

A Companion for Mathematical Statistics c©2008 James E. Gentle



10.1 Estimation of Functions 299

Three useful measures are the L1 norm, also called the integrated absolute
error, or IAE,

IAE(f̂ ) =
∫

D

∣∣∣f̂(x)− f(x)
∣∣∣ dx, (10.8)

the square of the L2 norm, also called the integrated squared error, or ISE,

ISE(f̂ ) =
∫

D

(
f̂(x)− f(x)

)2

dx, (10.9)

and the L∞ norm, the sup absolute error, or SAE,

SAE(f̂ ) = sup
∣∣∣f̂(x)− f(x)

∣∣∣ . (10.10)

The L1 measure is invariant under monotone transformations of the coor-
dinate axes, but the measure based on the L2 norm is not.

The L∞ norm, or SAE, is the most often used measure in general function
approximation. In statistical applications, this measure applied to two cumu-
lative distribution functions is the Kolmogorov distance. The measure is not
so useful in comparing densities and is not often used in density estimation.

Other measures of the difference in f̂ and f over the full range of x are
the Kullback-Leibler measure,

∫

D

f̂(x) log

(
f̂(x)
f(x)

)
dx,

and the Hellinger distance,
(∫

D

(
f̂ 1/p(x)− f1/p(x)

)p

dx
)1/p

.

For p = 2, the Hellinger distance is also called the Matusita distance.

Integrated Bias and Variance

We now want to develop global concepts of bias and variance for estimators of
functions. Bias and variance are statistical properties that involve expectations
of random variables. The obvious global measures of bias and variance are just
the pointwise measures integrated over the domain. In the case of the bias,
of course, we must integrate the absolute value, otherwise points of negative
bias could cancel out points of positive bias.

The estimator f̂ is pointwise unbiased if

E
(
f̂(x)

)
= f(x) for all x ∈ IRd.

Because we are interested in the bias over the domain of the function, we
define the integrated absolute bias as
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IAB
(
f̂
)

=
∫

D

∣∣∣E
(
f̂(x)

)
− f(x)

∣∣∣ dx (10.11)

and the integrated squared bias as

ISB
(
f̂
)

=
∫

D

(
E
(
f̂(x)

)
− f(x)

)2

dx. (10.12)

If the estimator is unbiased, both the integrated absolute bias and inte-
grated squared bias are 0. This, of course, would mean that the estimator is
pointwise unbiased almost everywhere. Although it is not uncommon to have
unbiased estimators of scalar parameters or even of vector parameters with a
countable number of elements, it is not likely that an estimator of a function
could be unbiased at almost all points in a dense domain. (“Almost” means
all except possibly a set with a probability measure of 0.)

The integrated variance is defined in a similar manner:

IV
(
f̂
)

=
∫

D

V
(
f̂(x)

)
dx

=
∫

D

E
((
f̂(x)− E

(
f̂(x)

))2)dx. (10.13)

Integrated Mean Squared Error and Mean Absolute Error

As we suggested above, global unbiasedness is generally not to be expected. An
important measure for comparing estimators of funtions is, therefore, based
on the mean squared error.

The integrated mean squared error is

IMSE
(
f̂
)

=
∫

D

E
((
f̂(x) − f(x)

)2)dx

= IV
(
f̂
)

+ ISB
(
f̂
)

(10.14)

(compare equations (10.2) and (10.3)).
If the expectation integration can be interchanged with the outer integra-

tion in the expression above, we have

IMSE
(
f̂
)

= E
(∫

D

(
f̂(x) − f(x)

)2

dx
)

= MISE
(
f̂
)
,

the mean integrated squared error. We will assume that this interchange leaves
the integrals unchanged, so we will use MISE and IMSE interchangeably.

Similarly, for the integrated mean absolute error, we have
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IMAE
(
f̂
)

=
∫

D

E
(∣∣f̂(x)− f(x)

∣∣
)

dx

= E
(∫

D

∣∣∣f̂(x) − f(x)
∣∣∣ dx

)

= MIAE
(
f̂
)
,

the mean integrated absolute error.

Mean SAE

The mean sup absolute error, or MSAE, is

MSAE
(
f̂
)

=
∫

D

E
(
sup
∣∣f̂(x) − f(x)

∣∣
)

dx. (10.15)

This measure is not very useful unless the variation in the function f is rela-
tively small. For example, if f is a density function, f̂ can be a “good” estima-
tor, yet the MSAE may be quite large. On the other hand, if f is a cumulative
distribution function (monotonically ranging from 0 to 1), the MSAE may be
a good measure of how well the estimator performs. As mentioned earlier, the
SAE is the Kolmogorov distance. The Kolmogorov distance (and, hence, the
SAE and the MSAE) does poorly in measuring differences in the tails of the
distribution.

Large-Sample Statistical Properties

The pointwise consistency properties are extended to the full function in the
obvious way. In the notation of expression (10.5), consistency of the function
estimator is defined in terms of

∫

D

E
(
m
(
f̂(x) − f(x)

))
dx→ 0.

The estimator of the function is said to be mean square consistent or L2

consistent if the MISE converges to 0; that is,
∫

D

E
((
f̂(x) − f(x)

)2)dx → 0.

If the convergence is weak, that is, if it is convergence in probability, we say
that the function estimator is weakly consistent; if the convergence is strong,
that is, if it is convergence almost surely or with probability 1, we say the
function estimator is strongly consistent.

The estimator of the function is said to be L1 consistent if the mean
integrated absolute error (MIAE) converges to 0; that is,

∫

D

E
(∣∣∣f̂(x)− f(x)

∣∣∣
)

dx → 0.
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As with the other kinds of consistency, the nature of the convergence in the
definition may be expressed in the qualifiers “weak” or “strong”.

As we have mentioned above, the integrated absolute error is invariant
under monotone transformations of the coordinate axes, but the L2 measures
are not. As with most work in L1, however, derivation of various properties
of IAE or MIAE is more difficult than for analogous properties with respect
to L2 criteria.

If the MISE converges to 0, we are interested in the rate of convergence.
To determine this, we seek an expression of MISE as a function of n. We do
this by a Taylor series expansion.

In general, if θ̂ is an estimator of θ, the Taylor series for ISE(θ̂), equa-
tion (10.9), about the true value is

ISE
(
θ̂
)

=
∞∑

k=0

1
k!

(
θ̂ − θ

)k

ISEk′
(θ), (10.16)

where ISEk′
(θ) represents the kth derivative of ISE evaluated at θ.

Taking the expectation in equation (10.16) yields the MISE. The limit of
the MISE as n→∞ is the asymptotic mean integrated squared error, AMISE.
One of the most important properties of an estimator is the order of the
AMISE.

In the case of an unbiased estimator, the first two terms in the Taylor
series expansion are zero, and the AMISE is

V(θ̂) ISE′′(θ)

to terms of second order.

Other Global Properties of Estimators of Functions

There are often other properties that we would like an estimator of a function
to possess. We may want the estimator to weight given functions in some
particular way. For example, if we know how the function to be estimated,
f , weights a given function r, we may require that the estimate f̂ weight the
function r in the same way; that is,

∫

D

r(x)f̂ (x)dx =
∫

D

r(x)f(x)dx.

We may want to restrict the minimum and maximum values of the esti-
mator. For example, because many functions of interest are nonnegative, we
may want to require that the estimator be nonnegative.

We may want to restrict the variation in the function. This can be thought
of as the “roughness” of the function. A reasonable measure of the variation
is
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∫

D

(
f(x)−

∫

D

f(x)dx
)2

dx.

If the integral
∫

D
f(x)dx is constrained to be some constant (such as 1 in the

case that f(x) is a probability density), then the variation can be measured
by the square of the L2 norm,

S(f) =
∫

D

(
f(x)

)2dx. (10.17)

We may want to restrict the derivatives of the estimator or the smooth-
ness of the estimator. Another intuitive measure of the roughness of a twice-
differentiable and integrable univariate function f is the integral of the square
of the second derivative:

R(f) =
∫

D

(
f ′′(x)

)2dx. (10.18)

Often, in function estimation, we may seek an estimator f̂ such that its rough-
ness (by some definition) is small.

10.2 Nonparametric Estimation of CDFs and PDFs

10.2.1 Nonparametric Probability Density Estimation

Estimation of a probability density function is similar to the estimation of
any function, and the properties of the function estimators that we have dis-
cussed are relevant for density function estimators. A density function p(y) is
characterized by two properties:

• it is nonnegative everywhere;
• it integrates to 1 (with the appropriate definition of “integrate”).

In this chapter, we consider several nonparametric estimators of a den-
sity; that is, estimators of a general nonnegative function that integrates to 1
and for which we make no assumptions about a functional form other than,
perhaps, smoothness.

It seems reasonable that we require the density estimate to have the char-
acteristic properties of a density:

• p̂(y) ≥ 0 for all y;
•
∫
IRd p̂(y) dy = 1.

A probability density estimator that is nonnegative and integrates to 1 is
called a bona fide estimator.

Rosenblatt has shown that no unbiased bona fide estimator can exist for
all continuous p. Rather than requiring an unbiased estimator that cannot be
a bona fide estimator, we generally seek a bona fide estimator with small mean
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squared error or a sequence of bona fide estimators p̂n that are asymptotically
unbiased; that is,

Ep(p̂n(y))→ p(y) for all y ∈ IRd as n→∞.

The Likelihood Function

Suppose that we have a random sample, y1, . . . , yn, from a population with
density p. Treating the density p as a variable, we write the likelihood func-
tional as

L(p; y1, . . . , yn) =
n∏

i=1

p(yi).

The maximum likelihood method of estimation obviously cannot be used di-
rectly because this functional is unbounded in p. We may, however, seek an
estimator that maximizes some modification of the likelihood. There are two
reasonable ways to approach this problem. One is to restrict the domain of
the optimization problem. This is called restricted maximum likelihood. The
other is to regularize the estimator by adding a penalty term to the functional
to be optimized. This is called penalized maximum likelihood.

We may seek to maximize the likelihood functional subject to the con-
straint that p be a bona fide density. If we put no further restrictions on
the function p, however, infinite Dirac spikes at each observation give an un-
bounded likelihood, so a maximum likelihood estimator cannot exist, subject
only to the restriction to the bona fide class. An additional restriction that
p be Lebesgue-integrable over some domain D (that is, p ∈ L1(D)) does not
resolve the problem because we can construct sequences of finite spikes at
each observation that grow without bound.

We therefore must restrict the class further. Consider a finite dimensional
class, such as the class of step functions that are bona fide density estimators.
We assume that the sizes of the regions over which the step function is constant
are greater than 0.

For a step function with m regions having constant values, c1, . . . , cm, the
likelihood is

L(c1, . . . , cm; y1, . . . , yn) =
n∏

i=1

p(yi)

=
m∏

k=1

cnk

k , (10.19)

where nk is the number of data points in the kth region. For the step function
to be a bona fide estimator, all ck must be nonnegative and finite. A maximum
therefore exists in the class of step functions that are bona fide estimators.

If vk is the measure of the volume of the kth region (that is, vk is the
length of an interval in the univariate case, the area in the bivariate case, and
so on), we have
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m∑

k=1

ckvk = 1.

We incorporate this constraint together with equation (10.19) to form the
Lagrangian,

L(c1, . . . , cm) + λ

(
1−

m∑

k=1

ckvk

)
.

Differentiating the Lagrangian function and setting the derivative to zero, we
have at the maximum point ck = c∗k, for any λ,

∂L

∂ck
= λvk.

Using the derivative of L from equation (10.19), we get

nkL = λc∗kvk.

Summing both sides of this equation over k, we have

nL = λ,

and then substituting, we have

nkL = nLc∗kvk.

Therefore, the maximum of the likelihood occurs at

c∗k =
nk

nvk
.

The restricted maximum likelihood estimator is therefore

p̂(y) =
nk

nvk
, for y ∈ region k,

= 0, otherwise.

(10.20)

Instead of restricting the density estimate to step functions, we could con-
sider other classes of functions, such as piecewise linear functions.

We may also seek other properties, such as smoothness, for the estimated
density. One way of achieving other desirable properties for the estimator is
to use a penalizing function to modify the function to be optimized. Instead
of the likelihood function, we may use a penalized likelihood function of the
form

Lp(p; y1, . . . , yn) =
n∏

i=1

p(yi)e−T (p),
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where T (p) is a transform that measures some property that we would like
to minimize. For example, to achieve smoothness, we may use the transform
R(p) of equation (10.18) in the penalizing factor. To choose a function p̂ to
maximize Lp(p) we would have to use some finite series approximation to
T (p̂).

For densities with special properties there may be likelihood approaches
that take advantage of those properties.

10.2.2 Histogram Estimators

Let us assume finite supportD, and construct a fixed partition ofD into a grid
of m nonoverlapping bins Tk. (We can arbitrarily assign bin boundaries to one
or the other bin.) Let vk be the volume of the kth bin (in one dimension, vk

is a length and in this simple case is often denoted hk; in two dimensions, vk

is an area, and so on). The number of such bins we choose, and consequently
their volumes, depends on the sample size n, so we sometimes indicate that
dependence in the notation: vn,k. For the sample y1, . . . , yn, the histogram
estimator of the probability density function is defined as

p̂H(y) =
m∑

k=1

1
vk

∑n
i=1 ITk

(yi)
n

ITk
(y), for y ∈ D,

= 0, otherwise.

The histogram is the restricted maximum likelihood estimator (10.20).
Letting nk be the number of sample values falling into Tk,

nk =
n∑

i=1

ITk
(yi),

we have the simpler expression for the histogram over D,

p̂H(y) =
m∑

k=1

nk

nvk
ITk

(y). (10.21)

As we have noted already, this is a bona fide estimator:

p̂H(y) ≥ 0

and
∫

IRd

p̂H(y)dy =
m∑

k=1

nk

nvk
vk

= 1.

Although our discussion generally concerns observations on multivariate
random variables, we should occasionally consider simple univariate observa-
tions. One reason why the univariate case is simpler is that the derivative is a
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scalar function. Another reason why we use the univariate case as a model is
because it is easier to visualize. The density of a univariate random variable
is two-dimensional, and densities of other types of random variables are of
higher dimension, so only in the univariate case can the density estimates be
graphed directly.

In the univariate case, we assume that the support is the finite interval
[a, b]. We partition [a, b] into a grid ofm nonoverlapping bins Tk = [tn,k, tn,k+1)
where

a = tn,1 < tn,2 < . . . < tn,m+1 = b.

The univariate histogram is

p̂H(y) =
m∑

k=1

nk

n(tn,k+1 − tn,k)
ITk

(y). (10.22)

If the bins are of equal width, say h (that is, tk = tk−1 +h), the histogram
is

p̂H(y) =
nk

nh
, for y ∈ Tk.

This class of functions consists of polynomial splines of degree 0 with fixed
knots, and the histogram is the maximum likelihood estimator over the class
of step functions. Generalized versions of the histogram can be defined with
respect to splines of higher degree. Splines with degree higher than 1 may
yield negative estimators, but such histograms are also maximum likelihood
estimators over those classes of functions.

The histogram as we have defined it is sometimes called a “density his-
togram”, whereas a “frequency histogram” is not normalized by the n.

Some Properties of the Histogram Estimator

The histogram estimator, being a step function, is discontinuous at cell bound-
aries, and it is zero outside of a finite range. It is sensitive both to the bin size
and to the choice of the origin.

An important advantage of the histogram estimator is its simplicity, both
for computations and for analysis. In addition to its simplicity, as we have
seen, it has two other desirable global properties:

• It is a bona fide density estimator.
• It is the unique maximum likelihood estimator confined to the subspace

of functions of the form

g(t) = ck, for t ∈ Tk,

= 0, otherwise,

and where g(t) ≥ 0 and
∫
∪kTk

g(t) dt = 1.
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Pointwise and Binwise Properties

Properties of the histogram vary from bin to bin. From equation (10.21), the
expectation of the histogram estimator at the point y in bin Tk is

E(p̂H(y)) =
pk

vk
, (10.23)

where
pk =

∫

Tk

p(t) dt (10.24)

is the probability content of the kth bin.
Some pointwise properties of the histogram estimator are the following:

• The bias of the histogram at the point y within the kth bin is

pk

vk
− p(y). (10.25)

Note that the bias is different from bin to bin, even if the bins are of
constant size. The bias tends to decrease as the bin size decreases. We can
bound the bias if we assume a regularity condition on p. If there exists γ
such that for any y1 6= y2 in an interval

|p(y1)− p(y2)| < γ‖y1 − y2‖,

we say that p is Lipschitz-continuous on the interval, and for such a density,
for any ξk in the kth bin, we have

|Bias(p̂H(y))| = |p(ξk)− p(y)|
≤ γk‖ξk − y‖
≤ γkvk . (10.26)

• The variance of the histogram at the point y within the kth bin is

V
(
p̂H(y)

)
= V(nk)/(nvk)2

=
pk(1− pk)

nv2
k

. (10.27)

This is easily seen by recognizing that nk is a binomial random variable
with parameters n and pk. Notice that the variance decreases as the bin
size increases. Note also that the variance is different from bin to bin. We
can bound the variance:

V(p̂H(y)) ≤ pk

nv2
k

.
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By the mean-value theorem, we have pk = vkp(ξk) for some ξk ∈ Tk, so
we can write

V(p̂H(y)) ≤
p(ξk)
nvk

.

Notice the tradeoff between bias and variance: as h increases the variance,
equation (10.27), decreases, but the bound on the bias, equation (10.26),
increases.

• The mean squared error of the histogram at the point y within the kth

bin is

MSE
(
p̂H(y)

)
=
pk(1− pk)

nv2
k

+
(
pk

vk
− p(y)

)2

. (10.28)

For a Lipschitz-continuous density, within the kth bin we have

MSE
(
p̂H(y)

)
≤ p(ξk)

nvk
+ γ2

kv
2
k. (10.29)

We easily see that the histogram estimator is L2 pointwise consistent for
a Lipschitz-continuous density if, as n → ∞, for each k, vk → 0 and
nvk → ∞. By differentiating, we see that the minimum of the bound on
the MSE in the kth bin occurs for

h∗(k) =
(
p(ξk)
2γ2

kn

)1/3

. (10.30)

Substituting this value back into MSE, we obtain the order of the optimal
MSE at the point x,

MSE∗(p̂H(y)
)

= O
(
n−2/3

)
.

Asymptotic MISE (or AMISE) of Histogram Estimators

Global properties of the histogram are obtained by summing the binwise prop-
erties over all of the bins.

The expressions for the integrated variance and the integrated squared bias
are quite complicated because they depend on the bin sizes and the probability
content of the bins. We will first write the general expressions, and then we will
assume some degree of smoothness of the true density and write approximate
expressions that result from mean values or Taylor approximations. We will
assume rectangular bins for additional simplification. Finally, we will then
consider bins of equal size to simplify the expressions further.

First, consider the integrated variance,
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IV
(
p̂H

)
=
∫

IRd

V(p̂H (t)) dt

=
m∑

k=1

∫

Tk

V(p̂H(t)) dt

=
m∑

k=1

pk − p2
k

nvk

=
m∑

k=1

(
1
nvk
−
∑
p(ξk)2vk

n

)
+ o(n−1)

for some ξk ∈ Tk, as before. Now, taking
∑
p(ξk)2vk as an approximation

to the integral
∫
(p(t))2 dt, and letting S be the functional that measures the

variation in a square-integrable function of d variables,

S(g) =
∫

IRd

(g(t))2 dt, (10.31)

we have the integrated variance,

IV
(
p̂H

)
≈

m∑

k=1

1
nvk
− S(p)

n
, (10.32)

and the asymptotic integrated variance,

AIV
(
p̂H

)
=

m∑

k=1

1
nvk

. (10.33)

The measure of the variation, S(p), is a measure of the roughness of the
density because the density integrates to 1.

Now, consider the other term in the integrated MSE, the integrated
squared bias. We will consider the case of rectangular bins, in which hk =
(hk1 , . . . , hkd

) is the vector of lengths of sides in the kth bin. In the case of
rectangular bins, vk = Πd

j=1hkj .
We assume that the density can be expanded in a Taylor series, and we

expand the density in the kth bin about t̄k, the midpoint of the rectangular
bin. For t̄k + t ∈ Tk, we have

p(t̄k + t) = p(t̄k) + tT∇p(t̄k) +
1
2
tTHp(t̄k)t+ · · · , (10.34)

where Hp(t̄k) is the Hessian of p evaluated at t̄k.
The probability content of the kth bin, pk, from equation (10.24), can be

expressed as an integral of the Taylor series expansion:
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pk =
∫

t̄k+t∈Tk

p(t̄k + t) dt

=
∫ hkd/2

−hkd/2

· · ·
∫ hk1/2

−hk1/2

(
p(t̄k) + tT∇p(t̄k) + . . .

)
dt1 · · ·dtd

= vkp(t̄k) + O
(
hd+2

k∗

)
, (10.35)

where hk∗ = minj hkj . The bias at a point t̄k + t in the kth bin, after substi-
tuting equations (10.34) and (10.35) into equation (10.25), is

pk

vk
− p(t̄k + t) = −tT∇p(t̄k) + O

(
h2

k∗
)
.

For the kth bin the integrated squared bias is

ISBk(p̂H)

=
∫

Tk

(
(
tT∇p(t̄k)

)2 − 2O
(
h2

k∗
)
tT∇p(t̄k) + O

(
h4

k∗
)
)

dt

=
∫ hkd/2

−hkd/2

· · ·
∫ hk1/2

−hk1/2

∑

i

∑

j

tkitkj∇ip(t̄k)∇jp(t̄k) dt1 · · · dtd + O
(
h4+d

k∗

)
.

(10.36)

Many of the expressions above are simpler if we use a constant bin size,
v, or h1, . . . , hd. In the case of constant bin size, the asymptotic integrated
variance in equation (10.33) becomes

AIV
(
p̂H

)
=
m

nv
. (10.37)

In this case, the integral in equation (10.36) simplifies as the integration is
performed term by term because the cross-product terms cancel, and the
integral is

1
12

(h1 · · ·hd)
d∑

j=1

h2
j

(
∇jp(t̄k)

)2
. (10.38)

This is the asymptotic squared bias integrated over the kth bin.
When we sum the expression (10.38) over all bins, the

(
∇jp(t̄k)

)2 become
S
(
∇jp

)
, and we have the asymptotic integrated squared bias,

AISB
(
p̂H

)
=

1
12

d∑

j=1

h2
jS
(
∇jp

)
. (10.39)

Combining the asymptotic integrated variance, equation (10.37), and
squared bias, equation (10.39), for the histogram with rectangular bins of
constant size, we have
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AMISE
(
p̂H

)
=

1
n(h1 · · ·hd)

+
1
12

d∑

j=1

h2
jS
(
∇jp

)
. (10.40)

As we have seen before, smaller bin sizes increase the variance but decrease
the squared bias.

Bin Sizes

As we have mentioned and have seen by example, the histogram is very sen-
sitive to the bin sizes, both in appearance and in other properties. Equa-
tion (10.40) for the AMISE assuming constant rectangular bin size is often
used as a guide for determining the bin size to use when constructing a his-
togram. This expression involves S

(
∇jp

)
and so, of course, cannot be used

directly. Nevertheless, differentiating the expression with respect to hj and
setting the result equal to zero, we have the bin width that is optimal with
respect to the AMISE,

hj∗ = S
(
∇jp

)−1/2

(
6

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n− 1
2+d . (10.41)

Substituting this into equation (10.40), we have the optimal value of the
AMISE

1
4

(
36

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n− 2
2+d . (10.42)

Notice that the optimal rate of decrease of AMISE for histogram estimators
is O(n− 2

2+d ). Although histograms have several desirable properties, this order
of convergence is not good compared to that of some other bona fide density
estimators, as we will see in later sections.

The expression for the optimal bin width involves S
(
∇jp

)
, where p is

the unknown density. An approach is to choose a value for S
(
∇jp

)
that cor-

responds to some good general distribution. A “good general distribution”,
of course, is the normal with a diagonal variance-covariance matrix. For the
d-variate normal with variance-covariance matrix Σ = diag(σ2

1 , . . . , σ
2
d),

S
(
∇jp

)
=

1
2d+1πd/2σ2

j |Σ|1/2
.

For a univariate normal density with variance σ2,

S(p′) = 1/(4
√
πσ3),

so the optimal constant one-dimensional bin width under the AMISE criterion
is
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3.49σn−1/3.

In practice, of course, an estimate of σ must be used. The sample standard
deviation s is one obvious choice. A more robust estimate of the scale is based
on the sample interquartile range, r. The sample interquartile range leads to
a bin width of 2rn−1/3.

The AMISE is essentially an L2 measure. The L∞ criterion—that is, the
sup absolute error (SAE) of equation (10.10)—also leads to an asymptotically
optimal bin width that is proportional to n−1/3.

One of the most commonly used rules is for the number of bins rather
than the width. Assume a symmetric binomial model for the bin counts, that
is, the bin count is just the binomial coefficient. The total sample size n is

m−1∑

k=0

(
m− 1
k

)
= 2m−1,

and so the number of bins is

m = 1 + log2 n.

Bin Shapes

In the univariate case, histogram bins may vary in size, but each bin is an
interval. For the multivariate case, there are various possibilities for the shapes
of the bins. The simplest shape is the direct extension of an interval, that is a
hyperrectangle. The volume of a hyperrectangle is just vk =

∏
hkj . There are,

of course, other possibilities; any tessellation of the space would work. The
objects may or may not be regular, and they may or may not be of equal size.
Regular, equal-sized geometric figures such as hypercubes have the advantages
of simplicity, both computationally and analytically. In two dimensions, there
are three possible regular tessellations: triangles, squares, and hexagons.

For hyperrectangles of constant size, the univariate theory generally ex-
tends fairly easily to the multivariate case. The histogram density estimator
is

p̂H(y) =
nk

nh1h2 · · ·hd
, for y ∈ Tk,

where the h’s are the lengths of the sides of the rectangles. The variance within
the kth bin is

V(p̂H(y)) =
npk(1− pk)

(nh1h2 · · ·hd)2
, for y ∈ Tk,

and the integrated variance is

IV(p̂H) ≈ 1
nh1h2 · · ·hd

− S(f)
n

.
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Other Density Estimators Related to the Histogram

There are several variations of the histogram that are useful as probability
density estimators. The most common modification is to connect points on the
histogram by a continuous curve. A simple way of doing this in the univariate
case leads to the frequency polygon. This is the piecewise linear curve that
connects the midpoints of the bins of the histogram. The endpoints are usually
zero values at the midpoints of two appended bins, one on either side.

The histospline is constructed by interpolating knots of the empirical CDF
with a cubic spline and then differentiating it. More general methods use
splines or orthogonal series to fit the histogram.

As we have mentioned and have seen by example, the histogram is some-
what sensitive in appearance to the location of the bins. To overcome the
problem of location of the bins, a density estimator that is the average of sev-
eral histograms with equal bin widths but different bin locations can be used.
This is called the average shifted histogram, or ASH. It also has desirable
statistical properties, and it is computationally efficient in the multivariate
case.

10.2.3 Kernel Estimators

Kernel methods are probably the most widely used technique for building
nonparametric probability density estimators. They are best understood by
developing them as a special type of histogram. The difference is that the bins
in kernel estimators are centered at the points at which the estimator is to
be computed. The problem of the choice of location of the bins in histogram
estimators does not arise.

Rosenblatt’s Histogram Estimator; Kernels

For the one-dimensional case, Rosenblatt defined a histogram that is shifted
to be centered on the point at which the density is to be estimated. Given the
sample y1, . . . , yn, Rosenblatt’s histogram estimator at the point y is

p̂R(y) =
#{yi s.t. yi ∈ (y − h/2, y + h/2] }

nh
. (10.43)

This histogram estimator avoids the ordinary histogram’s constant-slope con-
tribution to the bias. This estimator is a step function with variable lengths
of the intervals that have constant value.

Rosenblatt’s centered histogram can also be written in terms of the ECDF:

p̂R(y) =
Pn(y + h/2)− Pn(y − h/2)

h
,

where, as usual, Pn denotes the ECDF. As seen in this expression, Rosenblatt’s
estimator is a centered finite-difference approximation to the derivative of the
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empirical cumulative distribution function (which, of course, is not differen-
tiable at the data points). We could, of course, use the same idea and form
other density estimators using other finite-difference approximations to the
derivative of Pn.

Another way to write Rosenblatt’s shifted histogram estimator over bins
of length h is

p̂R(y) =
1
nh

n∑

i=1

K

(
y − yi

h

)
, (10.44)

where K(t) = 1 if |t| < 1/2 and = 0 otherwise. The function K is a kernel
or filter. In Rosenblatt’s estimator, it is a “boxcar” function, but other kernel
functions could be used.

The estimator extends easily to the multivariate case. In the general kernel
estimator, we usually use a more general scaling of y − yi,

V −1(y − yi),

for some positive-definite matrix V . The determinant of V −1 scales the esti-
mator to account for the scaling within the kernel function. The general kernel
estimator is given by

p̂K(y) =
1

n|V |

n∑

i=1

K
(
V −1(y − yi)

)
, (10.45)

where the function K is called the kernel, and V is the smoothing matrix. The
determinant of the smoothing matrix is exactly analogous to the bin volume
in a histogram estimator. The univariate version of the kernel estimator is the
same as Rosenblatt’s estimator (10.44), but in which a more general function
K is allowed.

In practice, V is usually taken to be constant for a given sample size, but,
of course, there is no reason for this to be the case, and indeed it may be
better to vary V depending on the number of observations near the point y.
The dependency of the smoothing matrix on the sample size n and on y is
often indicated by the notation Vn(y).

Properties of Kernel Estimators

The appearance of the kernel density estimator depends to some extent on the
support and shape of the kernel. Unlike the histogram estimator, the kernel
density estimator may be continuous and even smooth.

It is easy to see that if the kernel satisfies

K(t) ≥ 0, (10.46)

and ∫

IRd

K(t) dt = 1 (10.47)
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(that is, if K is a density), then p̂K(y) is a bona fide density estimator.
There are other requirements that we may impose on the kernel either for

the theoretical properties that result or just for their intuitive appeal. It also
seems reasonable that in estimating the density at the point y, we would want
to emphasize the sample points near y. This could be done in various ways,
but one simple way is to require

∫

IRd

tK(t) dt = 0. (10.48)

In addition, we may require the kernel to be symmetric about 0.
For multivariate density estimation, the kernels are usually chosen as a

radially symmetric generalization of a univariate kernel. Such a kernel can be
formed as a product of the univariate kernels. For a product kernel, we have
for some constant σ2

K ,
∫

IRd

ttTK(t) dt = σ2
KId, (10.49)

where Id is the identity matrix of order d. We could also impose this as a
requirement on any kernel, whether it is a product kernel or not. This makes
the expressions for bias and variance of the estimators simpler. The spread of
the kernel can always be controlled by the smoothing matrix V , so sometimes,
for convenience, we require σ2

K = 1.
In the following, we will assume the kernel satisfies the properties in equa-

tions (10.46) through (10.49).
The pointwise properties of the kernel estimator are relatively simple to

determine because the estimator at a point is merely the sample mean of n
independent and identically distributed random variables. The expectation of
the kernel estimator (10.45) at the point y is the convolution of the kernel
function and the probability density function,

E (p̂K(y)) =
1
|V |

∫

IRd

K
(
V −1(y − t)

)
p(t) dt

=
∫

IRd

K(u)p(y − V u) du, (10.50)

where u = V −1(y − t) (and, hence, du = |V |−1dt).
If we approximate p(y − V u) about y with a three-term Taylor series,

using the properties of the kernel in equations (10.46) through (10.49) and
using properties of the trace, we have

E (p̂K(y)) ≈
∫

IRd

K(u)
(
p(y)− (V u)T∇p(y) +

1
2
(V u)THp(y)V u

)
du

= p(y)− 0 +
1
2
trace

(
V THp(y)V

)
. (10.51)
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To second order in the elements of V (that is, O(|V |2)), the bias at the point
y is therefore

1
2
trace

(
V V THp(y)

)
. (10.52)

Using the same kinds of expansions and approximations as in equa-
tions (10.50) and (10.51) to evaluate E

(
(p̂K(y))2

)
to get an expression of order

O(|V |/n), and subtracting the square of the expectation in equation (10.51),
we get the approximate variance at y as

V (p̂K(y)) ≈ p(y)
n|V |

∫

IRd

(K(u))2 du,

or

V (p̂K(y)) ≈ p(y)
n|V |

S(K). (10.53)

Integrating this, because p is a density, we have

AIV
(
p̂K

)
=
S(K)
n|V |

, (10.54)

and integrating the square of the asymptotic bias in expression (10.52), we
have

AISB
(
p̂K

)
=

1
4

∫

IRd

(
trace

(
V THp(y)V

))2
dy. (10.55)

These expressions are much simpler in the univariate case, where the
smoothing matrix V is the smoothing parameter or window width h. We have
a simpler approximation for E (p̂K(y)) than that given in equation (10.51),

E (p̂K(y)) ≈ p(y) +
1
2
h2p′′(y)

∫

IR

u2K(u) du,

and from this we get a simpler expression for the AISB. After likewise simpli-
fying the AIV, we have

AMISE
(
p̂K

)
=
S(K)
nh

+
1
4
σ4

Kh
4R(p), (10.56)

where we have left the kernel unscaled (that is,
∫
u2K(u) du = σ2

K).
Minimizing this with respect to h, we have the optimal value of the smooth-

ing parameter (
S(K)

nσ4
KR(p)

)1/5

. (10.57)

Substituting this back into the expression for the AMISE, we find that its
optimal value in this univariate case is

5
4
R(p)(σKS(K))4/5 n−4/5. (10.58)
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The AMISE for the univariate kernel density estimator is thus O(n−4/5).
Recall that the AMISE for the univariate histogram density estimator is
O(n−2/3).

We see that the bias and variance of kernel density estimators have similar
relationships to the smoothing matrix that the bias and variance of histogram
estimators have. As the determinant of the smoothing matrix gets smaller
(that is, as the window of influence around the point at which the estimator
is to be evaluated gets smaller), the bias becomes smaller and the variance
becomes larger. This agrees with what we would expect intuitively.

Choice of Kernels

Standard normal densities have these properties described above, so the kernel
is often chosen to be the standard normal density. As it turns out, the kernel
density estimator is not very sensitive to the form of the kernel.

Although the kernel may be from a parametric family of distributions, in
kernel density estimation, we do not estimate those parameters; hence, the
kernel method is a nonparametric method.

Sometimes, a kernel with finite support is easier to work with. In the
univariate case, a useful general form of a compact kernel is

K(t) = κrs(1− |t|r)sI[−1,1](t),

where
κrs =

r

2B(1/r, s+ 1)
, for r > 0, s ≥ 0,

and B(a, b) is the complete beta function.
This general form leads to several simple specific cases:

• for r = 1 and s = 0, it is the rectangular kernel;
• for r = 1 and s = 1, it is the triangular kernel;
• for r = 2 and s = 1 (κrs = 3/4), it is the “Epanechnikov” kernel, which

yields the optimal rate of convergence of the MISE (see Epanechnikov,
1969);

• for r = 2 and s = 2 (κrs = 15/16), it is the “biweight” kernel.

If r = 2 and s→∞, we have the Gaussian kernel (with some rescaling).
As mentioned above, for multivariate density estimation, the kernels are

often chosen as a product of the univariate kernels. The product Epanechnikov
kernel, for example, is

K(t) =
d+ 2
2cd

(1− tTt)I(tTt≤1),

where

cd =
πd/2

Γ(d/2 + 1)
.
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We have seen that the AMISE of a kernel estimator (that is, the sum of
equations (10.54) and (10.55)) depends on S(K) and the smoothing matrix
V . As we mentioned above, the amount of smoothing (that is, the window of
influence) can be made to depend on σK . We can establish an approximate
equivalence between two kernels, K1 and K2, by choosing the smoothing ma-
trix to offset the differences in S(K1) and S(K2) and in σK1 and σK2 .

Computation of Kernel Density Estimators

If the estimate is required at one point only, it is simplest just to compute it
directly. If the estimate is required at several points, it is often more efficient
to compute the estimates in some regular fashion.

If the estimate is required over a grid of points, a fast Fourier transform
(FFT) can be used to speed up the computations.

10.2.4 Choice of Window Widths

An important problem in nonparametric density estimation is to determine
the smoothing parameter, such as the bin volume, the smoothing matrix, the
number of nearest neighbors, or other measures of locality. In kernel density
estimation, the window width has a much greater effect on the estimator than
the kernel itself does.

An objective is to choose the smoothing parameter that minimizes the
MISE. We often can do this for the AMISE, as in equation (10.41) on page 312.
It is not as easy for the MISE. The first problem, of course, is just to estimate
the MISE.

In practice, we use cross validation with varying smoothing parameters
and alternate computations between the MISE and AMISE.

In univariate density estimation, the MISE has terms such as hαS(p′) (for
histograms) or hαS(p′′) (for kernels). We need to estimate the roughness of a
derivative of the density.

Using a histogram, a reasonable estimate of the integral S(p′) is a Riemann
approximation,

Ŝ(p′) = h
∑(

p̂′(tk)
)2

=
1

n2h3

∑
(nk+1 − nk)2,

where p̂′(tk) is the finite difference at the midpoints of the kth and (k + 1)th

bins; that is,

p̂′(tk) =
nk+1/(nh)− nk/(nh)

h
.

This estimator is biased. For the histogram, for example,

E(Ŝ(p′)) = S(p′) + 2/(nh3) + . . .
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A standard estimation scheme is to correct for the 2/(nh3) term in the bias and
plug this back into the formula for the AMISE (which is 1/(nh) +h2S(r′)/12
for the histogram).

We compute the estimated values of the AMISE for various values of h
and choose the one that minimizes the AMISE. This is called biased cross
validation because of the use of the AMISE rather than the MISE.

These same techniques can be used for other density estimators and for
multivariate estimators, although at the expense of considerably more com-
plexity.

10.2.5 Orthogonal Series Estimators

A continuous real function p(x), integrable over a domain D, can be repre-
sented over that domain as an infinite series in terms of a complete spanning
set of real orthogonal functions {fk} over D:

p(x) =
∑

k

ckfk(x). (10.59)

The orthogonality property allows us to determine the coefficients ck in
the expansion (10.59):

ck = 〈fk, p〉. (10.60)

Approximation using a truncated orthogonal series can be particularly
useful in estimation of a probability density function because the orthogonality
relationship provides an equivalence between the coefficient and an expected
value. Expected values can be estimated using observed values of the random
variable and the approximation of the probability density function. Assume
that the probability density function p is approximated by an orthogonal series
{qk} with weight function w(y):

p(y) =
∑

k

ckqk(y).

From equation (10.60), we have

ck = 〈qk , p〉

=
∫

D

qk(y)p(y)w(y)dy

= E(qk(Y )w(Y )), (10.61)

where Y is a random variable whose probability density function is p.
The ck can therefore be unbiasedly estimated by

ĉk =
1
n

n∑

i=1

qk(yi)w(yi).
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The orthogonal series estimator is therefore

p̂S(y) =
1
n

j∑

k=0

n∑

i=1

qk(yi)w(yi)qk(y) (10.62)

for some truncation point j.
Without some modifications, this generally is not a good estimator of the

probability density function. It may not be smooth, and it may have infinite
variance. The estimator may be improved by shrinking the ĉk toward the
origin. The number of terms in the finite series approximation also has a
major effect on the statistical properties of the estimator. Having more terms
is not necessarily better. One useful property of orthogonal series estimators
is that the convergence rate is independent of the dimension. This may make
orthogonal series methods more desirable for higher-dimensional problems.

There are several standard orthogonal series that could be used. The two
most commonly used series are the Fourier and the Hermite. Which is prefer-
able depends on the situation.

The Fourier series is commonly used for distributions with bounded sup-
port. It yields estimators with better properties in the L1 sense.

For distributions with unbounded support, the Hermite polynomials are
most commonly used.

Notes

Exercises in Shao

• For practice and discussion
5.15, 5.16, 5.17, 5.23 (Solutions in Shao, 2005)

• To turn in
5.18, 5.19

Additional References

Scott, David W. (1992), Multivariate Density Estimation, John Wiley & Sons,
New York.
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A

Notation and Definitions

All notation used in this work is “standard”. I have opted for simple nota-
tion, which, of course, results in a one-to-many map of notation to object
classes. Within a given context, however, the overloaded notation is generally
unambiguous. I have endeavored to use notation consistently.

This appendix is not intended to be a comprehensive listing of definitions.

A.1 General Notation

Uppercase italic Latin and Greek letters, such as A, B, E, Λ, etc., are generally
used to represent sets, random variables, and matrices. Realizations of ran-
dom variables and placeholders in functions associated with random variables
are usually represented by lowercase letters corresponding to the uppercase
letters; thus, ε may represent a realization of the random variable E.

Parameters in models (that is, unobservables in the models) are generally
represented by Greek letters. Uppercase Latin and Greek letters are also used
to represent cumulative distribution functions. Symbols whose meaning is
context-independent are usually written in an upright font, whereas symbols
representing variables are written in a slant or italic font; for example, Γ is
used to represent the gamma function, while Γ may be used to represent a
variable or a parameter. An upright font is also used to represent a special
object, such as a sample space or a parameter space.

Lowercase Latin and Greek letters are used to represent ordinary scalar or
vector variables and functions. No distinction in the notation is made
between scalars and vectors; thus, β may represent a vector and βi may
represent the ith element of the vector β. In another context, however, β may
represent a scalar. All vectors are considered to be column vectors, although
we may write a vector as x = (x1, x2, . . . , xn). Transposition of a vector or a
matrix is denoted by the superscript “T”.
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Uppercase calligraphic Latin letters, such as D, V , and W , are generally
used to represent special collections of sets, vector spaces, or transforms (func-
tionals).

A single symbol in an italic font is used to represent a single variable. A
Roman font or a special font is often used to represent a standard operator
or a standard mathematical structure. Sometimes a string of symbols in a
Roman font is used to represent an operator (or a standard function); for
example, exp(·) represents the exponential function. But a string of symbols
in an italic font on the same baseline should be interpreted as representing
a composition (probably by multiplication) of separate objects; for example,
exp represents the product of e, x, and p. Likewise a string of symbols in
a Roman font (usually a single symbol) is used to represent a fundamental
constant; for example, e represents the base of the natural logarithm, while e
represents a variable.

Subscripts generally represent indexes to a larger structure; for example,
xij may represent the (i, j)th element of a matrix, X . A subscript in paren-
theses represents an order statistic. A superscript in parentheses represents
an iteration; for example, x(k)

i may represent the value of xi at the kth step
of an iterative process.

xi The ith element of a structure (including a sample,
which is a multiset).

x(i) The ith order statistic.

x(i) The value of x at the ith iteration.

Some important mathematical structures and other objects are:

IR The field of reals or the set over which that field is de-
fined.

IR∗ The “extended reals”; IR∗ = IR ∪ {−∞,∞}.

IRd The usual d-dimensional vector space over the reals or
the set of all d-tuples with elements in IR.

ZZ The ring of integers or the set over which that ring is
defined.

e The base of the natural logarithm. This is a constant; e
may be used to represent a variable. (Note the difference
in the font.)
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i The imaginary unit,
√
−1. This is a constant; i may be

used to represent a variable. (Note the difference in the
font.)

A.2 General Mathematical Functions and Operators

Functions such as sin, max, span, and so on that are commonly associated
with groups of Latin letters are generally represented by those letters in a
Roman font.

Operators such as d (the differential operator) that are commonly associ-
ated with a Latin letter are generally represented by that letter in a Roman
font.

Note that some symbols, such as | · |, are overloaded; such symbols are
generally listed together below.

× Cartesian or cross product of sets, or multiplication of
elements of a field or ring.

|x| The modulus of the real or complex number x; if x is
real, |x| is the absolute value of x.

dxe The ceiling function evaluated at the real number x: dxe
is the largest integer less than or equal to x.

bxc The floor function evaluated at the real number x: bxc
is the smallest integer greater than or equal to x.

x! The factorial of x. If x is a positive integer, x! = x(x −
1) · · · 2 · 1.

x[r] The rth factorial of x. If x is a positive integer, x[r] =
x(x− 1) · · · 2 · (x − (r − 1)).

O(f(n)) Big O; g(n) = O(f(n)) means g(n)/f(n) → c as n →
∞, where c is a nonzero finite constant. In particular,
g(n) = O(1) means g(n) is bounded.

o(f(n)) Little o; g(n) = o(f(n)) means g(n)/f(n) → 0 as n →
∞. In particular, g(n) = o(1) means g(n)→ 0.

oP (f(n)) Convergent in probability;X(n) = oP (f(n)) means that
for any positive ε, Pr(|X(n)−f(n)| > ε)→ 0 as n→∞.
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d The differential operator.

∆ A perturbation operator; ∆x represents a perturbation
of x and not a multiplication of x by ∆, even if x is a
type of object for which a multiplication is defined.

∆(·, ·) A real-valued difference function; ∆(x, y) is a mea-
sure of the difference of x and y. For simple objects,
∆(x, y) = |x− y|. For more complicated objects, a sub-
traction operator may not be defined, and ∆ is a gener-
alized difference.

x̃ A perturbation of the object x; ∆(x, x̃) = ∆x.

x̃ An average of a sample of objects generically denoted
by x.

x̄ The mean of a sample of objects generically denoted by
x.

Special Functions

Good general references on special functions in mathematics are Abramowitz
and Stegun (1964) and Thompson(1997). The venerable book edited by
Abramowitz and Stegun has been kept in print by Dover Publications.

logx The natural logarithm evaluated at x.

sinx The sine evaluated at x (in radians) and similarly for
other trigonometric functions.
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Γ(α) The complete gamma function:

Γ(α) =
∫ ∞

0

tα−1e−tdt.

(This is called Euler’s integral.) Integration by parts
immediately gives the replication formula Γ(α + 1) =
αΓ(α), and so if α is a positive integer, Γ(α + 1) = α!,
and more generally, Γ(α+ 1) defines α!.
Direct evaluation of the integral yields Γ(1/2) =

√
π.

Using this and the replication formula, with some ma-
nipulation we get for the positive integer j

Γ(j + 1/2) =
1 · 2 · · · (2j − 1)

2j

√
π.

The notation Γd(α) denotes the multivariate gamma
function, where α is a d-vector. (In other literature this
notation denotes the incomplete univariate gamma func-
tion.)

Associated with the gamma function are some other useful functions:

ψ(α) The digamma function:

ψ(α) = d log(Γ(α))/dα.

ψ′(α) The trigamma function,

ψ′(α) = dψ(α)/dα.

More general are the polygamma functions, for n =
1, 2, . . ., ψ(n)(α) = d(n)ψ(α)/(dα)(n), which for a fixed
n, is called the (n+ 2)-gamma function.

γ(α, x) The incomplete gamma function,

Γ(x) =
∫ ∞

0

tα−1e−tdt.
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P (α, x) The regularized incomplete gamma function, which is
the CDF of the standard gamma distribution,

P (α, x) = γ(α, x)/Γ(α).

B(α, β) The beta function,

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

.

A.3 Sets, Measure, and Probability

The notation listed below does not always represent the things associated
with it here, but for these objects, I generally use either this notation or other
symbols in the same font.

A◦ The set of interior points of the set A.

A The set of closure points of the set A.

∂A The set of closure points of the set A. We have ∂A =
A −A◦.

Ω Sample space; the universal set in a given probability
distribution.

F A σ-field.

B The Borel σ-field.

BI The Borel σ-field restricted to the interval I ; that is,
the σ-field generated by all open intervals contained in
I and Ω = I .

(Ω,F) A measurable space: the sample space Ω and the σ-field
F .

(Ω,F , ν) A measure space: the sample space Ω, the σ-field F , and
the measure ν defined over the sets in F .
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λ� ν The measure ν dominates the measure λ; that is, λ is
absolutely continuous with respect to ν:

ν(A) = 0 ⇒ λ(A) = 0,

for any set in the domain of both λ and ν.

(Ω,F , P ) The “probability triple”: the sample space Ω, the σ-field
F , and the probability measure P .

P A family of probability distributions.

Θ Parameter space.

X The range of a random variable.

A.4 Linear Spaces and Matrices

V(G) For the set of vectors (all of the same order) G, the
vector space generated by that set.

V(X) For the matrix X , the vector space generated by the
columns of X .

dim(V) The dimension of the vector space V ; that is, the maxi-
mum number of linearly independent vectors in the vec-
tor space.

span(Y ) For Y either a set of vectors or a matrix, the vector
space V(Y )

.

tr(A) The trace of the square matrix A, that is, the sum of
the diagonal elements.

rank(A) The rank of the matrix A, that is, the maximum number
of independent rows (or columns) of A.

ρ(A) The spectral radius of the matrix A (the maximum ab-
solute value of its eigenvalues).

A > 0
A ≥ 0

If A is a matrix, this notation means, respectively, that
each element of A is positive or nonnegative.
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A � 0
A � 0

This notation means that A is a symmetric matrix and
that it is, respectively, positive definite or nonnegative
definite.

AT For the matrix A, its transpose (also used for a vector
to represent the corresponding row vector).

AH The conjugate transpose, also called the adjoint, of the
matrix A; AH = ĀT = AT.

A−1 The inverse of the square, nonsingular matrix A.

A−T The inverse of the transpose of the square, nonsingular
matrix A.

A+ The g4 inverse, the Moore-Penrose inverse, or the
pseudoinverse of the matrix A.

A− A g1, or generalized, inverse of the matrix A.

A
1
2 The square root of a nonnegative definite or positive

definite matrix A; (A
1
2 )2 = A.

A− 1
2 The square root of the inverse of a positive definite ma-

trix A; (A− 1
2 )2 = A−1.

Norms and Inner Products

Lp For real p ≥ 1, a norm formed by accumulating the pth

powers of the moduli of individual elements in an object
and then taking the (1/p)th power of the result.

‖ · ‖ In general, the norm of the object ·.

‖ · ‖p In general, the Lp norm of the object ·.

‖x‖p For the vector x, the Lp norm

‖x‖p =
(∑

|xi|p
) 1

p

.
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‖X‖p For the matrix X , the Lp norm

‖X‖p = max
‖v‖p=1

‖Xv‖p.

‖X‖F For the matrix X , the Frobenius norm

‖X‖F =
√∑

i,j

x2
ij .

〈x, y〉 The inner product or dot product of x and y.

κp(A) The Lp condition number of the nonsingular square ma-
trix A with respect to inversion.

Notation Relating to Matrix Determinants

|A| The determinant of the square matrix A, |A| = det(A).

det(A) The determinant of the square matrix A, det(A) = |A|.

|A(i1,...,ik)| A principal minor of a square matrix A; in this case, it is
the minor corresponding to the matrix formed from rows
i1, . . . , ik and columns i1, . . . , ik from a given matrix A.

|A−(i)(j)| The minor associated with the (i, j)th element of a
square matrix A.

a(ij) The cofactor associated with the (i, j)th element of a
square matrix A; that is, a(ij) = (−1)i+j |A−(i)(j)|.

adj(A) The adjugate, also called the classical adjoint, of the
square matrix A: adj(A) = (a(ji)); that is, the matrix
of the same size as A formed from the cofactors of the
elements of AT.

Matrix-Vector Differentiation
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dt The differential operator on the scalar, vector, or matrix
t. This is an operator; d may be used to represent a
variable. (Note the difference in the font.)

gf

or ∇f
For the scalar-valued function f of a vector variable, the
vector whose ith element is ∂f/∂xi. This is the gradient,
also often denoted as gf .

∇f For the vector-valued function f of a vector variable, the
matrix whose element in position (i, j) is

∂fj(x)
∂xi

.

This is also written as ∂fT/∂x or just as ∂f/∂x. This
is the transpose of the Jacobian of f .

Jf For the vector-valued function f of a vector variable, the
Jacobian of f denoted as Jf . The element in position
(i, j) is

∂fi(x)
∂xj

.

This is the transpose of (∇f): Jf = (∇f)T.

Hf

or ∇∇f
or ∇2f

The Hessian of the scalar-valued function f of a vector
variable. The Hessian is the transpose of the Jacobian
of the gradient. Except in pathological cases, it is sym-
metric. The element in position (i, j) is

∂2f(x)
∂xi∂xj

.

The symbol ∇2f is sometimes also used to denote the
trace of the Hessian, in which case it is called the Lapla-
cian.
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Important Probability Distributions
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Notation and Definitions

Development of stochastic models is facilitated by identifying a few proba-
bility distributions that seem to correspond to a variety of data-generating
processes, and then studying the properties of these distributions. In the
following tables, I list some of the more useful distributions, both discrete
distributions and continuous ones. The names listed are the most common
names, although some distributions go by different names, especially for spe-
cific values of the parameters. In the first column, following the name of the
distribution, the parameter space is specified. Also, given in the first column
is the root name of the computer routines in both R and IMSL that apply to
the distribution. In the last column, the PDF (or probability mass function)
and the mean and variance are given.

There are two very special continuous distributions, for which I use special
symbols: the unit uniform, designated U(0, 1), and the normal (or Gaussian),
denoted by N(µ, σ2). Notice that the second parameter in the notation for the
normal is the variance. Sometimes, such as in the functions in R, the second
parameter of the normal distribution is the standard deviation instead of the
variance.

Except for the uniform and the normal, I designate distributions by a
name followed by symbols for the parameters, for example, binomial(n, π) or
gamma(α, β). Some families of distributions are subfamilies of larger families.
For example, the usual gamma family of distributions is a the two-parameter
subfamily of the three-parameter gamma.

Evans, Hastings, and Peacock (2000) give general descriptions of 40 prob-
ability distributions. Leemis and McQueston (2008) provide a compact graph
of the relationships among a large number of probability distributions.
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Table C.1. Discrete Distributions (PDFs are w.r.t counting measure)

discrete uniform PDF 1
m

, y = a1, . . . , am

a1, . . . , am ∈ IR mean
∑

ai/m

R: sample; IMSL: und variance
∑

(ai − ā)2/m, where ā =
∑

ai/m

binomial PDF

(
n

y

)
πy(1 − π)n−y, y = 0, 1, . . . , n

n = 1, 2, . . . ; π ∈ (0, 1) mean nπ

R: binom; IMSL: bin variance nπ(1 − π)

Bernoulli PDF πy(1 − π)1−y, y = 0, 1

π ∈ (0, 1) mean π

(special binomial) variance π(1 − π)

Poisson PDF θye−θ/y!, y = 0, 1, 2, . . .

θ > 0 mean θ

R: pois; IMSL: poi variance θ

hypergeometric PDF

(
M

y

)(
L − M

N − y

)
(

L

N

) ,

y = max(0, N − L + M), . . . , min(N, M)

L = 1, 2, . . .; mean NM/L

M = 1, 2, . . . , L; N = 1, 2, . . . , L variance ((NM/L)(1 − M/L)(L − N))/(L − 1)

R: hyper; IMSL: hyp

negative binomial PDF

(
y + r − 1

r − 1

)
πr(1 − π)y, y=0,1,2,. . .

r > 0; π ∈ (0, 1) mean r(1 − π)/π

R: nbinom; IMSL: nbn variance r(1 − π)/π2

geometric PDF π(1 − π)y, y=0,1,2,. . .

π ∈ (0, 1) mean (1 − π)/π

(special negative binomial) variance (1 − π)/π2

logarithmic PDF − πy

y log(1 − π)
, y=1,2,3,. . .

π ∈ (0, 1) mean −π/((1 − π) log(1 − π))

IMSL: lgr variance −π(π + log(1 − π))/((1 − π)2(log(1 − π))2)

multinomial PDF
n!∏
πi!

∏
πyi

i , yi = 0, 1, . . . , n,
∑

yi = n

n = 1, 2, . . ., πi ∈ (0, 1),
∑

πi = 1 means nπi

R: multinom; IMSL: mtn variances nπi(1 − πi)
covariances −nπiπj
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Table C.2. Continuous Distributions (PDFs are w.r.t Lebesgue measure)

uniform PDF
1

θ2 − θ1
I(θ1,θ2)(y)

θ1 < θ2 ∈ IR mean (θ2 + θ1)/2

R: unif; IMSL: unf variance (θ2
2 − 2θ1θ2 + θ2

1)/12

normal PDF
1√
2πσ

e−(y−µ)2/2σ2

µ ∈ IR; σ > 0 ∈ IR mean µ

R: norm; IMSL: nor variance σ2

multivariate normal PDF
1

(2π)d/2|Σ|1/2
e−(y−µ)TΣ−1(y−µ)/2

µ ∈ IRd; Σ � 0 ∈ IRd×d mean µ

R: mvrnorm; IMSL: mvn covariance Σ

chi-squared PDF
1

Γ(ν/2)2ν/2
yν/2−1e−y/2 I(0,∞)(y)

ν > 0 mean ν

R: chisq; IMSL: chi variance 2ν

t PDF
Γ((ν + 1)/2)

Γ(ν/2)
√

νπ
(1 + y2/ν)−(ν+1)/2

ν > 0 mean 0

R: t; IMSL: stt variance ν/(ν − 2), for ν > 2

F PDF
ν

ν1/2
1 ν

ν2/2
2 Γ(ν1 + ν2)y

ν1/2−1

Γ(ν1/2)Γ(ν2/2)(ν2 + ν1y)(ν1+ν2)/2
I(0,∞)(y)

ν1 > 0; ν2 > 0 mean ν2/(ν2 − 2), for ν2 > 2

R: f; IMSL: f variance 2ν2
2 (ν1 + ν2 − 2)/(ν1(ν2 − 2)2(ν2 − 4)), for ν2 > 4

lognormal PDF
1√
2πσ

y−1e−(log(y)−µ)2/2σ2
I(0,∞)(y)

µ ∈ IR; σ > 0 ∈ IR mean eµ+σ2/2

R: lnorm; IMSL: lnl variance e2µ+σ2
(eσ2

− 1)

gamma PDF
1

Γ(α)βα
yα−1e−y/β I(0,∞)(y)

α > 0, β > 0 ∈ IR mean αβ

R: gamma; IMSL: gam variance αβ2

exponential PDF λe−λy I(0,∞)(y)

λ > 0 ∈ IR mean 1/λ

R: exp; IMSL: exp variance 1/λ2

double exponential PDF 1
2
λe−λ|y−µ|

µ ∈ IR; λ > 0 ∈ IR mean µ

(folded exponential) variance 2/λ2
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Table C.2. Continuous Distributions (continued)

Weibull PDF
α

β
yα−1e−yα/β I(0,∞)(y)

α > 0, β > 0 ∈ IR mean β1/αΓ(α−1 + 1)

R: weibull; IMSL: wib variance β2/α
(
Γ(2α−1 + 1) − (Γ(α−1 + 1))2

)
Cauchy PDF

1

πβ

(
1 +

(
y−γ

β

)2
)

γ ∈ IR; β > 0 ∈ IR mean does not exist

R: cauchy; IMSL: chy variance does not exist

beta PDF
Γ(α + β)

Γ(α)Γ(β)
yα−1(1 − y)β−1 I(0,1)(y)

α > 0, β > 0 ∈ IR mean α/(α + β)

R: beta; IMSL: beta variance αβ/((α + β)2(α + β + 1))

logistic PDF
e−(y−µ)/β

β(1 + e−(y−µ)/β)2

µ ∈ IR; β > 0 ∈ IR mean µ

R: logis variance β2π2/3

Pareto PDF
αγα

yα+1
I(γ,∞)(y)

α > 0, γ > 0 ∈ IR mean αγ/(α − 1) for α > 1

variance αγ2/((α − 1)2(α − 2)) for α > 2

von Mises PDF
1

2πI0(κ)
eκ cos(x−µ) I(µ−π,µ+π)(y)

µ ∈ IR; κ > 0 ∈ IR mean µ

IMSL: vms variance 1 − (I1(κ)/I0(κ))2
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Basic Mathematical Ideas and Tools

Statistics is grounded in mathematics. All of mathematics is important and
it is difficult to identify which particular areas of mathematics, and at what
levels, must be mastered by statisticians. Of course, statistics is a large field,
and statisticians working in different areas need different kinds and different
levels of mathematical competence.

The attitudes and methods of mathematics pervade mathematical sta-
tistics. We study objects. These objects may be structures, such as groups
and fields, or functionals, such as integrals, estimators, or tests. We want to
understand the properties of these objects. We identify, describe, and name
these properties in fixed statements, with labels, such as the “Neyman-Pearson
Lemma”, or the “Dominated Convergence Theorem”. We identify limits to the
properties of an object or boundary points on the characteristics of the object
by means of “counterexamples”.

Our understanding and appreciation of a particular object is enhanced by
comparing the properties of the given object with similar objects. The prop-
erties of objects of the same class as the given object are stated in theorems
(or “lemmas”, or “corollaries”, or “propositions” — unless you understand
the difference, just call them all “theorems”; clearly, many otherwise compe-
tent mathematical statisticians have no idea what these English words mean).
The hypotheses of the theorems define the various classes of objects. Objects
that do not satisfy all of the hypotheses of a given theorem provide us insight
into these hypotheses. These kinds of objects are called counterexamples for
the conclusions of the theorem. For example, the Lebesgue integral and the
Riemann integral are similar objects. How are they different? First, we should
look at the big picture: in the Lebesgue integral, we begin with a partition-
ing of the range of the function; in the Riemann integral, we begin with a
partitioning of the domain of the function. What about some specific proper-
ties? Some important properties of the Lebesgue integral are codified in the
Big Four Theorems: Fatou’s lemma, the monotone convergence theorem, the
dominated convergence theorem, and the bounded convergence theorem. None
of these hold for the Riemann integral; that is, the Riemann integral provides
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counterexamples for the conclusions of these theorems. To understand these
two objects, we need to be able to prove the four theorems (they’re related),
and to construct counterexamples to show that they do not hold for the Rie-
mann integral. The specifics here are not as important as the understanding
of the attitude of mathematics.

A reasoning system depends on both objects and methods. There are many
standard methods we use in mathematical statistics. It may seem that most
methods are ad hoc, but it is useful to identify common techniques and have
a ready tool kit of methods with general applicability. In Section D.1.4, we
describe some standard techniques that every statistician should have in a
toolkit.

The purpose of this appendix is to provide some general mathematical
background for the theory of statistics. Beyond the general basics covered in
Section D.1, the statistician needs grounding in linear algebra to the extent
covered in Section D.4, in measure theory to the extent covered in Section D.2,
in stochastic calculus to the extent covered in Section D.3, and in methods of
optimization to the extent covered in Section D.5.

Notation

I must first of all point our a departure from the usual notation and terminol-
ogy in regard to the real numbers. I use IR to denote the scalar real number
system in which the elements of the underlying set are singleton numbers.
Much of the underlying theory is based on IR, but my main interest is usually
IRd, for some fixed positive integer d. The elements of the underlying set for
IRd are d-tuples, or vectors. I sometimes emphasize the difference by the word
“scalar” or “vector”. I do not, however, distinguish in the notation for these
elements from the notation for the singleton elements of IR; thus, the symbol
x may represent a scalar or a vector, and a “random variable” X may be a
scalar random variable or a vector random variable.

This unified approach requires a generalized interpretation for certain
functions and relational operators; for example, |x|, |x|p, ex, and x < y. If
x = (x1, . . . , xd) and y = (y1, . . . , yd), then

|x| def= (|x1|, . . . , |xd|) (D.1)

|x|p def= (|x1|p, . . . , |xd|p) (D.2)

ex def= (ex1 , . . . , exd) (D.3)

and
x < y ⇐⇒ x1 < y1, . . . , xd < yd, (D.4)

that is, these functions and relations are applied elementwise. For more com-
plicated objects, such as matrices, the indicated operations may have different
meanings.
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D.1 Some Basic Mathematical Concepts

We first need to develop some basic definitions and properties of sets. Given
simple operations on sets, we expand the concepts to include various functions
and structures over sets. The most important set and the one for which we
define many functions is the set of reals, which I denote as IR or IRd.

In the following, and in all of my writing, I try to be very consistent in
use of notation. Occasionally, I will mention alternative notation that some
people use.

D.1.1 Sets and Spaces

We use the term set without a formal definition to denote a collection of
things, called elements or points. If every element of a set A2 is also in a set
A1, we say A2 is a subset of A1, and write A2 ⊂ A1. If A2 is subset of A1, but
A1 is not a subset of A2, we say A2 is a proper subset of A1. (Some people
use the notation A2 ⊂ A1 to mean A2 is a proper subset of A1, and use the
notation A2 ⊆ A1 to mean that A2 is a subset of A1. I use A2 ⊂ A1 for either
case.)

Given sets A1 and A2, their union, written A1 ∪ A2, is the set consisting
of all elements that are in A1 or A2; and their intersection, written A1 ∩ A2,
is the set consisting of all elements that are in both A1 and A2.

In working with sets, it is useful to define an empty set. This is the set
that contains no elements. We often denote it as ∅.

The cardinality of a set is an indicator of how many elements the set
contains. If the number of elements in a set is a finite integer, that number is
the cardinality of the set. If the elements of a set can be put into a one-to-
one correspondence with a sequence of positive integers, the set is said to be
countable. If it is countable but its cardinality is not a finite integer, then the
set is said to be countably infinite. Any interval of IR is uncountably infinite.
Its cardinality is said to be the cardinality of the continuum.

In any particular application, we can conceive of a set of “everything”, or
a “universe of discourse”. In general, we call this the universal set. (Later we
will call it the sample space.) If A is the universal set, then when we speak
of the set A1, we imply A1 ⊂ A. This also leads naturally to the concept of
the complement of a set. The complement of A1, written Ac

1, is the set of all
elements in A that are not in A1, which we can also write as A − A1. More
generally, given the sets A1 and A2, we write A1 − A2 (some people write
A1\A2 instead) to represent difference of A1 and A2; that is, the complement
of A2 in A1: A1 −A2 = A1 ∩Ac

2. If A2 ⊂ A1, the difference A1 −A2 is called
the proper difference.

The symmetric difference of A1 and A2, written A1∆A2, is A1−A2∪A2−
A1:

A1∆A2
def= A1 − A2 ∪ A2 −A1. (D.5)
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Two useful relationships, known as De Morgan’s laws, are

(A1 ∪ A2)c = Ac
1 ∩ Ac

2 (D.6)

and
(A1 ∩ A2)c = Ac

1 ∪ Ac
2. (D.7)

Product sets

The cartesian product (or direct product or cross product) of two sets A and
B, written A × B, is the set of all doubletons, (ai, bj), where ai ∈ A and
bj ∈ B. The set A×B is called a product set.

Obviously, A×B 6= B ×A in general, and ∅ ×A = A× ∅ = ∅.
The concept of product sets can be extended to more than two sets in a

natural way.
One statement of the Axiom of Choice is that the cartesian product of any

non-empty collection of non-empty sets is non-empty.

Functions

A function is a set of doubletons, or pairs of elements, such that no two
different pairs have the same first element.

We use “function” and “mapping” synonymously, although the latter term
is sometimes interpreted more generally. To say that f is a mapping from Ω
to Λ, written

f : Ω 7→ Λ,

means that for every ω ∈ Ω there is a pair in f whose first member is ω. We
use the notation f(ω) to represent the second member of the pair in f whose
first member is ω, and we call ω the argument of the function. We call Ω the
domain of the function and we call {λ|λ = f(ω) for some ω ∈ Ω} the range
of the function.

Variations include functions that are onto, meaning that for every λ ∈ Λ
there is a pair in f whose second member is λ; and functions that are one-to-
one, written 1 : 1, meaning that no two pairs have the same second member.
A function that is one-to-one and onto is called a bijection. A function f that
is one-to-one has an inverse, written f−1, that is a function from Λ to Ω, such
that if f(ω0) = λ0, then f−1(λ0) = ω0.

If (a, b) ∈ f , we may write a = f−1(b), although sometimes this notation
is restricted to the cases in which f is one-to-one. (There are some subtleties
here; if f is not one-to-one, if the members of the pairs in f are reversed, the
resulting set is not a function. We say f−1 does not exist; yet we may write
a = f−1(b), with the meaning above.)

If A ⊂ Ω, the image of A, denoted by f [A], or just by f(A), is the set of all
λ ∈ Λ for which λ = f(ω) for some ω ∈ Ω. (The notation f [A] is preferable,
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but we will often just use f(A).) Similarly, if C is a collection of sets (see
below), the notation f [C] denotes the collection of sets {f [C] : C ∈ C}.

For the function f that maps from Ω to Λ, Ω is called the domain of the
function and and f [Ω] is called the range of the function.

For a subset B of Λ, the inverse image or the preimage of B, denoted by
f−1[B], or just by f−1(B), is the set of all ω ∈ Ω such that f(ω) ∈ B. The
notation f−1 used in this sense must not be confused with the inverse function
f−1 (if the latter exists). We use this notation for the inverse image whether
or not the inverse of the function exists. Notice that the inverse image of a
set may not generate the set; that is, f [f−1[B]] ⊂ B. We also write f [f−1[B]]
as f ◦ f−1[B]. The set f [f−1[B]] may be a proper subset of B; that is, there
may be an element λ in B for which there is no ω ∈ Ω such that f(ω) = λ. If
f is bijective, then f [f−1[B]] = B.

Collections of Sets

Collections of sets are usually called “collections”, rather than “sets”. We
usually denote collections of sets with upper-case calligraphic letters, e.g., B,
F , etc.

The usual set operators and set relations are used with collections of sets,
and generally have the same meaning. Thus if F1 is a collection of sets that
conatains the set A, we write A ∈ F1, and if F2 is also a collection of sets, we
denote the collection of all sets that are in either F1, or F2 as F1 ∪ F2.

The collection of all subsets of a given set is called the power set of the
given set. An axiom of naive set theory postulates the existence of the power
set for any given set. We denote the power set for a set S as 2S.

Partitions; Disjoint Sets

A partition of a set S is a collection of disjoint subsets of S whose union is S.
Partitions of sets play an important role.

A collection of sets A is said to cover a set S if S ⊂ ∪Ai∈AAi.
Given a finite collection A = {A1, . . . , An} that covers a set S, a partition

of S can be formed by removing some of the intersections of sets in A. For
example, if S ⊂ A1 ∪ A2, then {A1 ∩ S, (A2 ∩ S)− (A1 ∩ A2)} is a partition
of S.

Another simple example is a partition of the union A1 ∪ A2. A simple
partition of the union is just {A1−(A1∩A2), A2}, but a more useful partition,
because it is easily generalizable, uses three sets:

{A1 − (A1 ∩ A2), A2 − (A1 ∩A2), (A1 ∩ A2)}. (D.8)

&%
'$

&%
'$

A1 A2
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Given any finite union of sets ∪n
i=1Ai, we can obtain similar partitions. This

leads to the inclusion-exclusion formula for measures of sets that has common
applications in deriving properties of measures.

It is often of interest to determine the smallest partition (that is, the
partition with the smallest number of sets) of the universal set formed by sets
in a given collection. For example, consider the collection A = {A1, A2}. If
neither A1 nor A2 is a subset of the other, then the partition

{A1 ∩ A2, A1 −A2, A2 −A1, (A1 ∪ A2)c}

consists of the “smallest” collection of subsets that can be identified with
operations on A1 and A2.

If A1 ⊂ A2, then A1 −A2 = ∅ and so the smallest partition is

{A1, A2 −A1, A
c
2}.

Ordered sets

A set A is said to be partially ordered if there exists a relation ≤ on A × A
such that ∀a, b, c ∈ A:

• a ≤ a (it is reflexive)
• a ≤ b, b ≤ c⇒ a ≤ c (it is transitive)
• a ≤ b, b ≤ a⇒ a = b (it is antisymmetric)

A set A is called ordered if it is partially ordered and every pair of elements
a, b ∈ A can be compared with each other by the partial ordering relation.
The real numbers are ordered.

A set A is called well-ordered if it is an ordered set for which every non-
empty subset contains a smallest element. The positive integers are well-
ordered (obviously). By the Axiom of Choice, every set (e.g., the reals) can
be well-ordered.

Spaces

In any application it is generally useful to define some “universe of discourse”
that is the set of all elements that will be considered in a given problem. Given
a universe or universal set, which we often denote by the special symbol Ω
(note the font), we then define various mathematical structures on Ω. These
structures, which we often call “spaces”, are formed by specifying certain types
of collections of subsets of Ω and/or by defining operations on the elements
of Ω or on the subsets in the special collection of subsets. In probability and
statistics, we will call the universal set the sample space.

Some of the general structures that we will find useful are topological
spaces, which are defined in terms of the type of collection of subsets of the
universal set, and metric spaces and linear spaces, which are defined in terms
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of operations on elements of the universal set. We will discuss these below,
and then in Section D.1.3, we will discuss some properties of the special spaces
in which the universal set is the set of real numbers. In Section D.2, we will
discuss various types of collections of subsets of the universal set, and then
for a particular type of collection, called a σ-field, we will discuss a special
type of space, called a measurable space, and then, with the addition of a
real-valued set function, we will define a measure space. A particular type of
measure space is a probability space.

Topologies

One of the simplest structures based on the nonempty universal set Ω is a
topological space or a topology, which is formed by a collection T of subsets of
Ω with the following properties:

(t1) ∅,Ω ∈ T , and
(t2) A,B ∈ T ⇒ A ∩ B ∈ T , and
(t3) A ⊂ T ⇒ ∪{A : A ∈ A} ∈ T .

Members of a a topological space are called open sets. (This definition of
open sets is more abstract than one we will give below after defining metrics
and neighborhoods. That other definition is the one we will use for sets of real
numbers. The corresponding topology is then defined as the collection of all
open sets according to the definition of openness in that context.)

Properties of Ω that can be expressed in terms of a topology are called its
topological properties.

Without imposing any additional structure on a topological space, we can
define several useful concepts.

Let (Ω, T ) be a topological space. A set A ⊂ Ω is said to be closed iff
Ω ∩ Ac ∈ T . For the set A ⊂ Ω, the closure of A is the set A = ∩{B :
B is closed, andA ⊂ B ⊂ Ω}. (Notice that every y ∈ A is a point of closure
of A, and that A is closed iff A = A.) For the set A ⊂ Ω, the interior of A is
the set A◦ = ∪{U : U is open, andU ⊂ A}. The boundary of the set A ⊂ Ω is
the set ∂A = A ∩Ac. A neighborhood of a point ω ∈ Ω is any set U ∈ T such
that x ∈ U . Notice that Ω is a neighborhood of each point. The space (Ω, T )
is called a Hausdorff space iff each pair of distinct points of Ω have disjoint
neighborhoods. For x ∈ U and A ⊂ Ω, we say that x is a limit point of A iff
for each neighborhood U of x, (U ∩{x}c∩A 6= ∅. The topological space (Ω, T )
is said to be connected iff there do not exist two disjoint open sets A and B
such that A∪B = Ω. We can also speak of a subset of Ω as being connected,
using this same condition.

Metrics

A useful structure can be formed by introduction a function that maps the
product set Ω×Ω into the nonnegative reals. Given a space Ω, a metric over
Ω is a function ρ such that for x, y, z ∈ Ω
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• ρ(x, y) = 0 if and only if x = y
• ρ(x, y) = ρ(y, x)
• ρ(x, y) ≤ ρ(x, z) + ρ(z, x)

The structure (Ω, ρ) is called a metric space.
The concept of a metric allows us to redefine the topological properties

introduced above in terms of the metric, which we do in the following sections.
The definitions in terms of a metric are generally more useful, and also a metric
allows us to define additional important properties, such as continuity.

A common example of a metric space is the set IR together with ρ(x, y) =
|x− y|.

Neighborhoods

The concept of a metric allows us to define a neighborhood of a point in a
set. For a point x ∈ Ω, a metric ρ on Ω, and any positive number ε, an ε-
neighborhood of x, denoted by Nρ(x, ε), is the set of y ∈ Ω whose distance
from x is less than ε; that is,

Nρ(x, ε)
def= {y : ρ(x, y) < ε}. (D.9)

Notice that the meaning of a neighborhood depends on the metric, but in
any case it is an open set. Usually, we assume that a metric is given and just
denote the neighborhood as N (x, ε).

The concept of a neighborhood allows us to give a more meaningful defi-
nition of open sets and to define such things as continuity.

Open Sets

The specification of a topology defines the open sets of the structure and
consequently neighborhoods of point. It is often a more useful approach to
define first a metric, then to define neighborhoods as above, and then to
define open sets in terms of neighborhoods. In this approach, a subset G of Ω
is said to be open if each member of G has a neighborhood that is contained
in G.

Note that with each metric space (Ω, ρ), we can associate a topological
space (Ω, T ), where T is the collection of open sets in (Ω, ρ).

We note that (IR, ρ) is a Hausdorff space because, given x, y ∈ IR and
x 6= y we have ρ(x, y) > 0 and so N (x, ρ(x, y)/2) and N (y, ρ(x, y)/2) are
disjoint open sets.

We also note that IR is connected, as is any interval in IR.
We will defer further discussion of openness and related concepts to

page 356 in Section D.1.3 where we discuss the real number system.
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Continuous Functions

A function f from the metric space Ω with metric ρ to the metric space Λ
with metric τ is said to be continuous at the point ω0 ∈ Ω if for any ε > 0
there is a δ > 0 such that f maps Nρ(ω0, ε) into Nτ (f(ω0), δ). Usually, we
assume that the metrics are given and, although they may be different, we
denote the neighborhood without explicit reference to the metrics. Thus, we
write f [N (ω0, ε)] ⊂ N (f(ω0), δ).

We will discuss various types of continuity of real-valued functions over
real domains in Section D.2.4 beginning on page 385.

Sequences of Sets

De Morgan’s laws (D.6) and (D.7) express important relationships between
unions, intersections, and complements.

Two important types of unions and intersections of sequences of sets are
called the lim sup and the lim inf and are defined as

lim sup
n
An

def= ∩∞n=1 ∪∞i=n Ai (D.10)

and
lim inf

n
An

def= ∪∞n=1 ∩∞i=n Ai. (D.11)

We often use the alternative notation A∗ or limn, and A∗ or limn:

A∗ def= limn
def= lim sup

n
An (D.12)

and
A∗

def= limn
def= lim inf

n
An. (D.13)

We can interpret A∗ and A∗ in an intuitive fashion:
An element ω is in A∗ iff for each n, there is some i ≥ n for which ω ∈ Ai.
This means that ω must lie in infinitely many of the An.
An element ω is in A∗ iff there is some n such that for all i ≥ n, ω ∈ Ai. This
means that ω must lie in all but finitely many of the An.

Convergence of Sequences of Sets

We define convergence of a sequence of sets in terms of lim sup and lim inf.
The sequence of sets {An} is said to converge if

lim sup
n
An = lim inf

n
An, (D.14)

and this set is said to be the limit of the sequence.
A sequence of sets {An} is said to be increasing if
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An ⊂ An+1 ∀n, (D.15)

and is said to be decreasing if

An+1 ⊂ An ∀n. (D.16)

In either case, the sequence is said to be monotone.
An increasing sequence {An} converges to ∪∞n=1An.
A decreasing sequence {An} converges to ∩∞n=1An.

Some Basic Facts about lim sup and lim inf

Two simple relationships that follow immediately from the definitions:

lim sup
n
An ⊂ ∪∞i=nAi (D.17)

and
∩∞i=nAi ⊂ lim inf

n
An. (D.18)

Another important fact is

lim inf
n
An ⊂ lim sup

n
An. (D.19)

To see this, consider any ω ∈ lim infnAn:

ω ∈ ∪∞n=1 ∩∞i=n Ai ⇐⇒ ∃n such that ∀i ≥ n, ω ∈ Ai,

so ω ∈ lim supnAn.
A similar relation for any ω ∈ lim supnAn is

ω ∈ ∩∞n=1 ∪∞i=n Ai ⇐⇒ ∀n ∃i ≥ n such that ω ∈ Ai.

Examples

1. Consider the alternating-constant series: A2n = B and A2n+1 = C. Then
lim infnAn = B ∩ C and lim supnAn = B ∪ C.

2. Let the sample space be IR, and let A2n = (−n, n) and A2n+1 = (0, 1/n).
Then lim infnAn = ∅ and lim supnAn = IR.

3. Consider

An =





(
1
n ,

3
4 −

1
n

)
for n = 1, 3, 5, . . .

(
1
4 −

1
n , 1 + 1

n

)
for n = 2, 4, 6, . . .

We have lim infnAn =
[
1
4 ,

3
4

)
and lim supnAn = (0, 1].
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D.1.2 Linear Spaces

An interesting class of spaces are those that have a closed addition operation
for all elements and an additive identity, and for which we define a multi-
plication of real numbers and elements of the space. We denote the addition
operation by “+”, the additive identity by “0”, and the multiplication of a
real number and an element of the space by juxtaposition. A structure S,+
is called a linear space if for any x, y ∈ S and any a ∈ IR, ax + y ∈ S. The
“axpy operation”, ax+ y, is the fundamental operation in linear spaces.

Linear Combinations, Linear Independence, and Basis Sets

Given x1, x2, . . . ∈ S and c1, c2, . . . ∈ IR,
∑

i cixi is called a linear combination.
A set of elements x1, x2, . . . ∈ S are said to be linearly independent if∑

i cixi = 0 for c1, c2, . . . ∈ IR implies that c1 = c2 = · · · = 0.
Given a linear space S and a set B = {bi} of linearly independent elements

of S if for any element x ∈ S, there exist c1, c2, . . . ∈ IR such that x =
∑

i cibi,
then B is called a basis set of S.

Inner Products

If S is a linear space, an inner product is a mapping from S × S to IR. We
denote an inner product by 〈x, y〉. It has the following properties for all x, y,
and z in S
1. Nonnegativity and mapping of the identity:

if x 6= 0, then 〈x, x〉 > 0 and 〈0, x〉 = 〈x, 0〉 = 〈0, 0〉 = 0.
2. Commutativity:
〈x, y〉 = 〈y, x〉.

3. Factoring of scalar multiplication in inner products:
〈ax, y〉 = a〈x, y〉 for real a.

4. Relation of vector addition to addition of inner products:
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

Inner products are often called dot products, although “dot product” is often
used to mean a specific inner product.

A useful property of inner products is the Cauchy-Schwarz inequality:

〈x, y〉 ≤ 〈x, x〉 12 〈y, y〉 12 .

The proof of this is a classic: form the nonnegative polynomial in t:

0 ≤ 〈tx+ y, tx+ y〉 = 〈x, x〉t2 + 2〈x, y〉t+ 〈y, y〉,

and then, because there can be at most one real root in t, require that the
discriminant

(2〈x, y〉)2 − 4〈x, x〉〈y, y〉
be nonpositive.
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Norms

A norm is a function, ‖ · ‖, from S to IR that satisfies the following three
conditions for all x and y in S.

1. Nonnegativity and mapping of the identity:
if x 6= 0, then ‖x‖ > 0, and ‖0‖ = 0

2. Relation of scalar multiplication to real multiplication:
‖ax‖ = |a| ‖x‖ for real a

3. Triangle inequality:
‖x + y‖ ≤ ‖x‖+ ‖y‖

If, in the first condition, the requirement ‖x‖ > 0 is replaced by ‖x‖ ≥ 0, the
resulting function is called a pseudonorm. In some contexts, we may need to
qualify the implication implicit in the first condition by “almost everywhere”;
that is, ‖x‖ = 0⇒ x = 0 almost everywhere. Of course the other alternative
is just to use a pseudonorm in such a context, but it does not carry the same
properties as a norm even with the weakened condition of almost everywhere.

A linear space together with a norm is called a normed linear space.

Norms and Metrics Induced by an Inner Product

If 〈·, ·〉 is an inner product on S, let ‖x‖ =
√
〈x, x〉, for all x in S. We can show

that ‖ · ‖ satisfies the definition of a norm. This is called the norm induced by
that inner product.

For x and y in the normed linear space (S, ‖ · ‖) the function ρ(x, y) =
‖x − y‖ is a metric, as we can easily see from the definition of metric on
page 347. This metric is said to be induced by the norm ‖ · ‖.

Countable Sequences and Complete Spaces

Countable sequences of elements of a linear space, {xi}, for i = 1, 2, . . ., are
often of interest. The limit of the sequence, that is, limi→∞ xi, is of interest.
The first question, of course, is whether it exists. An oscillating sequence such
as −1,+1,−1,+1, . . . does not have a limit. Likewise, a divergent sequence
such as 1, 2, 3, . . . does not have a limit. If the sequence has a finite limit, we
say the sequence converges, but the next question is whether it converges to
a point in the given linear space.

Let A = {xi | i = 1, 2, . . . ;xi ∈ IRd}. If for every ε > 0, there exists a
constant nε such that

‖xn − xm‖ < ε ∀m,n > nε,

then A is called a Cauchy sequence. A sequence of elements of a linear space
converges only if it is a Cauchy sequence.
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A normed linear space is said to be complete if every Cauchy sequence in
the space converges to a point in the space. Such a space is called a Banach
space.

A Banach space whose metric arises from an inner product is called a
Hilbert space.

D.1.3 The Real Number System

The most important sets we will work with are sets of real numbers or product
sets of real numbers. We assume the operations of the field of the real numbers,
that is, ordinary addition and multiplication, along with the usual derived
operations.

We denote the full set of real numbers, that is, the “reals”, by IR and the
set of positive real numbers by IR+. For a positive integer d, we denote the
product set

∏d
i=1 IR as IRd.

The simplest metric on IR is the absolute value of the difference of two
numbers; that is, for x, y ∈ IR,

ρ(x, y) = |x− y|.

This allows us to define neighborhoods and open sets.
Metrics on IRn are usually defined in terms of norms of differences that

generalize the simple metric on IR. A simple extension of the absolute value
metric is the Euclidean distance:

‖x− y‖2 =

(
n∑

i=1

(xi − yi)2
)1/2

. (D.20)

We often write the Euclidean distance between x and y as ‖x− y‖.
The reals do not include the two special elements ∞ and −∞, although

we sometimes speak of the “extended reals”, which we denote and define by

IR∗ def= IR ∪ {−∞,∞}. (D.21)

These two elements have a number of special properties such as ∀x ∈ IR,−∞ <
x <∞ and x±∞ = ±∞.

The finite reals, that is, the reals without ∞ and −∞, are generally more
useful, and by not including the infinities in the reals, we make the discussions
simpler.

We denote the full set of integers by ZZ, and the set of positive integers by
ZZ+. The positive integers are also called the natural numbers. Integers are
reals and so ZZ ⊂ IR and ZZ+ ⊂ IR+.
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Sets, Sequences, and Limits of Reals

A useful limit of sequences of reals that we will encounter from time to time
is

lim
n→∞

(
1 +

c

n

)n

= ec. (D.22)

We can prove this easily using some simple properties of the logarithm func-
tion, which we define as L(t) =

∫ t

1
(1/x)dx for t > 0. We first observe that

L is continuous and increasing, L(1) = 0, that L′ exists at 1, L′(1) = 1, and
nL(x) = L(xn). For a fixed constant c 6= 0 we can write the derivative at 1 as

lim
n→∞

L(1 + c/n)− L(1)
c/n

= 1,

which, because L(1) = 0, we can rewrite as limn→∞ L((1 + c/n)n) = c. Since
L is continuous and increasing limn→∞(1 + c/n)n exists and is the value of x
such that L(x) = c; that is, it is ec.

A related limit for a function g(n) that has the limit limn→∞ = b is

lim
n→∞

(
1 +

cg(n)
n

)n

= ebc, (D.23)

which can be shown easily by use of the limit above, and the bounds
(

1 +
c(b− ε)

n

)n

≤
(

1 +
cg(n)
n

)n

≤
(

1 +
c(b+ ε)

n

)n

,

for c > 0 and any ε > 0, which arise from the bounds b− ε < g(n) < b+ ε for
n sufficiently large. Taking limits, we get

ec(b−ε) ≤ lim
n→∞

(
1 +

cg(n)
n

)n

≤ ec(b+ε),

and since ε was arbitrary, we have the desired conclusion under the assumption
that c > 0. We get the same result (with bounds reversed) for c < 0.

Another related limit is for a function g(n) that has the limit limn→∞ = 0,
and constants b and c with c 6= 0 is

lim
n→∞

(
1 +

c

n
+
g(n)
n

)b

n = ebc. (D.24)

An important property of the reals is that a sequence of reals converges if
and only if it is a Cauchy sequence. (The “if” part means that the reals are
complete.)
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Big O and Little o Notation

We are often interested in the convergence of a sequence to another sequence.
For sequences of real numbers, we have the standard definitions:

Big O, written O(an).
bn = O(an) means bn/an → c as n → ∞, where c is a nonzero finite
constant.
In particular, bn = O(1) means bn is bounded.

Little o, written o(an).
bn = o(an) means bn/an → 0 as n→∞.
In particular, bn = o(1) means bn → 0.

A slightly different definition requires that the ratios never exceed a given c.
They are equivalent for sequences all of whose elements are finite.

Sums of Sequences of Reals

Sums of countable sequences of real numbers {xi}, for i = 1, 2, . . ., are often
of interest. A sum of a countable sequence of real numbers is called a (real)
series. The usual question is what is limn→∞

∑n
i=1 xi. If this limit is finite,

the series is said to converge.
A useful way to investigate sums of sequences of reals is by use of partial

sums. When we are interested in
∑
xi, we form the partial sum,

Sk =
k∑

i=1

xi,

where k is some integer. Clearly, assuming the xis are finite, Sk is finite. The
use of partial sums can be illustrated by considering the geometric series,
which is the sum of the geometric progression, a, ar, ar2, . . .. Let

Sk =
k∑

i=0

ari.

Multiplying both sides by r and subtracting the resulting equation, we have

(1− r)Sk = a(1− rk+1),

which yields for the partial sum

Sk = a
1− rk+1

1− r
.

This formula is useful for finite sums, but its main use is for the series. If
|r| < 1, then
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∞∑

i=0

ari = lim
k→∞

Sk =
a

1− r
.

If |r| > 1, then the series diverges.
Another important fact about series, called Kronecker’s lemma, is useful

in proofs of theorems about sums of independent random variables, such as
the strong law of large numbers:

Theorem D.1.1 Let {xi | i = 1, 2, . . .} and {ai | i = 1, 2, . . .} be sequences of
real numbers such that

∑∞
i=1 xi exists (and is finite), and 0 < a1 ≤ a2 ≤ ...

and an →∞. Then

lim
n→∞

1
an

n∑

i=1

aixi = 0.

Proof. Form the partial sums in xi, Sk and Sn, with k < n. We have

1
an

n∑

i=1

aixi = Sn −
1
an

n−1∑

i=1

(ai+1 − ai)Sk.

Let s =
∑∞

i=1 xi, and for any ε > 0, let N be such that for n > N , |Sn−s| < ε.
We can now write the left-hand side of the equation above as

Sn −
1
an

N−1∑

i=1

(ai+1 − ai)Sk −
1
an

n−1∑

i=N

(ai+1 − ai)Sk

= Sn −
1
an

N−1∑

i=1

(ai+1 − ai)Sk −
1
an

n−1∑

i=N

(ai+1 − ai)s−
1
an

n−1∑

i=N

(ai+1 − ai)(Sk − s)

= Sn −
1
an

N−1∑

i=1

(ai+1 − ai)Sk −
an − aN

an
s− 1

an

n−1∑

i=N

(ai+1 − ai)(Sk − s) .

Now, consider limn→∞. The first term goes to s, which cancels with the third
term. The second term goes to zero (because the sum is a fixed value). Since
the sequence {ai} is nondecreasing, the last term is bounded by an−aN

an
ε, which

is less than or equal to ε, which was any positive number.

Open, Closed, Compact

For sets of reals we can define some useful concepts based on the underlying
arithmetic on the sets. (I use the term “reals” to apply to elements of IRd.)
These concepts yield important kinds of sets, such as open, closed, compact,
and convex sets.

A set A of reals is called open if for each x ∈ A, there exists a δ > 0 such
that for each y with ‖x− y‖ < δ belongs to A.

If A is a set of reals and if for a given x ∈ A, there exists a δ > 0 such that
for each y with ‖x− y‖ < δ belongs to A, then x is called an interior point of
A.
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We denote the set of all interior points of A as A◦ and call it the interior
of A. Clearly A◦ is open, and, in fact, it is the union of all open subsets of A.

A real number(vector) x is called a point of closure of a set A of real
numbers(vectors) if for every δ > 0 there exists a y in A such that ‖x−y‖ < δ.
(Notice that every y ∈ A is a point of closure of A.)

We denote the set of points of closure of A by A.
A set A is called closed if A = A.
The boundary of the set A, denoted ∂A, is the set of points of closure of

A that are not interior points of A; that is,

∂A = A−A◦. (D.25)

An important type of set of reals is an interval. We denote an open interval
with parentheses; for example (a, b) is the set of all real x such that a < x < b.
We denote a closed interval with square brackets; for example [a, b] is the set
of all real x such that a ≤ x ≤ b. We also have “half-open” or “half-closed”
intervals, with obvious meanings.

The maximum of a well-ordered set is the largest element of the set, if it
exists; likewise, the minimum of a well-ordered set is the smallest element of
the set, if it exists. The maximum and/or the minimum may not exist if the
set has an infinite number of elements. This can happen in two ways: one, the
set may have no bound; and another, the bound may not be in the set, in
which case, we speak of the supremum, or the smallest upper bound, of the
set, or the infimum, or the largest lower bound, of the set.
Let A = {x |x = 1/i, i ∈ ZZ+}. Then inf(A) = 0.

A set A is said to be compact if each collection of open sets that covers A
contains a finite subcollection of open sets that covers A.

Heine-Borel theorem: A closed and bounded set of real numbers is compact.
(See Royden, 1988, for example.)

The following properties of unions and intersections of open and closed
sets are easy to show from the definitions:

• The intersection of a finite collection of open sets is open.
• The union of a countable collection of open sets is open.
• The union of a finite collection of closed sets is closed.
• The intersection of a countable collection of closed sets is closed.

Intervals in IR

A very important type of set is an interval in IR, which is a connected subset
of IR. Intervals are the basis for building important structures on IR.

The main kinds of intervals have forms such as
(−∞, a), (−∞, a], (a, b), [a, b], (a, b], [a, b), (b,∞), and [b,∞).

Of these, (−∞, a), (a, b), and (b,∞) are open;
[a, b] is closed and (a, b) = [a, b];
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(a, b] and [a, b) are neither (they are “half-open”);
(−∞, a] and [b,∞) are closed, although in a special way that sometimes re-
quires special treatment.

A finite closed interval is compact (by the Heine-Borel theorem); but an
open or half-open interval is not, as we see below.

The following facts for real intervals are special cases of the properties of
unions and intersections of open and closed sets we listed above, which can
be shown from the definitions:

• ∩n
i=1(ai, bi) = (a, b) (that is, some open interval)

• ∪∞i=1(ai, bi) is an open set
• ∪n

i=1[ai, bi] is a closed set
• ∩∞i=1[ai, bi] = [a, b] (that is, some closed interval)

Two types of interesting intervals are
(
a− 1

i
, b+

1
i

)
(D.26)

and [
a+

1
i
, b−

1
i

]
. (D.27)

Sequences of intervals of these two forms are worth remembering because
they illustrate interesting properties of intersections and unions of infinite
sequences. Infinite intersections and unions behave differently with regard to
collections of open and closed sets. For finite intersections and unions we know
that ∩n

i=1(ai, bi) is an open interval, and ∪n
i=1[ai, bi] is a closed set.

First, observe that

lim
i→∞

(
a− 1

i
, b+

1
i

)
= [a, b] (D.28)

and

lim
i→∞

[
a+

1
i
, b− 1

i

]
= [a, b]. (D.29)

Now for finite intersections of the open intervals and finite unions of the
closed intervals, that is, for finite k, we have

k⋂

i=1

(
a− 1

i
, b+

1
i

)
is open

and
k⋃

i=1

[
a+

1
i
, b− 1

i

]
is closed.

Infinite intersections and unions behave differently with regard to collec-
tions of open and closed sets. With the open and closed intervals of the special
forms, for infinite intersections and unions, we have the important facts:
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∞⋂

i=1

(
a− 1

i
, b+

1
i

)
= [a, b] (D.30)

and
∞⋃

i=1

[
a+

1
i
, b− 1

i

]
= (a, b). (D.31)

Iff x ∈ Ai for some i, then x ∈ ∪Ai. So if x 6∈ Ai for any i, then x 6∈ ∪Ai.
(This is why the union of the closed intervals above is not a closed interval.)

Likewise, we have
∞⋃

i=1

[
a+

1
i
, b

]
=

∞⋂

i=1

(
a, b+

1
i

)

= (a, b]. (D.32)

From this we see that

lim
n→∞

n⋃

i=1

[
a+

1
i
, b− 1

i

]
6=
⋃

lim
i→∞

[
a+

1
i
, b− 1

i

]
.

The equations for (a, b) and (a, b] above show that open intervals and the
half-open intervals are not compact, because no finite collection of sets in the
unions cover the intervals.

Convexity

Another useful concept for real sets and for real functions of real numbers is
convexity.

A set A ⊂ IRd is convex iff for x, y ∈ A, ∀a ∈ [0, 1], ax+ (1− a)y ∈ A.

Convex Functions

A function f : D ⊂ IRd 7→ IR, where D is convex, is convex iff for x, y ∈ D,
∀a ∈ [0, 1],

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y).

A function is strictly convex if the inequality above is strict.
A useful theorem that characterizes convexity of twice differentiable func-

tions is the following:

If the function f is twice differentiable over an open convex set D, then
f is convex iff the Hessian, Hf , is nonnegative definite at all points in
D. Iff it is positive definite, f is strictly convex.

The composition of a convex function and a convex function is convex. We
see that this is true by letting f and g be any convex functions for which f ◦g
is defined. Now let a be any real number in [0, 1]. Then f ◦ g(ax+ (1− a)y) ≤
f(ag(x) + (1− a)g(y)) ≤ af ◦ g(x) + (1− a)f ◦ g(y).

A function f is concave iff −f is convex.
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Subharmonic Functions

Convexity of a function is defined in terms of the average of the function at
two points, compared to the function at the average of the two points. We can
extend that basic idea to the average of the function over a sphere compared
to the function at the sphere. (The average of the function over a sphere is
defined in terms of the ratio of a measure of the function image to the surface
of the spheres. The measures are integrals.)

A function f : D ⊂ IRd 7→ IR, where D is convex, is subharmonic over
D, iff for every point x0 ∈ D and for every r > 0, the average of f over the
surface of the sphere Sr(x0) = {x : ‖x− x0‖ = r} is greater than or equal to
f(x0).

In one dimension, subharmonic and convex are the same property.
A function f is superharmonic if −f is subharmonic. A function is har-

monic if it is both superharmonic and subharmonic.
A useful theorem that characterizes harmonicity of twice differentiable

functions is the following:

If the function f is twice differentiable over an open convex set D,
then f is subharmonic iff the Laplacian, ∇2f , (which is just the trace
of Hf ) is nonnegative at all points in D. The function is harmonic if
the Laplacian is 0, and superharmonic if the Laplacian is nonpositive.

The relatively simple Laplacian operator considers curvature only in the
orthogonal directions corresponding to the principal axes; if the function is
twice differentiable everywhere, however, this is sufficient to characterize the
(sub-, super-) harmonic property. These properties are of great importance in
multidimensional loss functions.

Harmonicity is an important concept in potential theory. It arises in field
equations in physics. The basic equation ∇2f = 0, which implies f is har-
monic, is called Laplace’s equation. Another basic equation in physics is
∇2f = −cρ, where cρ is positive, which implies f is superharmonic. This
is called Poisson’s equation, and is the basic equation in a potential (electri-
cal, gravitational, etc.) field. A superharmonic function is called a potential for
this reason. These PDE’s, which are of the elliptical type, govern the diffusion
of energy or mass as the domain reaches equilibrium. Laplace’s equation repre-
sents a steady diffusion and Poisson’s equation models an unsteady diffusion,
that is, diffusion with a source or sink.

A probability density function that is superharmonic is unimodal. If the
function is twice differentiable, unimodality can be characterized by the Lapla-
cian. For densities that are not twice differentiable, negative curvature along
the principal axes is sometimes called orthounimodality.

Consider f(x) = exp
(∑k

j=1 x
2
j

)
. This function is twice differentiable, and

we have
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∇2 exp




k∑

j=1

x2
j


 =

k∑

i=1

(4x2
i − 2) exp




k∑

j=1

x2
j


 .

The exponential term is positive, so the condition depends on
∑k

i=1(4x
2
i − 2).

If
∑k

i=1 x
2
i < 1/2, it is superharmonic; if

∑k
i=1 x

2
i = 1/2, it is harmonic; if∑k

i=1 x
2
i > 1/2, it is subharmonic.

D.1.4 Some Useful Basic Mathematical Operations

Here are some mathematical operations that should be in fast memory.

Completing the Square

Squared binomials occur frequently in statistical theory, often in a loss func-
tion or as the exponential argument in the normal density function. Often
in an algebraic manipulation, we have an expression of the form ax2 + bx,
and we want an expression in the form (cx + d)2 + e for the same quantity.
This form can be achieved by adding and subtracting b2/(4a), so as to have
(
√
ax+ b/(2

√
a))2 − b2/(4a):

ax2 + bx = (
√
ax+ b/(2

√
a))2 − b2/(4a) (D.33)

We have a similar operation for vectors and positive definite matrices. If
A is a positive definite matrix (meaning that A− 1

2 exists) and x and b are
matrices, we can complete the square of xTAx+ xTb in a similar fashion: we
add and subtract bTA−1b/4. This gives

(
A

1
2x+A− 1

2 b/2
)T (

A
1
2x+A− 1

2 b/2
)
− bTA−1b/4

or (
x+A−1b/2

)T
A
(
x+A−1b/2

)
− bTA−1b/4. (D.34)

Use of Known Integrals and Series

The standard families of probability distributions provide a compendium of
integrals and series with known values. The student should immediately learn
the following three basic continuous distributions and the associated integrals:

• over IR; the normal integral:
∫ ∞

−∞
e−(x−µ)2/2σ2

dx =
√

2πσ, (D.35)

for σ > 0, and its multivariate extension,
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• over IRd; Aitken’s integral:
∫

IRd

e−(x−µ)TΣ−1(x−µ)/2 dx = (2π)d/2|Σ|1/2, (D.36)

for positive definite Σ−1.
• over IR+; the gamma integral (called the complete gamma function):

∫ ∞

0

1
γα
xα−1e−x/γdx = Γ(α), (D.37)

for α, γ > 0.
• over (0, 1); the beta integral:

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)
Γ(α + β)

, (D.38)

for α, β > 0.

There are four simple series that should also be immediately recognizable:

• over 0, . . . , n; the binomial series:

n∑

x=0

Γ(n+ 1)
Γ(x+ 1)Γ(n− x+ 1)

πx(1− π)n−x = 1, (D.39)

for π > 0 and n ≥ 1.
• over 0, 1, 2, . . .; the geometric series:

∞∑

x=0

(1− π)x = π−1 (D.40)

for π > 0.
• over max(0, N − L+M), . . . ,min(N,M); the hypergeometric series:

min(N,M)∑

x=max(0,N−L+M)

(
M

x

)(
L−M
N − x

)
=
(
L

n

)
, (D.41)

for 1 ≤ L, 0 ≤ N ≤ L, and 0 ≤M ≤ L.
• over 0, 1, 2, . . .; the Poisson series:

∞∑

x=0

θx

x!
= eθ, (D.42)

for θ > 0.
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Note that for 0 ≤ x ≤ n,

Γ(n+ 1)
Γ(x+ 1)Γ(n− x+ 1)

=
(
n

x

)
. (D.43)

For computing expected values or evaluating integrals or sums, the trick
often is to rearrange the integral or the sum so that it is in the form of the
original integrand or summand with different parameters.

As an example, consider the integral that is the qth raw moment of a
gamma(α, β) random variable:

∫ ∞

0

1
Γ(α)βα

xqxα−1e−x/βdx.

We use the known value of the integral of the density:
∫ ∞

0

1
Γ(α)βα

xα−1e−x/βdx = 1.

So
∫ ∞

0

1
Γ(α)βα

xqxα−1e−x/βdx =
∫ ∞

0

1
Γ(α)

Γ(q + α)βq

Γ(q + α)βq+α
x(q+α)−1e−x/βdx

=
Γ(q + α)βq

Γ(α)

∫ ∞

0

1
Γ(q + α)βq+α

x(q+α)−1e−x/βdx

=
Γ(q + α)βq

Γ(α)

Another example is a series of the form

∞∑

x=0

xq θx e−θ

x!
.

We recognize in this the known series that corresponds to the probability
function associated with the Poisson distribution:

∞∑

x=0

θx e−θ

x!
= 1,

and realize that evaluation of the series involves a manipulation of xq and x!.
For q = 1, we have

∞∑

x=0

x θx e−θ

x!
= θ

∞∑

x=1

θ(x−1) e−θ

(x− 1)!

= θ.

For q = 2, we form two sums so that we can get expressions involving the
basic probability function:

A Companion for Mathematical Statistics c©2008 James E. Gentle



364 Appendix D. Basic Mathematical Ideas and Tools

∞∑

x=0

x2 θx e−θ

x!
=

∞∑

x=2

x(x − 1) θx e−θ

x!
+

∞∑

x=1

x θx e−θ

x!

= θ2
∞∑

x=2

θ(x−2) e−θ

(x − 2)!
+ θ

∞∑

x=1

θ(x−1) e−θ

(x − 1)!

= θ2 + θ.

Expansion in a Taylor Series

One of the most useful tools in analysis is the Taylor series expansion of a
function about a point a:

f(x) = f(a) + (x− a)f ′ +
1
2!

(x − a)2f ′′ + · · · (D.44)

For a function of m variables, this is

f(x1, . . . , xm) =
∞∑

j=0


 1
j!

(
m∑

k=1

(xk − ak)
∂

∂xk

)j

f(x1, . . . , xm)




(x1,...,xm)=(a1,...,am)

.

(D.45)

Orthogonalizing Vectors

Given a set of nonnull, linearly independent vectors, x1, x2, . . ., it is easy to
form orthonormal vectors, x̃1, x̃2, . . ., that span the same space. This can be
done with respect to any inner product and the norm defined by the inner
product. The most common inner product for vectors of course is 〈xi, xj〉 =
xT

i xj , and the Euclidean norm, ‖x‖ =
√
〈x, x〉, which we often write without

the subscript.
x̃1 =

x1

‖x1‖

x̃2 =
(x2 − 〈x̃1, x2〉x̃1)
‖x2 − 〈x̃1, x2〉x̃1)‖

x̃3 =
(x3 − 〈x̃1, x3〉x̃1 − 〈x̃2, x3〉x̃2)
‖x3 − 〈x̃1, x3〉x̃1 − 〈x̃2, x3〉x̃2‖

etc.

These are called Gram-Schmidt transformations. These transformations also
apply to other kinds of objects, such as functions, for which we can define
an inner product. (Note: the third expression above, and similar expressions
for subsequent vectors may be numerically unstable. See Gentle (2007), pages
27–29 and 432, for a discussion of numerical issues.)
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Optimization

Many statistical methods depend on maximizing something (e.g., MLE), or
minimizing something, generally a risk (e.g., UMVUE, MRE) or something
subjective with intuitive appeal (e.g., squared deviations from observed values,
“least squares”) that may or may not have optimal statistical properties.

• When looking for an optimal solution, it is important to consider the
problem carefully, and not just immediately differentiate something and
set it equal to 0.

• A practical optimization problem often has constraints of some kind.

min
α

f(x, α)

s.t. g(x, α) ≤ b.

• If the functions are differentiable, and if the minimum occurs at an interior
point, use of the Lagrangian is usually the way to solve the problem.

• With the dependence on x suppressed, the Lagrangian is

L(α, λ) = f(α) + λT(g(α)− b).

• Differentiating the Lagrangian and setting to 0, we have a system of equa-
tions that defines a stationary point, α∗.

• We check to insure that it is a minimum by evaluating the Hessian,

∇∇f(α)
∣∣∣
α=α∗

.

If this is positive definite, there is a local minimum at α∗.

Mathematical Proofs

A conditional statement in mathematics has the form “if A then B”, or “A⇒
B”, where A and B are either simple declarative statements or conditional
statements. A conditional statement is either a definition, an axiom, or a
proposition. A proposition requires a proof. (A proposition that has a proof
is sometimes called a “lemma”, a “theorem”, or a “corollary”. While these
terms have meanings, the meanings are rather vague or subjective, and many
authors’ usage of the different terms serves no purpose other than to annoy
the reader. If a proposition has no known proof, it is sometimes called a
“conjecture”.)

There are various types of proofs for theorems. Some are “better” than oth-
ers. (See Aigner and Ziegler, 2004 for discussions of different types of proof.)
The “best” proof of a proposition is a direct proof, which is a sequence of
statements “if A then A1, if A1 . . . , . . . then B”, where each statement in the
sequence is an axiom or a previously proven proposition. A direct proof is
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called deductive, because each of the steps after the first is deduced from the
preceding step.

Two useful types of indirect proofs are contradiction and induction.
In a proof of “A ⇒ B” by contradiction, we assume “A”, and suppose

“not B”. Then we ultimately arrive at a conclusion that contradicts an axiom
or a previously proven proposition. The means that the supposition “not B”
cannot be true, and hence that “B” is true.

A proof by induction may be appropriate when we can index a sequence of
statements by n ∈ ZZ+, that is, Sn, and the statement we wish to prove is that
Sn is true for all n ≥ m ∈ ZZ+. We first show that Sm is true. (Here is where
a proof by induction requires some care; this statement must be nontrivial;
that is, it must be a legitimate member of the sequence of statements.) Then
we show that for n ≥ m, Sn ⇒ Sn+1, in which case we conclude that Sn is
true for all n ≥ m ∈ ZZ+.

Another useful type of deductive proof for “A ⇒ B” is a contrapositive
proof; that is, a proof of “not B ⇒ not A”.

Standard Procedures in Proofs

If the conclusion is that two sets A and B are equal, show that A ⊂ B and
B ⊂ A. To do this (for the first one), choose any x ∈ A and show x ∈ B. The
same technique is used to show that two collections of sets, for example, two
σ-fields, are equal.

To show that a sequence converges, use partial sums and an ε bound.
To show that a series converges, show that the sequence is a Cauchy se-

quence.
The standard procedures may not always work, but try them first.
Use the mathematical operations, such as series expansions, discussed

above.

Notes and Additional References for Section D.1

It is important that the student fully understand the concept of a math-
ematical proof. Solow (2002) discusses the basic ideas, and Aigner and
Ziegler (2004), whose title comes from a favorite phrase of Paul Erdös, give
many well-constructed proofs of common facts. Khuri (2003) presents the im-
portant facts and techniques in advanced calculus.

Additional References

Aigner and Ziegler (2004), Proofs from THE BOOK, third edition, Springer-
Verlag, Berlin.

Khuri, André I. (2003), Advanced Calculus with Applications in Statistics,
second edition, John Wiley & Sons, Inc., New York.
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Royden, H. L. (1988), Real Analysis, third edition, MacMillan, New York.
Solow, Daniel (2003), How to Read and Do Proofs, third edition, John Wiley
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D.2 Measure, Integration, and Functional Analysis

Measure and integration and the probability theory built on those topics are
major fields in mathematics. The objective of this setion is just to get enough
measure theory to support the probability theory necessary for a solid foun-
dation in statistical inference.

Notice that much of the development is for abstract objects; for each of
these, however, there is a concrete instance that is relevant in probability
theory.

We begin with some definitions leading up to measurable spaces, ab-
stract measurable spaces in Section D.2.1, and real measurable spaces in Sec-
tion D.2.2. In Section D.2.3, we finally define a measure and discuss some
properties of measures, again first in an abstract setting, and then in Sec-
tion D.2.4, for real-valued functions.

Finally in Section D.2.5, we discuss integration.

D.2.1 Basic Concepts of Measure Theory

Sample Space

A sample space is a nonempty set. It is the “universe of discourse” in a given
problem. It is often denoted by Ω.

An important sample space is IR, the set of reals.

Collections of Sets

For a given set Ω, there are some important types of collections of subsets.

Definition D.2.1 (π-system) A nonempty collection of subsets, P, is called
a π-system iff

(π1) A,B ∈ P ⇒ A ∩ B ∈ P.

Definition D.2.2 (ring) A nonempty collection of subsets, R, is called a
ring iff

(r1) A,B ∈ R ⇒ A ∪ B ∈ R.
(r2) A,B ∈ R ⇒ A−B ∈ R.

The term “ring” also applies to a mathematical structure consisting of a set
and two operations on the set satisfying certain properties. The prototypic
ring is the set of integers with ordinary addition and multiplication.

Definition D.2.3 (field) A collection of subsets, F is called a field iff

(f1) Ω ∈ F , and
(f2) A ∈ F ⇒ Ac ∈ F , and
(f3) A,B ∈ F ⇒ A ∪ B ∈ F .
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Notice that property (f3) is equivalent to

(f ′
3) A1, A2, . . . An ∈ F ⇒ ∪n

i=1Ai ∈ F ;

that is, F is closed under finite unions. The next systems we describe are
closed under countable unions.

Notice that a field is nonempty by definition. It contains at least one set,
Ω, and if Ω is nonempty, it contains two sets, Ω and ∅.

The term “field” also applies to a mathematical structure consisting of a
set and two operations on the set satisfying certain properties. The prototypic
field is the set of real numbers with ordinary addition and multiplication.

Definition D.2.4 (Dynkin system) A collection of subsets, D, is called a
Dynkin system iff

(D1) Ω ∈ D, and
(D2) A,B ∈ D and A ⊂ B ⇒ B −A ∈ D, and
(D3) A1, A2, . . . ∈ D with A1 ⊂ A2 ⊂ · · · ⇒ ∪iAi ∈ D.

Definition D.2.5 (λ-system) A collection of subsets, L, is called a λ-
system iff

(λ1) Ω ∈ L, and
(λ2) A ∈ L ⇒ Ac ∈ L, and
(λ3) A1, A2, . . . ∈ L and Ai ∩Aj = ∅ for i 6= j ⇒ ∪iAi ∈ L.

We can see that the first and third properties imply that the second property
is equivalent to

(λ′2) A,B ∈ L and A ⊂ B ⇒ B −A ∈ L.

To see this, first assume the three poperties that characterize a λ-system L,
and A,B ∈ L and A ⊂ B. We first see that this implies Bc ∈ L and so the
disjoint union A∪Bc ∈ L. This implies that the complement A∪Bc)c ∈ L. But
(A∪Bc)c = B−A; hence, we have the alternative property (λ′2). Conversely,
assume this alternative property together with the first property (λ1). Hence,
A ∈ L ⇒ Ω−A ∈ L, but Ω−A = Ac; that is, Ac ∈ L.

This means that the second property that characterizes a λ-system could
be replaced by the second property of a Dynkin system. In a similar manner,
we can show that the third properties are equivalent; hence, although the
definitions are different, a Dynkin system is a λ-system, and a λ-system is a
Dynkin system.

Definition D.2.6 (σ-field) A collection of subsets, F , of a given sample
space, Ω, is called a σ-field iff

(σ1) Ω ∈ F
(σ2) A ∈ F ⇒ Ac ∈ F
(σ3) A1, A2, . . . ∈ F ⇒ ∪iAi ∈ F .
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A σ-field is also called a σ-algebra or a a σ-ring.
A field with the properties (σ1) and (σ2), but with (σ3) replaced with the

property

(δ3) A1, A2, . . . ∈ F ⇒ ∩iAi ∈ F

is called a δ-field, a δ-algebra or a δ-ring. It is clear, however, that δ-field and
σ-field are equivalent concepts. We will use the latter term.

We note that for a σ-field F if A1, A2, . . . ∈ F then lim supnAn ∈ F and
lim infnAn ∈ F . This is because for any n, ∪∞i=nAi ∈ F and ∩∞i=nAi ∈ F .

A σ-field is the most important type of field, and we will discuss this type
in more detail below.

Notice that the definition of a π-system must specify that the collection is
nonempty; the definitions of the other systems ensure that the collections are
nonempty without saying so explicitly. The exact definitions of these systems
can be modified in various simple ways. For example, in the definitions of a
field, a λ-system, and a σ-field the requirement that Ω be in the system could
be replaced by the requirement that ∅ be in the system, because closure with
respect to complementation guarantees the inclusion of Ω. (The requirement
that Ω be in a Dynkin system, however, could not be replaced by the require-
ment that ∅ be in the system.) The closure property for unions in a field or
a σ-field could be replaced by the requirement that the system be closed for
intersections of the same kind as the unions.

σ-Field Generated by a Collection of Sets

Given any sample space Ω and any collection C of subsets of Ω, the “smallest”
σ-field over Ω of which C is a subset is called the σ-field generated by C,
and is denoted by σ(C). It is the minimal σ-field that contains C. The σ-field
generated by C is the intersection of all σ-fields that contain C.

σ-fields can contain a very large number of subsets. If k is the maximum
number of sets that partition Ω that can be formed by operations on the sets
in A, then the number of sets in the σ-field is 2k. (What is the “largest” σ-field
over Ω?)

Other special collections of subsets can also be generated by a given col-
lection. For example, given a collection C of subsets of a sample space Ω, we
can form a π-system by adding (only) enough subsets to make the collection
closed with respect to intersections. This system generated by C is the minimal
π-system that contains C. This π-system, denoted by π(C) is the intersection
of all π-systems that contain C. Likewise, we define the λ-system generated
by C as the minimal λ-system that contains C, and we denote it by λ(C).

Examples:
1.
The trivial σ-field is {∅,Ω}.
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2.
The second most trivial σ-field is {∅, A,Ac,Ω}, for some A 6= ∅ and A 6= Ω.
3.
If A = {A}, with respect to the sample space Ω, σ(A) = {∅, A,Ac,Ω}.
4.
If A = {A1, A2} and neither A1 nor A2 is a subset of the other, with respect
to the sample space Ω, there are 4 “smallest” sets that partition A. These are
called atoms. They are

{A1 ∩ A2, A1 −A2, A2 −A1, (A1 ∪ A2)c}.

Hence, there are 16 sets in σ(A). These can be written simply as the binary
combinations of all above: (0000), (0001), (0010), ... Following this order, using
the partition above, the sets are (after simplification):

σ(A) = {∅, (A1 ∪ A2)c, A2 −A1, A
c
1,

A1 −A2, A
c
2, A1∆A2, (A1 ∩ A2)c,

A1 ∩A2, (A1∆A2)c, A2, (A1 −A2)c,
A1, (A2 −A1)c, A1 ∪ A2, Ω}.

5.
If A = {A1, A2} and A1 ⊂ A2, with respect to the sample space Ω, there are
8 sets in σ(A).
6.
For the sample space Ω, σ({Ω}) = {∅,Ω}. This is the trivial σ-field.
Why do we have the braces in σ({Ω})?
We do often abuse the notation, however; if the argument of σ()̇ is a singleton,
we sometimes omit the braces. For example, the second most trivial σ-field is
that generated by a single set, say A: σ(A) = {∅, A,Ac,Ω}. We may also abuse
the notation even further by writing a collection of subsets without putting
them in braces. So, for example, σ(A,B) may be used instead of σ({A.B}).
It is obvious that σ(A) ⊂ σ(A,B).
7.
For the sample space Ω, the power set 2Ω is a σ-field. It is the “largest” σ-field
over Ω.

Borel σ-Fields

Given a topological space (Ω, T ) (that is, a space defined by the collection T
of open subsets of Ω), we call the σ-field generated by T the Borel σ-field on
(Ω, T ). We often denote this as B(Ω, T ), or as B(Ω), or just as B.

Relations of σ-Fields to Other Structures

A σ-field is a π-system, a field, and a λ-system.
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A field is not necessarily a σ-field. The classic example is this: Let Ω be a
countably infinite set, and let F consist of all finite subsets of Ω along with
all subsets of Ω whose complements are finite. We see immediately that F
is a field. To see that it is not a σ-field, all we must do is choose a set A
that is countably infinite and has infinite complement. One such set can be
constructed from a sequence ω1, ω2, . . ., and let A = {ω1, ω3, . . .}. Therefore
{ω2i−1} ∈ F , but A /∈ F even though A = ∪i{ω2i−1}.

Theorem D.2.1 A class that is both a π-system and a λ-system is a σ-field.

Proof. Because it is a λ-system, the class contains ∅ and is closed under
formation of complements, and because it is a π-system, it is closed under
finite intersections. It is therefore a field. Now, suppose that it contains sets
Ai, for i = 1, 2, . . .. The class then contains the sets Bi = Ai ∩Ac

1 ∩ · · ·∩Ac
i−1,

which are necessarily disjoint. Because it is a λ-system, it contains ∪iBi. But
∪iBi = ∪iAi, and since it contains ∪iAi it is a σ-field.

We can see in a similar fashion, that a class that is both a π-system and
a Dynkin system is a σ-field.

A useful fact is known as Dynkin’s π-λ theorem.

Theorem D.2.2 (Dynkin’s π-λ theorem) If P is a π-system and L is a
λ-system, and if P ⊂ L, then

σ(P) ⊂ L.

Proof. We use the given notation and assume the hypothesis. Let LP be the
λ-system generated by P ; that is,

LP = λ(P).

LP is the intersection of every λ-system that contains P , and it is contained
in every λ-system that contains P . Thus, we have

P ⊂ LP ⊂ L.

It will now suffice to show that LP is also a π-system, because from the result
above, if it is both a π-system and a λ-system it is a σ-field, and it contains
P so it must be the case that σ(P) ⊂ LP because σ(P) is the minimal σ-field
that contains P .

Now define a collection of sets whose intersection with a given set is a
member of LP . For any set A, let

LA = {B : A ∩ B ∈ LP}.

Later in the proof, for some given set B, we use the symbol “LB” to denote
the collection of sets whose intersection with B is a member of LP .

If A ∈ LP , then LA is a λ-system, as we see by checking the conditions:

(λ1) A ∩ Ω = A ∈ LP so Ω ∈ LA
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(λ′2) If B1, B2 ∈ LA and B1 ⊂ B2, then LP contains A ∩B1 and A ∩B2, and
hence contains the difference (A ∩ B2)− (A ∩ B1) = A ∩ (B2 −B1); that
is, B2 −B1 ∈ LA.

(λ3) If B1, B2, . . . ∈ LA and Bi ∩ Bj = ∅ for i 6= j, then LP contains the
disjoint sets (A ∩ B1), (A ∩ B2), . . . and hence their union A ∩ (∪iBi),
which in turn implies ∪iBi ∈ LA.

Now because P is a π-system,

A,B ∈ P ⇒ A ∩ B ∈ P
⇒ B ∈ LA

⇒ P ⊂ LA

⇒ LP ⊂ LA.

(The last implication follows from the minimality of LP and because LA is a
λ-system containing P .)

Using a similar argument as above, we have A ∈ P and B ∩ B ∈ LP also
imply A ∈ LB (here LB is in the role of LA above) and we have

A ∈ LB ⇐⇒ B ∈ LA.

Continuing as above, we also have P ⊂ LB and LP ⊂ LB .
Now, to complete the proof, let B,C ∈ LP . This means that C ∈ LB ,

which from the above means that B ∩ C ∈ LP ; that is, LP is a π-system,
which, as we noted above is sufficient to imply the desired conclusion: σ(P) ⊂
LP ⊂ L.

Dynkin’s π-λ theorem immediately implies that if P is a π-system then

σ(P) = λ(P).

Operations on σ-Fields

The usual set operators and set relations are used with collections of sets,
and generally have the same meaning. If the collections of sets are σ-fields,
the operaton on the collections may not yield a collection that is a σ-field,
however.

Given σ-fields F1 and F2 defined with respect to a common sample space,
the intersection, F1 ∩ F2, is a σ-field. (You should work thorough an easy
proof of this.) The union, F1 ∪ F2, however, may not be a σ-field. A simple
counterexample with Ω = {a, b, c} is

F1 = {{a}, {b, c}, ∅,Ω} and F2 = {{b}, {a, c}, ∅,Ω}.

You should show that F1 ∪ F2 is not a σ-field.
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Sub-σ-Fields

A subset of a σ-field may or may not be a σ-field. If it is, it is called a sub-σ-
field.

Increasing sequences of σ-fields, F1 ⊂ F2 · · · , are often of interest.
Given a σ-field F , an interesting sub-σ-field can be formed by taking a

specific set C in F , and forming its intersection with all of the other sets in
F . We often denote this sub-σ-field as FC :

FC = {C ∩ A : A ∈ F}.

You should verify the three defining properties of a σ-field for FC .

Measurable Space: The Structure (Ω, F)

If Ω is a sample space, and F is a σ-field over Ω, the double (Ω,F) is called
a measurable space.

(Notice that no measure is required.)
Measurable spaces are fundamental objects in our development of a theory

of measure and its extension to probability theory.

Subspaces

Given a measurable space (Ω,F), and a set C ∈ F , we have seen how to form
a sub-σ-field FC . This immediately yields a sub-measurable-space (C,FC), if
we take the sample space to be Ω ∩ C = C.

Functions and Images

A function is a set of ordered pairs such that no two pairs have the same
first element. If (a, b) is an ordered pair in f , we write b = f(a), a is called
an argument of the function, and b is called the corresponding value of the
function. If the arguments of the function are sets, the function is called a set
function. The set of all arguments of the function is called the domain of the
function, and the set of all values of the function is called the range of the
function.

We will be interested in a function, say f , that maps one measurable space
(Ω,F) to another measurable space (Λ,G). We may write f : (Ω,F) 7→ (Λ,G),
or just f : Ω 7→ Λ because the argument of the function is an element of Ω
(in fact, any element of Ω) and the value of the function is an element of Λ.
It may not be the case that all elements of Λ are values of f . If it is the case
that for every element λ ∈ Λ, there is an element ω ∈ Ω such that f(ω) = λ,
then the function is said to be “onto” Λ. The σ-fields in the measurable spaces
determine certain properties of the function.
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If (a, b) ∈ f , we may write a = f−1(b), although sometimes this notation
is restricted to the cases in which f is one-to-one. (There are some subtleties
here; if f is not one-to-one, if the members of the pairs in f are reversed, the
resulting set is not a function. We say f−1 does not exist; yet we may write
a = f−1(b), with the meaning above.)

If A ⊂ Ω, the image of A, denoted by f [A], is the set of all λ ∈ Λ for
which λ = f(ω) for some ω ∈ Ω. Likewise, if C is a collection os subsets of Ω,
the image of C, denoted by f [C], or just by f(C), is the set of all subsets of
Λ that are images of the subsets of C. (While I prefer the notation “[·]” when
the argument of the function is a set — unless the funtion is a set function
— in most cases I will just use the “(·)”, which applies more properly to an
element.)

For a subset B of Λ, the inverse image or the preimage of B, denoted by
f−1[B], is the set of all ω ∈ Ω such that f(ω) ∈ B. We also write f [f−1[B]]
as f ◦ f−1[B]. The set f [f−1[B]] may be a proper subset of B; that is, there
may be an element λ in B for which there is no ω ∈ Ω such that f(ω) = λ. If
there is no element ω ∈ Ω such that f(ω) ∈ B, then f−1[B] = ∅.

The following are useful facts (or conventions):

• f [∅] = ∅ and f−1[∅] = ∅.
We can take this as a convention.

• For B ⊂ Λ, f−1[Bc] = (f−1[B])c (where Bc = Λ − B, and (f−1[B])c =
Ω− f−1[B]).
We see this in the standard way by showing that each is a subset of the
other.
Let ω be an arbitrary element of Ω.
Suppose ω ∈ f−1[Bc]. Then f(ω) ∈ Bc, so f(ω) /∈ B, hence ω /∈ f−1[B],
and so ω ∈ (f−1[B])c. We have f−1[Bc] ⊂ (f−1[B])c.
Now suppose ω ∈ (f−1[B])c. Then ω /∈ f−1[B], so f(ω) /∈ B, hence f(ω) ∈
Bc, and so ω ∈ f−1[Bc]. We have (f−1[B])c ⊂ f−1[Bc].

• Let A1, A2, . . . ⊂ Λ and suppose (∪∞i=1Ai) ⊂ Λ, then f−1[∪∞i=1Ai] =
∪∞i=1f

−1(Ai).
Again, let λ be an arbitrary element of Λ.
Suppose λ ∈ f−1[∪∞i=1Ai]. Then f(λ) ∈ ∪∞i=1Ai, so for some j, f(λ) ∈
Aj and λ ∈ f−1[Aj ]; hence λ ∈ ∪∞i=1f

−1[Ai]. We have f−1[∪∞i=1Ai] ⊂
∪∞i=1f

−1[Ai].
Now suppose λ ∈ ∪∞i=1f

−1[Ai]. Then for some j, λ ∈ f−1[Aj ], so f(λ) ∈ Aj

and f(λ) ∈ ∪∞i=1Ai; hence λ ∈ f−1[∪∞i=1Ai]. We have ∪∞i=1f
−1[Ai] ⊂

f−1[∪∞i=1Ai]).

Measurable Function

If (Ω,F) and (Λ,G) are measurable spaces, and f is a mapping from Ω to Λ,
with the property that ∀A ∈ G, f−1[A] ∈ F , then f is a measurable function
with respect to F and G. It is also said to be measurable F/G. Note that
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{f−1[A] : A ∈ G} = f−1[G],

where we have extended the notation“f [·]” to collections of sets, in the obvious
way.

For a real-valued function, that is, a mapping from Ω to IR, or in other
cases where there is an “obvious” σ-field, we often just say that the function
is measurable with respect to F . In any event, the role of F is somewhat more
important. We use the notation f ∈ F to denote the fact that f is measurable
with respect to F . (Note that this is an abuse of the notation, because f is
not one of the sets in the collection F .)

Given the measurable spaces (Ω,F) and (Λ,G) and a mapping f from Ω
to Λ, we also call call f a mapping from (Ω,F) to (Λ,G).

Note that a measurable function f(·) does not depend on a measure. The
domain of f(·) has no relationship to F , except through the range of f(·) that
happens to be in the subsets in G.

σ-Field Generated by a Measurable Function

If f is a measurable function from (Ω,F) to (Λ,G), then we can see that
f−1[G] is a sub-σ-field of F . We call this the σ-field generated by f , and write
it as σ(f).

For measurable functions f and g from and to the same measurable spaces,
we may write σ(f, g), with the obvious meaning. As with σ-fields generated
by sets discussed above, it is clear that σ(f) ⊂ σ(f, g).

For measurable functions f and g from (Ω,F) to (Ω,F), it is clear that

σ(g ◦ f) ⊂ σ(f). (D.46)

Cartesian Products

The cartesian product of two sets A and B, written A × B, is the set of
all doubletons, (ai, bj), where ai ∈ A and bj ∈ B. The cartesian product of
two collections of sets is usually interpreted as the collection consisting of all
possible cartesian products of the elements of each, e.g., if A = {A1, A2} and
B = {B1, B2}

A × B = {A1 ×B1, A1 ×B2, A2 ×B1, A2 ×B2},

that is,

{{(a1i, b1j) | a1i ∈ A1, b1j ∈ B1}, {(a1i, b2j) | a1i ∈ A1, b2j ∈ B2},

{(a2i, b1j) | a2i ∈ A2, b1j ∈ B1}, {(a2i, b2j) | a2i ∈ A2, b2j ∈ B2}}.

The cartesian product of two collections of sets is not a very useful object,
because, as we see below, important characteristics of the collections, such as
being σ-fields do not carry over to the product.
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Two measurable spaces (Ω1,F1) and (Ω2,F2) can be used to form a carte-
sian product measurable space with sample space Ω1×Ω2. The product of the
σ-fields is not necessarily a σ-field. A simple counterexample is the same as
we have used before with Ω = {a, b, c}. Let

F1 = {{a}, {b, c}, ∅,Ω} and F2 = {{b}, {a, c}, ∅,Ω}.

The product F1 ×F2 contains 8 sets of doubletons, two of which are {(a, b)}
and {(b, b), (c, b)}; however, we see that their union {(a, b), (b, b), (c, b)} is not
a member of F1 ×F2; hence, F1 ×F2 is not a σ-field.

As another example, let Ω = IR, let F = σ(IR+) = {∅, IR+, IR − IR+, IR},
let G1 = σ(IR+ × IR+), and let G2 = σ({Fi × Fj : Fi, Fj ∈ F}). We see that
G1 6= G2, because, for example, IR+ × IR is in G2 but it is not in G1.

Given (Ω1,F1) and (Ω2,F2), we define the cartesian product measurable
space as (Ω1 ×Ω2, σ(F1 ×F2)).

The collection σ(F1 ×F2) is a product σ-field.
Product measure spaces provide us the basis for developing a probability

theory for vectors and multivariate distributions.

D.2.2 Sets in IR

First, recall some important definitions:

A set A of real numbers is called open if for each x ∈ A, there exists
a δ > 0 such that for each y with |x− y| < δ belongs to A.
A real number x is called a point of closure of a set A of real numbers
if for every δ > 0 there exists a y in A such that |x− y| < δ. (Notice
that every y ∈ A is a point of closure of A.)
We denote the set of points of closure of A by A.
A set A is called closed if A = A.

Some simple facts follow:

• The intersection of a finite collection of open sets is open.
• The union of a countable collection of open sets is open.
• The union of a finite collection of closed sets is closed.
• The intersection of a countable collection of closed sets is closed.

Notice what is not said above (where we use the word “finite”).

Intervals in IR

A very important type of set is an interval in IR. Intervals are the basis for
building important structures on IR.

All intervals are Borel sets.
The main kinds of intervals have forms such as

(−∞, a), (−∞, a], (a, b), [a, b], (a, b], [a, b), (b,∞), and [b,∞).
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(−∞, a), (a, b), and (b,∞) are open;
[a, b] is closed;
(a, b] and [a, b) are neither (they are “half-open”).
(−∞, a] and [b,∞) are closed, although in a special way that sometimes re-
quires special treatment.

(a, b) = [a, b].
Some simple facts:

• ∩n
i=1(ai, bi) = (a, b) (some open interval)

• ∪∞i=1(ai, bi) is an open set
• ∪n

i=1[ai, bi] is a closed set
• ∩∞i=1[ai, bi] = [a, b] (some closed interval)

Notice what is not said above (where limit is n rather than ∞).
(Also note that intersection of intervals are intervals, but of course unions
may not be.)

In passing, we might note a simple version of the Heine-Borel theorem: If
[a, b] ⊂ ∪∞i=1(ai, bi), then for some finite n, [a, b] ⊂ ∪n

i=1(ai, bi).
Two types of interesting intervals are

(
a− 1

i
, b+

1
i

)

and [
a+

1
i
, b− 1

i

]
.

Notice, of course, that

lim
i→∞

(
a−

1
i
, b+

1
i

)
= [a, b]

and

lim
i→∞

[
a+

1
i
, b− 1

i

]
= [a, b].

Some Basic Facts about Sequences of Unions

Infinite intersections and unions behave differently with regard to collections
of open and closed sets. Recall our earlier statements that were limited to finite
intersections and unions: ∩n

i=1(ai, bi) is an open interval, and ∪n
i=1[ai, bi] is a

closed set.
Now, with our open and closed intervals of the special forms, for infinite

intersections and unions, we have the important facts:

[a, b] =
∞⋂

i=1

(
a− 1

i
, b+

1
i

)
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(a, b) =
∞⋃

i=1

[
a+

1
i
, b− 1

i

]

Iff x ∈ Ai for some i, then x ∈ ∪Ai.
So if x 6∈ Ai for any i, then x 6∈ ∪Ai. (This is why the union of the closed

intervals above is not a closed interval.)
Likewise, we have

(a, b] =
∞⋃

i=1

[
a+

1
i
, b

]
. =

∞⋂

i=1

(
a, b+

1
i

)
.

Recall a basic fact about probability (which we will discuss again from
time to time):

lim Pr(Ai) 6= Pr(limAi).

Compare this with the fact from above:

lim
n→∞

n⋃

i=1

[
a+

1
i
, b− 1

i

]
6=
⋃

lim
i→∞

[
a+

1
i
, b− 1

i

]
.

The Borel σ-Field on the Reals

Consider the sample space IR, and let C be the collection of all open intervals
in IR. The σ-field σ(C) is called the Borel σ-field over IR, and is denoted by
B(IR). When our primary interest is just the scalar reals IR, we often call this
Borel σ-field just the Borel field, and i denoted it by B.

Borel Sets

Any set in B is called a Borel set. The following are Borel sets:

• IR
• ∅
• any countable set; in particular, any finite set, ZZ, ZZ+ (the natural num-

bers), and the set of all rational numbers
• hence, from the foregoing, the set of all irrational numbers (which is un-

countable)
• any interval, open, closed, or neither
• the Cantor set

We see this by writing the Cantor set as ∩∞i=1Ci, where

C1 = [0, 1/3]∪[2/3, 1], C2 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1], . . . ,

and realizing that each of these is Borel.
• any union of any of the above
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So, are all subsets of IR Borel sets?
No. Interestingly enough, the cardinality of B can be shown to be the same

as that of IR, and the cardinality of the collection of all subsets of IR, that is,
the cardinality of the power set, 2IR, is much larger – which means there are
many subsets of IR that are not Borel sets. Construction of a non-Borel set
uses the Axiom of Choice, which can be used to construct some truly weird
sets.

Equivalent Definitions of the Borel σ-Field

The facts that unions of closed sets may be open and that intersections of open
intervals may be closed allow us to characterize the Borel σ-field B in various
ways. The canonical definition is that B = σ(C), where C is the collection of
all finite open intervals.

If D is the collection of all finite closed intervals then B = σ(D).
Proof.
To show that the σ-fields generated by two collections C and D are the same,
we use the fact that a σ-field is closed with respect to countable intersec-
tions (remember the usual definition requires that it be closed with respect
to countable unions) and then we show that (1) C ∈ C ⇒ C ∈ σ(D) and (2)
D ∈ D ⇒ D ∈ σ(C).
Hence, (1) assume D =[a,b]∈ D. Now, consider the sequence of sets Bi =
(a−1/i, b+1/i). These open intervals are in B, and hence,

⋂∞
i=1(a−1/i, b+

1/i) = [a, b] ∈ B.
Next, (2) let (a, b) be any set in the generator collection of B, and consider
the sequence of sets Di = [a+ 1/i, b− 1/i], which are in D. By definition, we
have

⋃∞
i=1[a+ 1/i, b− 1/i] = (a, b) ∈ σ(D)

Likewise, if A is the collection of all intervals of the form (a,∞), then
B = σ(A). The proof of this is similar to that of the previous statement.

We also get the same Borel field by using other collections of intervals as
the generator collections.

The σ-Field B[0,1]

We are often interested in some subspace of IRd, for example an interval (or
rectangle). One of the most commonly-used intervals in IR is [0, 1].

For the sample space Ω = [0, 1], the most useful σ-field consists of the
collection of all sets of the form [0, 1]∩B, where B ∈ B(IR). We often denote
this σ-field as B[0,1].

The σ-field formed in this way is the same as the σ-field generated by
all open intervals on [0, 1]; that is, B([0, 1]). (The reader should show this, of
course.)
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Product Borel σ-Fields

For the product measurable space generated by IRd, a σ-field is σ(Bd), which
we denote as B(IRd), or occasionally in a slight abuse of notation, merely as
Bd. (Recall that a product of σ-fields is not necessarily a σ-field.)

We denote this product measurable space as (IRd,B(IRd)), or in the abused
notation, (IRd,Bd).

It can be shown that B(IRd) is the same as the σ-field generated by all
open intervals (or “hyperrectangles”) in IRd.

Borel Function

A measurable function from (Ω,F) to (IRd,B(IRd)) is said to be Borel measur-
able with respect to F . A function that is Borel measurable is called a Borel
function.

Random Variable

A measurable function from any measurable space (Ω,F) to the measurable
space (IRd,B(IRd)) is called a random variable, or, to be more specific, a d-
variate random variable.That is, “Borel function” and “random variable” are
synonymous. (Most authors define a random variable only for the case d = 1,
and for the case of d ≥ 1, call the Borel function a “random vector”. I see no
reason for this distinction.)

This is the definition of the phrase random variable. Notice that the words
“random” and “variable” do not carry any separate meaning.

D.2.3 Measure

A measure is a scalar real-valued nonnegative set function whose domain is a
σ-field with the properties that the measure of the null set is 0 and the measure
of the union of any collection of disjoint sets is the sum of the measures of the
sets.

From this simple definition, several properties derive. For example, if ν is
a measure with domain F then

• ν(∅) = 0
• if A1 ⊂ A2 ∈ F , then ν(A1) ≤ ν(A2) (this is “monotonicity”)
• if A1, A2, . . . ∈ F , then ν(∪iAi) ≤

∑
i ν(Ai) (this is “subadditivity”)

• if A1 ⊂ A2 ⊂ . . . ∈ F , then ν(∪∞i=1Ai) = limi→∞ ν(Ai) (this is “continuity
from below”; think of the Ais as nested intervals).
We can see this by defining a sequence of disjoint sets, B1, B2, . . . as Bj =
Aj+1 −Aj , so ∪i

j=1Bj = Ai, and

∪∞i=1Bi = ∪∞i=1Ai
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Hence,

ν (∪∞i=1Ai) = ν (∪∞i=1Bi)

=
∞∑

i=1

ν(Bi)

= lim
i→∞

i∑

j=1

ν(Bj)

= lim
i→∞

ν
(
∪i

j=1Bj

)

= lim
i→∞

ν(Ai).

A measure ν such that ν(Ω) <∞ is called a finite measure.
Sequences of nested intervals are important. We denote a sequence A1 ⊂
A2 ⊂ . . . with A = ∪∞i=1Ai, as Ai ↗ A. (This same notation is used for a
sequence of real numbers xi such that x1 ≤ x2 · · · and limxi = x; that is,
in that case, we write xi ↗ x.)
Continuity from below is actually a little stronger than what is stated
above, because the sequence of values of the measure is also monotonic:
for Ai ∈ F , Ai ↗ A⇒ ν(Ai)↗ ν(A)
A similar sequence is A1 ⊃ A2 ⊃ . . . with A = ∪∞i=1Ai. We denote this as
Ai ↘ A. Continuity from above is the fact that for Ai ∈ F , if Ai ↘ A and
ν(A1) <∞, then ν(Ai)↘ ν(A).

Notice that the definition of a measure does not preclude the possibility
that the measure is identically 0. This often requires us to specify “nonzero
measure” in order to discuss nontrivial properties. Another possibility, of
course, would be just to specify ν(Ω) > 0 (remember Ω 6= ∅ in a measur-
able space).

To evaluate ν(∪iAi) we form disjoint sets by intersections. For example,
we have ν(A1 ∪ A2) = ν(A1) + ν(A2)− ν(A1 ∩ A2). This is an application of
the simplest form of the inclusion-exclusion formula (see page 345). If there
are three sets, we take out all pairwise intersections and then add back in the
triple intersection. We can easily extend this (the proof is by induction) so
that, in general, we have

ν(∪n
i Ai) =

∑

1≤i≤n

ν(Ai)−
∑

1≤i<j≤n

ν(Ai ∩ Aj) +

∑

1≤i<j<k≤n

ν(Ai ∩ Aj ∩Ak)− · · ·+ (−1)n+1ν(A1 ∩ · · · ∩ An).

Lebesgue measure
If F is the Borel σ-field, the most common measure is the Lebesgue mea-
sure, which is defined by the relation

ν((a, b)) = b− a.
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counting measure
If F is a countable σ-field, the most common measure is the counting
measure, which is defined by the relation

ν(A) = #(A).

Dirac measure
If F is the collection of all subsets of Ω, a useful measure at a fixed point
ω ∈ Ω is the Dirac measure concentrated at ω, usually denoted by δω, and
defined by

δω(A) =
{

1 if ω ∈ A
0 otherwise.

Measurable Set

If ν is a measure with domain F then every set in F is said to be ν-measurable,
or just measurable.

Note that unlike other terms above that involve “measurable”, this term
is defined in terms of a given measure.

Measure Space: The Structure (Ω, F, ν)

If Ω is a sample space, F is a σ-field over Ω, and ν is a measure with domain
F , the triple (Ω,F , ν) is called a measure space (compare measurable space,
above).

The elements in the measure space can be any kind of objects. They do
not need to be numbers.

If (Ω,F , ν) is a measure space, and for some set C ∈ F , (C,FC) is a sub
measurable space as described above, then the function ν restricted to FC is
a measure and (C,FC , ν) is a measure space. It corresponds in a natural way
to the subsetting operations.

Any set A ∈ F such that ν(Ac) = 0 is called a support of the measure and
ν is said to be concentrated on A. If ν is a finite measure then A is a support
iff µ(A) = ν(Ω).

σ-Finite Measure

A measure ν is σ-finite on (Ω,F) iff there exists a sequence A1, A2, . . . in F
such that ∪iAi = Ω and ν(Ai) <∞ for all i.

A finite measure is σ-finite.
Although it is not finite, the Lebesgue measure is σ-finite, as can be seen

from the sequence of open intervals (−i, i).
The counting measure is σ-finite iff Ω is countable. If Ω is finite, the count-

ing measure is finite.
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Almost Everywhere (a.e.)

Given a measure space, a property that holds for any element of the σ-field
with positive measure is said to hold almost everywhere, or a.e.

Probability Measure

A measure whose domain is a σ-field defined on the sample space Ω with the
property that ν(Ω) = 1 is called a probability measure. We often use P to
denote such a measure.

A property that holds a.e. with respect to a probability measure is said to
hold almost surely, or a.s.

Probability Space

If P in the measure space (Ω,F , P ) is a probability measure, the triple
(Ω,F , P ) is called a probability space. A set A ∈ F is called an “event”.

Induced Measure

If (Ω,F , ν) is a measure space and (Λ,G) is a measurable space, and f is a
function from Ω to Λ that is measurable with respect to F , then the domain
and range of the function ν ◦ f−1 is G and it is a measure.

The measure ν ◦f−1 is called an induced measure on G. (It is induced from
the measure space (Ω,F , ν).)

Radon Measure

For a topological measurable space (Ω,F) with a metric (that is, a space in
which the concept of a compact set is defined), a measure µ such that for
every compact set B ∈ F , µ(B) <∞ is called a Radon measure.

A Radon measure is σ-finite, although it is not necessarily finite.
The Lebesgue and Dirac measures are Radon measures.

Product Measures

Given measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2), we define the cartesian
product measure space as (Ω1 × Ω2, σ(F1 ×F2), ν1 × ν2), where the product
measure ν1 × ν2 is defined on the the product σ-field σ(F1 ×F2) to have the
property for A1 ∈ F1 and A2 ∈ F2

ν1 × ν2(A1 ×A2) = ν1(A1)ν2(A2).

It can be shown that the measure with this property is unique.
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D.2.4 Real-Valued Functions over Real Domains

In the foregoing we have given special consideration to real-valued functions;
random variables are real-valued functions; measurable real-valued functions
are called Borel functions. In the following we will define integrals and deriv-
atives of real-valued functions.

For real-valued functions over real domains we identify some additional
properties. We have already defined similar properties for functions that are
measures (real-valued set functions), and we could define them for other func-
tions from one measure space to another. The definitions for real-valued func-
tions over real domains are simpler and also more useful.

One important function is the indicator function.

Definition D.2.7 (indicator function) The indicator function, denoted IS(x)
for a given set S, is defined by IS(x) = 1 if x ∈ S and IS(x) = 0 otherwise.

Notice that I−1
S [A] = ∅ if 0 /∈ A and 1 /∈ A; I−1

S [A] = S if 0 /∈ A and 1 ∈ A;
I−1
S [A] = Sc if 0 ∈ A and 1 /∈ A; and I−1

S [A] = Ω if 0 ∈ A and 0 ∈ A.
Hence, σ(IS) is the second most trivial σ-field we referred to earlier; i.e.,
σ(S) = {∅, S, Sc,Ω}.

Is IS measurable? (What do we need to know to answer that?)

Definition D.2.8 (simple function) If A1, . . . , Ak are measurable subsets
of Ω and a1, . . . , ak are constant real numbers, a function ϕ is a simple func-
tion if for ω ∈ Ω,

ϕ(ω) =
k∑

i=1

aiIAi(ω),

where IS(x) is the indicator function.

Continuity is an important property of some functions. For real functions
on a real domain, we typically define continuity in terms of the Euclidean
distance between two points in the domain and the Euclidean distance between
the corresponding function values.

There are various types of continuity, and two functions help to illustrate
the differences.

Definition D.2.9 (continuous function) Let f be a real-valued function
whose domain is a set D ⊂ IRd. We say that f is continuous at the point
x ∈ D if, given ε > 0, ∃δ 3 ∀y ∈ D 3 ‖x− y‖ < δ, ‖f(x)− f(y)‖ < ε.

Here, the norms are the Euclidean norms. Notice that the order of f(x) may
be different from the order of x.

The δ in the definition may depend on x as well as on ε.
If f is continuous at each point in a subset of its domain, we say it is

continuous on that subset.
If f is continuous at each point in its domain, we say that f is continuous.
From this definition we have an immediate useful fact about continuous

functions: the inverse image of an open set is open.
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Definition D.2.10 (uniformly continuous function) Let f be a real-valued
function whose domain includes a set D ⊂ IRd. We say that f is uni-
formly continuous over D if, given ε > 0, ∃δ 3 ∀x, y ∈ D 3 ‖x − y‖ <
δ, ‖f(x)− f(y)‖ < ε.

Continuity is a point-wise property, while uniform continuity is a global prop-
erty.

The function f(x) = 1/x is continuous on (0,∞), but is not uniformly
continuous over that interval. This function is, however, uniformly continuous
over any closed and bounded subinterval of (0,∞). The Heine-Cantor theorem,
in fact, states that any function that is continuous over a compact set is
uniformly continuous over that set.

If {xn} is a Cauchy sequence in the domain of a a uniformly continuous
function f , then {f(xn)} is also a Cauchy sequence.

If a function f is uniformly continuous over a finite interval (a, b), then f
is bounded over (a, b).

Definition D.2.11 (absolutely continuous function) Let f be a real-valued
function defined on [a, b] (its domain may be larger). We say that f is ab-
solutely continuous on [a, b] if, given ε > 0, there exists a δ such that for every
finite collection of nonoverlapping open rectangles (xi, yi) ⊂ [a, b] with

n∑

i=1

‖xi − yi‖ < δ,

n∑

i=1

‖f(xi)− f(yi)‖ < ε.

We also speak of local absolutely continuity in the obvious way.
If f is absolutely continuous over D, it is uniformly continuous on D,

but the converse is not true. The Cantor function, defined over the interval
[0, 1], is an example of a function that is continuous everywhere, and hence,
uniformly continuous on that compact set, but not absolutely continuous. The
Cantor function takes different values over the different intervals used in the
construction of the Cantor set. Let f0(x) = x, and then for n = 0, 1, . . ., let

fn+1(x) = 0.5fn(3x) for 0 ≤ x < 1/3
fn+1(x) = 0.5 for 1/3 ≤ x < 2/3
fn+1(x) = 0.5 + 0.5fn(3(x− 2/3)) for 2/3 ≤ x ≤ 1.

The Cantor function is limn→∞ fn.
The Cantor function has a derivative of 0 almost everywhere, but has no

derivative at any member of the Cantor set.
An absolutely continuous function is of bounded variation; it has a deriva-

tive almost everywhere; and if the derivative is 0 a.e., the function is constant.
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Definition D.2.12 (Lipschitz-continuous function) Let f be a real-valued
function whose domain is an interval D ⊂ IRd. We say that f is Lipschitz-
continuous if for any y1, y2 ∈ D and y1 6= y2, there exists γ such that

‖f(y1)− f(y2)‖ ≤ γ‖y1 − y2‖.

The smallest γ for which the inequality holds is called the Lipschitz constant.

We also speak of local Lipschitz-continuity in the obvious way.
Every Lipschitz-continuous function is absolutely continuous.
Lipschitz-continuity plays an important role in nonparametric function

estimation.
The graph of a scalar-valued Lipschitz-continuous function f over D ⊂

IR has the interesting geometric property that the entire graph of f(x) lies
between the lines y = f(c)± γ(x− c) for any c ∈ D.

The following theorem is useful because it allows us to build up any mea-
surable real-valued function from a sequence of simple functions.

Theorem D.2.3 Every measurable real-valued function can be represented at
any point as the limit of a sequence of simple functions.

Proof. Let f be real and measurable. Now, if f(ω) ≥ 0, there exists a sequence
{fn} of simple functions such that

0 ≤ fn(ω)↗ f(ω) a.s.,

and if f(ω) ≤ 0, there exists a sequence {fn} of simple functions such that

0 ≥ fn(ω)↘ f(ω) a.s.

The sequence is

fn(ω) =





−n if f(ω) ≤ −n,
−(k − 1)2−n if − k2−n < f(ω) ≤ −(k − 1)2−n, for 1 ≤ k ≤ n2−n,
(k − 1)2−n if (k − 1)2−n < f(ω) < k2−n, for 1 ≤ k ≤ n2−n,
n if n ≤ f(ω).

As a corollary of Theorem D.2.3, we have that for a nonnegative random
variable X , there exists a sequence of simple (degenerate) random variables
{Xn} such that

0 ≤ Xn ↗ X a.e.

D.2.5 Integration

Integrals are some of the most important functionals of real-valued functions.
Integrals and the action of integration are defined using measures. Integrals
of nonnegative functions are themselves measures. There are various types of
integrals, Lebesgue, Riemann, Riemann-Stieltjes, Ito, and so on. The most
important is the Lebesgue, and when we use the term “integral” without
qualification that will be the integral meant.
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The Lebesgue Integral of a Function with Respect to a Given
Measure: The Definition

An integral of a function f with respect to a given measure ν, if it exists, is a
functional whose value is an average of the function weighted by the measure.
It is denoted by

∫
f dν. The function f is called the integrand.

The integral is defined over the sample space of a given measure space, say
(Ω,F , ν). This is called the domain of the integral. We often may consider in-
tegrals over different domains formed from a sub measure space, (D,FD, ν) for
some set D ∈ F , as described above. We often indicate the domain explicitly
by notation such as

∫
D
f dν.

If the domain is a real interval [a, b], we often write the restricted interval
as
∫ b

a
f dν. If ν is the Lebesgue measure, this integral is the same as the

integral over the interval (a, b).
We also write an integral in various equivalent ways. For example if the

integrand is a function of real numbers and our measure is the Lebesgue
measure, we may write the integral over the interval (a, b) as

∫ b

a
f(x) dx.

We build the definition of an integral of a function in three steps.

1. simple function.
If f is a simple function defined as f(ω) =

∑k
i=1 aiIAi(ω), where the Ais

are measurable with respect to ν, then

∫
f dν =

k∑

i=1

aiν(Ai).

(Note that a simple function over measurable Ais is measurable.)
2. nonnegative Borel function.

We define the integral of a nonnegative Borel function in terms of the
supremum of a collection of simple functions.
Let f be a nonnegative Borel function with respect to ν on Ω, and let Sf

be the collection of all nonnegative simple functions such that

ϕ ∈ Sf ⇒ ϕ(ω) ≤ f(ω)∀ω ∈ Ω

We define the integral of f with respect to ν as
∫
f dν = sup

{∫
ϕ dν|ϕ ∈ Sf

}
.

3. general Borel function.
For a general Borel function f , we form two nonnegative Borel functions
f+ and f− such that f = f+ − f−:

f+(ω) = max{f(ω), 0}

f−(ω) = max{−f(ω), 0}
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We define the integral of f with respect to ν as the difference of the
integrals of the two nonnegative functions:

∫
f dν =

∫
f+ dν −

∫
f− dν,

so long as either
∫
f+ dν or

∫
f− dν is finite because∞−∞ is not defined.

So for what kind of function would the Lebesgue integral not be defined? Con-
sider f(x) = sin(x)/x. We see that

∫
IR+

f dν is not covered by the definition
(because both the positive part and the negative of the negative part is ∞).

We define the integral over a domain for A ⊂ Ω as
∫

A

f dν =
∫

IAf dν

If f = f+ − f−, where f+ and f− are nonnegative Borel functions, and
both

∫
f+ dν and

∫
f− dν are finite, we say f is integrable.

Note that being Borel does not imply that a function is integrable.
A random variable is not necessarily integrable.
Given a probability space (Ω,F , P ) and a random variable with respect

to F , X , we define the expected value of X with respect to P as
∫
X dP,

and denote it as E(X) or for clarity, EP (X).
Sometimes we limit the definition of expected value to integrable random

variables X .

Notation

There are various equivalent notations for denoting an integral. If x is assumed
to range over a the reals and g(x) is a real-valued function then

∫
g(x) dx

may be used to denote
∫
g dν, where in the former notation, we assume the

measuer ν.
If the measure is a probability measure P with associated CDF F , all of

the following notations are equivalent:∫
g dP ,

∫
g(x) dP ,

∫
g dF ,

∫
g(x) dF (x)
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Measures Defined by Integrals

The integral over a domain together with a nonnegative Borel function leads
to an induced measure: If a given measure space (Ω,F , ν) and a given non-
negative Borel function f , let λ(A) for A ⊂ Ω be defined as

λ(A) =
∫

A

f dν.

Then λ(A) is a measure over (Ω,F). (Exercise.)
If f ≡ 1 the integral with respect to a given measure defines the same

measure. This leads to the representation of the probability of an event as an
integral. Given a probability space (Ω,F , P ),

∫
A

dP is the probability of A,
written P (A) or Pr(A).

The properties of a measure defined by an integral depend on the prop-
erties of the underlying measure space and the function. For example, in IR
with a Lebesgue measure the measure for Borel sets of positive reals defined
by

λ(A) =
∫

A

1
x

dx

has an interesting invariance property. For any positive real number a, let
aA = Aa = {x : x/a ∈ A}. Then we have λ(aA) = λ(A). A measure with
this kind of invariance is called a Haar invariant measure, or just a Haar
measure. More interesting Haar measures are those defined over nonsingular
n× n real matrices,

µ(D) =
∫

D

1
|det(X)|n

dX,

or over matrices in the orthogonal group. (See Gentle, 2007, pages 169–171.)

Properties of the Lebesgue Integral

The definition of an integral immediately yields some important properties of
integrals:

• linearity: for real a and Borel f and g,
∫
af + g dν = a

∫
f dν +

∫
g dν.

•
∫
|f | dν is a norm:

∫
|f | dν = 0⇒ f = 0 a.e.

This fact together with the linearity means that
∫
|f | dν is a norm for

functions. A more general norm based on the integral is (
∫
|f |p dν)1/p for

1 ≤ p. (Notice that there is a slight difference here from the usual definition
of a norm. It seems reasonable to allow the implication of

∫
|f | dν = 0 to

be only almost everywhere. Strictly speaking, without this weakened form
of equality to 0,

∫
|f | dν is only a pseudonorm.)

• finite monotonicity: for integrable f and g, f ≤ g a.e.⇒
∫
f dν ≤

∫
g dν.
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There are some conditions for interchange of an integration operation and
a limit operation that are not so obvious. The following three theorems are
closely related. Monotone convergence is the simplest, and Fatou’s lemma is
a fairly simple extension. Dominated convergence is another extension. The
proofs are in Shao (although he should prove (iii) (monotone convergence)
first).

• monotone convergence: if 0 ≤ f1 ≤ f2 and limn→∞ fn = f a.e., then
∫

lim
n→∞

fn dν = lim
n→∞

∫
fn dν. (D.47)

• Fatou’s lemma (follows from finite monotonicity and monotone conver-
gence): if 0 ≤ fn then

∫
lim
n

inf fn dν ≤ lim
n

inf
∫
fn dν. (D.48)

• dominated convergence: if limn→∞ fn = f a.e. and there exists an inte-
grable function g such that |fn| ≤ g a.e., then

∫
lim

n→∞
fn dν = lim

n→∞

∫
fn dν. (D.49)

change of variables
Consider two measurable spaces (Ω,F) and (Λ,G), let f be a measurable
function from (Ω,F) to (Λ,G), and let ν be a measure on F . As we have
seen, ν ◦ f−1 is an induced measure on G. Now let g be a Borel function
on (Λ,G). Then the integral of g ◦ f over Ω with respect to ν is the same
as the integral of g over Λ with respect to ν ◦ f−1:

∫

Ω

g ◦ f dν =
∫

Λ

g d(ν ◦ f−1)

integration in a product space (Fubini’s theorem)
Given two measure spaces (Ω1,F1, ν1) and (Ω2,F2, ν2) and a Borel func-
tion f on Ω1×Ω2, the integral over Ω1, if it exists, is a function of ω2 ∈ Ω2

a.e., and likewise, the integral over Ω2, if it exists, is a function of ω2 ∈ Ω1

a.e. Fubini’s theorem shows that if one of these marginal integrals, say

g(ω2) =
∫

Ω1

f(ω1, ω2) dν1,

exists a.e., then the natural extension of an integral to a product space,
resulting in the double integral,

∫

Ω1×Ω2

f(ω1, ω2) dν1 × dν2
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is the same as the iterated integral,
∫

Ω2

(∫

Ω1

f(ω1, ω2) dν1

)
dν2.

integration by parts
If f and g are bounded on the interval [a, b] and have no common points
of disconuity in that interval, then

∫

[a,b]

f(x)dg(x) = f(b)g(b)− f(a)g(a)−
∫

[a,b]

g(x)df(x).

This is proved using Fubini’s theorem.
absolute continuity of a measure w.r.t. a measure; dominating measure

Given measures ν and λ on the same measurable space, (Ω,F), if ∀A ∈ F

ν(A) = 0 ⇒ λ(A) = 0,

then λ is said to be absolutely continuous with respect to ν.
In this case we also say that λ is dominated by ν.
We denote that λ is dominated by ν by

λ� ν.

As an example, let (Ω,F , ν) be a measure space and let f be a nonnegative
Borel function on Ω. Define the measure λ by

λ(A) =
∫

A

f dν

for any A ∈ F . Then ν(A) = 0 ⇒ λ(A) = 0, and so λ is absolutely
continuous with respect to ν.
If λ� ν and ν � λ, then λ and ν are equivalent, and we write λ ≡ ν.
If λ is finite (that is, λ(A) < ∞∀A ∈ F) the absolute continuity of λ
with respect to ν can be characterized by an ε-δ relationship as used in
the definition of absolute continuity of functions: Given that λ is finite, λ
is absolutely continuous with respect to ν iff for any A ∈ F and for any
ε > 0, there exists a δ such that

ν(A) < δ ⇒ λ(A) < ε.

Radon-Nikodym theorem
Given two measures ν and λ on the same measurable space, (Ω,F), such
that λ� ν and ν is σ-finite. Then there exists a unique a.e. nonnegative
Borel function f on Ω such that λ(A) =

∫
A fdν ∀A ∈ F .

Uniqueness a.e. means that if also, for some g, λ(A) =
∫

A
gdν ∀A ∈ F

then f = g a.e.
A proof of the Radon-Nikodym theorem is given in Billingsley (1995),
page 422.
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The Riemann Integral

The Riemann integral is one of the simplest integrals. We can define the
Riemann integral of a real function f over the interval (a, b] in terms of the
Lebesgue measure λ as the real number r such that for any ε > 0, there exists
a δ such that ∣∣∣∣∣r −

∑

i

f(xi)λ(Ii)

∣∣∣∣∣ < ε

where {Ii} is any finite partition of (a, b] such that for each i, λ(Ii) < δ and
xi ∈ Ii. If the Riemann integral exists, it is the same as the Lebesgue integral.

A classic example for which the Lebesgue integral exists, but the Riemann
integral does not, is the function g defined over (0, 1] as g(x) = 1 is x is
rational, and g(x) = 0 otherwise. The Lebesgue integral

∫ 1

0 g(x) dx exists and
equals 0, because g(x) = 0 a.e. The Riemann integral, on the other had does
not exist because for an arbitrary partition {Ii}, the integral is 1 if xi ∈ Ii is
taken as a rational, and the integral is 0 if xi ∈ Ii is taken as a irrational.

The Riemann integral lacks the three convergence properties of the Lebesgue
integral given on page 391.

Derivatives

If λ(A) =
∫

A
fdν ∀A ∈ F , then f is called the Radon-Nikodym derivative. or

just the derivative, of λ with respect to ν, and we write f = dλ/dν.
Notice an important property of the derivative: If dλ/dν > 0 over A, but

λ(A) = 0, then ν(A) = 0.
With this definition of a derivative, we have the familiar properties for

measures λ, λ1, λ2, µ, and ν on the same measurable space, (Ω,F):

1. If λ� ν, with ν σ-finite, and f ≥ 0, then
∫
fdλ =

∫
f

dλ
dν

dν.

2. If λ1 � ν and λ1 + λ2 � ν, with ν σ-finite, then

d(λ1 + λ2)
dν

=
dλ1

dν
+

dλ2

dν
a.e. ν.

3. If λ� µ� ν, with µ and ν σ-finite, then

dλ
dν

=
dλ
dµ

dµ
dν

a.e. ν.

If λ ≡ ν, then
dλ
dν

=
(

dν
dλ

)−1

a.e. ν and µ.
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4. If (Ω1,F1) and (Ω2,F2) are measurable spaces, λ1 and ν1, with λ1 � ν1,
are measures on (Ω1,F1), λ2 and ν2, with λ2 � ν2, are measures on
(Ω2,F2), and ν1 and ν2 are σ-finite, then for ω1 ∈ Ω1 and ω2 ∈ Ω2

d(λ1 + λ2)
d(ν1 + ν2)

(ω1, ω2) =
dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1 × ν2.

D.2.6 Real Function Spaces

Two of the most important linear spaces are finite-dimensional vector spaces
and function spaces. We will discuss function spaces now, and cover vector
spaces along with matrices in Section D.4.

Function spaces are sets of functions over a common domain. The standard
operations of linear spaces are pointwise addition and scalar multiplication of
function values.

Given the measure space (Ω,F , ν) and the real number p ≥ 1, we denote
by Lp(ν) the space of all measurable functions f on Ω for which

∫
|f |pdν <∞.

Although the measure ν is needed to define the integral, we often drop the ν
in Lp(ν). If the integral is taken only over some D ∈ F , we may denote the
space as Lp(D).

An important fact about the Lp spaces is that they are Banach spaces
(that is, among other things, they are complete). This fact is called the Riesz-
Fischer theorem and is proved in most texts on real analysis.

Inner Products of Functions

The inner product (or dot product) of the real functions f and g over the
domain D, denoted by 〈f, g〉D or usually just by 〈f, g〉, is defined as

〈f, g〉D =
∫

D

f(x)g(x) dx (D.50)

if the (Lebesgue) integral exists. (For complex functions, we define the inner
product as

∫
D f(x)ḡ(x) dx, where ḡ is the complex conjugate of g. In the

following, we only consider real-valued functions of real arguments.)

〈f, g〉(µ;D) =
∫

D

f(x)ḡ(x)w(x) dx,

To avoid questions about integrability, we generally restrict attention to
functions whose dot products with themselves exist; that is, to functions that
are square Lebesgue integrable over the region of interest. These functions are
members of the space L2(D).

The standard properties, such as linearity and the Cauchy-Schwarz in-
equality, obviously hold for the inner products of functions.
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We sometimes define function inner products with respect to a weight
function, w(x), or with respect to the measure µ, where dµ = w(x)dx,

〈f, g〉(µ;D) =
∫

D

f(x)g(x)w(x) dx,

if the integral exists. Often, both the weight and the range are assumed to be
fixed, and the simpler notation 〈f, g〉 is used.

Norms of Functions

The norm of a function f , denoted generically as ‖f‖, is a mapping into the
nonnegative reals that satisfies the properties of the definition of a norm given
on page 352. A norm of a function ‖f‖ is often defined as some nonnegative,
strictly increasing function of the inner product of f with itself, 〈f, f〉. Not
all norms are defined in terms of inner products, however.

The most common type of norm for a real-valued function is the Lp norm,
denoted as ‖f‖p, which is defined similarly to the Lp vector norm as

‖f‖p =
(∫

D

|f(x)|pw(x) dx
)1/p

, (D.51)

if the integral exists. It is clear that ‖f‖p satisfies the properties that define
a norm.

The space of functions for which the integrals in (D.51) exist is often
denoted by Lp

(w;D), or just Lp. A common value of p is 2, as noted above.
Often µ is taken as Lebesgue measure, and w(x)dx becomes dx. This is a

uniform weighting.
A common Lp function norm is the L2 norm, which is often denoted simply

by ‖f‖. This norm is related to the inner product:

‖f‖2 = 〈f, f〉1/2. (D.52)

The space consisting of the set of functions whose L2 norms over IR exist
together with this norm, that is, L2(IR), is a Hilbert space.

Another common Lp function norm is the L∞ norm, especially as a measure
of the difference between two functions. This norm, which is called the Cheby-
shev norm or the uniform norm, is the limit of equation (D.51) as p → ∞.
This norm has the simpler relationship

‖f‖∞ = sup |f(x)w(x)|. (D.53)

To emphasize the measure of the weighting function, the notation ‖f‖µ is
sometimes used. (The ambiguity of the possible subscripts on ‖ · ‖ is usually
resolved by the context.) For functions over finite domains, the weighting
function is most often the identity.

A Companion for Mathematical Statistics c©2008 James E. Gentle



396 Appendix D. Basic Mathematical Ideas and Tools

Another type of function norm, called the total variation, is a measure of
the amount of variability of the function.

****************************************************
A normal function is one whose norm is 1. (Analogously to the terminology

for vectors, we also call a normal function a normalized function.) Although
this term can be used with respect to any norm, it is generally reserved for
the L2 norm (that is, the norm arising from the inner product). A function
whose integral (over a relevant range, usually IR) is 1 is also called a nor-
mal function. (Although this latter definition is similar to the standard one,
the latter is broader because it may include functions that are not square-
integrable.) Density and weight functions are often normalized (that is, scaled
to be normal).

Metrics in Function Spaces

Statistical properties such as bias and consistency are defined in terms of the
difference of the estimator and what is being estimated. For an estimator of a
function, first we must consider some ways of measuring this difference. These
are general measures for functions and are not dependent on the distribution
of a random variable. How well one function approximates another function is
usually measured by a norm of the difference in the functions over the relevant
range.

The most common measure of the difference between two functions, g(x)
and f(x), is a norm of the function

e(x) = g(x)− f(x).

When one function is an estimate or approximation of the other function, we
may call this difference the “error”.

If g approximates f , ‖g−f‖∞ is likely to be the norm of interest. This is the
norm most often used in numerical analysis when the objective is interpolation
or quadrature. In problems with noisy data, or when g may be very different
from f , ‖g − f‖2 may be the more appropriate norm. This is the norm most
often used in estimating probability density functions.

Distances between Functions

For comparing two functions g and f we can use a metric based on a norm of
their difference, ‖g − f‖. We often prefer to use a pseudometric, which is the
same as a matric except that ρ(g, f) = 0 if and only if g = f a.e. (We usually
just use this interpretation and call it a metric, however.)

For functions, the norm is often taken as the L∞ norm. If P and Q are
CDFs, ‖P −Q‖∞ is called the Kolmogorov distance.

Sometimes the difference in two functions is defined asymmetrically. A
general class of divergence measures for comparing CDFs was introduced in-
dependently by Ali and Silvey (1966) and Csiszár (1967). The measure is
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based on a convex function φ of the a term similar to the “odds”. If P is
absolutely continuous with respect to Q and φ is a convex function,

d(P,Q) =
∫

IR

φ

(
dP
dQ

)
dQ, (D.54)

if it exists, is called the φ-divergence from Q to P . The φ-divergence is also
called the f -divergence.

The φ-divergence is in general not a metric because it is not symmetric.
One function is taken as the base from which the other function is measured.
The expression often has a more familiar form if both P and Q are dominated
by Lebesgue measure and we write p = dP and q = dQ.

A specific instance of φ-divergence is the Kullback-Leibler measure,
∫

IR

p(x) log
(
p(x)
q(x)

)
dx. (D.55)

The Kullback-Leibler measure is not a metric.
Another specific instance of a function of φ-divergence, which happens to

be a metric, is the Hellinger distance given by

(∫

IR

(
q 1/r(x)− p1/r(x)

)r

dx
)1/r

. (D.56)

This turns out to be the 1/r power of a φ-divergence. The most common case
has r = 2, and in this case the Hellinger distance is also called the Matusita
distance. The Matusita distance is the square root of a φ-divergence with
φ(t) = (

√
t− 1)2.

Various forms of φ-divergence are used in goodness-of-fit analyses. The
Pearson chi-squared discrepancy measure, for example, has φ(t) = (t− 1)2:

∫

IR

(q(x) − p(x))2

q(x)
dx. (D.57)

See the discussion beginning on page 282 for other applications in which two
probability distributions are compared.

Basis Sets in Function Spaces

If each function in a linear space can be expressed as a linear combination
of the functions in a set G, then G is said to be a generating set, a spanning
set, or a basis set for the linear space. (These three terms are synonymous.)
The basis sets for finite-dimensional vector spaces are finite; for most function
spaces of interest, the basis sets are infinite.

A set of functions {qk} is orthogonal over the domain D with respect to the
nonnegative weight function w(x) if the inner product with respect to w(x) of
qk and ql, 〈qk , ql〉, is 0 if k 6= l; that is,
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∫

D

qk(x)q̄l(x)w(x)dx = 0 k 6= l. (D.58)

If, in addition, ∫

D

qk(x)q̄k(x)w(x)dx = 1,

the functions are called orthonormal.
In the following, we will be concerned with real functions of real arguments,

so we can take q̄k(x) = qk(x).
The weight function can also be incorporated into the individual functions

to form a different set,
q̃k(x) = qk(x)w1/2(x).

This set of functions also spans the same function space and is orthogonal
over D with respect to a constant weight function.

Basis sets consisting of orthonormal functions are generally easier to work
with and can be formed from any basis set. Given two nonnull, linearly inde-
pendent functions, q1 and q2, two orthonormal vectors, q̃1 and q̃2, that span
the same space can be formed as

q̃1(·) =
1
‖q1‖

q1(·),

q̃2(·) =
1

‖q2 − 〈q̃1, q2〉q̃1‖
(
q2(·)− 〈q̃1, q2〉q̃1(·)

)
.

(D.59)

These are the Gram-Schmidt function transformations. They can easily be
extended to more than two functions to form a set of orthonormal functions
from any set of linearly independent functions.

Series Expansions in Basis Functions

Our objective is to represent a function of interest, f(x), over some domain
D ⊂ IR, as a linear combination of “simpler” functions, q0(x), q1(x), . . .:

f(x) =
∞∑

k=0

ckqk(x). (D.60)

There are various ways of constructing the qk functions. If they are developed
through a linear operator on a function space, they are called eigenfunctions,
and the corresponding ck are called eigenvalues.

We choose a set {qk} that spans some class of functions over the given
domain D. A set of orthogonal basis functions is often the best choice because
they have nice properties that facilitate computations and a large body of
theory about their properties is available.
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If the function to be estimated, f(x), is continuous and integrable over a
domain D, the orthonormality property allows us to determine the coefficients
ck in the expansion (D.60):

ck = 〈f, qk〉. (D.61)

The coefficients {ck} are called the Fourier coefficients of f with respect to
the orthonormal functions {qk}.

In applications, we approximate the function using a truncated orthogonal
series. The error due to finite truncation at j terms of the infinite series is the
residual function f −

∑j
k=1 ckfk. The mean squared error over the domain D

is the scaled, squared L2 norm of the residual,

1
d

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

, (D.62)

where d is some measure of the domain D. (If the domain is the interval [a, b],
for example, one choice is d = b− a.)

A very important property of Fourier coefficients is that they yield the
minimum mean squared error for a given set of basis functions {qi}; that is,
for any other constants, {ai}, and any j,

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

≤

∥∥∥∥∥f −
j∑

k=0

akqk

∥∥∥∥∥

2

. (D.63)

In applications of statistical data analysis, after forming the approxima-
tion, we then estimate the coefficients from equation (D.61) by identifying an
appropriate probability density that is a factor of the function of interest, f .
(Note again the difference in “approximation” and “estimation”.) Expected
values can be estimated using observed or simulated values of the random
variable and the approximation of the probability density function.

The basis functions are generally chosen to be easy to use in computations.
Common examples include the Fourier trigonometric functions sin(kt) and
cos(kt) for k = 1, 2, . . ., orthogonal polynomials such as Legendre, Hermite,
and so on, splines, and wavelets.

Orthogonal Polynomials

The most useful type of basis function depends on the nature of the function
being estimated. The orthogonal polynomials are useful for a very wide range
of functions. Orthogonal polynomials of real variables are their own complex
conjugates. It is clear that for the kth polynomial in the orthogonal sequence,
we can choose an ak that does not involve x, such that

qk(x) − akxqk−1(x)
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is a polynomial of degree k − 1.
Because any polynomial of degree k − 1 can be represented by a linear

combination of the first k members of any sequence of orthogonal polynomials,
we can write

qk(x)− akxqk−1(x) =
k−1∑

i=0

ciqi(x).

Because of orthogonality, all ci for i < k − 2 must be 0. Therefore, collecting
terms, we have, for some constants ak, bk, and ck, the three-term recursion
that applies to any sequence of orthogonal polynomials:

qk(x) = (akx+ bk)qk−1(x)− ckqk−2(x), for k = 2, 3, . . . . (D.64)

This recursion formula is often used in computing orthogonal polynomials.
The coefficients in this recursion formula depend on the specific sequence of
orthogonal polynomials, of course.

This three-term recursion formula can also be used to develop a formula
for the sum of products of orthogonal polynomials qi(x) and qi(y):

k∑

i=0

qi(x)qi(y) =
1

ak+1

qk+1(x)qk(y)− qk(x)qk+1(y)
x− y

. (D.65)

This expression, which is called the Christoffel-Darboux formula, is useful in
evaluating the product of arbitrary functions that have been approximated
by finite series of orthogonal polynomials.

There are several widely used complete systems of univariate orthogonal
polynomials. The different systems are characterized by the one-dimensional
intervals over which they are defined and by their weight functions. The Legen-
dre, Chebyshev, and Jacobi polynomials are defined over [−1, 1] and hence can
be scaled into any finite interval. The weight function of the Jacobi polyno-
mials is more general, so a finite sequence of them may fit a given function
better, but the Legendre and Chebyshev polynomials are simpler and so are
often used. The Laguerre polynomials are defined over the half line [0,∞),
and the Hermite polynomials are defined over the reals, (−∞,∞).

Any of these systems of polynomials can be developed easily by begin-
ning with the basis set 1, x, x2, . . . and orthogonalizing them by use of equa-
tions (D.59) and their extensions.

Table D.1 summarizes the ranges and weight functions for these standard
orthogonal polynomials.

The Legendre polynomials have a constant weight function and are defined
over the interval [−1, 1]. The first few (unnormalized) Legendre polynomials
are

P0(t) = 1 P1(t) = t
P2(t) = (3t2 − 1)/2 P3(t) = (5t3 − 3t)/2
P4(t) = (35t4 − 30t2 + 3)/8 P5(t) = (63t5 − 70t3 + 15t)/8

(D.66)

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.2 Measure, Integration, and Functional Analysis 401

Table D.1. Orthogonal Polynomials

Polynomial Weight
Series Range Function

Legendre [−1, 1] 1 (uniform)

Chebyshev [−1, 1] (1 − x2)1/2 (symmetric beta)

Jacobi [−1, 1] (1 − x)α(1 + x)β (beta)

Laguerre [0, ∞) xα−1e−x (gamma)

Hermite (−∞, ∞) e−x2/2 (normal)

The normalizing constant for the kth Legendre polynomial is determined
by noting ∫ 1

−1

(Pk(t))2dt =
2

2k + 1
.

The recurrence formula for the Legendre polynomials is

Pk(t) =
2k − 1
k

tPk−1(t) −
k − 1
k

Pk−2(t). (D.67)

The Hermite polynomials are orthogonal with respect to a Gaussian, or
standard normal, weight function. A series using these Hermite polynomials
is often called a Gram-Charlier series. See Section 1.4.

The first few Hermite polynomials are

He
0(t) = 1 He

1(t) = t
He

2(t) = t2 − 1 He
3(t) = t3 − 3t

He
4(t) = t4 − 6t2 + 3 He

5(t) = t5 − 10t3 + 15t
(D.68)

These are not the standard Hermite polynomials, but they are the ones most
commonly used by statisticians because the weight function is proportional
to the normal density.

The recurrence formula for the Hermite polynomials is

He
k(t) = tHe

k−1(t)− (k − 1)He
k−2(t). (D.69)

Multivariate Orthogonal Polynomials

Multivariate orthogonal polynomials can be formed easily as tensor products
of univariate orthogonal polynomials. The tensor product of the functions
f(x) over Dx and g(y) over Dy is a function of the arguments x and y over
Dx ×Dy:

h(x, y) = f(x)g(y).
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If {q1,k(x1)} and {q2,l(x2)} are sequences of univariate orthogonal polynomi-
als, a sequence of bivariate orthogonal polynomials can be formed as

qkl(x1, x2) = q1,k(x1)q2,l(x2). (D.70)

These polynomials are orthogonal in the same sense as in equation (D.58),
where the integration is over the two-dimensional domain. Similarly as in
equation (D.60), a bivariate function can be expressed as

f(x1, x2) =
∞∑

k=0

∞∑

l=0

cklqkl(x1, x2), (D.71)

with the coefficients being determined by integrating over both dimensions.
Although obviously such product polynomials, or radial polynomials,

would emphasize features along coordinate axes, they can nevertheless be
useful for representing general multivariate functions. Often, it is useful to
apply a rotation of the coordinate axes.

The weight functions, such as those for the Jacobi polynomials, that have
various shapes controlled by parameters can also often be used in a mixture
model of the function of interest. The weight function for the Hermite poly-
nomials can be generalized by a linear transformation (resulting in a normal
weight with mean µ and variance σ2), and the function of interest may be
represented as a mixture of general normals.

Function Decomposition and Estimation of the Coefficients in an
Orthogonal Expansion

We first decompose the function of interest to have a factor that is a proba-
bility density function, p,

f(x) = g(x)p(x). (D.72)

We have

ck = 〈f, qk〉

=
∫

D

qk(x)g(x)p(x)dx

= E(qk(X)g(X)), (D.73)

where X is a random variable whose probability density function is p.
If we can obtain a random sample, x1, . . . , xn, from the distribution with

density p, the ck can be unbiasedly estimated by

ĉk =
1
n

n∑

i=1

qk(xi)g(xi).

The series estimator of the function for all x therefore is
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f̂(x) =
1
n

j∑

k=0

n∑

i=1

qk(xi)g(xi)qk(x) (D.74)

for some truncation point j.
The random sample, x1, . . . , xn, may be an observed dataset, or it may be

the output of a random number generator.

Distribution Function Spaces

In probability and statistics, one of the most important kinds of function is a
cumulative distribution function, or CDF, defined on page 5 both in terms of
a probability distribution and in terms of four characterizing properties.

A set of CDFs cannot constitute a linear space, because of the restrictions
on the functions. Instead, we will define a distribution function space that
has similar properties. If P is a set of CDFs such that for any w ∈ [0, 1] and
P1, P2 ∈ P , (1− w)P1 + wP2 ∈ P , then P is a distribution function space.

The ε-mixture distribution defined on page 285 is a simple example of a
distribution function space. In that space, one of the CDFs is degenerate.

Important distribution function spaces are those consisting of CDFs P
such that for given p ≥ 1 ∫

‖t‖pdP <∞. (D.75)

Such a distribution function space is denoted by Pp. (Constrast this with the
Lp space.) It is clear that Pp1 ⊂ Pp2 if p1 ≥ p2.

Spaces of distribution functions are useful in robustness studies, but most
of the interesting families of probability distributions as discussed in Sec-
tion 1.7 do not generate distribution function spaces.

Functionals

Functionals are functions whose arguments are functions. The value of a func-
tional may be any kind of object, a real number or another function, for
example. The domain of a functional is a set of functions.

If F is a linear space of functions, that is, if F is such that f ∈ F and
g ∈ F implies (af + g) ∈ F for any real a, then the functional Υ defined on
F is said to be linear if Υ (af + g) = aΥ (f) + Υ (g).

A similar expression defines linearity of a functional over a distribution
function space P : Υ defined on P is linear if Υ ((1 − w)P1 + wP2) = (1 −
w)Υ (P1) + wΥ (P2) for w ∈ [0, 1] and P1, P2 ∈ P .

Functionals of CDFs have important uses in statistics as measures of the
differences between two distributions or to define distributional measures of
interest. A functional applied to a ECDF is a plug-in estimator of the distrib-
utional measure defined by the same functional applied to the corresponding
CDF.
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Derivatives of Functionals

For the case in which the arguments are functions, the cardinality of the
possible perturbations is greater than that of the continuum. We can be precise
in discussions of continuity and differentiability of a functional Υ at a point
(function) F in a domain F by defining another set D consisting of difference
functions over F ; that is the set the functions D = F1 − F2 for F1, F2 ∈ F .

The concept of differentiability for functionals is necessarily more com-
plicated than for functions over real domains. For a functional Υ over the
domain F , we define three levels of differentiability at the function F ∈ F .
All definitions are in terms of a domain D of difference functions over F , and
a linear functional ΛF defined over D in a neighborhood of F . The first type
of derivative is very general. The other two types depend on a metric ρ on
F ×F induced by a norm ‖ · ‖ on F .

Definition D.2.13 (Gâteaux differentiable.) Υ is Gâteaux differentiable
at F iff there exists a linear functional ΛF (D) over D such that for t ∈ IR for
which F + tD ∈ F ,

lim
t→0

(
Υ (F + tD)− Υ (F )

t
− ΛF (D)

)
= 0. (D.76)

Definition D.2.14 (ρ-Hadamard differentiable.) For a metric ρ induced
by a norm, Υ is ρ-Hadamard differentiable at F iff there exists a linear func-
tional ΛF (D) over D such that for any sequence tj → 0 ∈ IR and sequence
Dj ∈ D such that ρ(Dj , D)→ 0 and F + tjDj ∈ F ,

lim
j→∞

(
Υ (F + tjDj)− Υ (F )

tj
− ΛF (Dj)

)
= 0. (D.77)

Definition D.2.15 (ρ-Fréchet differentiable.) Υ is ρ-Fréchet differentiable
at F iff there exists a linear functional Λ(D) over D such that for any sequence
Fj ∈ F for which ρ(Fj , F )→ 0,

lim
j→∞

(
Υ (Fj)− Υ (F )− ΛF (Fj − F )

ρ(Fj , F )

)
= 0. (D.78)

The linear functional ΛF in each case is called, respectively, the [Gâteaux |
ρ-Hadamard | ρ-Fréchet] differential of Υ at F .

Notes and Additional References for Section D.2

Measure theory is the most important element of analysis. There are many
classic and standard texts on the subject, and it would be difficult to select
“best” ones. Many treat measure theory in the context of probability theory,
and some of those are listed in the general bibliography beginning on page 477.
I will just list a few more that I have found useful. Although they are relatively
old, all, except possibly Hewitt and Stromberg (1965) (from which I first began
learning real analysis), are still readily available.
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Additional References

Doob, J. L. (1994), Measure Theory, Springer-Verlag, New York.
Hewitt, Edwin, and Karl Stromberg (1965), Real and Abstract Analysis,

Springer-Verlag, Berlin. (A second edition was published in 1969.)
Kolmogorov, A. N., and S. V. Fomin (1954 and 1960, translated from the

Russian), Elements of the Theory of Functions and Functional Analysis,
in two volumes, Gaylock Press, Rochester, NY. Reprinted in one volume
(1999) by Dover Publications, Inc., Mineola, NY.

Royden, H. L. (1988), Real Analysis, third edition, MacMillan, New York.
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D.3 Stochastic Calculus

The other sections in this appendix generally cover prerequisite material for
the rest of the book. This section, on the other hand, depends on some of
the material in Chapter 1, and is closely interrelated with the material in
Section 1.6.

D.3.1 Continuous Time Stochastic Processes

We consider a stochastic process {Bt} in which we generally associate the
index t with time. We often write {B(t)} in place of {Bt}, but for all practical
purposes, the notation is equivalent.

In a very important class of stochastic processes, the differences between
the values at two time points have normal distributions and the difference be-
tween two points is independent of the difference between two nonoverlapping
points.

Wiener Processes

Suppose in the sequence B0, B1, . . ., the distribution of Bt+1 − Bt is nor-
mal with mean 0 and standard deviation 1. In this case, the distribution of
Bt+2 −Bt is normal with mean 0 and standard deviation

√
2, and the distri-

bution of Bt+0.5 − Bt is normal with mean 0 and standard deviation
√

0.5.
More generally, the distribution of the change ∆B in time ∆t has a standard
deviation of

√
∆t

This kind of process with the Markovian property and with a normal
distribution of the changes leads to a Brownian motion or a Wiener process.

Consider a process of changes ∆B characterized by two properties:

• The change ∆B during a small period of time ∆t is given by

∆B = Z
√

∆t,

where Z is a random variable with a N(0, 1) distribution.
• The values of ∆B for any two short intervals of time ∆t are independent.

Now, consider N time periods, and let T = N∆t. We have

B(T )−B(0) =
N∑

i=1

Zi

√
∆t.

The fact that we have
√

∆t in this equation has important implications that
we will return to later.

As in ordinary calculus, we consider ∆B/∆t and take the limit as ∆t→ 0,
which we call dB/dt, and we have the differential equation
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dB = Zdt.

A random variable formed as dB above is called a stochastic differential.
A stochastic differential arising from a process of changes ∆B with the

two properties above is called a Wiener process or a Brownian motion. In the
following, we will generally use the phrase “Wiener process”.

We can use the Wiener process to develop a generalized Wiener process:

dS = µdt+ σdB,

where µ and σ are constants.

Properties of the Discrete Process Underlying the Wiener Process

With ∆B = Z
√

∆t and Z ∼ N(0, 1), we immediately have

E(∆B) = 0

E
(
(∆B)2

)
= V(∆B) + (E(∆B))2

= ∆t
E
(
(∆B)3

)
= 0

E
(
(∆B)4

)
= V

(
(∆B)2

)
+
(
E
(
(∆B)2

))2

= 3(∆t)2

Because of independence, for ∆iB and ∆jB representing changes in two
nonoverlapping intervals of time,

E((∆iB)(∆jB)) = cov(∆iB,∆jB) = 0.

The Wiener process is a random variable; that is, it is a real-valued map-
ping from a sample space Ω. We sometimes use the notationB(ω) to emphasize
this fact.

The Wiener process is a function in continuous time. We sometimes use
the notation B(t, ω) to emphasize the time dependency.

Most of the time we drop the “ω”. Also, sometimes we write Bt instead of
B(t).

All of these notations are equivalent.
There two additional properties of a Wiener process or Brownian motion

that we need in order to have a useful model. We need an initial value, and
we need it to be continuous in time.

Because the Wiener process is a random variable, the values it takes are
those of a function at some point in the underlying sample space, Ω. Therefore,
when we speak of B(t) at some t, we must speak in terms of probabilities of
values or ranges of values.

When we speak of a particular value of B(t), unless we specify a specific
point ω0 ∈ Ω, the most we can say is that the values occurs almost surely.
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• We assume B(t) = 0 almost surely at t = 0.
• We assume B(t) is almost surely continuous in t.

These two properties together with the limiting forms of the two properties
given at the beginning define a Wiener process or Brownian motion.

(There is a theorem due to Kolmogorov that states that given the first
three properties, there exists a “version” that is absolutely continuous in t.)

From the definition, we can see immediately that

• the Wiener process is Markovian
• the Wiener process is a martingale.

Generalized Wiener Processes

A Wiener process or Brownian motion is a model for changes. It models
diffusion.

If the process drifts over time (in a constant manner), we can add a term
for the drift, adt.

More generally, a model for the state of a process that has both a Brownian
diffusion and a drift is a generalized Wiener process:

dS = adt+ bdB,

where a and b are constants. A generalized Wiener process is a type of a more
general “drift-diffusion process”.

While the expected value of the Wiener process at any time is 0, the
expected value of the state S is not necessarily 0. Likewise, the variance is
affected by b. Both the expected value and the variance of S are functions of
time.

One of the most interesting properties of a Wiener process is that its first
variation is infinite. It is infinitely “wiggly”. We can see this by generating
normal processes over varying length time intervals, as in Figure D.1.

Variation of Functionals

The variation of a functional is a measure of its rate of change. It is similar
in concept to an integral of a derivative of a function.

For studying variation, we will be interested only in functions from the
interval [0, T ] to IR.

To define the variation of a general function f : [0, T ] 7→ IR, we form N
intervals 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . The intervals are not necessarily of
equal length, so we define ∆ as the maximum lenght of any interval; that is,

∆ = max(ti − ti−1).

Now, we denote the pth variation of f as Vp(f) and define it as
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Fig. D.1. A Wiener Process Observed at Varying Length Intervals

Vp(f) = lim
∆→0

N∑

i=1

|f(ti)− f(ti−1)| p.

(Notice that ∆→ 0 implies N →∞.)
With equal intervals, ∆t, for the first variation, we can write

V1(f) = lim
∆t→0

N∑

i=1

|f(ti)− f(ti−1)|

= lim
N→∞

N−1∑

i=0

∆t
|f(ti + ∆t)− f(ti)|

∆t
,

from which we can see that for a differentiable function f : [0, T ] 7→ IR,

V1(f) =
∫ T

0

∣∣∣∣
df
dt

∣∣∣∣ dt.

The notation FV (f), or more properly, FV(f), is sometimes used instead of
V1(f).
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Again, with equal intervals, ∆t, for the second variation, we can write

V2(f) = lim
∆t→0

N∑

i=1

(f(ti)− f(ti−1))2

= lim
∆t→0

∆t lim
N→∞

N−1∑

i=0

∆t
(
|f(ti + ∆t)− f(ti)|

∆t

)2

.

For a differentiable function f : [0, T ] 7→ IR, we have

V2(f) = lim
∆t→0

∆t
∫ T

0

∣∣∣∣
df
dt

∣∣∣∣
2

dt.

The integrand is bounded, therefore this limit is 0, and we conclude that
the second variation of a differentiable function is 0.

IfX is a stochastic functional, then Vp(X) is also stochastic. If it converges
to a deterministic quantity, the nature of the convergence must be considered.

First and Second Variation of a Wiener Process

Two important properties of a Wiener process on [0, T ] are

• V2(B) = T a.s., which as we have seen, implies that B(t) is not differen-
tiable.

• V1(B) =∞ a.s.

Notice that because B is a random variable we must temper our statement
with a phrase about the probability or expected value.

We now prove these for the quadratic mean instead of a.s. We start with
the first one, because it will imply the second one. Let

XN =
N−1∑

n=0

(B(tn+1)−B(tn))2

=
N−1∑

n=0

(∆nB)2 note notation

We want to show

E
(
(XN − T )2

)
→ 0 as |∆t| → 0.

Now,

E
(
(XN − T )2

)
= E

(
X2

N

)
− 2TE(XN) + T 2 = E

(
X2

N

)
− T 2.

So now we want to show E
(
X2

N

)
= T 2.
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E
(
X2

N

)
= E




N−1∑

i=0

(∆iB)2
N−1∑

j=0

(∆jB)2




= E

(
N−1∑

i=0

(∆iB)4
)

+ E


∑

i6=j

(∆iB)2(∆jB)2




=
N−1∑

i=0

(∆it)2 +
∑

i6=j

(∆it)(∆jt).

Because |∆t| → 0 (or, if we allow different size intervals, sup |∆it| → 0),
we have

N−1∑

i=0

(∆it)2 → 0.

So the first term goes to 0; now consider
∑

i6=j(∆it)(∆jt).

∑

i6=j

(∆it)(∆jt) =
N−1∑

i=0

(∆it)




i−1∑

j=0

(∆jt) +
N−1∑

j=i+1

(∆jt)




=
N−1∑

i=0

(∆it)(T −∆it)

= T

N−1∑

i=0

(∆it)−
N−1∑

i=0

(∆it)2

= T 2 − 0.

So now we have E
(
(XN − T )2

)
→ 0, or XN →L2 T as |∆t| → 0; that is,

V2(B) = T in quadratic mean, or in L2 norm.
(I just realized that I had stated a.s. convergence, and I proved L2 conver-

gence. One does not imply the other, but a.s. is also true in this case.)
Now, although we have already seen that since the second variation is

nonzero, B cannot be differentiable.
But also because of the continuity of B in t, it is easy to see that the first

variation diverges if the second variation converges to a finite value. This is
because

N−1∑

n=0

(B(tn+1)−B(tn))2 ≤ sup |B(tn+1)−B(tn)|
N−1∑

n=0

|B(tn+1)−B(tn)|

In the limit the term on the left is T > 0, and the term on the right is 0
times V1(B); therefore V1(B) =∞.
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Properties of Stochastic Differentials

Although B and dB are random variables, the product dBdB is deterministic.
We can see this by considering the stochastic process (∆B)2. We have seen

that V
(
(∆B)2

)
= 2(∆t)2, so the variance of this process is 2(∆t)2; that is,

as ∆t→ 0, the variance of this process goes to 0 faster, as (∆t)2.
Also, as we have seen, E

(
(∆B)2

)
= ∆t, and so (∆B)2 goes to ∆t at the

same rate as ∆t→ 0. That is,

(∆B)(∆B) →a.s. ∆t as ∆t→ 0.

The convergence of (∆B)(∆B) to ∆t as ∆t→ 0 yields

dBdB = dt.

(This equality is almost sure.) But dt is a deterministic quantity.
This is one of the most remarkable facts about a Wiener process.

Multidimensional Wiener Processes

If we have two Wiener processes B1 and B2, with V(dB1) = V(dB2) = dt
and cov(dB1, dB2) = ρdt (that is, corr(dB1, dB2) = ρ), then by a similar
argument as before, we have dB1dB2 = ρdt, almost surely.

Again, this is deterministic.
The results of course extend to any vector of Wiener processes (B1, . . . , Bd).
If (B1, . . . , Bd) arise from

∆Bi = Xi

√
∆t,

where the vector of Xs has a multivariate normal distribution with mean
0 and variance-covariance matrix Σ, then the variance-covariance matrix of
(dB1, . . . , dBd) is Σdt, which is deterministic.

Starting with (Z1, . . . , Zd) i.i.d. N(0, 1) and forming the Wiener processes
B = (B1, . . . , Bd) beginning with

∆Bi = Zi

√
∆t,

we can form a vector of Wiener processes B = (B1, . . . , Bd) with variance-
covariance matrix Σdt for dB = (dB1, . . . , dBd) by the transformation

B = Σ1/2B,

or equivalently by
B = ΣCB,

where ΣC is a Cholesky factor of Σ, that is, ΣT
CΣC = Σ.

Recall, for a fixed matrix A,

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.3 Stochastic Calculus 413

V(AY ) = ATV(Y )A,

so from above, for example,

V(dB) = ΣT
CV(dB)ΣC = ΣT

Cdiag(dt)ΣC = Σdt.

D.3.2 Integration with Respect to Stochastic Differentials

Stochastic Integrals with Respect to Wiener Processes

The stochastic differentials such as dB naturally lead us to consider integra-
tion with respect to stochastic differentials, that is, stochastic integrals.

If B is a Wiener process on [0, T ], we may be interested in an integral of
the form ∫ T

0

g(Y (t), t)dB,

where Y (t) is a stochastic process (that is, Y is a random variable) and g is
some function.

The problem with developing a definition of this integral following the same
steps as in the definition of a Riemann integral, that is, as a limit of sequences
of sums of areas of rectangles, is that because the sides of these rectangles, Y
and dB, are random variables, there are different kinds of convergence of a
limit.

Also, the convergence of products of Y (t) depend on where Y (t) is evalu-
ated.

The Ito Integral

We begin developing a definition of

∫ T

0

g(Y (t), t)dB,

by considering how the Riemann integral is defined in terms of the sums

In(t) =
n−1∑

i=0

g(Y (τi), τi)(B(ti+1)−B(ti)),

where 0 = t0 ≤ τ0 ≤ t1 ≤ τ1 ≤ · · · ≤ τn−1 ≤ tn = T .
As in the Riemann case we will define the integral in terms of a limit as

the mesh size goes to 0.
First, the existence depends on a finite expectation that is similar to a

variance. We assume
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E

(∫ T

0

g(Y (t), t)dt

)
<∞.

The convergence must be qualified because the intervals are random variables;
furthermore, (although it is not obvious!) the convergence depends on where
τi is in the interval [ti, ti+1].

The first choice in the definition of the Ito stochastic integral is to choose
τi = ti. Other choices, such as choosing τi to be at the midpoint of the integral,
lead to different types of stochastic integrals.

Next is the definition of the type of convergence. In the Ito stochastic
integral, the convergence is in mean square, that is L2 convergence.

With the two choices me have made, we take

In(t) =
n−1∑

i=0

g(Y (ti), ti)(B(ti+1)−B(ti)),

and the Ito integral is defined as

I(t) = ms-limn→∞In(t).

This integral based on a Wiener process is used throughout financial analy-
sis.

Note that this integral is a random variable; in fact, it is a stochastic
process. This is because of the fact that the differentials are from a Wiener
process.

Also, because the integral is defined by a Wiener process, it is a martingale.

Ito Processes

An Ito process is a generalized Wiener process dX = adt+ bdB, in which the
parameters a and b are functions of the underlying variable X and of time t
(of course, X is also a function of t).

The functions a and b must be measurable with respect to the filtration
generated by B(t) (that is, to the sequence of smallest σ-fields with respect
to which B(t) is measurable. (This is expressed more simply by saying a and
b are adapted to the filtration generated by B(t).)

The Ito process is of the form

dX(t) = a(X(t), t)dt+ b(X(t), t)dB.

The Ito integral (or any other stochastic integral) gives us a solution to
this stochastic differential equation:

X(T ) = X(0) +
∫ T

0

a(X(t), t)dt+
∫ T

0

b(X(t), t)dB(t).
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(The differential in the first integral is deterministic although the integrand
is stochastic. The second integral, however, is a stochastic integral. Other
definitions of this integral would require modifications in the interpretation of
properties of the Ito process.)

We are often interested in multidimensional Ito processes. Their second-
order properties (variances and covariances) behave very similarly to those of
Wiener processes, which we discussed earlier.

Geometric Brownian Motion

The Ito process would be much easier to work with if µ(·) and σ(·) did not
depend on the value of the state; that is, if we we use the model

dS(t)
S(t)

= µ(t)dt+ σ(t)dB,

where I have switched to “S(t)” because I’m thinking of the price of a stock.
The Ito process would be even easier to work with if µ(·) and σ(·) were

constant; that is, if we we just use the model

dS(t)
S(t)

= µdt+ σdB.

This model is called a geometric Brownian motion, and is widely used in
modeling prices of various financial assets. (“Geometric” refers to series with
multiplicative changes, as opposed to “arithmetic series” that have additive
changes).

The geometric Brownian motion model is similar to other common statis-
tical models:

dS(t)
S(t)

= µdt + σdB(t)

or

response = systematic component + random error.

Without the stochastic component, the differential equation has the simple
solution

S(t) = ceµt,

from which we get the formula for continuous compounding for a rate µ.

Ito’s Lemma

We can formalize the preceding discussion using Ito’s lemma.
Suppose X follows an Ito process,

A Companion for Mathematical Statistics c©2008 James E. Gentle



416 Appendix D. Basic Mathematical Ideas and Tools

dX(t) = a(X, t)dt+ b(X, t)dB(t),

where dB is a Wiener process. Let G be an infinitely differentiable function
of X and t. Then G follows the process

dG(t) =
(
∂G

∂X
a(X, t) +

∂G

∂t
+

1
2
∂2G

∂X2
b2
)

dt+
∂G

∂X
b(X, t)dB(t). (D.79)

Thus, Ito’s lemma provides a formula that tells us that G also follows an
Ito process.

The drift rate is

∂G

∂X
a(X, t) +

∂G

∂t
+

1
2
∂2G

∂X2
b2

and the volatility is
∂G

∂X
b(X, t).

This allows us to work out expected values and standard deviations of G
over time.

First, suppose that G is infinitely of X and an unrelated variable y, and
consider a Taylor series expansion for ∆G:

∆G =
∂G

∂X
∆X+

∂G

∂y
∆y+

1
2

(
∂2G

∂X2
(∆X)2 +

∂2G

∂y2
(∆y)2 + 2

∂2G

∂X∂y
∆X∆y

)
+· · ·

(D.80)
In the limit as ∆X and ∆y tend to zero, this is the usual “total derivative”

dG =
∂G

∂X
dX +

∂G

∂y
dy, (D.81)

in which the terms in ∆X and ∆y have dominated and effectively those in
(∆X)2 and (∆y)2 and higher powers have disappeared.

Now consider an X that follows an Ito process,

dX(t) = a(X, t)dt+ b(X, t)dB(t),

or
∆X(t) = a(X, t)∆t+ b(X, t)Z

√
∆t.

Now let G be a function of both X and t, and consider the analogue to
equation (D.80). The factor (∆X)2, which could be ignored in moving to
equation (D.81), now contains a term with the factor ∆t, which cannot be
ignored. We have

(∆X(t))2 = b(X, t)2Z2∆t+ terms of higher degree in ∆t.

Consider the Taylor series expansion
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∆G =
∂G

∂X
∆X +

∂G

∂t
∆t +

1

2

(
∂2G

∂X2
(∆X)2 +

∂2G

∂t2
(∆t)2 + 2

∂2G

∂X∂t
∆X∆t

)
+ · · ·

(D.82)

We have seen, under the assumptions of Brownian motion, (∆X(t))2 or,
equivalently, Z2∆t, is nonstochastic; that is, we can treat Z2∆t as equal to its
expected value as ∆t tends to zero. Therefore, when we substitute for ∆X(t),
and take limits in equation (D.82) as ∆X and ∆t tend to zero, we get

dG(t) =
∂G

∂X
dX +

∂G

∂t
dt+

1
2
∂2G

∂X2
b2dt (D.83)

or, after substituting for dX and rearranging, we have Ito’s formula

dG(t) =
(
∂G

∂X
a(X, t) +

∂G

∂t
+

1
2
∂2G

∂X2
b2
)

dt+
∂G

∂X
b(X, t)dB(t).

Equation (D.83) is also called Ito’s formula. Compare equation (D.83) with
equation (D.81).

Multivariate Processes

There is a multivariate version of Ito’s formula for a multivariate Ito process.
The multivariate Ito process has the form

dX(t) = a(X, t)dt+B(X, t)dB(t), (D.84)

where dX(t), a(X, t), and dB(t) are vectors and B(X, t) is a matrix.
The elements of dB(t) can come from independent Wiener processes, or

from correlated Wiener processes. I think it is easier to work with independent
Wiener processes and incorporate any correlations into the B(X, t) matrix.
Either way is just as general.

We write the individual terms in a multivariate Ito process in the form

dXi(t) = ai(X, t)dt+ bi(X, t)dBi(t), (D.85)

where the Bi(t) are Wiener processes with

corr(dBi(t), dBj(t)) = ρij , (D.86)

for some constants ρij . Note that ai and bi are functions of all Xj , so the
processes are coupled not just through the ρij .

Recall that V(dBi(t)) = V(dBi(t)) = dt, and hence cov(dBi(t), dBj(t)) =
ρijdt.

Also recall that (dBi(t))2 =a.s. E((dBi(t))2) = dt; i.e., (dBi(t))2 is non-
stochastic. Likewise, dBi(t)dBi(t) =a.s. ρijdt.

Given an infinitely differential function G of the vector X = (X1, . . . , Xd)
and the scalar t, Ito’s formula in the form of equation (D.83), derived in the
same way as for the univariate case, is
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dG(t) =
d∑

i=1

∂G

∂Xi
dXi(t) +

∂G

∂t
dt+

1
2

d∑

i=1

d∑

j=1

∂G2

∂Xi∂Xj
ρijbi(X, t)bj(X, t)dt.

(D.87)
The form of equation (D.79) is obtained by substituting for dXi(t).

Solution of Stochastic Differential Equations

The solution of a differential equation is obtained by integrating both sides
and allowing for constant terms. Constant terms are evaluated by satisfying
known boundary conditions, or initial values.

In a stochastic differential equation (SDE), we must be careful in how the
integration is performed, although different interpretations may be equally
appropriate.

For example, the SDE that defines an Ito process

dX(t) = a(X, t)dt+ b(X, t)dB(t),

when integrated from time t0 to T yields

X(T )−X(t0) =
∫ T

t0

a(X, t)dt+
∫ T

t0

b(X, t)dB(t).

The second integral is a stochastic integral. We will interpret it as an Ito
integral.

The nature of a(X, t) and b(X, t) determine the complexity of the solution
to the SDE.

In the Ito process

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dB(t),

using Ito’s formula for the log as before, we get the solution

S(T ) = S(t0) exp

(∫ T

t0

(
µ(t)− 1

2
σ(t)2

)
dt+

∫ T

t0

σ(t)dB(t)

)
.

In the simpler version of a geometric Brownian motion model, in which µ and
σ are constants, we have

S(T ) = S(t0) exp
((

µ− 1
2
σ2

)
∆t+ σ∆B

)
.

Given a solution of a differential equation we may determine the mean,
variance and so on by taking expectations of the random component in the
solution.

Sometimes, however, it is easier just to develop an ordinary (nonstochastic)
differential equation for the moments. We do this from an Ito process

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.3 Stochastic Calculus 419

dX(t) = a(X, t)dt+ b(X, t)dB(t),

by using Ito’s formula on the powers of the variable. So we have

dXp(t) =
(
pX(t)p−1a(X, t) +

1
2
p(p− 1)X(t)p−2b(X, t)2

)
dt+

pX(t)p−1b(X, t)dB(t).

** exercise
Taking expectations of both sides, we have an ordinary differential equa-

tion in the expected values.

Jump Processes

We have assumed that a Wiener process is continuous in time (almost surely).
A jump process is one that is discontinuous in time.

In financial modeling, we often use a compound process that consists of
some smooth process coupled with a jump process. The parameters controlling
the frequency of jumps may also be modeled as a stochastic process. The
amount of the jump is usually modeled as a random variable.

The most important jump processes are Poisson processes.
A Poisson process is a sequence of events in which the probability of k

events (where k = 0, 1, . . .) in an interval of length ∆t, denoted by g(k,∆t)
satisfies the following conditions:

• g(1,∆t) = λ∆t+ o(∆t), where λ is a positive constant and (∆t) > 0.
(The little o notation, o(s), stands for any function h(s) such that
lims→∞(h(s)/s) = 0; for example, the function s2 is o(s). We also have
o(s) + o(s) = o(s).)

•
∑∞

k=2 g(k,∆t) = o(∆t).
• The numbers of changes in nonoverlapping intervals are stochastically in-

dependent.

This axiomatic characterization of a Poisson process leads to a differential
equation whose solution (using mathematical induction) is

g(k,∆t) =
(λ∆t)ke−λ∆t

k!
, for k = 1, 2, . . .

which, in turn leads to the familiar probability function for a Poisson distri-
bution

pK(k) =
(θ)ke−θ

k!
, for k = 0, 1, 2, . . .

We merely add a pure jump process djS(t) to our drift-diffusion process,

dS(t) = µ(S(t), t)dt+ σ(S(t), t)dB(t).
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After rearranging terms, this yields

dS(t) =
(
µ(S(t), t) + (λ(S(t), t)

∫

Z
z pZ(z;S(t))dz

)
dt

+σ(S(t), t)dB(t)
+djJS(t).

There are two stochastic terms, dB(t) and djJS(t).
We will assume that they are independent.
Note that I suppressed the dj on the left hand side, although, clearly, this

is a discontinuous process, both because of the compensated process and the
discontinuity in the drift.

Ito’s Formula in Jump-Diffusion Processes

Now suppose we are interested in a process defined by a function g of S(t)
and t. This is where Ito’s formula is used.

The simple approach is to apply Ito’s formula directly to the drift-diffusion
part and then consider djg(t) separately. (We have absorbed S(t) into t in the
notation g(t).)

As before,we consider the random variable of the magnitude of the change,
∆g and write the process as a systematic component plus a random component

djg(t) = g(t)− g(t−)

=

(
λ(S(t), t)

∫

D(∆g)

p∆g(∆g; g(t))d∆g

)
dt+ djJg(t)

where the random component djJg(t) is a compensated process as before.
Putting this all together we have

dg(t) =
(
∂g

∂t
+ µ

∂g

∂S
+

1
2
σ2 ∂

2g

∂S2

= +λ(t)
∫

D(∆g)

∆g p∆g(∆g; g(t))d∆g

)
dt

= +
∂g

∂S
σdB(t)

= +djJg(t).

We must remember that this is a discontinuous process.

Notes and Additional References for Section D.3

Stochastic calculus is widely used in models of prices of financial assets, and
many of the developments in the general theory have come from that area of
application.
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Additional References

Øksendal, Bernt (1998), Stochastic Differential Equations. An Introduction
with Applications, fifth edition, Springer, Heidelberg.

Steele, . Michael (2001), Stochastic Calculus and Financial Applications,
Springer-Verlag, New York.
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D.4 Some Basics of Linear Algebra:
Matrix/Vector Definitions and Facts

In the following we will assume the usual axioms for the reals, IR. We will
be concerned with two linear structures on IR. We denote one as IRn, and
call its members vectors. We denote another as IRn×m, and call its members
matrices. For both structures we have scalar multiplication (multiplication
of a member of the structure by a member of IR), an addition operation, an
additive identity, and additive inverses for all elements. The addition operation
is denoted by “+” and the additive identity by “0”, which are the same two
symbols used similarly in IR. We also have various types of multiplication
operations, all with identities, and some with inverses. In addition, we define
various real-valued functions over these structures, the most important of
which are inner products and norms.

Both IRn and IRn×m with addition and multiplication operations are linear
spaces.

In this section, we abstract some of the basic material on linear algebra
from Gentle (2007).

D.4.1 Inner Products, Norms, and Metrics

Although various inner products could be defined in IRn, “the” inner product
or dot product for vectors x and y in IRn is defined as

∑n
i=1 xiyi, and is often

written as xTy. It is easy to see that this satisfies the definition of an inner
product. Note that this is different from the notation in Shao; Shao uses xτ

in place of xT.
Two elements x, y ∈ IRn are said to be orthogonal if 〈x, y〉 = 0.
An element x ∈ IRn is said to be normal or normalized if 〈x, x〉 = 1. Any

x 6= 0 can be normalized, that is, mapped to a normal element, x/〈x, x〉. A set
of normalized elements that are pairwise orthogonal is called an orthonormal
set. (On page 364 we discuss a method of forming a set of orthogonal vectors.)

Various inner products could be defined in IRn×m, but “the” inner product
or dot product for matrices A and B in IRn×m is defined as

∑m
j=1 a

T
j bj , where

aj is the vector whose elements are those from the jth column of A, and
likewise for bj . Again, it is easy to see that this satisfies the definition of an
inner product.

Norms and Metrics

There are various norms that can be defined on IRn. An important class of
norms are the Lp norms, defined for p ≥ 1 by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (D.88)
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It is easy to see that this satisfies the definition of a norm.
The norm in IRn induced by the inner product (that is, “the” inner prod-

uct) is the Euclidean norm or the L2 norm:

‖x‖2 =
√
〈x, x〉 =

√√√√
n∑

i=1

x2
i . (D.89)

This is the only Lp norm induced by an inner product.
The norm in IRn×m induced by the inner product exists only for n = m.

In that case it is ‖A‖ =
∑n

j=1 a
T
j aj =

∑n
j=1

∑n
i=1 a

2
ij . Note that this is not

the L2 matrix norm; it is the Frobenius norm (see below).
The most common and useful metrics in IRn and IRn×m are those induced

by the norms. For IRn the L2 norm is the most common, and a metric for
x, y ∈ IRn is defined as

ρ(x, y) = ‖x− y‖2. (D.90)

This metric is called the Euclidean distance.

D.4.2 Matrices and Vectors

Vectors are n-tuples and matrices are n by m rectangular arrays. We will
be interested in vectors and matrices whose elements are real numbers. We
denote the set of such vectors as IRn and the set of such matrics as IRn×m.

We generally denote a member of IRn×m by an upper case letter. A member
of IRn×m consists of nm elements, which we denote by use of two subscripts.
We often use a lower-case letter with the two subscripts. For example, for
a matrix A, we denote the elements as Aij or aij with i = 1, . . . , n and
j = 1, . . . ,m.

The transpose of a matrix A in IRn×m is a matrix in IRm×n denoted by
AT such that (AT)ij = Aji. Note that this is consistent with the use of T

above for vectors. Note that this is different from the notation in Shao; Shao
uses Aτ .

If n = m the matrix is square.
We define (Cayley) multiplication of the matrix A ∈ IRn×m and the matrix

B ∈ IRm×p as C = AB ∈ IRn×p, where cij =
∑m

k=1 aikbkj .
If x and y are n-vectors, in most cases, we can consider them to be n× 1

matrices. Hence, xTy is a 1× 1 matrix and xyT is an n× n matrix.
We see from the definition that xTy is an inner product. This inner product

is also called the dot product. The product xyT is called the outer product.
As above, we see that

√
xTx is a norm (it is the induced norm). We some-

times denote this norm as ‖x‖2, because it is
(∑n

i=1 |xi|2
)1/2. We call it the

Euclidean norm and also the L2 norm. More generally, for p ≥ 1, we define
the Lp norm for the n-vector x as (

∑n
i=1 |xi|p)

1/p.
We denote the Lp norm of x as ‖x‖p. We generally denote the Euclidean

or L2 norm simply as ‖x‖.
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The sum of the diagonal elements of a square matrix is called the trace of
the matrix. We use the notation “tr(A)” to denote the trace of the matrix A:

tr(A) =
∑

i

aii.

tr(A) = tr(AT).

For a scalar c and an n× n matrix A,

tr(cA) = c tr(A).

If A and B are such that both AB and BA are defined,

tr(AB) = tr(BA).

If x is a vector, we have

‖x‖2 = xTx = tr(xTx) = tr(xxT).

If x is a vector and A a matrix, we have

xTAx = tr(xTAx) = tr(AxxT).

Properties, Concepts, and Notation Associated with Matrices and
Vectors

linear independence A set of vectors x1, . . . , xn ∈ IRn is linearly independent
if
∑n

i=1 aixi = 0 implies ai = 0 for i = 1, . . . , n.
rank of a matrix The rank of a matrix is the maximum number of rows

or columns that are linearly independent. (The maximum number of
rows that are linearly independent is the same as the maximum num-
ber of columns that are linearly independent.) For the matrix A, we write
rank(A). We adopt the convention that rank(A) = 0 ⇔ A = 0 (the zero
matrix). A ∈ IRn×m is said to be full rank iff rank(A) = min(n,m).
An important fact is

rank(AB) ≤ min(rank(A), rank(B)),

and a consequence of this is that the rank of an outer product is less than
or equal to 1.

determinant of a square matrix The determinant is a real number. We write
|A| or det(A). |A| 6= 0 iff A is square and of full rank.

identity matrix I ∈ IRn×n and I [i, j] = 0 if i 6= j and I [i, j] = 1 if i 6= i; that
is I [i, j] = δij , where δij is the Kronecker delta. We write the identity as
In or just I .
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inverse of a matrix For A ∈ IRn×n, if a matrix B ∈ IRn×n exists, such that
AB = I , then B is the inverse of A, and is written A−1. A matrix has an
inverse iff it is square and of full rank.

generalized inverse of a matrix For A ∈ IRn×m, a matrix B ∈ IRm×n such
that ABA = A is called a generalized inverse of A, and is written A−. If
A is nonsingular (square and full rank), then obviously A− = A−1.

pseudoinverse or Moore-Penrose inverse of a matrix For A ∈ IRn×m, the ma-
trix B ∈ IRm×n such that ABA = A, BAB = B, (AB)T = AB, and
(BA)T = BA is called the pseudoinverse of A, and is written A+.

orthogonal matrix For A ∈ IRn×m, if ATA = Im, that is, if the columns are
orthonormal andm ≤ n, or AAT = In, that is, if the rows are orthonormal
and n ≤ m, then A is said to be orthogonal.

quadratic forms For A ∈ IRn×n and x ∈ IRn, the scalar xTAx is called a
quadratic form.

nonnegative definite matrix For A ∈ IRn×n and any x ∈ IRn, if xTAx ≥ 0,
then is said to be nonnegative definite. We generally restrict the definition
to symmetric matrices. This is essentially without loss of generality be-
cause if a matrix is nonnegative definite, then there is a similar symmetric
matrix. (Two matrices are said to be similar if they have exactly the same
eigenvalues.) We write A � 0 to denote that A is nonnegative definite.
Note that this is different from Shao.

positive definite matrix For A ∈ IRn×n and any x ∈ IRn, if xTAx ≥ 0 and
xTAx = 0 implies x = 0, then is said to be positive definite. As with non-
negative definite matrices, we generally restrict the definition of positive
definite matrices to symmetric matrices. We write A � 0 to denote that
A is positive definite.
Note that this is different from Shao.

eigenvalues and eigenvectors If A ∈ IRn×n, v is an n-vector (complex), and c
is a scalar (complex), and Av = cv, then c is an eigenvalue of A and v is
an eigenvector of A associated with c. All eigenvalues and eigenvectors of
a (real) symmetric matrix are real. The eigenvalues of a nonnegative def-
inite matrix are all nonnegative, and the eigenvalues of a positive definite
matrix are all positive.

Matrix Factorizations

There are a number of useful ways of factorizing a matrix.

• the LU (and LR and LDU) factorization of a general matrix:
• the QR factorization of a general matrix,
• the similar canonical factorization or “diagonal factorization” of a diago-

nalizable matrix (which is necessarily square):

A = VCV −1,
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where V is a matrix whose columns correspond to the eigenvectors of
A and is nonsingular, and C is a diagonal matrix whose entries are the
eigenvalues corresponding to the columns of V .

• the singular value factorization of a general n×m matrix A:

A = UDV T,

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix,
and D is an n ×m diagonal matrix with nonnegative entries. (An n ×m
diagonal matrix has min(n,m) elements on the diagonal, and all other
entries are zero.)

• the square root of a nonnegative definite matrix A (which is necessarily
symmetric):

A = A1/2A1/2

• the Cholesky factorization of a nonnegative definite matrix:

A = AT
CAC,

where AC is an upper triangular matrix with nonnegative diagonal ele-
ments.

Spectral Decomposition

For a symmetric matrix A, we can always write A = VCV T, as above. This is
called the spectral decomposition, and is unique except for the ordering and
the choice of eigenvectors for eigenvalues with multiplicities greater than 1.
We can also write

A =
∑

i

ciPi,

where the Pi are the outer products of the eigenvectors,

Pi = viv
T
i ,

and are called spectral projectors.

Matrix Norms

A matrix norm is generally required to satisfy one more property in addition to
those listed above for the definition of a norm. It is the consistency property:
‖AB‖ ≤ ‖A‖ ‖B‖. The Lp matrix norm for the n×m matrix A is defined as

‖A‖p = max
‖x‖p=1

‖Ax‖p.

The L2 matrix norm has the interesting relationship
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‖A‖2 =
√
ρ(ATA),

where ρ(·) is the spectral radius (the modulus of the eigenvalue with the
maximum modulus).

The “usual” matrix norm is the Frobenius norm:

‖A‖F =
√∑

i,j

a2
ij .

Idempotent and Projection Matrices

A matrix A such that AA = A is called an idempotent matrix. An idempotent
matrix is square, and it is either singular or it is the identity matrix. (It must
be square in order to be conformable for the indicated multiplication. If it
is not singular, we have A = (A−1A)A = A−1(AA) = A−1A = I ; hence, an
idempotent matrix is either singular or it is the identity matrix.)

A useful idempotent matrix often encountered in statistical linear models
is Z−Z.

If A is idempotent and n × n, then (I − A) is also idempotent, as we see
by multiplication.

In this case, we also have

rank(I −A) = n− rank(A).

Because the eigenvalues of A2 are the squares of the eigenvalues of A, all
eigenvalues of an idempotent matrix must be either 0 or 1. The number of
eigenvalues that are 1 is the rank of the matrix. We therefore have for an
idempotent matrix A,

tr(A) = rank(A).

Because AA = A, any vector in the column space of A is an eigenvector of A.
For a given vector space V , a symmetric idempotent matrix A whose

columns span V is said to be a projection matrix onto V ; in other words,
a matrix A is a projection matrix onto span(A) if and only if A is symmetric
and idempotent.

It is easy to see that for any vector x, if A is a projection matrix onto
V , the vector Ax is in V , and the vector x − Ax is in V⊥ (the vectors Ax
and x−Ax are orthogonal). For this reason, a projection matrix is sometimes
called an “orthogonal projection matrix”. Note that an orthogonal projection
matrix is not an orthogonal matrix, however, unless it is the identity matrix.
Stating this in alternate notation, if A is a projection matrix and A ∈ IRn×n,
then A maps IRn onto V(A), and I −A is also a projection matrix (called the
complementary projection matrix of A), and it maps IRn onto the orthogonal
complement, N (A). These spaces are such that V(A)⊕N (A) = IRn.

Useful projection matrices often encountered in statistical linear models
are A+A and AA+.
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If x is a general vector in IRn, that is, if x has order n and belongs to an
n-dimensional space, and A is a projection matrix of rank r ≤ n, then Ax has
order n and belongs to span(A), which is an r-dimensional space.

Because a projection matrix is idempotent, the matrix projects any of
its columns onto itself, and of course it projects the full matrix onto itself:
AA = A. More generally, if x and y are vectors in span(A) and a is a scalar,
then

A(ax+ y) = ax+ y.

(To see this, we merely represent x and y as linear combinations of columns
(or rows) of A and substitute in the equation.)

The projection of a vector y onto a vector x is

xTy

xTx
x.

The projection matrix to accomplish this is the “outer/inner products ma-
trix”,

1
xTx

xxT.

The outer/inner products matrix has rank 1. It is useful in a variety of matrix
transformations. If x is normalized, the projection matrix for projecting a
vector on x is just xxT. The projection matrix for projecting a vector onto a
unit vector ei is eie

T
i , and eie

T
i y = (0, . . . , yi, . . . , 0).

Inverses of Matrices

Often in applications we need inverses of various sums of matrices. If A and
B are full rank matrices of the same size, the following relationships are easy
to show.

(I +A−1)−1 = A(A + I)−1

(A+BBT)−1B = A−1B(I +BTA−1B)−1

(A−1 +B−1)−1 = A(A +B)−1B

A−A(A+B)−1A = B −B(A+B)−1B

A−1 +B−1 = A−1(A+B)B−1

(I +AB)−1 = I −A(I +BA)−1B

(I +AB)−1A = A(I +BA)−1

From the relationship det(AB) = det(A) det(B) for square matrices men-
tioned earlier, it is easy to see that for nonsingular A,

det(A) = 1/det(A−1).

For a square matrix A, det(A) = 0 if and only if A is singular.
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Partitioned Matrices

We often find it useful to partition a matrix into submatrices, and we usually
denote those submatrices with capital letters with subscripts indicating the
relative positions of the submatrices. Hence, we may write

A =
[
A11 A12

A21 A22

]
,

where the matrices A11 and A12 have the same number of rows, A21 and
A22 have the same number of rows, A11 and A21 have the same number of
columns, and A12 and A22 have the same number of columns.

The term “submatrix” is also sometimes used to refer to a matrix formed
from another one by deleting various rows and columns of the given matrix.
In this terminology, B is a submatrix of A if for each element bij there is an
akl with k ≥ i and l ≥ j, such that bij = akl; that is, the rows and/or columns
of the submatrix are not contiguous in the original matrix.

A submatrix whose principal diagonal elements are elements of the prin-
cipal diagonal of the given matrix is called a principal submatrix; A11 is a
principal submatrix in the example above, and if A22 is square it is also a
principal submatrix. Sometimes the term “principal submatrix” is restricted
to square submatrices.

A principal submatrix that contains the (1, 1) and whose rows and columns
are contiguous in the original matrix is called a leading principal submatrix.
A11 is a principal submatrix in the example above.

Multiplication and other operations with matrices, such as transposition,
are carried out with their submatrices in the obvious way. Thus,

[
A11 A12 A13

A21 A22 A23

]T
=



AT

11 A
T
21

AT
12 A

T
22

AT
13 A

T
23


 ,

and, assuming the submatrices are conformable for multiplication,
[
A11 A12

A21 A22

][
B11 B12

B21 B22

]
=
[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Sometimes a matrix may be partitioned such that one partition is just a
single column or row, that is, a vector or the transpose of a vector. In that
case, we may use a notation such as

[X y]

or
[X | y],

where X is a matrix and y is a vector. We develop the notation in the obvious
fashion; for example,
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[X y]T [X y] =
[
XTX XTy
yTX yTy

]
.

Partitioned matrices may also have useful patterns. A “block diagonal”
matrix is one of the form 



X 0 · · · 0
0 X · · · 0

. . .
0 0 · · · X


 ,

where 0 represents a submatrix with all zeros, and X represents a general
submatrix, with at least some nonzeros. The diag(·) function previously in-
troduced for a vector is also defined for a list of matrices:

diag(A1, A2, . . . , Ak)

denotes the block diagonal matrix with submatrices A1, A2, . . . , Ak along the
diagonal and zeros elsewhere.

Inverses of Partitioned Matrices

If A is nonsingular, and can be partitioned as

A =
[
A11 A12

A21 A22

]
,

where both A11 and A22 are nonsingular, it is easy to see that the inverse of
A is given by

A−1 =



A−1

11 +A−1
11 A12Z

−1A21A
−1
11 −A

−1
11 A12Z

−1

−Z−1A21A
−1
11 Z−1


 ,

where Z = A22 −A21A
−1
11 A12. In this partitioning Z is called the Schur com-

plement of A11 in A.
If

A = [Xy]T [Xy]

and is partitioned as into XTX and yTy on the diagonal, and X is of full
column rank, then the Schur complement of XTX in [Xy]T [Xy] is

yTy − yTX(XTX)−1XTy.

This particular partitioning is useful in linear regression analysis, where this
Schur complement is the residual sum of squares.
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Gramian Matrices and Generalized Inverses

A matrix of the form ZTZ is called a Gramian matrix. Such matrices arise
often in statistical applications.

Some interesting properties of a Gramian matrix ZTZ are

• ZTZ is symmetric;
• ZTZ is of full rank if and only if Z is of full column rank, or, more generally,

rank(ZTZ) = rank(Z);

• ZTZ is nonnegative definite, and positive definite if and only if Z is of full
column rank;

• ZTZ = 0 =⇒ Z = 0.

The generalized inverses of ZTZ have useful properties. First, we see from
the definition, for any generalized inverse, (ZTZ)− that ((ZTZ)−)T is also a
generalized inverse of ZTZ. (Note that (ZTZ)− is not necessarily symmetric.)

Another useful property of a Gramian matrix is that for any matrices B
and C (that are conformable for the operations indicated),

BZTZ = CZTZ ⇐⇒ BZT = CZT.

The implication from right to left is obvious, and we can see the left to right
implication by writing

(BZTZ − CZTZ)(BT − CT) = (BZT − CZT)(BZT − CZT)T,

and then observing that if the left side is null, then so is the right side, and if
the right side is null, then BZT − CZT = 0. Similarly, we have

ZTZB = ZTZC ⇐⇒ ZTB = ZTC.

Also,
Z(ZTZ)−ZTZ = Z.

This means that (ZTZ)−ZT is a generalized inverse of Z
An important property of Z(ZTZ)−ZT is its invariance to the choice of

the generalized inverse of ZTZ. Suppose G is any generalized inverse of ZTZ.
Then we have

ZGZT = Z(ZTZ)−ZT;

that is, Z(ZTZ)−ZT is invariant to choice of generalized inverse.
The squared norm of the residual vector obtained from any generalized

inverse of ZTZ has some interesting properties. First, just by direct multi-
plication, we get the “Pythagorean property” of the norm of the predicted
values and the residuals:

‖X − Zβ‖2 = ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2
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where β̂ = (ZTZ)−ZTX for any generalized inverse. We also have

E(Zβ̂) = Zβ,

and
E((Zβ̂ − Zβ)T(Zβ̂ − Zβ)) = V(Zβ̂).

Because for any vector y, we have

‖y‖2 = yTy = tr(yTy),

we can derive an interesting expression for E(‖X − Zβ‖2) (Shao, p. 187):

E(‖X − Zβ̂‖2) = tr(E(‖X − Zβ̂‖2))
= tr(E((X − Zβ)T(X − Zβ))− E((Zβ̂ − Zβ)T(Zβ̂ − Zβ)))

= tr(V(X)−V(Zβ̂)
= nσ2 − tr((Z(ZTZ)−ZT)σ2I(Z(ZTZ)−ZT))
= σ2(n− tr((ZTZ)−ZTZ)).

The trace in the latter expression is the “regression degrees of freedom”.

The Moore-Penrose Inverse

The Moore-Penrose inverse, or the pseudoinverse, of Z has an interesting
relationship with a generalized inverse of ZTZ:

ZZ+ = Z(ZTZ)−ZT.

This can be established directly from the definition of the Moore-Penrose
inverse.

D.4.3 Vector/Matrix Derivatives and Integrals

The operations of differentiation and integration of vectors and matrices are
logical extensions of the corresponding operations on scalars. There are three
objects involved in this operation:

• the variable of the operation;
• the operand (the function being differentiated or integrated); and
• the result of the operation.

In the simplest case, all three of these objects are of the same type, and
they are scalars. If either the variable or the operand is a vector or a matrix,
however, the structure of the result may be more complicated. This statement
will become clearer as we proceed to consider specific cases.

In this section, we state or show the form that the derivative takes in
terms of simpler derivatives. We state high-level rules for the nature of the
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differentiation in terms of simple partial differentiation of a scalar with respect
to a scalar. We do not consider whether or not the derivatives exist. In general,
if the simpler derivatives we write that comprise the more complicated object
exist, then the derivative of that more complicated object exists. Once a shape
of the derivative is determined, definitions or derivations in ε-δ terms could
be given, but we will refrain from that kind of formal exercise. The purpose
of this section is not to develop a calculus for vectors and matrices but rather
to consider some cases that find wide applications in statistics. For a more
careful treatment of differentiation of vectors and matrices see Gentle (2007).

Basics of Differentiation

It is useful to recall the heuristic interpretation of a derivative. A derivative
of a function is the infinitesimal rate of change of the function with respect
to the variable with which the differentiation is taken. If both the function
and the variable are scalars, this interpretation is unambiguous. If, however,
the operand of the differentiation, Φ, is a more complicated function, say a
vector or a matrix, and/or the variable of the differentiation, Ξ, is a more
complicated object, the changes are more difficult to measure. Change in the
value both of the function,

δΦ = Φnew − Φold,

and of the variable,
δΞ = Ξnew −Ξold,

could be measured in various ways, by using various norms, for example. (Note
that the subtraction is not necessarily ordinary scalar subtraction.)

Furthermore, we cannot just divide the function values by δΞ. We do not
have a definition for division by that kind of object. We need a mapping,
possibly a norm, that assigns a positive real number to δΞ. We can define
the change in the function value as just the simple difference of the function
evaluated at the two points. This yields

lim
‖δΞ‖→0

Φ(Ξ + δΞ)− Φ(Ξ)
‖δΞ‖

. (D.91)

So long as we remember the complexity of δΞ, however, we can adopt a
simpler approach. Since for both vectors and matrices, we have definitions of
multiplication by a scalar and of addition, we can simplify the limit in the
usual definition of a derivative, δΞ → 0. Instead of using δΞ as the element
of change, we will use tΥ , where t is a scalar and Υ is an element to be added
to Ξ. The limit then will be taken in terms of t→ 0. This leads to

lim
t→0

Φ(Ξ + tΥ )− Φ(Ξ)
t

(D.92)

as a formula for the derivative of Φ with respect to Ξ.
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The expression (D.92) may be a useful formula for evaluating a derivative,
but we must remember that it is not the derivative. The type of object of
this formula is the same as the type of object of the function, Φ; it does not
accommodate the type of object of the argument, Ξ, unless Ξ is a scalar. As
we will see below, for example, if Ξ is a vector and Φ is a scalar, the derivative
must be a vector, yet in that case the expression (D.92) is a scalar.

The expression (D.91) is rarely directly useful in evaluating a derivative,
but it serves to remind us of both the generality and the complexity of the con-
cept. Both Φ and its arguments could be functions, for example. In functional
analysis, various kinds of functional derivatives are defined, such as a Gâteaux
derivative. These derivatives find applications in developing robust statistical
methods. Here we are just interested in the combinations of three possibilities
for Φ, namely scalar, vector, and matrix, and the same three possibilities for
Ξ and Υ .

Continuity

It is clear from the definition of continuity that for the derivative of a function
to exist at a point, the function must be continuous at that point. A function
of a vector or a matrix is continuous if it is continuous for each element
of the vector or matrix. Just as scalar sums and products are continuous,
vector/matrix sums and all of the types of vector/matrix products we have
discussed are continuous. A continuous function of a continuous function is
continuous.

Many of the vector/matrix functions we have discussed are clearly contin-
uous. For example, the Lp vector norms are continuous over the nonnegative
reals but not over the reals unless p is an even (positive) integer. The determi-
nant of a matrix is continuous, as we see from the definition of the determinant
and the fact that sums and scalar products are continuous. The fact that the
determinant is a continuous function immediately yields the result that co-
factors and hence the adjugate are continuous. From the relationship between
an inverse and the adjugate, we see that the inverse is a continuous function.

Notation and Properties

We write the differential operator with respect to the dummy variable x as
∂/∂x or ∂/∂xT. We usually denote differentiation using the symbol for “par-
tial” differentiation, ∂, whether the operator is written ∂xi for differentiation
with respect to a specific scalar variable or ∂x for differentiation with respect
to the array x that contains all of the individual elements. Sometimes, how-
ever, if the differentiation is being taken with respect to the whole array (the
vector or the matrix), we use the notation d/dx.

The operand of the differential operator ∂/∂x is a function of x. (If it
is not a function of x—that is, if it is a constant function with respect to
x— then the operator evaluates to 0.) The result of the operation, written
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∂f/∂x, is also a function of x, with the same domain as f , and we sometimes
write ∂f(x)/∂x to emphasize this fact. The value of this function at the fixed
point x0 is written as ∂f(x0)/∂x. (The derivative of the constant f(x0) is
identically 0, but it is not necessary to write ∂f(x)/∂x|x0 because ∂f(x0)/∂x
is interpreted as the value of the function ∂f(x)/∂x at the fixed point x0.)

If ∂/∂x operates on f , and f : S → T , then ∂/∂x : S → U . The nature
of S, or more directly the nature of x, whether it is a scalar, a vector, or
a matrix, and the nature of T determine the structure of the result U . For
example, if x is an n-vector and f(x) = xTx, then

f : IRn → IR

and
∂f/∂x : IRn → IRn,

as we will see. The outer product, h(x) = xxT, is a mapping to a higher rank
array, but the derivative of the outer product is a mapping to an array of the
same rank; that is,

h : IRn → IRn×n

and
∂h/∂x : IRn → IRn.

(Note that “rank” here means the number of dimensions. This term is often
used in this way in numerical software. See Gentle, 2007, page 5.)

As another example, consider g(·) = det(·), so

g : IRn×n 7→ IR.

In this case,
∂g/∂X : IRn×n 7→ IRn×n;

that is, the derivative of the determinant of a square matrix is a square matrix,
as we will see later.

Higher-order differentiation is a composition of the ∂/∂x operator with
itself or of the ∂/∂x operator and the ∂/∂xT operator. For example, consider
the familiar function in linear least squares

f(b) = (y −Xb)T(y −Xb).

This is a mapping from IRm to IR. The first derivative with respect to the m-
vector b is a mapping from IRm to IRm, namely 2XTXb− 2XTy. The second
derivative with respect to bT is a mapping from IRm to IRm×m, namely, 2XTX .

We see from expression (D.91) that differentiation is a linear operator; that
is, if D(Φ) represents the operation defined in expression (D.91), Ψ is another
function in the class of functions over which D is defined, and a is a scalar
that does not depend on the variable Ξ, then D(aΦ + Ψ) = aD(Φ) + D(Ψ).
This yields the familiar rules of differential calculus for derivatives of sums
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or constant scalar products. Other usual rules of differential calculus apply,
such as for differentiation of products and composition (the chain rule). We
can use expression (D.92) to work these out. For example, for the derivative
of the product ΦΨ , after some rewriting of terms, we have the numerator

Φ(Ξ)
(
Ψ(Ξ + tΥ )− Ψ(Ξ)

)

+Ψ(Ξ)
(
Φ(Ξ + tΥ )− Φ(Ξ)

)

+
(
Φ(Ξ + tΥ )− Φ(Ξ)

)(
Ψ(Ξ + tΥ )− Ψ(Ξ)

)
.

Now, dividing by t and taking the limit, assuming that as

t→ 0,

(Φ(Ξ + tΥ )− Φ(Ξ)) → 0,
we have

D(ΦΨ) = D(Φ)Ψ + ΦD(Ψ), (D.93)
where again D represents the differentiation operation.

Differentials

For a differentiable scalar function of a scalar variable, f(x), the differential
of f at c with increment u is udf/dx|c. This is the linear term in a truncated
Taylor series expansion:

f(c+ u) = f(c) + u
d
dx
f(c) + r(c, u). (D.94)

Technically, the differential is a function of both x and u, but the notation
df is used in a generic sense to mean the differential of f . For vector/matrix
functions of vector/matrix variables, the differential is defined in a similar
way. The structure of the differential is the same as that of the function; that
is, for example, the differential of a matrix-valued function is a matrix.

Types of Differentiation

In the following sections we consider differentiation with respect to different
types of objects first, and we consider differentiation of different types of
objects.

Differentiation with Respect to a Scalar

Differentiation of a structure (vector or matrix, for example) with respect to
a scalar is quite simple; it just yields the ordinary derivative of each element
of the structure in the same structure. Thus, the derivative of a vector or a
matrix with respect to a scalar variable is a vector or a matrix, respectively,
of the derivatives of the individual elements.

Differentiation with respect to a vector or matrix, which we will consider
below, is often best approached by considering differentiation with respect to
the individual elements of the vector or matrix, that is, with respect to scalars.
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Derivatives of Vectors with Respect to Scalars

The derivative of the vector y(x) = (y1, . . . , yn) with respect to the scalar x
is the vector

∂y/∂x = (∂y1/∂x, . . . , ∂yn/∂x). (D.95)

The second or higher derivative of a vector with respect to a scalar is
likewise a vector of the derivatives of the individual elements; that is, it is an
array of higher rank.

Derivatives of Matrices with Respect to Scalars

The derivative of the matrix Y (x) = (yij) with respect to the scalar x is the
matrix

∂Y (x)/∂x = (∂yij/∂x). (D.96)

The second or higher derivative of a matrix with respect to a scalar is
likewise a matrix of the derivatives of the individual elements.

Derivatives of Functions with Respect to Scalars

Differentiation of a function of a vector or matrix that is linear in the elements
of the vector or matrix involves just the differentiation of the elements, fol-
lowed by application of the function. For example, the derivative of a trace of
a matrix is just the trace of the derivative of the matrix. On the other hand,
the derivative of the determinant of a matrix is not the determinant of the
derivative of the matrix (see below).

Higher-Order Derivatives with Respect to Scalars

Because differentiation with respect to a scalar does not change the rank
of the object (“rank” here means rank of an array or “shape”), higher-order
derivatives ∂k/∂xk with respect to scalars are merely objects of the same rank
whose elements are the higher-order derivatives of the individual elements.

Differentiation with Respect to a Vector

Differentiation of a given object with respect to an n-vector yields a vector
for each element of the given object. The basic expression for the derivative,
from formula (D.92), is

lim
t→0

Φ(x + ty)− Φ(x)
t

(D.97)

for an arbitrary conformable vector y. The arbitrary y indicates that the
derivative is omnidirectional; it is the rate of change of a function of the
vector in any direction.
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Derivatives of Scalars with Respect to Vectors; The Gradient

The derivative of a scalar-valued function with respect to a vector is a vector
of the partial derivatives of the function with respect to the elements of the
vector. If f(x) is a scalar function of the vector x = (x1, . . . , xn),

∂f

∂x
=
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
, (D.98)

if those derivatives exist. This vector is called the gradient of the scalar-valued
function, and is sometimes denoted by gf (x) or ∇f(x), or sometimes just gf

or ∇f :

gf = ∇f =
∂f

∂x
. (D.99)

The notation gf or ∇f implies differentiation with respect to “all” arguments
of f , hence, if f is a scalar-valued function of a vector argument, they represent
a vector.

This derivative is useful in finding the maximum or minimum of a function.
Such applications arise throughout statistical and numerical analysis.

Inner products, bilinear forms, norms, and variances are interesting scalar-
valued functions of vectors. In these cases, the function Φ in equation (D.97)
is scalar-valued and the numerator is merely Φ(x + ty) − Φ(x). Consider,
for example, the quadratic form xTAx. Using equation (D.97) to evaluate
∂xTAx/∂x, we have

lim
t→0

(x+ ty)TA(x+ ty)− xTAx

t

= lim
t→0

xTAx+ tyTAx+ tyTATx+ t2yTAy − xTAx

t

= yT(A+AT)x,

(D.100)

for an arbitrary y (that is, “in any direction”), and so ∂xTAx/∂x = (A+AT)x.
This immediately yields the derivative of the square of the Euclidean norm

of a vector, ‖x‖22, and the derivative of the Euclidean norm itself by using
the chain rule. Other Lp vector norms may not be differentiable everywhere
because of the presence of the absolute value in their definitions. The fact that
the Euclidean norm is differentiable everywhere is one of its most important
properties.

The derivative of the quadratic form also immediately yields the derivative
of the variance. The derivative of the correlation, however, is slightly more
difficult because it is a ratio.

The operator ∂/∂xT applied to the scalar function f results in gT
f .

The second derivative of a scalar-valued function with respect to a vector
is a derivative of the first derivative, which is a vector. We will now consider
derivatives of vectors with respect to vectors.

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.4 Some Basics of Linear Algebra 439

Derivatives of Vectors with Respect to Vectors; The Jacobian

The derivative of an m-vector-valued function of an n-vector argument con-
sists of nm scalar derivatives. These derivatives could be put into various
structures. Two obvious structures are an n×m matrix and an m×n matrix.
For a function f : S ⊂ IRn → IRm, we define ∂fT/∂x to be the n ×m ma-
trix, which is the natural extension of ∂/∂x applied to a scalar function, and
∂f/∂xT to be its transpose, the m×n matrix. Although the notation ∂fT/∂x
is more precise because it indicates that the elements of f correspond to the
columns of the result, we often drop the transpose in the notation. We have

∂f

∂x
=
∂fT

∂x
by convention

=
[
∂f1
∂x

. . .
∂fm

∂x

]

=




∂f1
∂x1

∂f2
∂x1
· · · ∂fm

∂x1

∂f1
∂x2

∂f2
∂x2
· · · ∂fm

∂x2

· · ·
∂f1
∂xn

∂f2
∂xn
· · · ∂fm

∂xn




(D.101)

if those derivatives exist. This derivative is called the matrix gradient and
is denoted by Gf or ∇f for the vector-valued function f . (Note that the ∇
symbol can denote either a vector or a matrix, depending on whether the
function being differentiated is scalar-valued or vector-valued.)

The m × n matrix ∂f/∂xT = (∇f)T is called the Jacobian of f and is
denoted by Jf :

Jf = GT
f = (∇f)T. (D.102)

The absolute value of the determinant of the Jacobian appears in integrals
involving a change of variables. (Occasionally, the term “Jacobian” is used
to refer to the absolute value of the determinant rather than to the matrix
itself.)

To emphasize that the quantities are functions of x, we sometimes write
∂f(x)/∂x, Jf (x), Gf (x), or ∇f(x).

Derivatives of Matrices with Respect to Vectors

The derivative of a matrix with respect to a vector is a three-dimensional
object that results from applying equation (D.98) to each of the elements of
the matrix. For this reason, it is simpler to consider only the partial derivatives
of the matrix Y with respect to the individual elements of the vector x; that
is, ∂Y/∂xi. The expressions involving the partial derivatives can be thought
of as defining one two-dimensional layer of a three-dimensional object.
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Using the rules for differentiation of powers that result directly from the
definitions, we can write the partial derivatives of the inverse of the matrix Y
as

∂

∂x
Y −1 = −Y −1

(
∂

∂x
Y

)
Y −1. (D.103)

Beyond the basics of differentiation of constant multiples or powers of a
variable, the two most important properties of derivatives of expressions are
the linearity of the operation and the chaining of the operation. These yield
rules that correspond to the familiar rules of the differential calculus. A simple
result of the linearity of the operation is the rule for differentiation of the trace:

∂

∂x
tr(Y ) = tr

(
∂

∂x
Y

)
.

Higher-Order Derivatives with Respect to Vectors; The Hessian

Higher-order derivatives are derivatives of lower-order derivatives. As we have
seen, a derivative of a given function with respect to a vector is a more compli-
cated object than the original function. The simplest higher-order derivative
with respect to a vector is the second-order derivative of a scalar-valued func-
tion. Higher-order derivatives may become uselessly complicated.

In accordance with the meaning of derivatives of vectors with respect to
vectors, the second derivative of a scalar-valued function with respect to a
vector is a matrix of the partial derivatives of the function with respect to the
elements of the vector. This matrix is called the Hessian, and is denoted by
Hf or sometimes by ∇∇f or ∇2f :

Hf =
∂2f

∂x∂xT
=




∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xm

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xm

· · ·
∂2f

∂xm∂x1

∂2f
∂xm∂x2

· · · ∂2f
∂x2

m



. (D.104)

To emphasize that the Hessian is a function of x, we sometimes write
Hf (x) or ∇∇f(x) or ∇2f(x).

Summary of Derivatives with Respect to Vectors

As we have seen, the derivatives of functions are complicated by the problem
of measuring the change in the function, but often the derivatives of functions
with respect to a vector can be determined by using familiar scalar differen-
tiation. In general, we see that

• the derivative of a scalar (a quadratic form) with respect to a vector is a
vector and
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• the derivative of a vector with respect to a vector is a matrix.

Table D.2 lists formulas for the vector derivatives of some common expres-
sions. The derivative ∂f/∂xT is the transpose of ∂f/∂x.

Table D.2. Formulas for Some Vector Derivatives

f(x) ∂f/∂x

ax a
bTx b
xTb bT

xTx 2x
xxT 2xT

bTAx ATb
xTAb bTA
xTAx (A + AT)x

2Ax, if A is symmetric
exp(− 1

2
xTAx) − exp(− 1

2
xTAx)Ax, if A is symmetric

‖x‖2
2 2x

V(x) 2x/(n − 1)

In this table, x is an n-vector, a is a constant scalar, b is a
constant conformable vector, and A is a constant conformable
matrix.

Differentiation with Respect to a Matrix

The derivative of a function with respect to a matrix is a matrix with the same
shape consisting of the partial derivatives of the function with respect to the
elements of the matrix. This rule defines what we mean by differentiation with
respect to a matrix.

By the definition of differentiation with respect to a matrix X , we see that
the derivative ∂f/∂XT is the transpose of ∂f/∂X . For scalar-valued functions,
this rule is fairly simple. For example, consider the trace. If X is a square ma-
trix and we apply this rule to evaluate ∂ tr(X)/∂X , we get the identity ma-
trix, where the nonzero elements arise only when j = i in ∂(

∑
xii)/∂xij .

If AX is a square matrix, we have for the (i, j) term in ∂ tr(AX)/∂X ,
∂
∑

i

∑
k aikxki/∂xij = aji, and so ∂ tr(AX)/∂X = AT, and likewise, in-

specting ∂
∑

i

∑
k xikxki/∂xij , we get ∂ tr(XTX)/∂X = 2XT. Likewise for

the scalar-valued aTXb, where a and b are conformable constant vectors, for
∂
∑

m(
∑

k akxkm)bm/∂xij = aibj , so ∂aTXb/∂X = abT.
Now consider ∂|X |/∂X . Using an expansion in cofactors, the only term

in |X | that involves xij is xij(−1)i+j |X−(i)(j)|, and the cofactor (x(ij)) =

A Companion for Mathematical Statistics c©2008 James E. Gentle



442 Appendix D. Basic Mathematical Ideas and Tools

(−1)i+j |X−(i)(j)| does not involve xij . Hence, ∂|X |/∂xij = (x(ij)), and so
∂|X |/∂X = (adj(X))T. We can write this as ∂|X |/∂X = |X |X−T.

The chain rule can be used to evaluate ∂ log |X |/∂X .
Applying the rule stated at the beginning of this section, we see that the

derivative of a matrix Y with respect to the matrix X is

dY
dX

= Y ⊗ d
dX

. (D.105)

Table D.3 lists some formulas for the matrix derivatives of some common
expressions. The derivatives shown in Table D.3 can be obtained by evaluating
expression (D.105), possibly also using the chain rule.

Table D.3. Formulas for Some Matrix Derivatives

General X

f(X) ∂f/∂X

aTXb abT

tr(AX) AT

tr(XTX) 2XT

BX In ⊗ B
XC CT ⊗ Im

BXC CT ⊗ B

Square and Possibly Invertible X

f(X) ∂f/∂X

tr(X) In

tr(Xk) kXk−1

tr(BX−1C) −(X−1CBX−1)T

|X| |X|X−T

log |X| X−T

|X|k k|X|kX−T

BX−1C −(X−1C)T ⊗ BX−1

In this table, X is an n × m matrix, a is a
constant n-vector, b is a constant m-vector,
A is a constant m×n matrix, B is a constant
p×n matrix, and C is a constant m×q matrix.

There are some interesting applications of differentiation with respect to
a matrix in maximum likelihood estimation. Depending on the structure of
the parameters in the distribution, derivatives of various types of objects may
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be required. For example, the determinant of a variance-covariance matrix, in
the sense that it is a measure of a volume, often occurs as a normalizing factor
in a probability density function; therefore, we often encounter the need to
differentiate a determinant with respect to a matrix.

Optimization of Functions

Because a derivative measures the rate of change of a function, a point at which
the derivative is equal to 0 is a stationary point, which may be a maximum
or a minimum of the function. Differentiation is therefore a very useful tool
for finding the optima of functions, and so, for a given function f(x), the
gradient vector function, gf (x), and the Hessian matrix function, Hf (x), play
important roles in optimization methods.

We may seek either a maximum or a minimum of a function. Since max-
imizing the scalar function f(x) is equivalent to minimizing −f(x), we can
always consider optimization of a function to be minimization of a function.
Thus, we generally use terminology for the problem of finding a minimum of
a function. Because the function may have many ups and downs, we often use
the phrase local minimum (or local maximum or local optimum).

Except in the very simplest of cases, the optimization method must be
iterative, moving through a sequence of points, x(0), x(1), x(2), . . ., that ap-
proaches the optimum point arbitrarily closely. At the point x(k), the direc-
tion of steepest descent is clearly −gf (x(k)), but because this direction may
be continuously changing, the steepest descent direction may not be the best
direction in which to seek the next point, x(k+1).

In the following subsection we describe some specific methods of optimiza-
tion in the context of vector/matrix differentiation. We will discuss optimiza-
tion in somewhat more detail in Section D.5.

Stationary Points of Functions

The first derivative helps only in finding a stationary point. The matrix of
second derivatives, the Hessian, provides information about the nature of the
stationary point, which may be a local minimum or maximum, a saddlepoint,
or only an inflection point.

The so-called second-order optimality conditions are the following (see a
general text on optimization for their proofs).

• If (but not only if) the stationary point is a local minimum, then the
Hessian is nonnegative definite.

• If the Hessian is positive definite, then the stationary point is a local
minimum.

• Likewise, if the stationary point is a local maximum, then the Hessian
is nonpositive definite, and if the Hessian is negative definite, then the
stationary point is a local maximum.
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• If the Hessian has both positive and negative eigenvalues, then the sta-
tionary point is a saddlepoint.

Newton’s Method

We consider a differentiable scalar-valued function of a vector argument, f(x).
By a Taylor series about a stationary point x∗, truncated after the second-
order term

f(x) ≈ f(x∗) + (x− x∗)Tgf

(
x∗
)

+
1
2
(x− x∗)THf

(
x∗
)
(x − x∗), (D.106)

because gf

(
x∗
)

= 0, we have a general method of finding a stationary point
for the function f(·), called Newton’s method. If x is an m-vector, gf (x) is an
m-vector and Hf (x) is an m×m matrix.

Newton’s method is to choose a starting point x(0), then, for k = 0, 1, . . .,
to solve the linear systems

Hf

(
x(k)

)
p(k+1) = −gf

(
x(k)

)
(D.107)

for p(k+1), and then to update the point in the domain of f(·) by

x(k+1) = x(k) + p(k+1). (D.108)

The two steps are repeated until there is essentially no change from one iter-
ation to the next. If f(·) is a quadratic function, the solution is obtained in
one iteration because equation (D.106) is exact. These two steps have a very
simple form for a function of one variable.

Linear Least Squares

In a least squares fit of a linear model

y = Xβ + ε, (D.109)

where y is an n-vector, X is an n×m matrix, and β is an m-vector, we replace
β by a variable b, define the residual vector

r = y −Xb, (D.110)

and minimize its Euclidean norm,

f(b) = rTr, (D.111)

with respect to the variable b. We can solve this optimization problem by
taking the derivative of this sum of squares and equating it to zero. Doing
this, we get
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d(y −Xb)T(y −Xb)
db

=
d(yTy − 2bTXTy + bTXTXb)

db

= −2XTy + 2XTXb

= 0,

which yields the normal equations

XTXb = XTy.

The solution to the normal equations is a stationary point of the func-
tion (D.111). The Hessian of (y −Xb)T(y −Xb) with respect to b is 2XTX
and

XTX � 0.

Because the matrix of second derivatives is nonnegative definite, the value of
b that solves the system of equations arising from the first derivatives is a
local minimum of equation (D.111).

Quasi-Newton Methods

All gradient-descent methods determine the path p(k) to take in the kth step
by a system of equations of the form

R(k)p(k) = −gf

(
x(k−1)

)
.

In the steepest-descent method, R(k) is the identity, I , in these equations.
For functions with eccentric contours, the steepest-descent method traverses
a zigzag path to the minimum. In Newton’s method, R(k) is the Hessian
evaluated at the previous point, Hf

(
x(k−1)

)
, which results in a more direct

path to the minimum. Aside from the issues of consistency of the resulting
equation and the general problems of reliability, a major disadvantage of New-
ton’s method is the computational burden of computing the Hessian, which
requires O(m2) function evaluations, and solving the system, which requires
O(m3) arithmetic operations, at each iteration.

Instead of using the Hessian at each iteration, we may use an approxima-
tion, B(k). We may choose approximations that are simpler to update and/or
that allow the equations for the step to be solved more easily. Methods us-
ing such approximations are called quasi-Newton methods or variable metric
methods.

Because

Hf

(
x(k)

)(
x(k) − x(k−1)

)
≈ gf

(
x(k)

)
− gf

(
x(k−1)

)
,

we choose B(k) so that

B(k)
(
x(k) − x(k−1)

)
= gf

(
x(k)

)
− gf

(
x(k−1)

)
. (D.112)
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This is called the secant condition.
We express the secant condition as

B(k)s(k) = y(k), (D.113)

where
s(k) = x(k) − x(k−1)

and
y(k) = gf (x(k))− gf (x(k−1)),

as above.
The system of equations in (D.113) does not fully determine B(k) of course.

Because B(k) should approximate the Hessian, we may require that it be
symmetric and positive definite.

The most common approach in quasi-Newton methods is first to choose
a reasonable starting matrix B(0) and then to choose subsequent matrices by
additive updates,

B(k+1) = B(k) +B(k)
a , (D.114)

subject to preservation of symmetry and positive definiteness. An approximate
Hessian B(k) may be used for several iterations before it is updated; that is,
B

(k)
a may be taken as 0 for several successive iterations.

Multiparameter Likelihood Functions

For a sample y = (y1, . . . , yn) from a probability distribution with probability
density function p(·; θ), the likelihood function is

L(θ; y) =
n∏

i=1

p(yi; θ), (D.115)

and the log-likelihood function is l(θ; y) = log(L(θ; y)). It is often easier to
work with the log-likelihood function.

The log-likelihood is an important quantity in information theory and
in unbiased estimation. If Y is a random variable with the given probability
density function with the r-vector parameter θ, the Fisher information matrix
that Y contains about θ is the r × r matrix

I(θ) = Covθ

(
∂l(t, Y )
∂ti

,
∂l(t, Y )
∂tj

)
, (D.116)

where Covθ represents the variance-covariance matrix of the functions of Y
formed by taking expectations for the given θ. (I use different symbols here
because the derivatives are taken with respect to a variable, but the θ in Covθ

cannot be the variable of the differentiation. This distinction is somewhat
pedantic, and sometimes I follow the more common practice of using the
same symbol in an expression that involves both Covθ and ∂l(θ, Y )/∂θi.)
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For example, if the distribution is the d-variate normal distribution with
mean d-vector µ and d× d positive definite variance-covariance matrix Σ, the
likelihood, equation (D.115), is

L(µ,Σ; y) =
1(

(2π)d/2|Σ|1/2
)n exp

(
−

1
2

n∑

i=1

(yi − µ)TΣ−1(yi − µ)

)
.

(Note that |Σ|1/2 = |Σ 1
2 |. The square root matrix Σ

1
2 is often useful in

transformations of variables.)
Anytime we have a quadratic form that we need to simplify, we should

recall the useful fact: xTAx = tr(AxxT). Using this, and because, as is often
the case, the log-likelihood is easier to work with, we write

l(µ,Σ; y) = c− n

2
log |Σ| − 1

2
tr

(
Σ−1

n∑

i=1

(yi − µ)(yi − µ)T
)
, (D.117)

where we have used c to represent the constant portion. Next, we use the
“Pythagorean equation” on the outer product to get

l(µ,Σ; y) = c− n

2
log |Σ| − 1

2
tr

(
Σ−1

n∑

i=1

(yi − ȳ)(yi − ȳ)T
)

−
n

2
tr
(
Σ−1(ȳ − µ)(ȳ − µ)T

)
. (D.118)

In maximum likelihood estimation, we seek the maximum of the likelihood
function (D.115) with respect to θ while we consider y to be fixed. If the
maximum occurs within an open set and if the likelihood is differentiable, we
might be able to find the maximum likelihood estimates by differentiation.
In the log-likelihood for the d-variate normal distribution, we consider the
parameters µ and Σ to be variables. To emphasize that perspective, we replace
the parameters µ and Σ by the variables µ̂ and Σ̂. Now, to determine the
maximum, we could take derivatives with respect to µ̂ and Σ̂, set them equal
to 0, and solve for the maximum likelihood estimates. Some subtle problems
arise that depend on the fact that for any constant vector a and scalar b,
Pr(aTX = b) = 0, but we do not interpret the likelihood as a probability.

Often in working out maximum likelihood estimates, students immediately
think of differentiating, setting to 0, and solving. As noted above, this requires
that the likelihood function be differentiable, that it be concave, and that the
maximum occur at an interior point of the parameter space. Keeping in mind
exactly what the problem is — one of finding a maximum— often leads to the
correct solution more quickly.

Vector Random Variables

The simplest kind of vector random variable is one whose elements are in-
dependent. Such random vectors are easy to work with because the elements
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can be dealt with individually, but they have limited applications. More in-
teresting random vectors have a multivariate structure that depends on the
relationships of the distributions of the individual elements. The simplest non-
degenerate multivariate structure is of second degree; that is, a covariance or
correlation structure. The probability density of a random vector with a mul-
tivariate structure generally is best represented by using matrices. In the case
of the multivariate normal distribution, the variances and covariances together
with the means completely characterize the distribution. For example, the fun-
damental integral that is associated with the d-variate normal distribution,
sometimes called Aitken’s integral, equation (D.36) on page 362, provides that
constant. The rank of the integral is the same as the rank of the integrand.
(“Rank” is used here in the sense of “number of dimensions”.) In this case,
the integrand and the integral are scalars.

Equation (D.36) is a simple result that follows from the evaluation of the
individual single integrals after making the change of variables yi = xi − µi.
If Σ−1 is positive definite, Aitken’s integral can also be evaluated by writ-
ing PTΣ−1P = I for some nonsingular matrix P . Now, after the transla-
tion y = x − µ, which leaves the integral unchanged, we make the linear
change of variables z = P−1y, with the associated Jacobian |det(P )|. From
PTΣ−1P = I , we have |det(P )| = (det(Σ))1/2 = |Σ|1/2 because the determi-
nant is positive. Aitken’s integral therefore is

∫

IRd

e−yTΣ−1y/2 dy =
∫

IRd

e−(Pz)TΣ−1Pz/2 (det(Σ))1/2dz

=
∫

IRd

e−zTz/2 dz (det(Σ))1/2

= (2π)d/2(det(Σ))1/2.

The expected value of a function f of the vector-valued random variable
X is

E(f(X)) =
∫

D(X)

f(x)pX (x) dx, (D.119)

where D(X) is the support of the distribution, pX(x) is the probability den-
sity function evaluated at x, and x dx are dummy vectors whose elements
correspond to those of X . Interpreting

∫
D(X) dx as a nest of univariate inte-

grals, the result of the integration of the vector f(x)pX(x) is clearly of the
same type as f(x). For example, if f(x) = x, the expectation is the mean,
which is a vector. For the normal distribution, we have

E(X) = (2π)−d/2|Σ|−1/2

∫

IRd

xe−(x−µ)TΣ−1(x−µ)/2 dx

= µ.

For the variance of the vector-valued random variable X ,

V(X),
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the function f in expression (D.119) above is the matrix (X − E(X))(X −
E(X))T, and the result is a matrix. An example is the normal variance:

V(X) = E
(
(X − E(X))(X − E(X))T

)

= (2π)−d/2|Σ|−1/2

∫

IRd

(
(x− µ)(x − µ)T

)
e−(x−µ)TΣ−1(x−µ)/2 dx

= Σ.

D.4.4 Least Squares Solutions of Overdetermined Linear Systems

Consider the linear system
x = Zb,

where x and Z are given, b is unknown, and x ∈ IRn, Z ∈ IRn×p, and b ∈ IRp.
Under certain conditions for x and Z, there is no value of b that makes

the system a system of equations. We then write the system as

x ≈ Zb,

or
x = Zb+ r.

A common example in which there may not be a solution is when n > p.
(In such a case, there will not be a solution is rank([Z|b]) > p.) When there
is no solution, we may seek a value of b such that x − Zb is small. The most
common definition of “small” in this setting is small in ‖x−Zb‖2. (We usually
drop the subscript on the norm.) The solution in that case, that is, the value
of b such that ‖x− Zb‖ is minimized, is the “least squares” solution.

At the minimum of ‖x− Zb‖, we have the “normal equations”

ZTZb = ZTx.

The coefficient matrix in these equations has a special form; it is a Gramian
matrix. A unique solution to these equations is

b = (ZTZ)+ZTx;

that is, the solution arising from the Moore-Penrose inverse.

D.4.5 Linear Statistical Models

In statistical applications, we often assume that the distribution of some ran-
dom variable depends in a linear fashion on some covariate. This setup leads
to linear regression analysis and to the analysis of variance in general linear
classification models.

Shao expresses the linear statistical model as
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X = Zβ + ε,

with various assumptions about the distribution of ε.
In all useful assumptions about the distribution of ε, we have E(ε) = 0, so

under any of the assumptions

E(X) = Zβ.

In statistical inference, we can think of β either as an unobservable random
variable or as an unknown constant. If we think of it as an unknown constant
and we want to determine a value of it that optimizes some objective function
(such as a likelihood or a sum of squares), then we first must substitute a vari-
able for the constant. (Although we often skip over this step, it is important
conceptually.) In the context of the least squares discussion above, we may
consider ‖x − Zb‖2, where the variable b is in place of the unknown model
parameter β.

Shao uses β̂ to denote any solution to the normal equations formed from
the linear system X = Zβ, that is

β̂ = (ZTZ)−ZTX.

Notice that if Z is not of full rank, β̂ is not unique. (Other authors Use the no-
tation β̂ to represent the unique solution to the normal equations arising from
the Moore-Penrose inverse. We will discuss that particular solution below.)

Linear U-Estimability

One of the most important questions for statistical inference involves esti-
mating or testing some linear combination of the elements of the parameter
β; for example, we may wish to estimate β1 − β2 or to test the hypothesis
that β1− β2 = c1 for some constant c1. In general, we will consider the linear
combination lTβ. Whether or not it makes sense to estimate such a linear
combination depends on whether there is a function of the observable random
variable X such that g(E(X)) = lTβ.

We generally restrict our attention to linear functions of E(X) and formally
define a linear combination lTβ to be (linearly) U-estimable if there exists a
vector t such that

tTE(X) = lTβ

for any β.
It is clear that if X is of full column rank, lTβ is linearly estimable for any

l or, more generally, lTβ is linearly estimable for any l ∈ span(ZT). (The t
vector is just the normalized coefficients expressing l in terms of the columns
of Z.)

Estimability depends only on the simplest distributional assumption about
the model; that is, that E(ε) = 0. Under this assumption, we see that the
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estimator β̂ based on the least squares fit of β is unbiased for the linearly
estimable function lTβ. Because l ∈ span(ZT) = span(ZTZ), we can write
l = ZTZt̃. Now, we have

E(lTβ̂) = E(lT(ZTZ)+ZTX)
= t̃TZTZ(ZTZ)+ZTZβ

= t̃TZTZβ

= lTβ.

Although we have been taking β̂ to be (ZTZ)+ZTX , the equations above
follow for other least squares fits, b = (ZTZ)−ZTX , for any generalized in-
verse. In fact, the estimator of lTβ is invariant to the choice of the generalized
inverse. This is because if b = (ZTZ)−ZTX , we have ZTZb = ZTX , and so

lTβ̂ − lTb = t̃TZTZ(β̂ − b) = t̃T(ZTX − ZTX) = 0.

The Gauss-Markov Theorem

The Gauss-Markov theorem provides a restricted optimality property for es-
timators of estimable functions of β under the condition that E(ε) = 0 and
V(ε) = σ2I ; that is, in addition to the assumption of zero expectation, which
we have used above, we also assume that the elements of ε have constant vari-
ance and that their covariances are zero. (We are not assuming independence
or normality.)

Given X = Zβ + ε and E(ε) = 0 and V(ε) = σ2I , the Gauss-Markov
theorem states that lTβ̂ is the unique best linear unbiased estimator (BLUE)
of the estimable function lTβ.

“Linear” estimator in this context means a linear combination of X ; that
is, an estimator in the form aTX . It is clear that lTβ̂ is linear, and we have
already seen that it is unbiased for lTβ. “Best” in this context means that
its variance is no greater than any other estimator that fits the requirements.
Hence, to prove the theorem, first let aTX be any unbiased estimator of lTβ,
and write l = ZTZt̃ as above. Because aTX is unbiased for any β, as we saw
above, it must be the case that aTZ = lT. Recalling that ZTZβ̂ = ZTX , we
have

V(aTX) = V(aTX − lTβ̂ + lTβ̂)

= V(aTX − t̃TZTX + lTβ̂)

= V(aTX − t̃TZTX) + V(lTβ̂) + 2Cov(aTX − t̃TZTX, t̃TZTX).

Now, under the assumptions on the variance-covariance matrix of ε, which is
also the (conditional, given Z) variance-covariance matrix of X , we have
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Cov(aTX − t̃TZTX, lTβ̂) = (aT − t̃TZT)σ2IZt̃

= (aTZ − t̃TZTZ)σ2It̃

= (lT − lT)σ2It̃

= 0;

that is,
V(aTX) = V(aTX − t̃TZTX) + V(lTβ̂).

This implies that
V(aTX) ≥ V(lTβ̂);

that is, lTβ̂ has minimum variance among the linear unbiased estimators of
lTβ. To see that it is unique, we consider the case in which V(aTX) = V(lTβ̂);
that is, V(aTX − t̃TZTX) = 0. For this variance to equal 0, it must be the
case that aT − t̃TZT = 0 or aTX = t̃TZTX = lTβ̂; that is, lTβ̂ is the unique
linear unbiased estimator that achieves the minimum variance.

If we assume further that ε ∼ Nn(0, σ2I), we can show that lTβ̂ is the
uniformly minimum variance unbiased estimator (UMVUE) for lTβ. This is
because (ZTX, (X − Zβ̂)T(X − Zβ̂)) is complete and sufficient for (β, σ2).
This line of reasoning also implies that (X − Zβ̂)T(X − Zβ̂)/(n− r), where
r = rank(Z), is UMVUE for σ2.

Optimal Properties of the Moore-Penrose Inverse

The solution corresponding to the Moore-Penrose inverse is unique because
that generalized inverse is unique.

That solution is interesting for another reason, however: the β̂ from the
Moore-Penrose inverse has the minimum L2-norm of all solutions.

To see that this solution has minimum norm, first factor Z, as

Z = QRUT,

and form the Moore-Penrose inverse as

Z+ = U

[
R−1

1 0
0 0

]
QT.

Now let
β̂ = Z+X.

This is a least squares solution (that is, we have chosen a specific least squares
solution).

Now, let

QTX =
(
c1
c2

)
,

where c1 has exactly r elements and c2 has n− r elements, and let
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UTb =
(
t1
t2

)
,

where b is the variable in the norm ‖X −Zb‖2 that we seek to minimize, and
where t1 has r elements.

Because multiplication by an orthogonal matrix does not change the norm,
we have

‖X − Zb‖2 = ‖QT(X − ZUUTb)‖2

=
∣∣∣∣
∣∣∣∣
(
c1
c2

)
−
[
R1 0
0 0

](
t1
t2

)∣∣∣∣
∣∣∣∣
2

=
∣∣∣∣
∣∣∣∣
(
c1 −R1t1

c2

)∣∣∣∣
∣∣∣∣
2

.

The residual norm is minimized for t1 = R−1
1 c1 and t2 arbitrary. However, if

t2 = 0, then ‖t‖2 is also minimized. Because UTb = t and U is orthogonal,
‖b‖2 = ‖t‖2 = ‖t1‖2 + ‖t2‖2, and so with t2 = 0, that is, with b = β̂, ‖β̂‖2 is
the minimum among the norms of all least squares solutions, ‖b‖2.

D.4.6 Cochran’s Theorem

There are various facts that are sometimes called Cochran’s theorem. The
simplest one concerns k symmetric idempotent n × n matrices, A1, . . . , Ak,
such that

In = A1 + · · ·+Ak.

Under these conditions, we have

AiAj = 0 for all i 6= j.

Proof
For an arbitrary j, for some matrix V , we have

V TAjV = diag(Ir , 0),

where r = rank(Aj). Now

In = V TInV

=
k∑

i=1

V TAiV

= diag(Ir, 0) +
∑

i6=j

V TAiV,

which implies
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∑

i6=j

V TAiV = diag(0, In−r).

Now for each i, V TAiV is idempotent, and because the diagonal elements of
a symmetric idempotent matrix are all nonnegative, and hence the equation
implies implies that for each i 6= j, the first r diagonal elements are 0. Fur-
thermore, since these diagonal elements are 0, all elements in the first r rows
and columns are 0. We have, therefore, for each i 6= j,

V TAiV = diag(0, Bi)

for some (n − r) × (n − r) symmetric idempotent matrix Bi. Now, for any
i 6= j, consider AiAj and form V TAiAjV . We have

V TAiAjV = (V TAiV )(V TAjV )
= diag(0, Bi)diag(Ir , 0)
= 0.

Because V is nonsingular, this implies the desired conclusion; that is, that
AiAj = 0 for any i 6= j.

We can now extend this result to an idempotent matrix in place of I ; that
is, for an idempotent matrix A with A = A1 + · · · + Ak. Let A1, . . . , Ak be
n× n symmetric matrices and let

A = A1 + · · ·+Ak.

Then any two of the following conditions imply the third one:

(a). A is idempotent.
(b). Ai is idempotent for i = 1, . . . , k.
(c). AiAj = 0 for all i 6= j.

This is also called Cochran’s theorem. (The theorem also applies to non-
symmetric matrices if condition (c) is augmented with the requirement that
rank(A2

i ) = rank(Ai) for all i. We will restrict our attention to symmetric
matrices, however, because in most applications of these results, the matrices
are symmetric.)

First, if we assume properties (a) and (b), we can show that property (c)
follows for the special case A = I .

Now, let us assume properties (b) and (c) and show that property (a)
holds. With properties (b) and (c), we have

AA = (A1 + · · ·+Ak) (A1 + · · ·+Ak)

=
k∑

i=1

AiAi +
∑

i6=j

k∑

j=1

AiAj

=
k∑

i=1

Ai

= A.
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Hence, we have property (a); that is, A is idempotent.
Finally, let us assume properties (a) and (c). Property (b) follows imme-

diately from
A2

i = AiAi = AiA = AiAA = A2
iA = A3

i

and the fact that Ap+1 = Ap =⇒ A is idempotent.
Any two of the properties (a) through (c) also imply a fourth property for

A = A1 + · · ·+Ak when the Ai are symmetric:

(d). rank(A) = rank(A1) + · · ·+ rank(Ak).

We first note that any two of properties (a) through (c) imply the third one,
so we will just use properties (a) and (b). Property (a) gives

rank(A) = tr(A) = tr(A1 + · · ·+Ak) = tr(A1) + · · ·+ tr(Ak),

and property (b) states that the latter expression is rank(A1)+ · · ·+rank(Ak),
thus yielding property (d).

There is also a partial converse: properties (a) and (d) imply the other
properties.

One of the most important special cases of Cochran’s theorem is when
A = I in the sum:

In = A1 + · · ·+Ak.

The identity matrix is idempotent, so if rank(A1) + · · · + rank(Ak) = n, all
the properties above hold. (See Gentle, 2007, pages 283–285.)

The most important statistical application of Cochran’s theorem is for the
distribution of quadratic forms of normally distributed random vectors.

In applications of linear models, a quadratic form involving Y is often
partitioned into a sum of quadratic forms. Assume that Y is distributed as
Nd(µ, Id), and for i = 1, . . . k, let Ai be a d × d symmetric matrix with rank
ri such that

∑
i Ai = Id. This yields a partition of the total sum of squares

Y TY into k components:

Y TY = Y TA1Y + · · ·+ Y TAkY.

One of the most important results in the analysis of linear models states
that the Y TAiY have independent noncentral chi-squared distributions χ2

ri
(δi)

with δi = µTAiµ if and only if
∑

i ri = d.
This distribution result is also called Cochran’s theorem, and it is implied

by the results above. (See Gentle, 2007, pages 324–325.)

D.4.7 Transition Matrices

An important use of matrices in statistics is in models of transitions of a sto-
chastic process from one state to another. In a discrete-state Markov chain,
for example, the probability of going from state j to state i may be repre-
sented as elements of a transition matrix, which can any square matrix with
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nonnegative elements and such that the sum of the elements in any column
is 1. Any square matrix with nonnegative elements whose columns each sum
to 1 is called a right stochastic matrix.

(Note that many people who work with Markov chains define the transition
matrix as the transpose of K above. This is not a good idea, because in ap-
plications with state vectors, the state vectors would naturally have to be row
vectors. Until about the middle of the twentieth century, many mathematicians
thought of vectors as row vectors; that is, a system of linear equations would be
written as xA = b. Nowadays, almost all mathematicians think of vectors as
column vectors in matrix algebra. Even in some of my previous writings, e.g.,
Gentle, 2007, I have called the transpose of K the transition matrix, and I
defined a stochastic matrix in terms of the transpose. I think that it is time to
adopt a notation that is more consistent with current matrix/vector notation.
This is merely a change in notation; no concepts require any change.)

There are various properties of transition matrices that are important for
studying Markov chains.

Irreducible Matrices

Any nonnegative square matrix that can be permuted into the form
[
B11 B12

0 B22

]

with square diagonal submatrices is said to be reducible; a matrix that can-
not be put into that form is irreducible. An alternate term for reducible is
decomposable, with the associated term indecomposable.

We see from the definition that a positive matrix is irreducible.
We now consider irreducible square nonnegative matrices. This class in-

cludes positive matrices.
Irreducible matrices have several interesting properties. An n×n nonneg-

ative matrix A is irreducible if and only if (I + A)n−1 is a positive matrix;
that is,

A is irreducible⇐⇒ (I +A)n−1 > 0. (D.120)

To see this, first assume (I+A)n−1 > 0; thus, (I+A)n−1 clearly is irreducible.
If A is reducible, then there exists a permutation matrix Eπ such that

ET
πAEπ =

[
B11 B12

0 B22

]
,

and so

ET
π (I +A)n−1Eπ =

(
ET

π (I +A)Eπ

)n−1

=
(
I +ET

πAEπ

)n−1

=
[
In1 + B11 B12

0 In2 +B22

]
.
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This decomposition of (I+A)n−1 cannot exist because it is irreducible; hence
we conclude A is irreducible if (I+A)n−1 > 0. We can see that (I+A)n−1 must
be a positive matrix by first observing that the (i, j)th element of (I +A)n−1

can be expressed as

(
(I +A)n−1

)
ij

=

(
n−1∑

k=0

(
n− 1
k

)
Ak

)

ij

. (D.121)

Hence, for k = 1, . . . , n − 1, we consider the (i, j)th entry of Ak . Let a(k)
ij

represent this quantity.
Given any pair (i, j), for some l1, l2, . . . , lk−1, we have

a
(k)
ij =

∑

l1,l2,...,lk−1

a1l1al1l2 · · · alk−1j .

Now a
(k)
ij > 0 if and only if a1l1 , al1l2 , . . . , alk−1j are all positive; that is, if

there is a path v1, vl1 , . . . , vlk−1 , vj in G(A). If A is irreducible, then G(A) is
strongly connected, and hence the path exists. So, for any pair (i, j), we have
from equation (D.121)

(
(I +A)n−1

)
ij
> 0; that is, (I +A)n−1 > 0.

The positivity of (I + A)n−1 for an irreducible nonnegative matrix A is a
very useful property because it allows us to extend some conclusions of the
Perron theorem to irreducible nonnegative matrices.

Properties of Square Irreducible Nonnegative Matrices; the
Perron-Frobenius Theorem

If A is a square irreducible nonnegative matrix, then we have the follow-
ing properties. These following properties are the conclusions of the Perron-
Frobenius theorem.

1. ρ(A) is an eigenvalue of A. This eigenvalue is called the Perron root, as
before.

2. The Perron root ρ(A) is simple. (That is, the algebraic multiplicity of the
Perron root is 1.)

3. The dimension of the eigenspace of the Perron root is 1. (That is, the
geometric multiplicity of ρ(A) is 1.)

4. The eigenvector associated with ρ(A) is positive. This eigenvector is called
the Perron vector, as before.

The relationship (D.120) allows us to prove properties 1 and 4.
The one property of square positive matrices that does not carry over to

square irreducible nonnegative matrices is that r = ρ(A) is the only eigenvalue
on the spectral circle of A. For example, the small irreducible nonnegative
matrix

A =
[

0 1
1 0

]
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has eigenvalues 1 and −1, and so both are on the spectral circle.
It turns out, however, that square irreducible nonnegative matrices that

have only one eigenvalue on the spectral circle also have other interesting
properties that are important, for example, in Markov chains. We therefore
give a name to the property:

A square irreducible nonnegative matrix is said to be primitive if it
has only one eigenvalue on the spectral circle.

In modeling with Markov chains and other applications, the limiting be-
havior of Ak is an important property.

If A is a primitive matrix, then we have the useful result

lim
k→∞

(
A

ρ(A)

)k

= vwT, (D.122)

where v is an eigenvector of A associated with ρ(A) and w is an eigenvector
of AT associated with ρ(A), and w and v are scaled so that wTv = 1. (Such
eigenvectors exist because ρ(A) is a simple eigenvalue. They also exist because
they are both positive. Note that A is not necessarily symmetric, and so its
eigenvectors may include imaginary components; however, the eigenvectors
associated with ρ(A) are real, and so we can write wT instead of wH.)

To see equation (D.122), we consider
(
A− ρ(A)vwT

)
. First, if (ci, vi) is

an eigenpair of
(
A− ρ(A)vwT

)
and ci 6= 0, then (ci, vi) is an eigenpair of A.

We can see this by multiplying both sides of the eigen-equation by vwT:

civw
Tvi = vwT

(
A− ρ(A)vwT

)
vi

=
(
vwTA− ρ(A)vwTvwT

)
vi

=
(
ρ(A)vwT − ρ(A)vwT

)
vi

= 0;

hence,

Avi =
(
A− ρ(A)vwT

)
vi

= civi.

Next, we show that

ρ
(
A− ρ(A)vwT

)
< ρ(A). (D.123)

If ρ(A) were an eigenvalue of
(
A− ρ(A)vwT

)
, then its associated eigenvector,

say w, would also have to be an eigenvector of A, as we saw above. But since
as an eigenvalue of A the geometric multiplicity of ρ(A) is 1, for some scalar
s, w = sv. But this is impossible because that would yield

ρ(A)sv =
(
A− ρ(A)vwT

)
sv

= sAv − sρ(A)v
= 0,
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and neither ρ(A) nor sv is zero. But as we saw above, any eigenvalue of(
A− ρ(A)vwT

)
is an eigenvalue of A and no eigenvalue of

(
A− ρ(A)vwT

)

can be as large as ρ(A) in modulus; therefore we have inequality (D.123).
Finally, with w and v as defined above, and with the eigenvalue ρ(A),

(
A− ρ(A)vwT

)k
= Ak − (ρ(A))kvwT, (D.124)

for k = 1, 2, . . ..
Dividing both sides of equation (D.124) by (ρ(A))k and rearranging terms,

we have (
A

ρ(A)

)k

= vwT +

(
A− ρ(A)vwT

)

ρ(A)
. (D.125)

Now

ρ

((
A− ρ(A)vwT

)

ρ(A)

)
=
ρ
(
A− ρ(A)vwT

)

ρ(A)
,

which is less than 1; hence, we have

lim
k→∞

((
A− ρ(A)vwT

)

ρ(A)

)k

= 0;

so, taking the limit in equation (D.125), we have equation (D.122).
Applications of the Perron-Frobenius theorem are far-ranging.
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D.5 Optimization

Optimization problems — maximization or minimization — arise in many
areas of statistics. Statistical estimation and modeling both are usually special
types of optimization problems. In a common method of statistical estimation,
we maximize a likelihood, which is a function proportional to a probability
density at the point of the observed data. In another method of estimation
and in standard modeling techniques, we minimize a norm of the residuals.
The best fit of a model is often defined in terms of a minimum of a norm, such
as least squares. Other uses of optimization in statistical applications occur
prior to collection of data, for example, when we design an experiment or a
survey so as to minimize experimental or sampling errors.

When a statistical method is based on the solution of an optimization
problem, to formulate that problem unambiguously helps us both to under-
stand the method and to decide whether the method is appropriate to the
purposes for which it is applied.

Some of the simpler and more common optimization problems in statistics
can be solved easily, often by solving a system of linear equations. Many other
problems, however, do not have closed-form solutions, and the solutions must
be approximated by iterative methods.

D.5.1 Overview of Optimization

Optimization means to find a maximum or a maximum of an objective
function, f : D ⊂ IRd 7→ IR.

Local optimization means optimization within a some subset of the the
domain of the objective function Global optimzation results in the optimum
of all local optima.

In unconstrained optimization, we take all points in D to be feasible.

Important Properties of the Objective Function

• domain dense or not
• differentiable or not

– to what order
– easy or hard to compute

• concave (or convex) or neither
– if neither, there may be local optima

In the following, let f(x) be the objective function, and assume we want
to maximize it.
(To minimize, f(x)← −f(x) and convex ← concave.)
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Methods

• Analytic: yields closed form for all local maxima.
• Iterative: for k = 1, 2, . . ., given x(k−1) choose x(k) so that f(x(k))→local

maximum of f .
We need
– a starting point: x(0);
– a method to choose x̃ with good prospects of being x(k);
– a method to decide whether x̃ should be x(k).
How we choose and decide determines the differences between optimiza-
tion algorithms.

How to choose may be based on derivative information or on some sys-
tematic method of exploring the domain.

How to decide may be based on a deterministic criterion, such as requiring
f(x(k)) > f(x(k−1)),
or the decision may be randomized.

Metamethods: General Tools

• Transformations (for either analytic or iterative methods).
• Any trick you can think of (for either analytic or iterative methods), e.g.,

alternating conditional optimization.
• Conditional bounding functions (for iterative methods).

Convergence of Iterative Algorithms

In an iterative algorithm, we have a sequence
{(
f
(
x(k)

)
, x(k)

)}
.

The first question is whether the sequence converges to the correct solution.
If there is a unique maximum, and if x∗ is the point at which the maximum

occurs, the first question can be posed more precisely as, given ε1 does there
exist M1 such that for k > M1,

∣∣∣f(x(k))− f(x∗)
∣∣∣ < ε1;

or, alternatively, for a given ε2 does there exist M2 such that for k > M2,
∥∥∥x(k) − x∗

∥∥∥ < ε2.

Recall that f : IRd 7→ IR, so | · | above is the absolute value, while ‖ · ‖ is
some kind of vector norm.

There are complications if x∗ is not unique as the point at which the
maximum occurs.

Similarly, there are comlications if x∗ is merely a point of local maximum.
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Assessing Convergence

In practice, we must decide when convergence has occurred; that is, whether
the iterations have become close enough to the solution. Since we don’t know
the solution, we cannot base this decision on the convergence criteria above.

We put faith in our algorithm, and decide convergence has occurred if, for
some e1, e2 > 0, either

|f(x(k))− f(x(k−1))| ≤ e1
or

‖x(k) − x(k−1)‖ ≤ e2,
or both.

Notice, that lacking any known value, we trust the algorithm to do the
right thing; both x(k) and x(k−1) are just values in the algorithmic sequence.
The fact that this particular sequence — or any sequence, even ones yielding
nonincreasing function values — converges does not really get at the question
of whether x(k) → x∗.

Note also the subtle change from “<” to “≤”.
For some special class of functions∇f(x) may exist, and we may know that

at the solution, ∇f(x∗) = 0. In these cases, we may have another criterion for
deciding convergence has occurred:

‖∇f(x∗)‖ ≤ e3.

Rate of Convergence of Iterative Algorithms

If the answer to the first question is “yes”, that is, if the algorithmic sequence
converges, the next question is how fast the sequence converges. (We address
this question assuming it converges to the correct solution. )

The rate of convergence is a measure of how fast the “error” decreases. Any
of three quantities we mentioned in discussing convergence, f(x(k)) − f(x∗),
x(k) − x∗, or ∇f(x∗), could be taken to be the error. If we take

ek = x(k) − x∗
to be the error at step k, we might define the magnitude of the error as ‖ek‖
(for some norm ‖ · ‖). If the algorithm converges to the correct solution,

lim
k→∞

‖ek‖ = 0.

Our interest is in how fast ‖ek‖ decreases.
Sometimes there is no reasonable way of quantifying the rate at which this

quantity decreases.
In the happy case (and a common case for simple algorithms), if there

exist r > 0 and c > 0 such that

lim
k→∞

‖ek‖
‖ek−1‖r

= c,

we say the rate of convergence is r and the rate constant is c.

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.5 Optimization 463

The Steps in Iterative Algorithms
For a Special Class of Functions

The steps in iterative algorithms are often based on some analytic relationship
between f(x) and f(x(k−1)). For a continuously differentiable function, the
most common relationship is the Taylor series expansion:

f(x) = f(x(k−1)) +
(x− x(k−1))T∇f(x(k−1)) +
1
2
(x− x(k−1))T∇2f(x(k−1))(x− x(k−1)) +
· · ·

Note this limitation: “For a continuously differentiable function,
...”.
We cannot use this method on just any old function.

In the following, we will consider only this restricted class of functions.

Steepest Ascent (Descent)

The steps are defined by truncating the Taylor series. A truncation to two
terms yields the steepest ascent direction. For a steepest ascent step, we find
x(k) along the path ∇f(x(k−1)) from x(k−1).

If∇f(x(k−1)) ≥ 0, then moving along the path∇f(x(k−1)) can increase the
function value. If f(x) is bounded above (i.e., if the maximization problem
makes sense), then at some point along this path, the function begins to
decrease.

This point is not necessarily the maximum of the function, of course. Find-
ing the maximum along the path, is a one-dimensional “line search”.

After moving to the point x(k) in the direction of∇f(x(k−1)), if∇f(x(k)) =
0, we are at a stationary point. This may not be a maximum, but it is as
good as we can do using steepest ascent from x(k−1). (In practice, we check
‖∇f(x(k))‖ ≤ ε, for some norm ‖ · ‖ and some positive ε.)

If ∇f(x(k)) < 0 (remember we’re maximizing the function), we change
directions and move in the direction of ∇f(x(k)) < 0.

Knowing that we will probably be changing direction anyway, we often
truncate the line search before we find the best x(k) in the direction of
∇f(x(k−1)).

Newton’s Method

At the maximum x∗, ∇f(x∗) = 0.
“Newton’s method” for optimization is based on this fact.

Newton’s method for optimization just solves the system of equations
∇f(x) = 0 using
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Newton’s iterative method for solving equations:
to solve the system of n equations in n unknowns, g(x) = 0, we move from
point x(k−1) to point x(k) by

x(k) = x(k−1) −
(
∇g(x(k−1))T

)−1

g(x(k−1)).

Hence, applying this to solving ∇f(x(k−1)) = 0, we have the kth step in
Newton’s method for optimization:

x(k) = x(k−1) −∇2f(x(k−1))−1∇f(x(k−1)).

The direction of the step is dk = x(k) − x(k−1).
For numerical reasons, it is best to think of this as the problem of solving

the equations
∇2f(x(k−1))dk = −∇f(x(k−1)),

and then taking x(k) = x(k−1) + dk.

The Hessian

The Hessian H(x) = ∇2f(x) clearly plays an important role in Newton’s
method; if it is singular, the Newton step based on the solution to

∇2f(x(k−1))dk = −∇f(x(k−1)),

is undetermined.
The relevance of the Hessian goes far beyond this, however. The Hessian

reveals important properties of the shape of the surface f(x) at x(k−1).
The shape is especially interesting at a stationary point; that is a point x∗

at which ∇f(x) = 0.
If the Hessian is negative definite at x∗, f(x∗) is a local maximum.
If the Hessian is positive definite at x∗, f(x∗) is a local maximum.
If the Hessian is nonsingular, but neither negative definite nor positive

definite at x∗, it is a saddlepoint.
If the Hessian is singular, the stationary point is none of the above.
In minimization problems, such as least squares, we hope the Hessian

is positive definite, in which case the function is concave. In least squares
fitting of the standard linear regression model, the Hessian is the famous
XTX matrix.

In maximization problems, such as MLE, it is particularly interesting to
know whether H(x) is negative definite everywhere (or -H(x) is positive def-
inite everywhere). In this case, the function is convex.

When H(x) (in minimization problems or -H(x) in maximization prob-
lems) is positive definite but nearly singular, it may be helpful to regularize
the problem by adding a diagonal matrix with positive elements: H(x) +D.

One kind of regularization is ridge regression, in which the Hessian is
replaced by XTX + dI .
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Modifications of Newton’s Method

In the basic Newton step, the direction dk from x(k−1) is the best direction,
but the point dk + x(k−1) may not be the best point. In fact, the algorithm
can often be speeded up by not going quite that far; that is, by “damping”
the Newton step and taking x(k) = αkdk + x(k−1). This is a line search, and
there are several ways of doing this. In the context of least squares, a common
way of damping is the Levenberg-Marquardt method.

Rather than finding ∇2f(x(k−1)), we might find an approximate Hessian
at x(k−1), H̃k, and then solve

H̃kdk = −∇f(x(k−1)).

This is called a quasi-Newton method.
In MLE, we may take the objective function to be the log likelihood, with

the variable θ. In this case, the Hessian, H(θ), is ∂2 logL(θ; x)/∂θ(∂θ)T.
Under very general regularity conditions, the expected value of H(θ) is the
negative of the expected value of (∂ logL(θ; x)/∂θ)(∂ logL(θ; x)∂θ)T, which
is the Fisher information matrix, I(θ). This quantity plays an important role
in statistical estimation. In MLE it is often possible to compute I(θ), and take
the Newton step as

I(θ(k))dk = ∇ logL(θ(k−1); x).

This quasi-Newton method is called Fisher scoring.

More Modifications of Newton’s Method

The method of solving the Newton or quasi-Newton equations may itself be
iterative, such as a conjugate gradient or Gauss-Seidel method. (These are
“inner loop iterations”.) Instead of continuing the inner loop iterations to the
solution, we may stop early. This is called a truncated Newton method.

The best gains in iterative algorithms often occur in the first steps. When
the optimization is itself part of an iterative method, we may get an acceptable
approximate solution to the optimization problem by stopping the optimiza-
tion iterations early. Sometimes we may stop the optimization after just one
iteration. If Newton’s method is used, this is called a one-step Newton
method.

D.5.2 Alternating Conditional Optimization

The computational burden in a single iteration for solving the optimization
problem can sometimes be reduced by more than a linear amount by sepa-
rating x into two subvectors. The optimum is then computed by alternating
between computations involving the two subvectors, and the iterations pro-
ceed in a zigzag path to the solution.
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Each of the individual sequences of iterations is simpler than the sequence
of iterations on the full x.

For the problem
min

x
f(x)

if x = (x1, x2) that is, x is a vector with at least two elements, and x1 and x2

may be vectors), an iterative alternating conditional optimization algorithm
may start with x(0)

2 , and then for k = 0, 1, . . .,

1. x(k)
1 = arg minx1

f
(
x1, x

(k−1)
2

)

2. x(k)
2 = arg minx2

f
(
x

(k)
1 , x2

)

Use of Conditional Bounding Functions: MM Methods

In an iterative method to maximize f(x), the idea, given x(k−1) at step k, is
to try to find a function g

(
x; x(k−1)

)
with these properties:

• is easy to work with (that is, is easy to maximize)
• g

(
x; x(k−1)

)
≤ f(x) ∀x

• g
(
x(k−1); x(k−1)

)
= f

(
x(k−1)

)

If we can find x(k) 3 g
(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
, we have the

“sandwich inequality”:

f
(
x(k)

)
≥ g

(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
= f

(
x(k−1)

)
.

An equivalent (but more complicated) method for seeing this inequality
uses the fact that

f
(
x(k)

)
− g

(
x(k); x(k−1)

)
≥ f

(
x(k−1)

)
− g

(
x(k); x(k−1)

)
.

(From the properties above,

g
(
x; x(k−1)

)
− f (x)

attains its maximum at x(k−1).)
Hence,

f
(
x(k)

)
= g

(
x(k); x(k−1)

)
+ f

(
x(k)

)
− g

(
x(k); x(k−1)

)

> g
(
x(k−1); x(k−1)

)
+ f

(
x(k−1)

)
− g

(
x(k−1); x(k−1)

)

= f
(
x(k−1)

)
.

The relationship between f
(
x(k)

)
and f

(
x(k−1)

)
, that is, whether we

have “>” or “≥” in the inequalities, depends on the relationship between
g
(
x(k); x(k−1)

)
and g

(
x(k−1); x(k−1)

)
.
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We generally require g
(
x(k); x(k−1)

)
> g

(
x(k−1); x(k−1)

)
.

Clearly, the best step would be

x(k) = arg min
x

g
(
x; x(k−1)

)
,

but the overall efficiency of the method may be better if we don’t work
too hard to find the maximum, but just accept some x(k) that satisfies
g
(
x(k); x(k−1)

)
≤ g

(
x(k−1); x(k−1)

)
.

After moving to x(k), we must find a new g
(
x; x(k)

)
.

Equivalent notations:

g
(
x; x(k−1)

)
↔ g(k)(x)↔ gk(x)

Note the logical difference in k and k − 1, although both determine the same
g.

The g that we maximize is a “minorizing” function.
Thus, we Minorize then Maximize: MM.
Alternatively, we Majorize then Minimize: MM.
Reference: Lang, Hunter, and Yang (2000).

Maximization in Alternating Algorithms

In alternating multiple step methods such as alternating conditional maxi-
mization methods and methods that use a conditional bounding function, at
least one of the alternating steps involves maximization of some function.

As we indicated in discussing conditional bounding functions, instead of
finding a point that actually maximizes the function, which may be a difficult
task, we may just find a point that increases the value of the function. Under
this weaker condition, the methods still work.

We may relax the requirement even further, so that for some steps we
only require that the function not be decreased. So long as we maintain the
requirement that the function actually be increased in a sufficient number of
steps, the methods still work.

The most basic requirement is that g
(
x(k); x(k)

)
≥ g

(
x(k−1); x(k−1)

)
.

(Even this requirement is relaxed in the class of optimization algorithms based
on annealing. A reason for relaxing this requirement may be to avoid getting
trapped in local optima.)

Applications and the Special Case of EM Methods

In maximum likelihood estimation, the objective function is the likelihood,
LX(θ;x) or the log-likelihood, lX(θ;x). (Recall that a likelihood depends on
a known distributional form for the data; that is why we use the notation
LX(θ;x) and lX(θ;x), where “X” represents the random variable of the dis-
tribution.)

A Companion for Mathematical Statistics c©2008 James E. Gentle



468 Appendix D. Basic Mathematical Ideas and Tools

The variable for the optimization is θ; thus in an iterative algorithm, we
find θ(1), θ(2), . . ..

One type of alternating method is based on conditional optimization
and a conditional bounding function alternates between updating θ(k) using
maximum likelihood and conditional expected values. This method is called
the EM method because the alternating steps involve an expectation and a
maximization.

Given θ(k−1) we seek a function qk(x, θ) that has a known relationship
with lX(θ; x), and then we determine θ(k) to maximize qk(x, θ) (subject to
any constraints on acceptable values of θ).

The minorizing function qk(x, θ) is formed as a conditional expectation
of a joint likelihood. In addition to the data we have observed, call it X , we
assume we have some unobserved data U .

Thus, we have “complete” data C = (X,U) given the actual observed data
X , and the other component, U , of C that is not observed.

Let LC(θ; c) be the likelihood of the complete data, and let LX(θ;x) be the
likelihood of the observed data, with similar notation for the log-likelihoods.
We refer to LC(θ; c) as the “complete likelihood”.

There are thus two likelihoods, one based on the complete (but unknown)
sample, and one based only on the observed sample.

We wish to estimate the parameter θ, which figures in the distribution of
both components of C.

The conditional likelihood of C given X is

LC|X(θ; c|x) = LC(θ; x, u)/LX(θ; x),

or
lC|X(θ; c|x) = lC(θ; x, u)− lX(θ; x).

Note that the conditional of C given X is the same as the conditional of
U given X , and we may write it either way, either C|X or U |X .

Because we do not have all the observations, LC|X(θ; c|x) and LC(θ; c)
have

• unknown variables (the unobserved U)
• the usual unknown parameter.

Hence, we cannot follow the usual approach of maximizing the likelihood with
given data.

We concentrate on the unobserved or missing data first.
We use a provisional value of θ(k−1) to approximate the complete likelihood

based on the expected value of U given X = x.
The expected value of the likelihood, which will generally be a function of

both θ and θ(k−1), minorizes the objective function of interest, LX(θ; x), as
we will see.

We then maximize this minorizing function with respect to θ to get θ(k).

A Companion for Mathematical Statistics c©2008 James E. Gentle



D.5 Optimization 469

Let LC(θ ; x, u) and lC(θ ; x, u) denote, respectively, the likelihood and
the log-likelihood for the complete sample. The objective function, that is, the
likelihood for the observed X , is

LX(θ ; x) =
∫
LC(θ ; x, u) du,

and lX(θ ; x) = logLX(θ ; x).
After representing the function of interest, LX(θ ; x), as an integral, the

problem is to determine this function; that is, to average over U . (This is what
the integral does, but we do not know what to integrate.) The average over
U is the expected value with respect to the marginal distribution of U .

This is a standard problem in statistics: we estimate an expectation using
observed data.

In this case, however, even the values that we average to estimate the
expectation depends on θ, so we use a provisional value of θ.

We begin with a provisional value of θ, call it θ(0).
Given any provisional value θ(k−1), we will compute a provisional value

θ(k) that increases (or at least does not decrease) the conditional expected
value of the complete likelihood.

EM methods were first discussed systematically by Dempster, Laird, and
Rubin (1977).

The EM approach to maximizing LX(θ ; x) has two alternating steps. The
steps are iterated until convergence.

E step : compute qk(x, θ) = EU |x,θ(k−1)

(
lC(θ; x, U)

)
.

M step : determine θ(k) to maximize qk(x, θ), or at least to increase it (subject
to any constraints on acceptable values of θ).

Convergence of the EM Method

Is lX(θ(k); x) ≥ lX(θ(k−1); x)?
(If it is, of course, then LX(θ(k); x) ≥ LX(θ(k−1); x), because the log is
monotone increasing.)

The sequence θ(1), θ(2), . . . converges to a local maximum of the observed-
data likelihood L(θ ; x) under fairly general conditions. (It can be very slow
to converge, however.)

Why EM Works

The real issue is whether the EM sequence

{θ(k)} → arg max
θ

lX(θ; x)

(= arg max
θ

LX(θ; x)).
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If lX(·) is bounded (and it better be!), this is essentially equivalent to to asking
if

lX(θ(k); x) ≥ lX(θ(k−1); x).
(So long as in a sufficient number of steps the inequality is strict.)

Using an equation from before, we first write

lX(θ; X) = lC(θ; (X,U))− lU |X(θ;U |X),

and then take the conditional expectation of functions of U given x and under
the assumption that θ has the provisional value θ(k−1):

lX(θ; X) = EU |x,θ(k−1)

(
lC(θ; (x, U))

)
− EU |x,θ(k−1)

(
lU |X(θ;U |x)

)

= qk(x, θ) − hk(x, θ),

where
hk(x, θ) = EU |x,θ(k−1)

(
lU |X(θ;U |x)

)
.

Now, consider
lX(θ(k); X)− lX(θ(k−1); X).

This has two parts:
qk(x, θ(k))− qk(x, θ(k−1))

and
−
(
hk(x, θ(k))− hk(x, θ(k−1))

)
.

The first part is nonnegative from the M part of the kth step.
What about the second part? We will show that it is nonnegative also (or

without the minus sign it is nonpositive).
For the other part, for given θ(k−1) and any θ, ignoring the minus sign,
...

hk(x, θ) − hk(x, θ(k−1))

= EU |x,θ(k−1)

(
lU |X(θ;U |x)

)
− EU |x,θ(k−1)

(
lU |X(θ(k−1);U |x)

)

= EU |x,θ(k−1)

(
log
(
LU |x(θ;U |x)/LU |X(θ(k−1);U |x)

))

≤ log
(
EU |x,θ(k−1)

(
LU |X(θ;U |x)/LU |X(θ(k−1);U |x)

))

(by Jensen′s inequality)

= log
∫

D(U)

LU |X(θ;U |x)
LU |X(θ(k−1);U |x)

LU |X(θ(k−1);U |x) du

= log
∫

D(U)

LU |X(θ;U |x) du

= 0.
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So the second term is also nonnegative, and hence,

lX(θ(k); x) ≥ lX(θ(k−1); x).

A Minorizing Function in EM Algorithms

With lX(θ; x) = qk(x, θ) − hk(x, θ), and hk(x, θ) ≤ hk(x, θ(k−1)) from the
previous pages, we have

lX(θ(k−1); x)− qk(x, θ(k−1)) ≤ lX(θ; x)− qk(x, θ);

and so

qk(x, θ) + c(x, θ(k−1)) ≤ lX(θ; x),

where c(x, θ(k−1)) is constant with respect to θ.
Therefore for given θ(k−1) and any x,

g(θ) = lX(θ(k−1); X)− qk(x, θ(k−1))

is a minorizing function for lX(θ; x).

Alternative Ways of Performing the Computations

There are two kinds of computations that must be performed in each iteration:

• E step : compute qk(x, θ) = EU |x,θ(k−1)

(
lc(θ; x, U)

)
.

• M step : determine θ(k) to maximize qk(x, θ), subject to any constraints
on acceptable values of θ.

There are obviously various ways to perform each of these computations.
A number of papers since 1977 have suggested specific methods for the

computations.
For each specification of a method for doing the computations or each little

modification, a new name is given, just as if it were a new idea:
GEM, ECM, ECME, AECM, GAECM, PXEM, MCEM, AEM, EM1, SEM

A general reference for EM methods is Ng, Krishnan, and McLachlan
(2004).

E Step

There are various ways the expectation step can be carried out.
In the happy case of an exponential family or some other nice distributions,

the expectation can be computed in closed form. Otherwise, computing the
expectation is a numerical quadrature problem. There are various procedures
for quadrature, including Monte Carlo.
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Some people have called an EM method that uses Monte Carlo to evalu-
ate the expectation an MCEM method. (If a Newton-Cotes method is used,
however, we do not call it an NCEM method!) The additional Monte Carlo
computations add a lot to the overall time required for convergence of the EM
method.

An additional problem in using Monte Carlo in the expectation step may
be that the distribution of C is difficult to simulate. The convergence criterion
for optimization methods that involve Monte Carlo generally should be tighter
than for deterministic methods.

M Step

For the maximization step, there are even more choices.
The first thing to note, as we mentioned earlier for alternating algorithms

generally, is that rather than maximizing qk, we can just require that the
overall sequence increase.

Dempster, Laird, and Rubin (1977) suggested requiring only an increase
in the expected value; that is, take θ(k) so that

qk(u, θ(k)) ≥ qk−1(u, θ(k−1)).

They called this a generalized EM algorithm, or GEM. (Even in the paper
that introduced the “EM” acronym, another acronym was suggested for a
variation.) If a one-step Newton method is used to do this, some people have
called this a EM1 method.

Meng and Rubin (1993) describe a GEM algorithm in which the M-step
is an alternating conditional maximization; that is, if θ = (θ1, θ2), first θ(k)

1 is
determined to maximize q subject to the constraint θ2 = θ

(k−1)
2 ; then θ

(k)
2 is

determined to maximize qk subject to the constraint θ1 = θ
(k)
1 . This sometimes

simplifies the maximization problem so that it can be done in closed form.
They call this an expectation conditional maximization method, ECM.

Alternate Ways of Terminating the Computations

In any iterative algorithm, we must have some way of deciding to terminate
the computations. (The generally-accepted definition of “algorithm” requires
that it terminate. In any event, of course, we want the computations to cease
at some point.)

One way of deciding to terminate the computations is based on conver-
gence; if the computations have converged we quit. In addition, we also have
some criterion by which we decide to quit anyway.

In an iterative optimization algorithm, there are two obvious ways of de-
ciding when convergence has occurred. One is when the decision variables
(the estimates in MLE) are no longer changing appreciably, and the other is
when the value of the objective function (the likelihood) is no longer changing
appreciably.
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Convergence

It is easy to think of cases in which the objective function converges, but the
decision variables do not. All that is required is that the objective function
is flat over a region at its maximum. In statistical terms, the corresponds to
unidentifiability.

The Variance of Estimators Defined by the EM Method

As is usual for estimators defined as solutions to optimization problems, we
may have some difficulty in determining the statistical properties of the esti-
mators.

Louis (1982) suggested a method of estimating the variance-covariance
matrix of the estimator by use of the gradient and Hessian of the complete-
data log-likelihood, lLc(θ ; u, v).

Meng and Rubin (1991) use a “supplemented” EM method, SEM, for
estimation of the variance-covariance matrix.

Kim and Taylor (1995) also described ways of estimating the variance-
covariance matrix using computations that are part of the EM steps.

It is interesting to note that under certain assumptions on the distribution,
the iteratively reweighted least squares method can be formulated as an EM
method (see Dempster, Laird, and Rubin, 1980).

Missing Data

Although EM methods do not rely on missing data, they can be explained
most easily in terms of a random sample that consists of two components, one
observed and one unobserved or missing.

A simple example of missing data occurs in life-testing, when, for example,
a number of electrical units are switched on and the time when each fails is
recorded.

In such an experiment, it is usually necessary to curtail the recordings
prior to the failure of all units.

The failure times of the units still working are unobserved, but the num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.

Mixtures

Another common example that motivates the EM algorithm is a finite mixture
model.

Each observation comes from an unknown one of an assumed set of distri-
butions. The missing data is the distribution indicator.

The parameters of the distributions are to be estimated. As a side benefit,
the class membership indicator is estimated.
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Applications of EM Methods

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods involve missing-data problems,
but this is not necessary.

Often, an EM method can be constructed based on an artificial “missing”
random variable to supplement the observable data.

Notes and Additional References for Section D.5

There is an extensive literature on optimization, much of it concerned with
practical numerical algorithms. Software for optimization is widely available,
both in special-purpose programs and in general-purpose packages such as R
and Matlab.

Additional References

Dempster, A. P.; N. M. Laird; and D. B. Rubin (1977), Maximum likelihood
estimation from incomplete data via the EM algorithm (with discussion),
Journal of the Royal Statistical Society, Series B 45, 51–59.

Gentle, James E. (2009), Optimization Methods for Applications in Statistics,
Springer-Verlag, New York.

Kim, Dong K., and Jeremy M. G. Taylor (1995), The restricted EM algo-
rithm for maximum likelihood estimation under linear restrictions on the
parameters, Journal of the American Statistical Association 90, 708–716.

Louis, Thomas A. (1982), Finding the observed information matrix when using
the EM algorithm, Journal of the the Royal Statistical Society B 44, 226–
233.

Meng, Xiao-Li, and Donald B. Rubin (1991), Using EM to obtain asymptotic
variance-covariance matrices: the SEM algorithm, Journal of the American
Statistical Association 86, 899–909.

Meng, X.-L., and D. B. Rubin (1993), Maximum likelihood estimation via the
ECM algorithm: a general framework, Biometrika 80, 267–278.

Ng, Shu Kay; Thriyambakam Krishnan, and Geoffrey J. McLachlan (2004),
The EM algorithm, Handbook of Computational Statistics; Concepts and
Methods (edited by James E. Gentle, Wolfgang Härdle, and Yuichi Mori),
Springer, Berlin, 137–168.

Notes

Gelbaum and Olmsted (1990, 2003) have remarked that mathematics is built
on two types of things: theorems and counterexamples. Counterexamples help
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us to understand the principles in a way that we might miss if we only consid-
ered theorems. Counterexamples delimit the application of a theorem. They
help us understand why each part of the hypothesis of a theorem is important.

The book by Romano and Siegel (1986), which is listed in the general
references, is replete with examples that illustrate the “edges” of statistical
properties.

Books of this general type concerned with other areas of mathematics are
listed below.

Additional References

Gelbaum, Bernard R., and John M. H. Olmsted (1990), Theorems and Coun-
terexamples in Mathematics, Springer, New York.

Gelbaum, Bernard R., and John M. H. Olmsted (2003), Counterexamples in
Analysis, (corrected reprint of the second printing published by Holden-
Day, Inc., San Francisco, 1965), Dover Publications, Inc., Mineola, New
York.

Rajwade, A. R., and A. K. Bhandari (2007), Surprises and Counterexamples
in Real Function Theory, Hindustan Book Agency, New Delhi.

Steen, Lynn Arthur, and J. Arthur Seebach, Jr. (1995), Counterexamples in
Topology (reprint of the second edition published by Springer-Verlag, New
York, 1978), Dover Publications, Inc., Mineola, New York.

Stoyanov, Jordan M. (1987), Counterexamples in Probability, John Wiley &
Sons, Ltd., Chichester, United Kingdom.

Wise, Gary L., and Eric B. Hall (1993), Counterexamples in Probability and
Real Analysis, The Clarendon Press, Oxford University Press, New York.
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asymptotic expectation, 115–120
asymptotic inference, 103, 107, 112–120
asymptotic mean integrated squared

error (AMISE), 302
asymptotic mean-squared error, 118
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asymptotic significance, 118, 241
asymptotic variance, 118
asymptotic variance-covariance matrix,

183–185
asymptotically Fisher efficient, 183
asymptotically pivotal function, 259
asymptotically unbiased estimation,

180–182
average shifted histogram (ASH), 314
axpy operation, 351

Banach space, 353, 394
basis functions, 398
basis set, 351
Basu’s theorem, 76
Bayes estimator, 128, 135–139
Bayes risk, 128
Bayes rule, 128
Bayesian credible set, 161–166
Bayesian inference, 96, 127–166
Bayesian testing, 151–161
Bernoulli’s theorem, 40
best linear unbiased estimator (BLUE),

451
beta function, 330
beta integral, 362
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bias, 71
asymptotic, 116
limiting, 116

big O, 36, 355
big O in probability, 37
bijection, 344
binomial series, 363
BLUE (best linear unbiased estimator),

451
bona fide density estimator, 303
Bonferroni’s method for simultaneous

confidence intervals, 265
bootstrap, 82–83, 122–123

confidence sets, 259–265
variance estimation, 122–123

Borel function, 381
Borel set, 379
Borel σ-field, 371, 379
Borel-Cantelli lemma, 32
boundary, 347, 357
bounded completeness, 65
bounded in probability, 37
Bowley coefficient, 19
Brownian motion, 406–415

canonical exponential form, 62, 173
Cantor function, 6, 386
Cantor set, 379, 386
cardinality, 343
cartesian product, 344, 376
cartesian product measurable space,

377
Cauchy sequence, 352, 354
Cauchy-Schwarz inequality, 29, 351
CDF (cumulative distribution function),

5
central limit theorem

independent sequence, 42–44
martingale, 55
multivariate, 44

central moment, 10
CF (characteristic function), 13
change of variables, 391
change of variables method, 20
characteristic function (CF), 13
Chebyshev norm, 395
Chebyshev’s inequality, 24
Chernoff consistency, 119
chi-squared discrepancy measure, 397

Cholesky factorization, 426
Christoffel-Darboux formula, 400
closure, 347, 357
Cochran’s theorem, 453
cofactor, 333
collection of sets, 345, 368
compact set, 356
complement of a set, 343
complete class of decision rules, 94
complete family, 65
complete space, 353, 354, 394
complete statistic, 65
complete sufficiency, 76
composite hypothesis, 103
computational inference, 90, 103, 107
concentrated likelihood, 85, 204
conditional entropy, 49
conditional expectation, 11–12, 46–48,

73
conditional independence, 12
conditional likelihood, 85, 205
conditional probability, 12
conditional probability distribution, 48
confidence coefficient, 108, 249
confidence interval, 109

equal-tail, 251
confidence set, 108–112, 249–266
conjugate prior, 98, 130
connected space, 347, 357
consistency, 97, 113–115

an, 114
and asymptotic efficiency, 184
Chernoff, 119
in mean-squared error, 114, 118
Lr, 114
of positive definite matrices, 123
of tests, 119
strong, 114
weak, 113

consistent estimator, 297
continuity theorem, 37
continuous function, 349, 385, 434

absolutely continuous, 386
Lipschitz-continuous, 387
Lipschitz-continuous PDF, 308

continuous random variable, 6
contradiction (method of proof), 366
convergence, 33–40

almost sure, 33
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in Lr, 33
in distribution, 34
in law, 34
in mean, 33
in mean square, 33, 298
in quadratic mean, 298
of function estimators, 297–298,

301–302
weak, 34, 35
with probability 1, 33
wp1, 33

convergence of a sequence of sets, 349
convergence of powers of a matrix, 458
convex loss, 93, 95, 98
convexity, 25, 359
convolution, 21
countable, 343
counting measure, 383
cover (by a collection of sets), 345
coverage probability, 108
Cramér-Rao lower bound, 175
Cramér-Wold device, 37
credible set, 161–166
critical region, 104
CRLB (information inequality), 175,

184, 185
cumulant, 14
cumulant-generating function, 14
cumulative distribution function (CDF),

5

de Moivre Laplace central limit
theorem, 42

De Morgan’s law, 344
decision rule, 92
decision theory, 91–102
decomposable matrix, 456
decomposition of a function, 402
degenerate random variable, 4
δ-field, 370
delta method, 39, 214, 264

second order, 214
density function, 6
derivative, 393
derivative of a functional, 404
derivative with respect to a vector or

matrix, 432
determinant of a square matrix, 424
deviance, 87, 223

diag(·), 430
differential, 436
differentiation of vectors and matrices,

432
digamma function, 329
Dirac measure, 383
direct product, 344
discrete random variable, 6
disjoint sets, 345
distribution function, 5
distribution function space, 58, 403
distribution vector, 52
dominated convergence theorem, 39, 47,

391
dominating measure, 7, 331, 392
Doob’s martingale inequality, 54
dot product, 351, 394
double integral, 391
Dvoretzky/Kiefer/Wolfowitz inequality,

80
Dynkin system, 369
Dynkin’s π-λ theorem, 372

E(·), 8, 389, 448
ECDF (empirical cumulative dis-

tribution function), 78–82,
284

efficiency, 118
eigenfunction, 398
eigenvalue, 398, 425
eigenvector, 425
element, 343
EM method, 206–212, 467–474
empirical Bayes, 137
empirical cumulative distribution

function (ECDF), 78–82, 284
empty set, 343
entropy, 10, 49
ε-mixture distribution, 285
equal-tail confidence interval, 251
equivariance, 96
equivariant function, 269
equivariant statistical procedures, 96,

267–279
equivariant confidence regions,

278–279
equivariant estimation, 273–277
invariant tests, 277–278

Esseen-von-Bahr inequality, 30
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essentially complete, 94
estimability, 169, 450
estimating equation, 85
Euclidean distance, 353, 423
Euclidean norm, 423
Euler’s integral, 329
event, 2, 384
exact inference, 89
exchangeability, 3, 7
expectation functional, 177
expected value, 389

of a random variable, 8
experimental support, 87
exponential class of families, 61–63

canonical exponential form, 63
mean-value parameter, 62
natural parameter, 63

f -divergence, 88, 397
factorial-moment-generating function,

15
family of probability distributions, 5,

55–66
Fatou’s lemma, 39, 47, 391
Feller’s condition, 43
FI regularity conditions, 60
field of sets, 368
filter, 295
filtration, 51
finite measure, 382
finite population sampling, 166
first limit theorem, 37
first passage time, 51
first-order ancillarity, 75
Fisher efficiency, 183
Fisher efficient, 118, 175, 183
Fisher information, 172, 446

regularity conditions, 60, 172
Fisher scoring, 222
forward martingale, 54
Fourier coefficients, 399
Fréchet derivative, 404
frequency polygon, 314
frequency-generating function, 15
Fubini’s theorem, 391
function, 344
function estimation, 293–303
function space, 394–403
functional, 16, 80, 403–404

expectation, 177

gamma function, 329
gamma integral, 362
Gâteaux derivative, 288, 404
Gauss-Markov theorem, 188, 451
GEE (generalized estimating equation),

89, 216
generalized Bayes action, 134
generalized estimating equation (GEE),

89, 216
generalized inverse, 425, 431
generalized linear model, 220
geometric Brownian motion, 415
geometric series, 363
Gibbs method, 146
Gini’s mean difference, 179
Glivenko-Cantelli theorem, 81
gradient, 334
gradient of a function, 438, 439
Gram-Charlier series, 45, 401
Gram-Schmidt transformation, 364
Gramian matrix, 431
group, 268
group family, 64

Haar measure, 390
Hadamard derivative, 404
Hájek-Rènyi inequality, 25, 54
Hammersley-Chapman-Robbins

inequality, 29
Hausdorff space, 347, 348
heavy-tailed family, 59
Heine-Borel theorem, 357
Heine-Cantor theorem, 386
Hellinger distance, 299, 397
Helly-Bray theorem, 40
Hermite polynomial, 45, 401
Hessian, 334
Hessian of a function, 440
hierarchical Bayesian model, 137, 149
highest posterior density credible set,

162
Hilbert space, 353, 395
histospline, 314
Hölder’s inequality, 28
homogeneous process, 51
Horvitz-Thompson estimator, 191
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HPD (highest posterior density)
credible set, 162

hypergeometric series, 363
hyperparameter, 128
hypothesis testing, 103–108, 151–161,

229–248
alternative hypothesis, 103
asymptotic significance, 241
Bayesian testing, 151–161
composite hypothesis, 103
null hypothesis, 103
significance level, 104
simple hypothesis, 103
size of test, 107, 231
test statistic, 104

IAE (integrated absolute error), 299,
301

ideal bootstrap, 122
idempotent matrix, 427
identifiability, 5
identity matrix, 424
IMAE (integrated mean absolute error),

300
image of a function, 374
improper prior, 134
IMSE (integrated mean squared error),

300
inclusion-exclusion formula (“disjointifi-

cation”), 345, 382
incomplete gamma function, 329
independence, 2, 7, 12, 45
indicator function, 385
induced likelihood, 204
induced measure, 384
induction (method of proof), 366
information, 10, 26, 172
information inequality, 27, 30, 175, 184,

185
information theory, 88
inner product, 351, 394, 396, 422
integrable function, 389
integral, 388–393

double, 391
iterated, 392

integrated absolute bias, 300
integrated absolute error (IAE), 299,

301
integrated bias, 300

integrated mean absolute error (IMAE),
300

integrated mean squared error (IMSE),
300

integrated squared bias, 300
integrated squared error (ISE), 299
integrated variance, 300
integration, 387–394
integration by parts, 392
interior, 347, 357
interior point, 356
interquantile range, 19
interquartile range, 18
intersection of sets, 343
invariant function, 269, 272
invariant statistical procedures, see

equivariant statistical procedures
invariant tests, 277–278
inverse CDF method, 139
inverse function, 344
inverse image, 345, 375
inverse of a matrix, 425, 428
inverse of a partitioned matrix, 430
IRLS (iteratively reweighted least

squares), 225
irreducible Markov chain, 53
irreducible matrix, 456
ISE (integrated squared error), 299
iterated integral, 392
iteratively reweighted least squares

(IRLS), 225

jackknife, 121–122
Jacobian, 21, 439
Jeffreys’s noninformative prior, 134
Jensen’s inequality, 25
joint entropy, 10

kernel (function), 315
kernel density estimation, 314
kernel method, 295
kernel of U-statistic, 177
Kolmogorov distance, 282, 299, 301, 396
Kolmogorov’s inequality, 25, 55
Kronecker’s lemma, 356
Kshirsagar inequality, 30
Kullback-Leibler information, 26
Kullback-Leibler measure, 88, 299, 397
Kumaraswamy distribution, 90
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L2 space, 394
L functional, 19
Lp space, 394, 395
L-unbiasedness, 94, 240
L1 consistency, 301
L2 consistency, 298, 301
L2 norm, 396
Lp norm, 396, 423
Lp norm of a vector, 434
Lagrange multiplier test, 243
λ-system, 369
Laplacian, 360
Laplacian operator, 334
LAV (least absolute values) estimation,

91
law of large numbers, 40
Le Cam regularity conditions, 60
least absolute values (LAV) estimation,

91
least squares, 187–189, 449–452
least squares (LS) estimation, 91, 187
Lebesgue integral, 388–392
Lebesgue measure, 382
Legendre polynomial, 401
Lehmann-Scheffé theorem, 170
level of significance, 107
Lévy-Cramér theorem, 37
Lévy distance, 282
Liapounov’s condition, 43
Liapounov’s inequality, 29
likelihood equation, 85
likelihood function, 56, 84, 446
likelihood principle, 87
likelihood ratio, 56, 61, 86, 235, 240
lim inf, 31, 349, 350
lim sup, 31, 349, 350
limit point, 347
limiting Bayes action, 135
limiting bias, 116
limiting mean-squared error, 118
limiting variance, 118
Lindeberg condition, 43
Lindeberg’s central limit theorem, 43
linear algebra, 422–459
linear combination, 351
linear independence, 351, 424
linear model, 185–189, 217–228
linear space, 351–353, 394–403, 422
link function, 220

Lipschitz constant, 387

Lipschitz-continuous function, 308, 387
little o, 36, 355
little o in probability, 37

LMVUE (locally minimum variance
unbiased estimator), 170

locally minimum variance unbiased
estimator (LMVUE), 170

location equivariance, 274

location-scale equivariance, 276
location-scale family, 64, 270, 276
log-likelihood function, 84, 446

logconcave family, 59
loss function, 92

absolute-error, 93

convex, 93, 95, 98
squared-error, 93, 98, 138, 170, 239,

275
lower confidence bound, 110
lower confidence interval, 110

LS (least squares) estimation, 91, 187
LSE, 187

M functional, 19
MAE (mean absolute error), 297
Mallows distance, 283

Marcinkiewicz-Zygmund inequality, 30
markov chain, 51–54
Markov chain Monte Carlo (MCMC),

139–151
Markov property, 51

Markov’s inequality, 24
martingale, 54–55
matrix, 423–443

matrix derivative, 432
matrix gradient, 439
matrix norm, 426

Matusita distance, 299, 397
maximal invariant, 269

maximum absolute error (SAE), 299
maximum entropy, 88
maximum likelihood estimation,

193–228
maximum likelihood method, 304
MCMC (Markov chain Monte Carlo),

139–151
mean, 10
mean absolute error (MAE), 297
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mean integrated absolute error (MIAE),
301

mean integrated squared error (MISE),
300

mean square consistent, 301
mean squared error (MSE), 71, 297, 300
mean squared error, of series expansion,

399
mean squared prediction error, 73
mean sup absolute error (MSAE), 301
mean-value parameter, in exponential

class, 62
measurable function, 375
measurable set, 383
measurable space, 374
measure, 381

counting, 383
Dirac, 383
dominating, 7, 392
Haar, 390
induced, 384
Lebesgue, 382
probability, 2, 384
Radon, 384

measure space, 383
measure theory, 368–405
median-unbiasedness, 71, 91
method of moments, 79, 181
metric, 347, 396
metric space, 348
Metropolis algorithm, 143
Metropolis-Hastings algorithm, 144
MGF (moment-generating function), 13
MIAE (mean integrated absolute error),

301
minimal complete, 94
minimal sufficiency, 75, 76
minimax procedure, 96
minimaxity, 98–99
minimum risk equivariance (MRE), 96
minimum risk equivariant estimation

(MREE), 273–277
Minkowski’s inequality, 30
MISE (mean integrated squared error),

300
mixture distribution, 58, 285, 403
MLE (maximum likelihood estimator),

193–228
moment, 10, 17

moment-generating function (MGF), 13
moments, method of, 79
monotone convergence theorem, 39, 47,

391
monotone likelihood ratio, 59, 61, 86,

236
Monte Carlo, 139–151
Moore-Penrose inverse, 425, 432, 452
MRE (minimum risk equivariance), 96
MREE (minimum risk equivariant

estimation), 273–277
MRIE (minimum risk invariant

estimation), 273
MSAE (mean sup absolute error), 301
MSE (mean squared error), 71, 297, 300
MSPE (mean squared prediction error),

73
multivariate central limit theorem, 44

natural parameter space, 63
neighborhood, 348
Newton’s method, 222, 444, 463
noninformative prior, 134
nonnegative definite matrix, 425
nonparametric family, 5, 57
nonparametric probability density

estimation, 303–321
nonparametric test, 247
norm, 23, 352, 423

Euclidean, 353, 423
Lp, 423
of a function, 396

normal equations, 189
normal function, 396
normal integral, 362
normal vector, 364, 422
nuisance parameter, 75
null hypothesis, 103

O(·), 36, 355
o(·), 36, 355
OP(·), 37
oP(·), 37
octile skewness, 19
one-sided confidence interval, 110
one-to-one function, 344
open set, 347, 348, 377
optimization, 365, 460–474
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optimization of vector/matrix functions,
443

orbit, 269
order statistic, 22
ordered set, 346
orthogonal matrix, 425
orthogonal polynomials, 399–403
orthogonalizing vectors, 364
orthonormal vectors, 364, 422
outlier-generating distribution, 59
over-dispersion, 226

Pp distribution function space, 403
p-value, 104
parameter space, 5, 57

natural, 63
parametric family, 5, 57, 90–91
parametric-support family, 64, 200
partition of a set, 345
PDF (probability density function), 6

estimation of, 303–321
Pearson chi-squared discrepancy

measure, 397
penalized maximum likelihood method,

305
Perron root, 457
Perron vector, 457
Perron-Frobenius theorem, 457
φ-divergence, 88, 397
π-system, 368
Pitman admissible, 102
Pitman closeness, 72, 74, 166
Pitman estimator, 275, 276
pivotal function, 109, 252

asymptotically, 259
plug-in estimator, 79, 284
point estimation, 70, 169–228, 273–277
pointwise convergence, 297–298
pointwise properties, 296
Poisson series, 363
Pólya’s theorem, 34
polygamma function, 329
“portmanteau” theorem, 34
positive definite matrix, 425
posterior distribution, 128
posterior Pitman closeness, 166
power function, 105, 119
power set, 345, 371, 380
prediction, 70, 73

prediction set, 112, 251
preimage, 345, 375
primitive matrix, 458
principal minor, 333
prior distribution, 128

conjugate prior, 130
improper prior, 134
Jeffreys’s noninformative prior, 134
noninformative prior, 134

probability, 1–68
probability density function (PDF), 6

estimation of, 303–321
probability distribution, 5
probability measure, 2, 384
probability of an event, 2, 390
probability space, 2, 384
probit model, 220
product σ-field, 377
product measure, 384
product set, 344
profile likelihood, 85, 204
projection matrix, 427
proper difference, 343
proper subset, 343
pseudoinverse, 425, 432, 452
pseudometric, 396
pseudovalue, 121

quadratic form, 425
quantile, 18

in confidence sets, 111
quartile skewness, 19
quasi-likelihood, 206, 227
quasi-Newton method, 445, 465

Radon measure, 384
Radon-Nikodym theorem, 392
random variable, 4–381
randomized confidence set, 251, 254
randomized decision rule, 92
rank of a matrix, 424
Rao test, 243
Rao-Blackwell inequality, 31
Rao-Blackwell theorem, 95
Rao-Blackwellization, 95
raw moment, 10
real numbers, 353–361
recursion formula for orthogonal

polynomials, 400
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reducibility, 456
regular family, 59
regularity conditions, 59, 171

Fisher information, 60, 172
Le Cam, 60

regularized incomplete gamma function,
330

rejection region, 104
relative efficiency, 118, 183
resampling, 82
resampling vector, 83
residual, 91
restricted Bayes, 97
restricted maximum likelihood method,

304
ρ-Fréchet derivative, 404
ρ-Hadamard derivative, 404
Riemann integral, 393
Riesz-Fischer theorem, 394
right stochastic matrix, 456
ring of sets, 368
risk function, 93
robust statistics, 228, 284–291
roughness of a function, 302, 303, 310

SAE (sup absolute error), 299
sample space, 2, 368
sample variance, 80, 85

as U-statistic, 178
relation to V-statistic, 180

sampling from finite populations, 166
sandwich estimator, 124
scale equivariance, 275
Scheffé’s method for simultaneous

confidence intervals, 266
Schur complement, 430
Schwarz inequality, 29
score function, 85, 212
score test, 243
second order delta method, 214
self-information, 10
sequences of real numbers, 354–356
sequential probability ratio test (SPRT),

240
series, 355
series estimator, 403
series expansion, 364, 398, 436, 444
set, 343
Shannon information, 172

shrinkage of estimators, 73, 100, 125,
321

σ-algebra, 370
σ-field, 369
σ-field generated by a collection of sets,

370
σ-field generated by a measurable

function, 376
σ-field generated by a random variable,

4
σ-finite measure, 383
σ-ring, 370
significance level, 104

asymptotic, 118, 241
simple function, 385, 387
simple hypothesis, 103
simultaneous confidence sets, 265–266
singular value factorization, 426
size of test, 107, 231
skewness coefficient, 17
Skorohod’s theorem, 36
SLLN (strong law of large numbers), 41
Slutsky’s theorem, 38
smoothing matrix, 315
space, 343, 346
spectral decomposition, 426
SPRT (sequential probability ratio

test), 240
squared-error loss, 93, 98, 138, 170, 239,

275
standard deviation, 11
state space, 50
stationary point of vector/matrix

functions, 443
statistic, 69
statistical function, 16, 79, 281–284
steepest descent, 443, 445
Stein shrinkage, 100
stochastic differential, 407, 412, 413
stochastic integration, 406–421
stochastic matrix, 456
stochastic process, 49–55, 406–413
stochastic vector, 52
stopping time, 51
strong law of large numbers, 41
strongly unimodal family, 59
sub-σ-field, 374
subharmonic function, 360
submartingale, 54
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subset, 343
sufficiency, 74
sup absolute error (SAE), 299
superefficiency, 185
support of a distribution, 5
support of a measure, 383
support of a probability measure, 4
support of an hypothesis, 87
survey sampling, 189–191
symmetric difference, 343
symmetric family, 59

Taylor series, 364, 436, 444
tensor product, 402
tessellation, 313
test statistic, 104
testing hypotheses, 103–108, 151–161,

229–248
alternative hypothesis, 103
asymptotic significance, 241
Bayesian testing, 151–161
composite hypothesis, 103
null hypothesis, 103
significance level, 104
simple hypothesis, 103
size of test, 107, 231
test statistic, 104

tightness, 37
tolerance set, 112, 251
topological space, 347
topology, 347
total variation, 396
totally positive family, 59
tr(·), 424
trace of a matrix, 424
trajectory, 51
transformation group, 268
transition matrix, 52, 455–459
triangle inequality, 30, 352
trigamma function, 329
Tukey’s method for simultaneous

confidence intervals, 266
type I error, 106

U statistic, 176–180
U-estimability, 169, 450
UMVUE (uniformly minimum variance

unbiased estimation), 169–176

unbiased confidence region, 112
unbiased estimator, 71
unbiased point estimation, 169–192
unbiased test, 108
unbiasedness, 71, 94, 96

estimability, 450
L-unbiasedness, 94, 240
median-unbiasedness, 71, 91

uniform norm, 395
uniform property, 73, 95, 108, 111
uniformly continuous function, 386
uniformly minimum variance unbiased

estimation (UMVUE), 169–176
uniformly most powerful test, 236
unimodal family, 59
union of sets, 343
universal set, 343
upper confidence bound, 110
upper confidence interval, 110
utility, 92

V statistic, 179–180
V(·), 10, 448
variable metric method, 445
variance, 10

asymptotic, 118
estimation, 120–124

bootstrap, 122–123
jackknife, 121–122

limiting, 118
variance-covariance matrix, 11
vector, 423–443
vector derivative, 432

Wald test, 242
weak convergence in mean square, 298
weak convergence in quadratic mean,

298
weak law of large numbers, 40, 41
well-ordered set, 346
Wiener process, 406–415
Wilcoxon statistic, 179
window size, 315
WLLN (weak law of large numbers), 40
Woodruff’s interval, 259

0-1 loss, 93
0-1-c loss function, 153
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