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Chapter 1

Random Variables and
Change of Variables

1.1 Random Variables

1.1.1 Variables

Before we tackle random variables, it is best to be sure we are clear about
the notion of a mathematical variable. A variable is a symbol that stands for
an unspecified mathematical object, like x in the expression x2 + 2x + 1.

Often, it is clear from the context what kind of object the variable stands for.
In this example, x can be any real number. But not all variables are numerical.
We will also use vector variables and variables taking values in arbitrary sets.

Thus, when being fussy, we specify the kind of mathematical objects a vari-
able can symbolize. We do this by specifying the set of objects which are possible
values of the variable. For example, we write

x2 + 2x + 1 = (x + 1)2, x ∈ R,

to show that the equality holds for any real number x, the symbol R indicating
the set of all real numbers.

1.1.2 Functions

In elementary mathematics, through first year calculus, textbooks, teachers,
and students are often a bit vague about the notion of a function, not distin-
guishing between a function, the value of a function, the graph of a function,
or an expression defining a function. In higher mathematics, we are sometimes
just as vague when it is clear from the context what is meant, but when clarity
is needed, especially in formal definitions, we are careful to distinguish between
these concepts.

1



2 Stat 5101 (Geyer) Course Notes

A function is a rule f that assigns to each element x of a set called the
domain of the function an object f(x) called the value of the function at x.
Note the distinction between the function f and the value f(x). There is also a
distinction between a function and an expression defining the function. We say,
let f be the function defined by

f(x) = x2, x ∈ R. (1.1)

Strictly speaking, (1.1) isn’t a function, it’s an expression defining the function
f . Neither is x2 the function, it’s the value of the function at the point x. The
function f is the rule that assigns to each x in the domain, which from (1.1) is
the set R of all real numbers, the value f(x) = x2.

As we already said, most of the time we do not need to be so fussy, but
some of the time we do. Informality makes it difficult to discuss some functions,
in particular, the two kinds described next. These functions are important for
other reasons besides being examples where care is required. They will be used
often throughout the course.

Constant Functions

By a constant function, we mean a function that has the same value at all
points, for example, the function f defined by

f(x) = 3, x ∈ R. (1.2)

We see here the difficulty with vagueness about the function concept. If we are
in the habit of saying that x2 is a function of x, what do we say here? The
analogous thing to say here is that 3 is a function of x. But that looks and
sounds really weird. The careful statement, that f is a function defined by
(1.2), is wordy, but not weird.

Identity Functions

The identity function on an arbitrary set S is the function f defined by

f(x) = x, x ∈ S. (1.3)

Here too, the vague concept seems a bit weird. If we say that x2 is a function, do
we also say x is a function (the identity function)? If so, how do we distinguish
between the variable x and the function x? Again, the careful statement, that
f is a function defined by (1.3), is wordy, but not weird.

Range and Codomain

If f is a function with domain A, the range of f is the set

range f = { f(x) : x ∈ S }
of all values f(x) for all x in the domain.
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Sometimes it is useful to consider f as a map from its domain A into a set
B. We write f : A → B or

A
f−→ B

to indicate this. The set B is called the codomain of f .
Since all the values f(x) of f are in the codomain B, the codomain necessarily

includes the range, but may be larger. For example, consider the function
f : R → R defined by f(x) = x2. The codomain is R, just because that’s
the way we defined f , but the range is the interval [0,∞) of nonnegative real
numbers, because squares are nonnegative.

1.1.3 Random Variables: Informal Intuition

Informally, a random variable is a variable that is random, meaning that its
value is unknown, uncertain, not observed yet, or something of the sort. The
probabilities with which a random variable takes its various possible values are
described by a probability model.

In order to distinguish random variables from ordinary, nonrandom variables,
we adopt a widely used convention of denoting random variables by capital
letters, usually letters near the end of the alphabet, like X, Y , and Z.

There is a close connection between random variables and certain ordinary
variables. If X is a random variable, we often use the corresponding small letter
x as the ordinary variable that takes the same values.

Whether a variable corresponding to a real-world phenomenon is considered
random may depend on context. In applications, we often say a variable is
random before it is observed and nonrandom after it is observed and its actual
value is known. Thus the same real-world phenomenon may be symbolized by
X before its value is observed and by x after its value is observed.

1.1.4 Random Variables: Formal Definition

The formal definition of a random variable is rather different from the infor-
mal intuition. Formally, a random variable isn’t a variable, it’s a function.

Definition 1.1.1 (Random Variable).
A random variable in a probability model is a function on the sample space
of a probability model.

The capital letter convention for random variables is used here too. We
usually denote random variables by capital letters like X. When considered
formally a random variable X a function on the sample space S, and we can
write

S
X−→ T

if we like to show that X is a map from its domain S (always the sample space)
to its codomain T . Since X is a function, its values are denoted using the usual
notation for function values X(s).
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An Abuse of Notation

A widely used shorthand that saves quite a bit of writing is to allow a relation
specifying an event rather than an event itself as the apparent argument of a
probability measure, that is, we write something like

P (X ∈ A) (1.4)

or
P (X ≤ x). (1.5)

Strictly speaking, (1.4) and (1.5) are nonsense. The argument of a probability
measure is an event (a subset of the sample space). Relations are not sets. So
(1.4) and (1.5) have the wrong kind of arguments.

But it is obvious what is meant. The events in question are the sets defined
by the relations. To be formally correct, in place of (1.4) we should write P (B),
where

B = { s ∈ S : X(s) ∈ A }, (1.6)

and in place of (1.5) we should write P (C), where

C = { s ∈ S : X(s) ≤ x }. (1.7)

Of course we could always plug (1.6) into P (B) getting the very messy

P ({ s ∈ S : X(s) ∈ A }) (1.8)

It is clear that (1.4) is much simpler and cleaner than (1.8).
Note in (1.5) the role played by the two exes. The “big X” is a random

variable. The “little x” is an ordinary (nonrandom) variable. The expression
(1.5) stands for any statement like

P (X ≤ 2)

or

P (X ≤ −4.76)

Why not use different letters so as to make the distinction between the two
variables clearer? Because we want to make an association between the random
variable “big X” and the ordinary variable “little x” that stands for a possible
value of the random variable X. Anyway this convention is very widely used,
in all probability and statistics books, not just in this course, so you might as
well get used to it.

The Incredible Disappearing Identity Random Variable

By “identity random variable” we mean the random variable X on the sample
space S defined by

X(s) = s, s ∈ S,



1.1. RANDOM VARIABLES 5

that is, X is the identity function on S.
As we mentioned in our previous discussion of identity functions, when you’re

sloppy in terminology and notation the identity function disappears. If you don’t
distinguish between functions, their values, and their defining expressions x is
both a variable and a function. Here, sloppiness causes the disappearance of
the distinction between the random variable “big X” and the ordinary variable
“little s.” If you don’t distinguish between the function X and its values X(s),
then X is s.

When we plug in X(s) = s into the expression (1.6), we get

B = { s ∈ S : s ∈ A } = A.

Thus when X is the identity random variable P (X ∈ A) is just another notation
for P (A). Caution: when X is not the identity random variable, this isn’t true.

Another Useful Notation

For probability models (distributions) having a standard abbreviation, like
Exp(λ) for the exponential distribution with parameter λ we use the notation

X ∼ Exp(λ)

as shorthand for the statement that X is a random variable with this probability
distribution. Strictly speaking, X is the identity random variable for the Exp(λ)
probability model.

Examples

Example 1.1.1 (Exponential Random Variable).
Suppose

X ∼ Exp(λ).

What is
P (X > x),

for x > 0?
The definition of the probability measure associated with a continuous prob-

ability model says

P (A) =
∫

A

f(x) dx.

We only have to figure what event A we want and what density function f .

To calculate the probability of an event A. Integrate the density over
A for a continuous probability model (sum over A for a discrete
model).

The event A is
A = { s ∈ R : s > x } = (x,∞),
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and the density of the Exp(λ) distribution is from the handout

f(x) = λe−λx, x > 0.

We only have to plug these into the definition and evaluate the integral.
But when we do so, we have to be careful. We cannot just put in the limits

of integration x and ∞ giving

P (A) =
∫ ∞

x

f(x) dx, (1.9)

because the x in the limit of integration isn’t the same as the x that is the
variable of integration (in f(x) dx. In fact, this formula is obviously wrong
because it violates a basic sanity check of calculus

The “dummy” variable of integration never appears in the limits of
integration or in the expression that is the value of the integral.

Thus we need to use some other variable, say s, as the dummy variable of
integration (it’s called a “dummy” variable, because the value of the integral
doesn’t contain this variable, so it doesn’t matter what variable we use.) This
gives

P (A) =
∫ ∞

x

f(s) ds

=
∫ ∞

x

λe−λs ds

= −e−λs
∣∣∣∞
x

= e−λx

Note that in the second line

f(s) = λe−λs.

When we replace f(x) by f(s), we replace x by s everywhere x appears in the
definition of f(x).

Example 1.1.2 (A More Complicated Event).
Suppose, as before,

X ∼ Exp(λ).

But know we want to know

P
(
(X − µ)2 < a2

)
, (1.10)

where µ and a are positive real numbers.
We follow the same strategy as before. We need to evaluate (1.9), where A

is the event implicitly defined in (1.10), which is

A = {x > 0 : x < µ − a or x > µ + a }
= (0, µ − a) ∪ (µ + a,∞)
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the union of two disjoint intervals unless µ − a < 0, in which case the lower
interval is empty.

This mean that (1.9) becomes the sum of integrals over these two disjoint
sets

P (A) =
∫ µ−a

0

f(x) dx +
∫ ∞

µ+a

f(x) dx

= −e−λx
∣∣∣µ−a

0
− e−λx

∣∣∣∞
µ+a

= (1 − e−λ(µ−a)) + e−λ(µ+a)

unless µ − a < 0, in which case it is

P (A) =
∫ ∞

µ+a

f(x) dx

= e−λ(µ+a)

1.1.5 Functions of Random Variables

One immediate consequence of the formal definition of random variables is
that any function of random variables is another random variable. Suppose X
and Y are real valued random variables and we define Z = X2Y . Then Z is
also a function on the sample space S defined by

Z(s) = X(s)2Y (s), s ∈ S,

and similarly for any other function of random variables.

1.2 Change of Variables

1.2.1 General Definition

Consider a random variable X and another random variable Y defined by
Y = g(X), where g is an arbitrary function. Every function of random variables
is a random variable!

Note that
P (Y ∈ A) = P

(
g(X) ∈ A

)
. (1.11)

In one sense (1.11) is trivial. The two sides are equal because Y = g(X).
In another sense (1.11) is very deep. It contains the heart of the most general

change of variable formula. It tells how to calculate probabilities for Y in terms
of probabilities for X. To be precise, let PX denote the probability measure for
the model in which X is the identity random variable, and similarly PY for the
analogous measure for Y . Then the left hand side of (1.11) is trivial is PY (A)
and the right hand side is PX(B), where

B = { s ∈ S : g(s) ∈ A } (1.12)
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where S is the sample space of the probability model describing X. We could
have written g

(
X(s)

)
in place of g(s) in (1.12), but since X is the identity

random variable for the PX model, these are the same. Putting this all together,
we get the following theorem.

Theorem 1.1. If X ∼ PX and Y = g(X), then Y ∼ PY where

PY (A) = PX(B),

the relation between A and B being given by (1.12).

This theorem is too abstract for everyday use. In practice, we will use at lot
of other theorems that handle special cases more easily. But it should not be
forgotten that this theorem exists and allows, at least in theory, the calculation
of the distribution of any random variable.

Example 1.2.1 (Constant Random Variable).
Although the theorem is hard to apply to complicated random variables, it is
not too hard for simple ones. The simplest random variable is a constant one.
Say the function g in the theorem is the constant function defined by g(s) = c
for all s ∈ S.

To apply the theorem, we have to find, for any set A in the sample of Y ,
which is the codomain of the function g, the set B defined by (1.12). This
sounds complicated, and in general it is, but here is it fairly easy. There are
actually only two cases.

Case I: Suppose c ∈ A. Then

B = { s ∈ S : g(s) ∈ A } = S

because g(s) = c ∈ A for all s in S.

Case II: Conversely, suppose c /∈ A. Then

B = { s ∈ S : g(s) ∈ A } = ∅

because g(s) = c /∈ A for all s in S, that is there is no s such that the condition
holds, so the set of s satisfying the condition is empty.

Combining the Cases: Now for any probability distribution the empty set
has probability zero and the sample space has probability one, so PX(∅) = 0
and PX(S) = 1. Thus the theorem says

PY (A) =

{
1, c ∈ A

0, c /∈ A
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Thus even constant random variables have probability distributions. They
are rather trivial, all the probabilities being either zero or one, but they are
probability models that satisfy the axioms.

Thus in probability theory we treat nonrandomness as a special case of
randomness. There is nothing uncertain or indeterminate about a constant
random variable. When Y is defined as in the example, we always know Y =
g(X) = c, regardless of what happens to X. Whether one regards this as
mathematical pedantry or a philosophically interesting issue is a matter of taste.

1.2.2 Discrete Random Variables

For discrete random variables, probability measures are defined by sums

P (A) =
∑
x∈A

f(x) (1.13)

where f is the density for the model (Lindgren would say p. f.)
Note also that for discrete probability models, not only is there (1.13) giving

the measure in terms of the density, but also

f(x) = P ({x}). (1.14)

giving the density in terms of the measure, derived by taking the case A = {x}
in (1.13). This looks a little odd because x is a point in the sample space, and
a point is not a set, hence not an event, the analogous event is the set {x}
containing the single point x.

Thus our job in applying the change of variable theorem to discrete proba-
bility models is much simpler than the general case. We only need to consider
sets A in the statement of the theorem that are one-point sets. This gives the
following theorem.

Theorem 1.2. If X is a discrete random variable with density fX and sample
space S, and Y = g(X), then Y is a discrete random variable with density fY

defined by
fY (y) = PX(B) =

∑
x∈B

fX(x),

where
B = {x ∈ S : y = g(x) }.

Those who don’t mind complicated notation plug the definition of B into
the definition of fY obtaining

fY (y) =
∑
x∈S

y=g(x)

fX(x).

In words, this says that to obtain the density of a discrete random variable Y ,
one sums the probabilities of all the points x such that y = g(x) for each y.

Even with the simplification, this theorem is still a bit too abstract and
complicated for general use. Let’s consider some special cases.
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One-To-One Transformations

A transformation (change of variable)

S
g−→ T

is one-to-one if g maps each point x to a different value g(x) from all other
points, that is,

g(x1) 6= g(x2), whenever x1 6= x2.

A way to say this with fewer symbols is to consider the equation

y = g(x).

If for each fixed y, considered as an equation to solve for x, there is a unique
solution, then g is one-to-one. If for any y there are multiple solutions, it isn’t.

Whether a function is one-to-one or not may depend on the domain. So
if you are sloppy and don’t distinguish between a function and an expression
giving the value of the function, you can’t tell whether it is one-to-one or not.

Example 1.2.2 (x2).
The function g : R → R defined by g(x) = x2 is not one-to-one because

g(x) = g(−x), x ∈ R.

So it is in fact two-to-one, except at zero.
But the function g : (0,∞) → R defined by the very same formula g(x) = x2

is one-to-one, because there do not exist distinct positive real numbers x1 and
x2 such that x2

1 = x2
2. (Every positive real number has a unique positive square

root.)

This example seems simple, and it is, but every year some students get
confused about this issue on tests. If you don’t know whether you are dealing
with a one-to-one transformation or not, you’ll be in trouble. And you can’t tell
without considering the domain of the transformation as well as the expression
giving its values.

Inverse Transformations

A function is invertible if it is one-to-one and onto, the latter meaning that
its codomain is the same as its range.

Neither of the functions considered in Example 1.2.2 are invertible. The
second is one-to-one, but it is not onto, because the g defined in the example
maps positive real numbers to positive real numbers. To obtain a function that
is invertible, we need to restrict the codomain to be the same as the range,
defining the function

g : (0,∞) → (0,∞)

by
g(x) = x2.
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Every invertible function
S

g−→ T

has an inverse function
T

g−1

−→ S

(note g−1 goes in the direction opposite to g) satisfying

g
(
g−1(y)

)
= y, y = inT

and
g−1

(
g(x)

)
= x, x = inS.

A way to say this that is a bit more helpful in doing actual calculations is

y = g(x) wheneverx = g−1(y).

The inverse function is discovered by trying to solve

y = g(x)

for x. For example, if
y = g(x) = x2

then
x =

√
y = g−1(y).

If for any y there is no solution or multiple solutions, the inverse does not exist (if
no solutions the function is not onto, if multiple solutions it is not one-to-one).

Change of Variable for Invertible Transformations

For invertible transformations Theorem 1.2 simplifies considerably. The set
B in the theorem is always a singleton: there is a unique x such that y = g(x),
namely g−1(y). So

B = { g−1(y) },
and the theorem can be stated as follows.

Theorem 1.3. If X is a discrete random variable with density fX and sample
space S, if g : S → T is an invertible transformation, and Y = g(X), then Y is
a discrete random variable with density fY defined by

fY (y) = fX

(
g−1(y)

)
, y ∈ T. (1.15)

Example 1.2.3 (The “Other” Geometric Distribution).
Suppose X ∼ Geo(p), meaning that X has the density

fX(x) = (1 − p)px, x = 0, 1, 2, . . . (1.16)

Some people like to start counting at one rather than zero (Lindgren among
them) and prefer to call the distribution of the random variable Y = X + 1 the
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“geometric distribution” (there is no standard, some people like one definition,
some people like the other).

The transformation in question is quite simple

y = g(x) = x + 1

has inverse
x = g−1(y) = y − 1

if (big if) we get the domains right. The domain of X is the set of nonnegative
integers {0, 1, . . .}. The transformation g maps this to the set of positive integers
{1, 2, . . .}. So that is the range of g and the domain of g−1 and hence the sample
space of the distribution of Y . If we don’t get the domains right, we don’t know
the sample space for Y and so can’t completely specify the distribution.

Now we just apply the theorem. The density fX in the theorem is defined
by (1.16). The expression fX

(
g−1(y)

)
in the theorem means that everywhere

we see an x in the definition of fX(x), we plug in g−1(y) = y − 1. This gives

fY (y) = (1 − p)py−1, y − 1 = 0, 1, 2, . . . .

The condition on the right giving the possible values of y is not in the usual
form. If we clean it up, we get

fY (y) = (1 − p)py−1, y = 1, 2, 3, . . . (1.17)

Note that this does indeed say that Y has the domain (sample space) we figured
out previously.

Example 1.2.4 (A Useless Example).
Again consider the geometric distribution with density (1.16), but now consider
the transformation g(x) = x2. Since the domain is the nonnegative integers,
g is one-to-one. In order to make it onto, we must make the codomain equal
to the range, which is the set {0, 1, 4, 9, 16, . . .} of perfect squares. The inverse
transformation is x =

√
y, and applying the theorem gives

fY (y) = (1 − p)p
√

y, y = 0, 1, 4, 9, 16, . . .

for the density of Y = g(X).

The reason this is called a “useless example” is that the formula is fairly
messy, so people avoid it. In general one never has to do a change of variable
unless a test question or homework problem makes you. One can always do the
calculation using fX rather than fY . The question is which is easier.

1.2.3 Continuous Random Variables

For continuous random variables, probability measures are defined by inte-
grals

P (A) =
∫

A

f(x) dx (1.18)
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where f is the density for the model (Lindgren would say p. d. f.)
So far (one sentence) this section looks much like the section on discrete

random variables. The only difference is that (1.18) has an integral where
(1.13) has a sum. But the next equation (1.14) in the section on discrete random
variables has no useful analog for continuous random variables. In fact

P ({x}) = 0, for all x

(p. 32 in Lindgren). Because of this there is no simple analog of Theorem 1.2
for continuous random variables.

There is, however, an analog of Theorem 1.3.

Theorem 1.4. If X is a continuous random variable with density fX and sam-
ple space S, if g : S → T is an invertible transformation with differentiable
inverse h = g−1, and Y = g(X), then Y is a continuous random variable with
density fY defined by

fY (y) = fX

(
h(y)

) · |h′(y)|, y ∈ T. (1.19)

The first term on the right hand side in (1.19) is the same as the right hand
side in (1.15), the only difference is that we have written h for g−1. The second
term has no analog in the discrete case. Here summation and integration, and
hence discrete and continuous random variables, are not analogous.

We won’t bother to prove this particular version of the theorem, since it is
a special case of a more general theorem we will prove later (the multivariable
continuous change of variable theorem).

Example 1.2.5.
Suppose

X ∼ Exp(λ).

What is the distribution of Y = X2?
This is just like Example 1.2.4 except now we use the continuous change of

variable theorem.
The transformation in question is g : (0,∞) → (0,∞) defined by

g(x) = x2, x > 0.

The inverse transformation is, of course,

h(y) = g−1(y) = y1/2, y > 0,

and it also maps from (0,∞) to (0,∞). Its derivative is

h′(y) = 1
2y−1/2, y > 0.

The density of X is
fX(x) = λe−λx, x > 0.
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Plugging in h(y) =
√

y everywhere for x gives

fX

(
h(y)

)
= λe−λ

√
y

And multiplying by the derivative term gives the density of Y .

fY (y) = fX

(
h(y)

) · |h′(y)|
= λe−λ

√
y · 1

2y−1/2

=
λe−λ

√
y

2
√

y
, y > 0.

Note that we tack the range of y values on at the end. The definition of fY isn’t
complete without it.

1.3 Random Vectors

A vector is a mathematical object consisting of a sequence or tuple of real
numbers. We usually write vectors using boldface type

x = (x1, . . . , xn)

The separate numbers x1, . . ., xn are called the components or coordinates of
the vector. We can also think of a vector as a point in n-dimensional Euclidean
space, denoted Rn.

A random vector is simply a vector-valued random variable. Using the “big
X” and “little x” convention, we denote random vectors by capital letters and
their possible values by lower case letters. So a random vector

X = (X1, . . . , Xn)

is a vector whose components are real-valued random variables X1, . . ., Xn. For
contrast with vectors, real numbers are sometimes called scalars. Thus most of
the random variables we have studied up to now can be called random scalars
or scalar-valued random variables.

Strictly speaking, there is a difference between a function f of a vector
variable having values f(x) and a function f of several scalar variables having
values f(x1, . . . , xn). One function has one argument, the other n arguments.
But in practice we are sloppy about the distinction, so we don’t have to write
f
(
(x1, . . . , xn)

)
when we want to consider f a function of a vector variable and

explicitly show the components of the vector. The sloppiness, which consists in
merely omitting a second set of parentheses, does no harm.

That having been said, there is nothing special about random vectors. They
follow the same rules as random scalars, though we may need to use some
boldface letters to follow our convention.
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1.3.1 Discrete Random Vectors

A real-valued function f on a countable subset S of Rn is the probability
density (Lindgren would say p. f.) of a discrete random vector if it satisfies the
following two properties

f(x) ≥ 0, for all x ∈ S (1.20a)∑
x∈S

f(x) = 1 (1.20b)

The corresponding probability measure (“big P”) is defined by

P (A) =
∑
x∈A

f(x) (1.20c)

for all events A (events being, as usual, subsets of the sample space S).
Except for the boldface type, these are exactly the same properties that

characterize probability densities and probability measures of a discrete random
scalar. The only difference is that x is really an n-tuple, so f is “really” a
function of several variables, and what looks simple in this notation, may be
complicated in practice. We won’t give an example here, but will wait and make
the point in the context of continuous random vectors.

1.3.2 Continuous Random Vectors

Similarly, a real-valued function f on a subset S of Rn is the probability
density (Lindgren would say p. d. f.) of a continuous random vector if it satisfies
the following two properties

f(x) ≥ 0, for all x ∈ S (1.21a)∫
S

f(x) dx = 1 (1.21b)

The corresponding probability measure is defined by

P (A) =
∫

A

f(x) dx (1.21c)

for all events A (events being, as usual, subsets of the sample space S).
Again, except for the boldface type, these are exactly the same properties

that characterize probability densities and probability measures of a continuous
random scalar. Also note that the similarity between the discrete and continuous
cases, the only difference being summation in one and integration in the other.

To pick up our point about the notation hiding rather tricky issues, we go
back to the fact that f is “really” a function of several random variables, so
the integrals in (1.21b) and (1.21c) are “really” multiple (or iterated) integrals.
Thus (1.21c) could perhaps be written more clearly as

P (A) =
∫∫

· · ·
∫

A

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn
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Whether you prefer this to (1.21c) is a matter of taste. It does make some of
the difficulty more explicit.

Example 1.3.1.
Suppose that f is the probability density on the unit square in R2 defined by

f(x, y) = x + y, 0 < x < 1 and 0 < y < 1. (1.22)

Suppose we wish to calculate P (X +Y > 1), or written out more explicitly, the
probability of the event

A = { (x, y) : 0 < x < 1 and 0 < y < 1 and x + y > 1 }
We have to integrate over the set A. How do we write that as an iterated
integral?

Suppose we decide to integrate over y first and x second. In the first integral
we keep x fixed, and consider y the variable. What are the limits of integration
for y? Well, y must satisfy the inequalities 0 < y < 1 and 1 < x + y. Rewrite
the latter as 1 − x < y. Since 1 − x is always greater than zero, the inequality
0 < y plays no role, and we see that the interval over which we integrate y is
1 − x < y < 1.

Now we need to find the limits of integration of x. The question is whether
the interval over which we integrate is 0 < x < 1 or whether there is some other
restriction limiting us to a subinterval. What decides the question is whether
it is always possible to satisfy 1 − x < y < 1, that is, whether we always have
1 − x < 1. Since we do, we see that 0 < x < 1 is correct and

P (A) =
∫ 1

0

∫ 1

1−x

f(x, y) dy dx

The inner integral is∫ 1

1−x

(x + y) dy = xy +
y2

2

∣∣∣∣1
1−x

=
(

x +
1
2

)
−

(
x(1 − x) +

(1 − x)2

2

)
= x +

x2

2

So the outer integral is∫ 1

0

(
x +

x2

2

)
dx =

x2

2
+

x3

6

∣∣∣∣1
0

=
2
3

In more complicated situations, finding the limits of integration can be much
trickier. Fortunately, there is not much use for this kind of trickery in probability
and statistics. In principle arbitrarily obnoxious problems of this sort can arise,
in practice they don’t.

Note that we get an exactly analogous sort of problem calculating proba-
bilities of arbitrary events for discrete random vectors. The iterated integrals
become iterated sums and the limits of integration are replaced by limits of
summation. But the same principles apply. We don’t do an example because
the sums are harder to do in practice than integrals.
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1.4 The Support of a Random Variable

The support of a random variable is the set of points where its density is
positive. This is a very simple concept, but there are a few issues about supports
that are worthwhile stating explicitly.

If a random variable X has support A, then P (X ∈ A) = 1, because if S is
the sample space for the distribution of X

1 =
∫

S

fX(x) dx

=
∫

A

fX(x) dx +
∫

Ac

fX(x) dx

=
∫

A

fX(x) dx

= P (X ∈ A)

because fX is zero on Ac and the integral of zero is zero.
Thus, as long as the only random variables under consideration are X and

functions of X it makes no difference whether we consider the sample space to
be S (the original sample space) or A (the support of X). We can use this
observation in two ways.

• If the support of a random variable is not the whole sample space, we can
throw the points where the density is zero out of the sample space without
changing any probabilities.

• Conversely, we can always consider a random variable to live in a larger
sample space by defining the density to be zero outside of the original
sample space.

Simple examples show the idea.

Example 1.4.1.
Consider the U(a, b) distribution. We can consider the sample space to be the
interval (a, b), in which case we write the density

f(x) =
1

b − a
, a < x < b. (1.23a)

On the other hand, we may want to consider the sample space to be the whole
real line, in which case we can write the density in two different ways, one using
case splitting

f(x) =


0, x ≤ a

1
b−a , a < x < b

0, b ≤ x

(1.23b)

and the other using indicator functions

f(x) =
1

b − a
I(a,b)(x), x ∈ R. (1.23c)
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In most situations you can use whichever form you prefer. Why would
anyone every use the more complicated (1.23b) and (1.23c)? There are several
reasons. One good reason is that there may be many different random variables,
all with different supports, under consideration. If one wants them all to live
on the same sample space, which may simplify other parts of the problem, then
one needs something like (1.23b) or (1.23c). Another reason not so good is
mere habit or convention. For example, convention requires that the domain
of a c. d. f. be the whole real line. Thus one commonly requires the domain of
the matching density to also be the whole real line necessitating something like
(1.23b) or (1.23c) if the support is not the whole real line.

1.5 Joint and Marginal Distributions

Strictly speaking, the words “joint” and “marginal” in describing probability
distributions are unnecessary. They don’t describe kinds of probability distribu-
tions. They are just probability distributions. Moreover, the same probability
distribution can be either “joint” or “marginal” depending on context. Each is
the probability distribution of a set of random variables. When two different
sets are under discussion, one a subset of the other, we use “joint” to indicate
the superset and “marginal” to indicate the subset. For example, if we are
interested in the distribution of the random variables X, Y , and Z and simulta-
neously interested in the distribution of X and Y , then we call the distribution
of the three variables with density fX,Y,Z the “joint” distribution and density,
whereas we call the distribution of the two variables X and Y with density fX,Y

the “marginal” distribution and density. In a different context, we might also
be interested in the distribution of X alone with density fX . In that context
we would call fX,Y the joint density and fX the marginal density. So whether
fX,Y is “joint” or “marginal” depends entirely on context.

What is the relationship between joint and marginal densities? Given fX,Y ,
how do we obtain fX? (If we can see that, other questions about joint and
marginal densities will be obvious by analogy.)

First, note that this is a question about change of variables. Given the
“original” random vector (X,Y ) what is the distribution of the random variable
defined by the transformation

X = g(X,Y )?

This is not the sort of transformation covered by any of the special-case change
of variable theorems (it is certainly not one-to-one, since any two points with
the same x value but different y values map to the same point x). However, the
general change of variable theorem, Theorem 1.1, does apply (it applies to any
change of variables).

Theorem 1.1 applied to this case says that

PX(A) = PX,Y (B), (1.24)
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where

B = { (x, y) ∈ R2 : g(x, y) ∈ A }
= { (x, y) ∈ R2 : x ∈ A }
= A × R.

because g(x, y) = x, the notation A × R indicating the Cartesian product of A
and R, the set of all points (x, y) with x ∈ A and y ∈ R.

Now the definition of the density of a continuous (scalar) random variable
applied to the left hand side of (1.24) gives us

PX(A) =
∫

A

fX(x) dx,

whereas the definition of the density of a continuous (bivariate) random vector
applied to the right hand side of (1.24) gives us

PX,Y (B) =
∫∫

B

fX,Y (x, y) dx dy

=
∫∫

A×R
fX,Y (x, y) dx dy

=
∫

A

∫ +∞

−∞
fX,Y (x, y) dy dx

Thus we can calculate P (X ∈ A) in two different ways, which must be equal∫
A

fX(x) dx =
∫

A

∫ +∞

−∞
fX,Y (x, y) dy dx

Equality of the two expressions for arbitrary events A requires that fX(x) be
the result of the y integral, that is,

fX(x) =
∫

fX,Y (x, y) dy. (1.25)

In words we can state this result as follows

To go from joint to marginal you integrate (or sum) out the variables
you don’t want.

Those readers who are highlighting with a marker, should change colors here
and use fire engine red glitter sparkle for this one, something that will really
stand out. This point is very important, and frequently botched by students. If
you don’t remember the slogan above, you will only know that to produce the
marginal of X you integrate with respect to x or y. Not knowing which, you
will guess wrong half the time. Of course, if you have good calculus awareness
you know that ∫

fX,Y (x, y) dx

like any integral
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• cannot be a function of the dummy variable of integration x, and

• is a function of the free variable y.

Thus ∫
fX,Y (x, y) dx = some function of y only

and hence can only be fY (y) and cannot be fX(x). Thus making the mistake
of integrating with respect to the wrong variable (or variables) in attempting
to produce a marginal is really dumb on two counts: first, you were warned
but didn’t get it, and, second, it’s not only a mistake in probability theory but
also a calculus mistake. I do know there are other reasons people can make
this mistake, being rushed, failure to read the question, or whatever. I know
someone will make this mistake, and I apologize in advance for insulting you
by calling this a “dumb mistake” if that someone turns out to be you. I’m only
trying to give this lecture now, when it may do some good, rather than later,
written in red ink all over someone’s test paper. (I will, of course, be shocked
but very happy if no one makes the mistake on the tests.)

Of course, we sum out discrete variables and integrate out continuous ones.
So how do we go from fW,X,Y,Z to fX,Z? We integrate out the variables we
don’t want. We are getting rid of W and Y , so

fX,Z(x, z) =
∫∫

fW,X,Y,Z(w, x, y, z) dw dy.

If the variables are discrete, the integrals are replaced by sums

fX,Z(x, z) =
∑
w

∑
y

fW,X,Y,Z(w, x, y, z).

In principle, it couldn’t be easier. In practice, it may be easy or tricky, depending
on how tricky the problem is. Generally, it is easy if there are no worries about
domains of integration (and tricky if there are such worries).

Example 1.5.1.
Consider the distribution of Example 1.3.1 with joint density of X and Y given
by (1.22). What is the marginal distribution of Y ? We find it by integrating
out X

fY (y) =
∫

f(x, y) dx =
∫ 1

0

(x + y) dx =
x2

2
+ xy

∣∣∣∣1
0

=
(

1
2

+ y

)
Couldn’t be simpler, so long as you don’t get confused about which variable

you integrate out.
That having been said, it is with some misgivings that I even mention the

following examples. If you are having trouble with joint and marginal distribu-
tions, don’t look at them yet! They are tricky examples that very rarely arise.
If you never understand the following examples, you haven’t missed much. If
you never understand the preceding example, you are in big trouble.
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Example 1.5.2 (Uniform Distribution on a Triangle).
Consider the uniform distribution on the triangle with corners (0, 0), (1, 0), and
(0, 1) with density

f(x, y) = 2, 0 < x and 0 < y and x + y < 1

What is the marginal distribution of X? To get that we integrate out Y . But
the fact that the support of the distribution is not rectangular with sides parallel
to the axes means we must take care about limits of integration.

When integrating out y we consider x fixed at one of its possible values.
What are the possible values? Clearly x > 0 is required. Also we must have
x < 1− y. This inequality is least restrictive when we take y = 0. So the range
of the random variable X is 0 < x < 1.

For x fixed at a value in this range, what is the allowed range of y? By
symmetry, the analysis is the same as we did for x. We must have 0 < y < 1−x,
but now we are considering x fixed. So we stop here. Those are the limits. Thus

fX(x) =
∫ 1−x

0

f(x, y) dy =
∫ 1−x

0

2 dy = 2y
∣∣∣1−x

0
= 2(1 − x), 0 < x < 1.

Note that the marginal is not uniform, although the joint is uniform!

Example 1.5.3 (The Discrete Analog of Example 1.5.2).
We get very similar behavior in the discrete analog of Example 1.5.2. Consider
the uniform distribution on the set

Sn = { (x, y) ∈ Z2 : 1 ≤ x ≤ y ≤ n }
for some positive integer n (the symbol Z denotes the set of integers, so Z2 is
the set of points in R2 with integer coordinates).

Of course the density of the uniform distribution is constant

f(x, y) =
1

card(Sn)
, (x, y) ∈ Sn.

We only have to count the points in Sn to figure out what it is.
We do the count in two bits. There are n points of the form (i, i) for i = 1,

. . ., n, and there are
(
n
2

)
points of the form (i, j) with 1 ≤ i < j ≤ n. Hence

card(Sn) = n +
(

n

2

)
= n +

n(n − 1)
2

=
n(n + 1)

2

Now in order to have a problem we need a question, which we take to be the
same as in the preceding example: what is the marginal of X? To find that we
sum out y

fX(x) =
n∑

y=x

f(x, y) =
2

n(n + 1)

n∑
y=x

1 =
2(n − x + 1)

n(n + 1)

because there are n − x + 1 integers between x and n (including both ends).
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1.6 Multivariable Change of Variables

1.6.1 The General and Discrete Cases

This section is very short. There is nothing in the general change of variable
theorem (Theorem 1.1 about dimension. It applies to all problems, scalar,
vector, or whatever.

Similarly, there is nothing in the specializations of the general theorem to
the discrete case (Theorems 1.2 and 1.3) about dimension. These too apply to
all problems, scalar, vector, or whatever.

1.6.2 Continuous Random Vectors

Derivatives of Vector Functions

But Theorem 1.4 obviously doesn’t apply to the vector case, at least not
unless it is made clear what the notation |h′(y)| in (1.19) might mean when
h is a vector-valued function of a vector variable. For future reference (to be
used next semester) we develop the general case in which the dimensions of the
domain and codomain are allowed to be different, although we only want the
case where they are the same right now.

Let g be a function that maps n-dimensional vectors to m-dimensional vec-
tors (maps Rn to Rm). If we write y = g(x), this means y is m-dimensional
and x is n-dimensional. If you prefer to think in terms of many scalar variables
instead of vectors, there are really m functions, one for each component of y

yi = gi(x1, . . . , xn), i = 1, . . . , m.

So g(x) really denotes a vector of functions

g(x) =

 g1(x)
...

gm(x)


which, if you want to write the functions as having n scalar arguments rather
than just one vector argument, can also be written

g(x) =

 g1(x1, . . . , xn)
...

gm(x1, . . . , xn)


Vector notation is very compact! A few symbols say a lot.

The derivative of the function g at the point x (assuming it exists) is the
matrix of partial derivatives. It is written ∇g(x) and pronounced “del g of x.”
Throughout this section we will also write it as the single letter G. So

G = ∇g(x)
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is the matrix with elements

gij =
∂gi(x)
∂xj

Note that if g maps n-dimensional vectors to m-dimensional vectors, then it is
an m×n matrix (rather than the n×m). The reason for this choice will become
apparent eventually, but not right now.

Example 1.6.1.
Suppose we are interested in the map from 3-dimensional space to 2-dimensional
space defined by

u =
x√

x2 + y2 + z2

v =
y√

x2 + y2 + z2

where the 3-dimensional vectors are (x, y, z) and the 2-dimensional vectors
(u, v). We can write the derivative matrix as

G =

(
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)

This is sometimes written in calculus books as

G =
∂(u, v)

∂(x, y, z)

a notation Lindgren uses in Section 12.1 in his discussion of Jacobians. This
notation has never appealed to me. I find it confusing and will avoid it.

Calculating these partial derivatives, we get

∂u

∂x
= (x2 + y2 + z2)−1/2 − 1

2
x(x2 + y2 + z2)−3/22x

=
y2 + z2

r3

(where we have introduced the notation r =
√

x2 + y2 + z2),

∂u

∂y
= −1

2
x(x2 + y2 + z2)−3/22y

= −xy

r3

and so forth (all the other partial derivatives have the same form with different
letters), so

∇g(x, y, z) =
1
r3

(
y2 + z2 −xy −xz
−xy x2 + z2 −yz

)
(1.26)
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To be careful, we should point out that the function g is undefined when its
argument is zero, but it exists and is differentiable with derivative (1.26) every-
where else.

Note that the derivative matrix is 2×3 as required in mapping 3-dimensional
vectors to 2-dimensional vectors.

Invertible Transformations

A multivariate change of variables h cannot be invertible unless it maps
between spaces of the same dimension, that is, from Rn to Rn for some n.
The determinant of its derivative matrix is called the Jacobian of the mapping,
denoted

J(x) = det
(∇h(x)

)
.

(In an alternative terminology, some people call the derivative matrix ∇h(x) the
Jacobian matrix and its determinant the Jacobian determinant, but “Jacobian”
used as a noun rather than an adjective usually means the determinant.)

The Jacobian appears in the change of variable theorem for multiple inte-
grals.

Theorem 1.5 (Change of Variables in Integration). Suppose that h is an
invertible, continuously differentiable mapping with nonzero Jacobian defined on
an open subset of Rn, and suppose that A is a region contained in the domain
of h and that f is an integrable function defined on h(A), then∫

h(A)

f(x) dx =
∫

A

f [h(y)] · |J(y)| dy,

where J is the Jacobian of h.

The notation h(A) means the image of the region A under the mapping h,
that is

h(A) = {h(x) : x ∈ A }.
Corollary 1.6 (Change of Variables for Densities). Suppose that g is
an invertible mapping defined on an open subset of Rn containing the support
of a continuous random vector X having probability density fX, and suppose
that h = g−1 is continuously differentiable with nonzero Jacobian J . Then the
random vector Y = g(X) has probability density

fY(y) = fX[h(y)] · |J(y)| (1.27)

If we plug the definition of the Jacobian into (1.27) we get

fY(y) = fX[h(y)] · ∣∣det
(∇h(y)

)∣∣ .

Note that the univariate change-of-variable formula

fY (y) = fX [h(y)] · |h′(y)|.
is a special case.
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Proof. The general change of variable theorem (Theorem 1.1) says

PY(A) = PX(B) (1.28)

where
B = {x ∈ S : g(x) ∈ A }

where S is the sample space of the random vector X, which we may take to be
the open subset of Rn on which g is defined. Because g is invertible, we have
the relationship between A and B

B = h(A)
A = g(B)

Rewriting (1.28) using the definition of measures in terms of densities gives∫
A

fY(y) dy =
∫

B

fX(x) dx =
∫
h(A)

fX(x) dx (1.29)

Now applying Theorem 1.5 to the right hand side gives∫
A

fY(y) dy =
∫

A

fX[h(y)] · |J(y)| dy.

This can be true for all sets A only if the integrands are equal, which is the
assertion of the theorem.

Calculating determinants is difficult if n is large. However, we will usually
only need the bivariate case ∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

Example 1.6.2.
Suppose f is the density on R2 defined by

f(x, y) =
1
2π

exp
(
−x2

2
− y2

2

)
, (x, y) ∈ R2.

Find the joint density of the variables

U = X

V = Y/X

(This transformation is undefined when X = 0, but that event occurs with
probability zero and may be ignored. We can redefine the sample space to
exclude the y-axis without changing any probabilities).

The inverse transformation is

X = U

Y = UV
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This transformation has derivative ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

 =

1 0

v u


and Jacobian 1 · u − v · 0 = u.

Thus the joint density of U and V is

g(u, v) =
1
2π

exp
(
−u2

2
− (uv)2

2

)
· |u|

=
|u|
2π

exp
(
−u2(1 + v2)

2

)
As another example of the multivariate change-of-variable formula we give a

correct proof of the convolution formula (Theorem 23 of Chapter 4 in Lindgren)1

Theorem 1.7 (Convolution). If X and Y are independent continuous real-
valued random variables with densities fX and fY , then X + Y has density

fX+Y (z) =
∫

fX(z − y)fY (y) dy. (1.30)

This is called the convolution formula, and the function fX+Y is called the
convolution of the functions fX and fY .

Proof. Consider the change of variables

u = x + y

v = y

(this is the mapping g in the corollary, which gives the new variables in terms
of the old) having inverse mapping

x = u − v

y = v

(this is the mapping h in the corollary, which gives the old variables in terms
of the new). The Jacobian is

J(u, v) =
∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∣∣∣∣1 −1
0 1

∣∣∣∣ = 1

1What’s wrong with Lindgren’s proof is that he differentiates under the integral sign with-
out any justification. Every time Lindgren uses this differentiation under the integral sign
trick, the same problem arises. The right way to prove all such theorems is to use the multi-
variate change of variable formula.
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The joint density of X and Y is fX(x)fY (y) by independence. By the change-
of-variable formula, the joint density of U and V is

fU,V (u, v) = fX,Y (u − v, v)|J(u, v)|
= fX(u − v)fY (v)

We find the marginal of U by integrating out V

fU (u) =
∫

fX(u − v)fY (v) dv

which is the convolution formula.

Noninvertible Transformations

When a change of variable Y = g(X) is not invertible, things are much
more complicated, except in one special case, which is covered in this section.
Of course, the general change of variable theorem (Theorem 1.1) always applies,
but is hard to use.

The special case we are interested in is exemplified by the univariate change
of variables

R g−→ [0,∞)

defined by
g(x) = x2, x ∈ R2. (1.31)

This function is not invertible, because it is not one-to-one, but it has two “sort
of” inverses, defined by

h+(y) =
√

y, y ≥ 0. (1.32a)

and
h−(y) = −√

y, y ≥ 0. (1.32b)

Our first task is to make this notion of a “sort of” inverse mathematically
precise, and the second is to use it to get a change of variable theorem. In aid of
this, let us take a closer look at the notion of inverse functions. Two functions g
and h are inverses if, first, they map between the same two sets but in opposite
directions

S
g−→ T

S
h←− T

and, second, if they “undo” each other’s actions, that is,

h[g(x)] = x, x ∈ S (1.33a)

and
g[h(y)] = y, y ∈ T. (1.33b)
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Now we want to separate these two properties. We say h is a left inverse of
g if (1.33a) holds and a right inverse of g if (1.33b) holds. Another name for
right inverse is section. It turns out that the important property for change of
variable theorems is the right inverse property (1.33b), for example, the function
g defined by (1.31) has two right inverses defined by (1.32a) and (1.32b).

The next concept we need to learn in order to state the theorem in this
section is “partition.” A partition of a set S is a family of sets {Ai : i ∈ I} that
are disjoint and cover S, that is,

Ai ∩ Aj = ∅, i ∈ I, j ∈ I, and i 6= j

and ⋃
i∈I

Ai = S.

The last concept we need to learn, or more precisely relearn, is the notion
of the support of a random variable. This should have been, perhaps, run into
Section 1.4, but too late now. A more general notion of the support of a random
variable is the following. An event A is a (not the) support of a random variable
X if P (X ∈ A) = 1. The support defined Section 1.4 is a support under the
new definition, but not the only one. For example, if X is a continuous random
variable, we can throw out any single point, any finite set of points, even a
countable set of points, because any such set has probability zero. We will see
why this more general definition is important in the examples.

These three new concepts taken care of, we are now ready to state the
theorem.

Theorem 1.8. Suppose g : U → V is a mapping, where U and V are open
subsets of Rn, and U is a support of a continuous random variable X having
probability density fX. Suppose that hi, i ∈ I are continuously differentiable sec-
tions (right inverses) of g with nonzero Jacobians Ji = det(∇hi), and suppose
the sets hi(V ), i ∈ I form a partition of U . Then the random vector Y = g(X)
has probability density

fY(y) =
∑
i∈I

fX[hi(y)] · |Ji(y)| (1.34)

Proof. The proof starts just like the proof of Theorem 1.6, in particular, we still
have

PY(A) = PX(B)

where

B = {x ∈ U : g(x) ∈ A }

Now g is not invertible, but the sets hi(A) form a partition of B. Hence we
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have ∫
A

fY(y) dy =
∫

B

fX(x) dx

=
∑
i∈I

∫
hi(A)

fX(x) dx

=
∑
i∈I

∫
A

fX[hi(y)] · |Ji(y)| dy.

This can be true for all sets A only if the integrands are equal, which is the
assertion of the theorem.

Example 1.6.3.
Suppose X is a random variable with density

fX(x) =
1√
2π

e−x2/2, x ∈ R

(that this is a probability density will be proved in Chapter 6 in Lindgren), and
suppose Y = X2. What is the density of Y ?

In order to apply the theorem, we need to delete the point zero from the
sample space of X, then the transformation

(−∞, 0) ∪ (0,+∞)
g−→ (0,+∞)

defined by g(x) = x2 has the two sections (right inverses)

(−∞, 0)
h−←− (0,+∞)

and
(0,+∞)

h+←− (0,+∞)

defined by h−(y) = −√
y and h+(y) = +

√
y. And the ranges of the sections do

indeed form a partition of the domain of g.
The sections have derivatives

h′
−(y) = −1

2
y−1/2

h′
+(y) = +

1
2
y−1/2

and applying the theorem gives

fY (y) = fX(
√

y) · 1
2
√

y
+ fX(−√

y) · 1
2
√

y

=
1√
y
fX(

√
y)

=
1√
2πy

e−y/2, y > 0.
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because fX happens to be a symmetric about zero, that is, fX(x) = fX(−x).
Note that it is just as well we deleted the point zero at the beginning, because

the resulting density is undefined at zero anyway.

It is worthwhile stating a couple of intermediate results of the preceding
example in a corollary.

Corollary 1.9. Suppose X is a continuous random scalar with density fX , then
Y = X2 has density

fY (y) =
1

2
√

y

[
fX(

√
y) + fX(−√

y)
]
, y > 0.

Moreover, if fX is symmetric about zero, then

fY (y) =
1√
y
fX(

√
y), y > 0.



Chapter 2

Expectation

2.1 Introduction

Expectation and probability are equally important concepts. An important
educational objective of this course is that students become “ambidextrous” in
reasoning with these two concepts, able to reason equally well with either.

Thus we don’t want to think of expectation as a derived concept—something
that is calculated from probabilities. We want the expectation concept to stand
on its own. Thus it should have the same sort of treatment we gave probability.
In particular, we need to have the connection between expectation and the
law of large numbers (the analog of Section 2.2 in Lindgren) and axioms for
expectation (the analog of Section 2.4 in Lindgren).

Suppose you are asked to pick a single number to stand in for a random vari-
able. Of course, the random variable, when eventually observed, will probably
differ from whatever number you pick (if the random variable is continuous it
will match whatever number you pick with probability zero). But you still have
to pick a number. Which number is best?

The expectation (also called expected value) of a real-valued random variable,
if it exists, is one answer to this problem. It is the single number that a rational
person “should” expect as the value of the random variable when it is observed.
Expectation is most easily understood in economic contexts. If the random
variable in question is the value of an investment or other uncertain quantity,
the expectation is the “fair price” of the investment, the maximum amount a
rational person is willing to pay to pay for the investment.

The notion of expectation of a non-monetary random variable is less clear,
but can be forced into the monetary context by an imaginary device. Suppose
the random variable in question is the weight of a student drawn at random
from a list of all students at the university. Imagine you will be paid a dollar
per pound of that student’s weight. How much would you be willing to pay to
“invest” in this opportunity? That amount is (or should be) the expected value
of the student’s weight.

31



32 Stat 5101 (Geyer) Course Notes

2.2 The Law of Large Numbers

What Lindgren describes in his Section 2.2 is not the general form of the law
of large numbers. It wasn’t possible to explain the general form then, because
the general form involves the concept of expectation.

Suppose X1, X2, . . . is an independent and identically distributed sequence
of random variables. This means these variables are the same function X (a
random variable is a function on the sample space) applied to independent
repetitions of the same random process. The average of the first n variables is
denoted

Xn =
1
n

n∑
i=1

Xi. (2.1)

The general form of the law of large numbers says the average converges to the
expectation E(X) = E(Xi), for all i. In symbols

Xn → E(X), as n → ∞. (2.2)

It is not clear at this point, just what the arrow on the left in (2.2) is supposed
to mean. Vaguely it means something like convergence to a limit, but Xn is a
random variable (any function of random variables is a random variable) and
E(X) is a constant (all expectations are numbers, that is, constants), and we
have no mathematical definition of what it means for a sequence of random
variables to converge to a number. For now we will make do with the sloppy
interpretation that (2.2) says that Xn gets closer and closer to E(X) as n goes
to infinity, in some sense that will be made clearer later (Chapter 5 in Lindgren
and Chapter 4 of these notes).

2.3 Basic Properties

2.3.1 Axioms for Expectation (Part I)

In this section, we begin our discussion of the formal mathematical prop-
erties of expectation. As in many other areas of mathematics, we start with
fundamental properties that are not proved. These unproved (just assumed)
properties are traditionally called “axioms.” The axioms for expectation are
the mathematical definition of the expectation concept. Anything that satisfies
the axioms is an instance of mathematical expectation. Anything that doesn’t
satisfy the axioms isn’t. Every other property of expectation can be derived
from these axioms (although we will not give a completely rigorous derivation
of all the properties we will mention, some derivations being too complicated
for this course).

The reason for the “Part I” in the section heading is that we will not cover all
the axioms here. Two more esoteric axioms will be discussed later (Section 2.5.4
of these notes).

Expectation is in some respects much a much simpler concept that prob-
ability and in other respects a bit more complicated. The issue that makes
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expectation more complicated is that not all real-valued random variables have
expectations. The set of real valued random variables that have expectation is
denoted L1 or sometimes L1(P ) where P is the probability measure associated
with the expectation, the letter “L” here being chosen in honor of the French
mathematician Henri Lebesgue (1875–1941), who invented the general defini-
tion of integration used in advanced probability theory (p. 67 of these notes),
the digit “1” being chosen for a reason to be explained later. The connection
between integration and expectation will also be explained later.

An expectation operator is a function that assigns to each random variable
X ∈ L1 a real number E(X) called the expectation or expected value of X.
Every expectation operator satisfies the following axioms.

Axiom E1 (Additivity). If X and Y are in L1, then X + Y is also in L1,
and

E(X + Y ) = E(X) + E(Y ).

Axiom E2 (Homogeneity). If X is in L1 and a is a real number, then aX
is also in L1, and

E(aX) = aE(X).

These properties agree with either of the informal intuitions about expecta-
tions. Prices are additive and homogeneous. The price of a gallon of milk and
a box of cereal is the sum of the prices of the two items separately. Also the
price of three boxes of cereal is three times the price of one box. (The notion of
expectation as fair price doesn’t allow for volume discounts.)

Axiom E3 (Positivity). If X is in L1, then

X ≥ 0 implies E(X) ≥ 0.

The expression X ≥ 0, written out in more detail, means

X(s) ≥ 0, s ∈ S,

where S is the sample space. That is, X is always nonnegative.
This axiom corresponds to intuition about prices, since goods always have

nonnegative value and prices are also nonnegative.

Axiom E4 (Norm). The constant random variable I that always has the value
one is in L1, and

E(I) = 1. (2.3)

Equation (2.3) is more commonly written

E(1) = 1, (2.4)

and we will henceforth write it this way. This is something of an abuse of nota-
tion. The symbol “1” on the right hand side is the number one, but the symbol
“1” on the left hand side must be a random variable (because the argument of
an expectation operator is a random variable), hence a function on the sample
space. So in order to understand (2.4) we must agree to interpret a number in a
context that requires a random variable as the constant random variable always
equal to that number.
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2.3.2 Derived Basic Properties

Theorem 2.1 (Linearity). If X and Y are in L1, and a and b are real numbers
then aX + bY is also in L1, and

E(aX + bY ) = aE(X) + bE(Y ). (2.5)

Proof of Theorem 2.1. The existence part of Axiom E2 implies aX ∈ L1 and
bY ∈ L1. Then the existence part of Axiom E1 implies aX + bY ∈ L1.

Then Axiom E1 implies

E(aX + bY ) = E(aX) + E(bY )

and Axiom E2 applied to each term on the right hand side implies (2.5).

Corollary 2.2 (Linear Functions). If X is in L1, and Y = a + bX, where a
and b are real numbers, then Y is also in L1, and

E(Y ) = a + bE(X). (2.6)

Proof. If we let X in Theorem 2.1 be the constant random variable 1, then (2.5)
becomes

E(a · 1 + bY ) = aE(1) + bE(Y ),

and applying Axiom E4 to the E(1) on the right hand side gives

E(a + bY ) = E(a · 1 + bY ) = a · 1 + bE(Y ) = a + bE(Y ),

and reading from end to end gives

E(a + bY ) = a + bE(Y ), (2.7)

which except for notational differences is what was to be proved.

If the last sentence of the proof leaves you unsatisfied, you need to think a bit
more about “mathematics is invariant under changes of notation” (Problem 2-1).

Example 2.3.1 (Fahrenheit to Centigrade).
Corollary 2.2 arises whenever there is a change of units of measurement. All
changes of units are linear functions. Most are purely multiplicative, 2.54 cen-
timeters to the inch and so forth, but a few are the more general kind of linear
transformation described in the corollary. An example is the change of temper-
ature units from Fahrenheit to centigrade degrees. If X is a random variable
having units of degrees Fahrenheit and Y is the a random variable that is the
same measurement as X but in units of degrees centigrade, the relation between
the two is

Y =
5
9
(X − 32).

The corollary then implies

E(Y ) =
5
9
[E(X) − 32],
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that is, the expectations transform the same way as the variables under a change
of units. Thus, if the expected daily high temperature in January in Minneapolis
is 23 ◦F, then this expected value is also −5 ◦C. Expectations behave sensibly
under changes of units of measurement.

Theorem 2.3 (Linearity). If X1, . . ., Xn are in L1, and a1, . . ., an are real
numbers then a1X1 + · · · anXn is also in L1, and

E(a1X1 + · · · + anXn) = a1E(X1) + · · · + anE(Xn).

Theorem 2.1 is the case n = 2 of Theorem 2.3, so the latter is a generalization
of the former. That’s why both have the same name. (If this isn’t obvious, you
need to think more about “mathematics is invariant under changes of notation.”
The two theorems use different notation, a1 and a2 instead of a and b and X1

and X2 instead of X and Y , but they assert the same property of expectation.)

Proof of Theorem 2.3. The proof is by mathematical induction. The theorem
is true for the case n = 2 (Theorem 2.1). Thus we only need to show that the
truth of the theorem for the case n = k implies the truth of the theorem for the
case n = k + 1. Apply Axiom E1 to the case n = k + 1 giving

E(a1X1 + · · · + ak+1Xk+1) = E(a1X1 + · · · + akXk) + E(ak+1Xk+1).

Then apply Axiom E2 to the second term on the right hand side giving

E(a1X1 + · · · + ak+1Xk+1) = E(a1X1 + · · · + akXk) + ak+1E(Xk+1).

Now the n = k case of the theorem applied to the first term on the right hand
side gives the n = k + 1 case of the theorem.

Corollary 2.4 (Additivity). If X1, . . ., Xn are in L1, then X1 + · · ·Xn is
also in L1, and

E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn).

This theorem is used so often that it seems worth restating in words to help
you remember.

The expectation of a sum is the sum of the expectations.

Note that Axiom E1 is the case n = 2, so the property asserted by this theorem
is a generalization. It can be derived from Axiom E1 by mathematical induction
or from Theorem 2.3 (Problem 2-2).

Corollary 2.5 (Subtraction). If X and Y are in L1, then X − Y is also in
L1, and

E(X − Y ) = E(X) − E(Y ).

Corollary 2.6 (Minus Signs). If X is in L1, then −X is also in L1, and

E(−X) = −E(X).
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These two properties are obvious consequences of linearity (Problems 2-3
and 2-4).

Corollary 2.7 (Constants). Every constant random variable is in L1, and

E(a) = a.

This uses the convention we introduced in connection with (2.4). The symbol
“a” on the right hand side represents a real number, but the symbol “a” on the
left hand side represents the constant random variable always equal to that
number. The proof is left as an exercise (Problem 2-6).

Note that a special case of Corollary 2.7 is E(0) = 0.

Theorem 2.8 (Monotonicity). If X and Y are in L1, then

X ≤ Y implies E(X) ≤ E(Y ).

The expression X ≤ Y , written out in full, means

X(s) ≤ Y (s), s ∈ S,

where S is the sample space. That is, X is always less than or equal to Y .
Note that the positivity axiom (E3) is the special case X = 0 of this theorem.

Thus this theorem is a generalization of that axiom.
This theorem is fairly easily derived from the positivity axiom (E3) and the

Theorem 2.5 (Problem 2-7).
All of the theorems in this section and the axioms in the preceding section

are exceedingly important and will be used continually throughout the course.
You should have them all at your fingertips. Failure to recall the appropriate
axiom or theorem when required will mean failure to do many problems. It is
not necessary to memorize all the axioms and theorems. You can look them
up when needed. But you do need to have some idea what each axiom and
theorem is about so you will know that there is something to look up. After all,
you can’t browse the entire course notes each time you use something.

Axiom E3 and Theorem 2.8 are important in what I call “sanity checks.”
Suppose you are given a description of a random variable X and are told to
calculate its expectation. One of the properties given is X ≥ 3, but your answer
is E(X) = 2. This is obviously wrong. It violates Theorem 2.8. You must have
made a mistake somewhere! Sanity checks like this can save you from many
mistakes if you only remember to make them. A problem isn’t done when you
obtain an answer. You should also take a few seconds to check that your answer
isn’t obviously ridiculous.

2.3.3 Important Non-Properties

What’s a non-property? It’s a property that students often use but isn’t
true. Students are mislead by analogy or guessing. Thus we stress that the
following are not true in general (although they are sometimes true in some
special cases).
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The Multiplicativity Non-Property

One might suppose that there is a property analogous to the additivity
property, except with multiplication instead of addition

E(XY ) = E(X)E(Y ), Uncorrelated X and Y only! (2.8)

As the editorial comment says, this property does not hold in general. We will
later see that when (2.8) does hold we have a special name for this situation:
we say the variables X and Y are uncorrelated.

Taking a Function Outside an Expectation

Suppose g is a linear function defined by

g(x) = a + bx, x ∈ R, (2.9)

where a and b are real numbers. Then

E{g(X)} = g(E{X}), Linear g only! (2.10)

is just Theorem 2.2 stated in different notation. The reason for the editorial
comment is that (2.10) does not hold for general functions g, only for linear
functions. Sometime you will be tempted to use (2.10) for a nonlinear function
g. Don’t! Remember that it is a “non-property.”

For example, you may be asked to calculate E(1/X) for some random vari-
able X. The “non-property,” if it were true, would allow to take the function
outside the expectation and the answer would be 1/E(X), but it isn’t true, and,
in general

E

(
1
X

)
6= 1

E(X)

There may be a way to do the problem, but the “non-property” isn’t it.

2.4 Moments

If k is a positive integer, then the real number

αk = E(Xk) (2.11)

is called the k-th moment of the random variable X.
If p is a positive real number, then the real number

βp = E(|X|p) (2.12)

is called the p-th absolute moment of the random variable X.
If k is a positive integer and µ = E(X), then the real number

µk = E{(X − µ)k} (2.13)
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is called the k-th central moment of the random variable X. (The symbols α,
β, and µ are Greek letters. See Appendix A).

Sometimes, to emphasize we are talking about (2.11) rather than one of
the other two, we will refer to it as the ordinary moment, although, strictly
speaking, the “ordinary” is redundant.

That’s not the whole story on moments. We can define lots more, but all
moments are special cases of one of the two following concepts.

If k is a positive real number and a is any real number, then the real number
E{(X −a)k} is called the k-th moment about the point a of the random variable
X. We introduce no special symbol for this concept. Note that the k-th ordinary
moment is the special case a = 0 and the k-th central moment is the case a = µ.

If p is a positive real number and a is any real number, then the real number
E{|X −a|p} is called the p-th absolute moment about the point a of the random
variable X. We introduce no special symbol for this concept. Note that the
p-th absolute moment is the special case a = 0.

2.4.1 First Moments and Means

The preceding section had a lot of notation and definitions, but nothing else.
There was nothing there you could use to calculate anything. It seems like a lot
to remember. Fortunately, only a few special cases are important. For the most
part, we are only interested in p-th moments when p is an integer, and usually
a small integer. By far the most important cases are p = 1, which is covered in
this section, and p = 2, which is covered in the following section. We say p-th
moments (of any type) with p = 1 are first moments, with p = 2 are second
moments, and so forth (third, fourth, fifth, . . .).

First ordinary moment is just a fancy name for expectation. This moment
is so important that it has yet another name. The first ordinary moment of a
random variable X is also called the mean of X. It is commonly denoted by
the Greek letter µ, as we did in (2.13). Note that α1, µ, and E(X) are different
notations for the same thing. We will use them all throughout the course.

When there are several random variables under discussion, we denote the
mean of each using the same Greek letter µ, but add the variable as a subscript
to distinguish them: µX = E(X), µY = E(Y ), and so forth.

Theorem 2.9. For any random variable in L1, the first central moment is zero.

The proof is left as an exercise (Problem 2-9).
This theorem is the first one that allows us to actually calculate a moment of

a nonconstant random variable, not a very interesting moment, but it’s a start.

Symmetric Random Variables

We say two random variables X and Y have the same distribution if

E{g(X)} = E{g(Y )}
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holds for all real-valued functions g such that the expectations exist and if both
expectations exist or neither. In this case we will say that X and Y are equal
in distribution and use the notation

X
D= Y.

This notation is a bit misleading, since it actually says nothing about X and
Y themselves, but only about their distributions. What is does imply is any of
the following

PX = PY

FX = FY

fX = fY

that is, X and Y have the same probability measure, the same distribution
function, or the same probability density. What it does not imply is anything
about the values of X and Y themselves, which like all random variables are
functions on the sample space. It may be that X(ω) is not equal to Y (ω) for
any ω. Nevertheless, the notation is useful.

We say a real-valued random variable X is symmetric about zero if X and
−X have the same distribution, that is, if

X
D= −X.

Note that this is an example of the variables themselves not being equal. Clearly,
X(ω) 6= −X(ω) unless X(ω) = 0, which may occur with probability zero (will
occur with probability zero whenever X is a continuous random variable).

We say a real-valued random variable X is symmetric about a point a if X−a
is symmetric about zero, that is, if

X − a
D= a − X.

The point a is called the center of symmetry of X. (Note: Lindgren, definition
on p. 94, gives what is at first glance a completely unrelated definition of this
concept. The two definitions, his and ours, do in fact define the same concept.
See Problem 2-11.)

Some of the most interesting probability models we will meet later involve
symmetric random variables, hence the following theorem is very useful.

Theorem 2.10. Suppose a real-valued random variable X is symmetric about
the point a. If the mean of X exists, it is equal to a. Every higher odd integer
central moment of X that exists is zero.

In notation, the two assertions of the theorem are

E(X) = µ = a

and
µ2k−1 = E{(X − µ)2k−1} = 0, for any positive integer k.

The proof is left as an exercise (Problem 2-10).
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2.4.2 Second Moments and Variances

The preceding section says all that can be said in general about first mo-
ments. As we shall now see, second moments are much more complicated.

The most important second moment is the second central moment, which
also has a special name. It is called the variance and is often denoted σ2. (The
symbol σ is a Greek letter. See Appendix A). We will see the reason for the
square presently. We also use the notation var(X) for the variance of X. So

σ2 = µ2 = var(X) = E{(X − µ)2}.

As we did with means, when there are several random variables under discussion,
we denote the variance of each using the same Greek letter σ, but add the
variable as a subscript to distinguish them: σ2

X = var(X), σ2
Y = var(Y ), and so

forth.
Note that variance is just an expectation like any other, the expectation of

the random variable (X − µ)2.
All second moments are related.

Theorem 2.11 (Parallel Axis Theorem). If X is a random variable with
mean µ and variance σ2, then

E{(X − a)2} = σ2 + (µ − a)2

Proof. Using the fact
(b + c)2 = b2 + 2bc + c2 (2.14)

from algebra

(X − a)2 = (X − µ + µ − a)2

= (X − µ)2 + 2(X − µ)(µ − a) + (µ − a)2

Taking expectations of both sides and applying linearity of expectation (every-
thing not containing X is nonrandom and so can be pulled out of expectations)
gives

E{(X − a)2} = E{(X − µ)2} + 2(µ − a)E(X − µ) + (µ − a)2E(1)

= σ2 + 2(µ − a)µ1 + (µ − a)2

By Theorem 2.9, the middle term on the right hand side is zero, and that
completes the proof.

The name of this theorem is rather strange. It is taken from an analogous
theorem in physics about moments of inertia. So the name has nothing to do
with probability in general and moments (as understood in probability theory
rather than physics) in particular, and the theorem is not commonly called
by that name. We will use it because Lindgren does, and perhaps because
the theorem doesn’t have any other widely used name. In fact, since it is so
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simple, it is often not called a theorem but just a calculation formula or method.
Sometimes it is called “completing the square” after the method of that name
from high-school algebra, although that name isn’t very appropriate either. It
is a very simple theorem, just the algebraic identity (2.14), which is related to
“completing the square” plus linearity of expectation, which isn’t. Whatever it
is called, the theorem is exceedingly important, and many important facts are
derived from it. I sometimes call it “the most important formula in statistics.”

Corollary 2.12. If X is a random variable having first and second moments,
then

var(X) = E(X2) − E(X)2.

The proof is left as an exercise (Problem 2-13).
This corollary is an important special case of the parallel axis theorem. It

also is frequently used, but not quite as frequently as students want to use it.
It should not be used in every problem that involves a variance (maybe in half
of them, but not all). We will give a more specific warning against overusing
this corollary later.

There are various ways of restating the corollary in symbols, for example

σ2
X = E(X2) − µ2

X ,

and
µ2 = α2 − α2

1.

As always, mathematics is invariant under changes of notation. The important
thing is the concepts symbolized rather than the symbols themselves.

The next theorem extends Theorem 2.2 from means to variances.

Theorem 2.13. Suppose X is a random variable having first and second mo-
ments and a and b are real numbers, then

var(a + bX) = b2 var(X). (2.15)

Note that the right hand side of (2.15) does not involve the constant part a
of the linear transformation a + bX. Also note that the b comes out squared.
The proof is left as an exercise (Problem 2-15).

Before leaving this section, we want to emphasize an obvious property of
variances.

Sanity Check: Variances are nonnegative.

This holds by the positivity axiom (E3) because the variance of X is the expec-
tation of the random variable (X − µ)2, which is nonnegative because squares
are nonnegative. We could state this as a theorem, but won’t because its main
use is as a “sanity check.” If you are calculating a variance and don’t make
any mistakes, then your result must be nonnegative. The only way to get a
negative variance is to mess up somewhere. If you are using Corollary 2.12, for
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example, you can get a negative number as a result of the subtraction, if you
have calculated one of the quantities being subtracted incorrectly.

So whenever you finish calculating a variance, check that it is nonnegative.
If you get a negative variance, and have time, go back over the problem to try
to find your mistake. There’s never any question such an answer is wrong.

A more subtile sanity check is that a variance should rarely be zero. We will
get to that later.

2.4.3 Standard Deviations and Standardization

Standard Deviations

The nonnegative square root of the variance is called the standard deviation.
Conversely, the variance is the square of the standard deviation. The symbol
commonly used for the standard deviation is σ. That’s why the variance is
usually denoted σ2.

As with the mean and variance, we use subscripts to distinguish variables
σX , σY , and so forth. We also use the notation sd(X), sd(Y ), and so forth.
Note that we always have the relations

sd(X) =
√

var(X)

var(X) = sd(X)2

So whenever you have a variance you get the corresponding standard deviation
by taking the square root, and whenever you have a standard deviation you
get the corresponding variance by squaring. Note that the square root always
is possible because variances are always nonnegative. The σ and σ2 notations
make this obvious: σ2 is the square of σ (duh!) and σ is the square root of
σ2. The notations sd(X) and var(X) don’t make their relationship obvious, nor
do the names “standard deviation” and “variance” so the relationship must be
kept in mind.

Taking the square root of both sides of (2.15) gives the analogous theorem
for standard deviations.

Corollary 2.14. Suppose X is a random variable having first and second mo-
ments and a and b are real numbers, then

sd(a + bX) = |b| sd(X). (2.16)

It might have just occurred to you to ask why anyone would want two such
closely related concepts. Won’t one do? In fact more than one introductory
(freshman level) statistics textbook does just that, speaking only of standard
deviations, never of variances. But for theoretical probability and statistics, this
will not do. Standard deviations are almost useless for theoretical purposes.
The square root introduces nasty complications into simple situations. So for
theoretical purposes variance is the preferred concept.
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In contrast, for all practical purposes standard deviation is the preferred
concept, as evidenced by the fact that introductory statistics textbooks that
choose to use only one of the two concepts invariably choose standard deviation.

The reason has to do with units of measurement and measurement scales.
Suppose we have a random variable X whose units of measurement are inches,
for example, the height of a student in the class. What are the units of E(X),
var(X), and sd(X), assuming these quantities exist?

The units of an expectation are the same as the units of the random variable,
so the units of E(X) are also inches. Now var(X) is also just an expectation,
the expectation of the random variable (X − µ)2, so its units are the units of
(X − µ)2, which are obviously inches squared (or square inches, if you prefer).
Then obviously, the units of sd(X) are again inches. Thus X, E(X), and sd(X)
are comparable quantities, all in the same units, whereas var(X) is not. You
can’t understand what var(X) tells you about X without taking the square root.
It’s isn’t even in the right units of measurement.

The theoretical emphasis of this course means that we will be primarily
interested in variances rather than standard deviations, although we will be
interested in standard deviations too. You have to keep in mind which is which.

Standardization

Given a random variable X, there is always a linear transformation Z =
a + bX, which can be thought of as a change of units of measurement as in
Example 2.3.1, that makes the transformed variable Z have mean zero and
standard deviation one. This process is called standardization.

Theorem 2.15. If X is a random variable having mean µ and standard devi-
ation σ and σ > 0, then the random variable

Z =
X − µ

σ
(2.17)

has mean zero and standard deviation one.
Conversely, if Z is a random variable having mean zero and standard devi-

ation one, µ and σ are real numbers, and σ ≥ 0, then the random variable

X = µ + σZ (2.18)

has mean µ and standard deviation σ.

The proof is left as an exercise (Problem 2-17).
Standardization (2.17) and its inverse (2.18) are useful in a variety of con-

texts. We will use them throughout the course.

2.4.4 Mixed Moments and Covariances

When several random variables are involved in the discussion, there are
several moments of each type, as we have already discussed. If we have two
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random variables X and Y , then we also have two (ordinary) first moments µX

and µY and two second central moments σ2
X and σ2

Y , but that is not the whole
story. To see why, it is helpful to make a brief digression into the terminology
of polynomials.

Polynomials and Monomials

Forget random variables for a second and consider polynomials in two (or-
dinary) variables x and y. A general polynomial of degree zero is a constant
function f defined by

f(x, y) = a, x, y ∈ R,

where a is a constant. A general polynomial of degree one is a linear function
f defined by

f(x, y) = a + bx + cy, x, y ∈ R,

where a, b, and c are constants. A general polynomial of degree two is a
quadratic function f defined by

f(x, y) = a + bx + cy + dx2 + exy + ky2, x, y ∈ R,

where a, b, c, d, e, and k are constants. The point is that we have a new kind
of term, the term exy that contains both variables in the polynomial of degree
two. In general, we say the degree of a term is the sum of the exponents of all
the variables in the term, so x2 and xy = x1y1 are both terms of degree two.

One term of a polynomial is called a monomial. The convention that the
degree of a monomial is the sum of the exponents of the variables is arbitrary,
but it is a useful convention for the following reason. It seems sensible to consider
(x + y)2 a quadratic polynomial because it is the square of a linear polynomial,
but the identity

(x + y)2 = x2 + 2xy + y2

shows us that this sort of quadratic polynomial involves the “mixed” monomial
xy. The reason why this monomial is said to have degree two rather than degree
one will become clearer as we go along.

Mixed Moments

We apply the same sort of thinking to moments. We say E(XY ) is a “mixed”
second moment if X and Y are two random variables and in general that an
expectation of the form

E

(
n∏

i=1

Xki
i

)
, (2.19)

where X1, . . ., Xn are n random variables, is a “mixed” K-th moment, where

K =
n∑

i=1

ki (2.20)
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is the sum of the exponents. If you are not familiar with the product notation
in (2.19), it is analogous to the summation notation in (2.20). The expression
(2.19) can also be written

E
(
Xk1

1 Xk2
2 · · ·Xkn

n

)
just as (2.20) can be written

K = k1 + k2 + · · · + kn.

The general formula (2.19) allows for the possibility that some of the ki may
be zero if we adopt the convention that (a0 = 1 for all real a so, for example
x0y2z1 = y2z).

Even more general than (2.19) we allow, just as in the non-mixed case,
moments about arbitrary points, so we also say

E

{
n∏

i=1

(Xi − ai)ki

}

is a K-th moment, where K is again the sum of the exponents (2.20) and a1,
a2, . . ., an are arbitrary real numbers. We say this sort of mixed moment is a
central moment if it is a moment about the means, that is,

E

{
n∏

i=1

(Xi − µi)ki

}

where
µi = E(Xi), i = 1, . . . , n.

(The convention that we use the random variable as a subscript would require
µXi

here rather than µi, but the simplicity of avoiding the extra level of sub-
scripts makes the simpler form preferable.)

Covariance

All of that is a lot of abstract notation and complicated definitions. As in
the case of non-mixed moments, by far the most important case, the one we
will be concerned with more than all the higher-order moments together, is the
second central mixed moment, which has a special name. The covariance of
two random variables X and Y , written cov(X,Y ), is the second central mixed
moment

cov(X,Y ) = E
{
(X − µX)(Y − µY )

}
,

where, as usual, µX = E(X) and µY = E(Y ).
Note a fact that follows trivially from the definition: a covariance is a sym-

metric function of its arguments, that is, cov(X,Y ) = cov(Y,X) for any two
random variables X and Y .
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Note that variance is a special case of covariance. When X and Y are the
same random variable, we get

cov(X,X) = E
{
(X − µX)2

}
= var(X).

The covariance of a random variable with itself is its variance. This is one reason
why covariance is considered a (mixed) second moment (rather than some sort
of first moment). A more important reason arises in the following section.

For some unknown reason, there is no standard Greek-letter notation for
covariance. We can always write σ2

X instead of var(X) if we like, but there is no
standard analogous notation for covariance. (Lindgren uses the notation σX,Y

for cov(X,Y ), but this notation is nonstandard. For one thing, the special case
σX,X = σ2

X looks weird. For another, no one who has not had a course using
Lindgren as the textbook will recognize σX,Y . Hence it is better not to get in
the habit of using the notation.)

Variance of a Linear Combination

A very important application of the covariance concept is the second-order
analog of the linearity property given in Theorem 2.3. Expressions like the
a1X1 + · · ·+ anXn occurring in Theorem 2.3 arise so frequently that it is worth
having a general term for them. An expression a1x1 + · · · anxn, where the ai

are constants and the xi are variables is called a linear combination of these
variables. The same terminology is used when the variables are random. With
this terminology defined, the question of interest in this section can be stated:
what can we say about variances and covariances of linear combinations?

Theorem 2.16. If X1, . . ., Xm and Y1, . . ., Yn are random variables having
first and second moments and a1, . . ., am and b1, . . ., bn are constants, then

cov

 m∑
i=1

aiXi,

n∑
j=1

bjYj

 =
m∑

i=1

n∑
j=1

aibj cov(Xi, Yj). (2.21)

Before we prove this important theorem we will look at some corollaries that
are even more important than the theorem itself.

Corollary 2.17. If X1, . . ., Xn are random variables having first and second
moments and a1, . . ., an are constants, then

var

(
n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiaj cov(Xi, Xj). (2.22)

Proof. Just take m = n, ai = bi, and Xi = Yi in the theorem.

Corollary 2.18. If X1, . . ., Xm and Y1, . . ., Yn are random variables having
first and second moments, then

cov

 m∑
i=1

Xi,

n∑
j=1

Yj

 =
m∑

i=1

n∑
j=1

cov(Xi, Yj). (2.23)
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Proof. Just take ai = bj = 1 in the theorem.

Corollary 2.19. If X1, . . ., Xn are random variables having first and second
moments, then

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj). (2.24)

Proof. Just take ai = 1 in Corollary 2.17.

The two corollaries about variances can be rewritten in several ways using
the symmetry property of covariances, cov(Xi, Xj) = cov(Xj , Xi), and the fact
that variance is a special case of covariance, cov(Xi, Xi) = var(Xi). Thus

var

(
n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) +

n∑
i=1

n∑
j=1
j 6=i

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

aiaj cov(Xi, Xj)

=
n∑

i=1

a2
i var(Xi) + 2

n∑
i=2

i−1∑
j=1

aiaj cov(Xi, Xj)

Any of the more complicated re-expressions make it clear that some of the
terms on the right hand side in (2.22) are “really” variances and each covari-
ance “really” occurs twice, once in the form cov(Xi, Xj) and once in the form
cov(Xj , Xi). Taking ai = 1 for all i gives

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj)

=
n∑

i=1

var(Xi) +
n∑

i=1

n∑
j=1
j 6=i

cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2
n∑

i=2

i−1∑
j=1

cov(Xi, Xj)

(2.25)

We also write out for future reference the special case m = n = 2.
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Corollary 2.20. If W , X, Y , and Z are random variables having first and
second moments and a, b, c, and d are constants, then

cov (aW + bX, cY + dZ) = ac cov(W,Y ) + ad cov(W,Z)
+ bc cov(X,Y ) + bd cov(X,Z) (2.26)

var (aX + bY ) = a2 var(X) + 2ab cov(X,Y ) + b2 var(Y ) (2.27)
cov (W + X,Y + Z) = cov(W,Y ) + cov(W,Z)

+ cov(X,Y ) + cov(X,Z) (2.28)
var (X + Y ) = var(X) + 2 cov(X,Y ) + var(Y ) (2.29)

No proof is necessary, since all of these equations are special cases of those
in Theorem 2.16 and its corollaries.

This section contains a tremendous amount of “equation smearing.” It is the
sort of thing for which the acronym MEGO (my eyes glaze over) was invented.
To help you remember the main point, let us put Corollary 2.19 in words.

The variance of a sum is the sum of the variances plus the sum of
twice the covariances.

Contrast this with the much simpler slogan about expectations on p. 35.
The extra complexity of the of the variance of a sum contrasted to the

expectation of a sum is rather annoying. We would like it to be simpler. Un-
fortunately it isn’t. However, as elsewhere in mathematics, what cannot be
achieved by proof can be achieved by definition. We just make a definition that
describes the nice case.

Definition 2.4.1.
Random variables X and Y are uncorrelated if cov(X,Y ) = 0.

We also say a set X1, . . ., Xn of random variables are uncorrelated if each
pair is uncorrelated. The reason for the name “uncorrelated” will become clear
when we define correlation.

When a set of random variables are uncorrelated, then there are no covari-
ance terms in the formula for the variance of their sum; all are zero by definition.

Corollary 2.21. If the random variables X1, . . ., Xn are uncorrelated, then

var(X1 + . . . + Xn) = var(X1) + . . . + var(Xn).

In words,

The variance of a sum is the sum of the variances if (big if) the
variables are uncorrelated.

Don’t make the mistake of using this corollary or the following slogan when
its condition doesn’t hold. When the variables are correlated (have nonzero
covariances), the corollary is false and you must use the more general formula
of Corollary 2.19 or its various rephrasings.
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What happens to Corollary 2.17 when the variables are uncorrelated is left
as an exercise (Problem 2-16).

At this point the reader may have forgotten that nothing in this section has
yet been proved, because we deferred the proof of Theorem 2.16, from which
everything else in the section was derived. It is now time to return to that proof.

Proof of Theorem 2.16. First define

U =
m∑

i=1

aiXi

V =
n∑

j=1

bjYj

Then note that by linearity of expectation

µU =
m∑

i=1

aiµXi

µV =
n∑

j=1

bjµYj

Then

cov(U, V ) = E{(U − µU )(V − µV )}

= E


(

m∑
i=1

aiXi −
m∑

i=1

aiµXi

) n∑
j=1

bjYj −
n∑

j=1

bjµYj


= E


m∑

i=1

(aiXi − aiµXi
)

n∑
j=1

(
bjYj − bjµYj

)
= E


m∑

i=1

n∑
j=1

aibj(Xi − µXi
)(Yj − µYj

)


=

m∑
i=1

n∑
j=1

aibjE
{
(Xi − µXi

)(Yj − µYj
)
}

=
m∑

i=1

n∑
j=1

aibj cov(Xi, Yj),

the last equality being the definition of covariance, the next to last linearity
of expectation, and the rest being just algebra. And this proves the theorem
because cov(U, V ) is the left hand side of (2.21) in different notation.
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2.4.5 Exchangeable Random Variables

We say random variables X1, . . ., Xn are exchangeable if

(X1, . . . , Xn) D= (Xi1 , . . . , Xin
)

for any of the n! permutations i1, . . ., in of the integers 1, . . ., n. (This is
equivalent to the definition in Section 3.8 in Lindgren.) In particular, if we look
at marginal distributions, this implies

X1
D= Xi, i = 1, . . . , n,

that is, all of the Xi have the same distribution,

(X1, X2)
D= (Xi, Xj), i = 1, . . . , n, j = 1, . . . , n, i 6= j,

and analogous statements for triples, quadruples, and so forth. In turn, these
imply

E(X1) = E(Xi),
var(X1) = var(Xi),

and analogous statements for all moments of X1 and Xi, for all i,

cov(X1, X2) = cov(Xi, Xj),

and analogous statements for all mixed moments of X1 and X2 and Xi and Xj ,
for all i and j, and so forth for moments involving three or more variables.

Theorem 2.22. If X1, . . ., Xn are exchangeable random variables, then

var(X1 + · · · + Xn) = n var(X1) + n(n − 1) cov(X1, X2). (2.30)

Proof. Apply (2.25). All n terms var(Xi) are equal to var(X1), which accounts
for the first term on the right hand side of (2.30). All the cov(Xi, Xj) terms for
i 6= j are equal to cov(X1, X2), and there are

2
(

n

2

)
= n(n − 1)

of these, which accounts for the second term on the right hand side of (2.30).

2.4.6 Correlation

The Cauchy-Schwarz Inequality

Theorem 2.23 (Cauchy-Schwarz Inequality). For any random variables
X and Y having first and second moments

E(|XY |) ≤
√

E(X2)E(Y 2). (2.31)
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This inequality is also called the Schwarz inequality or the Cauchy-Schwarz-
Buniakowski inequality Statisticians generally prefer two-name eponyms, so
that’s what we’ve used.

Proof. By the positivity property of expectation for any a ∈ R

0 ≤ E{(X + aY )2} = E(X2) + 2aE(XY ) + a2E(Y 2).

There are only two ways the right hand side can be nonnegative for all a.
Case I. E(Y 2) = 0, in which case we must also have E(XY ) = 0, so the

right hand side is equal to E(X2) regardless of the value of a.
Case II. E(Y 2) > 0, in which case the right hand side is a quadratic function

of a that goes to infinity as a goes to plus or minus infinity and achieves its
minimum where its derivative

2E(XY ) + 2aE(Y 2)

is equal to zero, that is, at

a = −E(XY )/E(Y 2),

the minimum being

E(X2) − 2
E(XY )
E(Y 2)

E(XY ) +
(
−E(XY )

E(Y 2)

)2

E(Y 2) = E(X2) − E(XY )2

E(Y 2)

And this is nonnegative if and only if

E(XY )2 ≤ E(X2)E(Y 2).

Taking the square root of both sides gives almost what we want

|E(XY )| ≤
√

E(X2)E(Y 2). (2.32)

Plugging |X| in for X and |Y | in for Y in (2.32) gives (2.31).

Note that the proof establishes (2.32) as well as (2.31). Both of these in-
equalities are useful and we can regard one as a minor variant of the other. The
proof shows that (2.32) implies (2.31). We will eventually see (Theorem 2.28)
that the implication also goes the other way, that (2.31) implies (2.32). For
now, we will just consider them to be two inequalities, both of which have been
proved.

Correlation

The correlation of real-valued random variables X and Y having strictly
positive variances is

cor(X,Y ) =
cov(X,Y )√

var(X) var(Y )

=
cov(X,Y )

sd(X) sd(Y )
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If var(X) or var(Y ) is zero, the correlation is undefined.
Again we might ask why two such closely related concepts as correlation and

covariance. Won’t just one do? (Recall that we asked the same question about
variance and standard deviation.) Here too we have the same answer. The
covariance is simpler to handle theoretically. The correlation is easier to under-
stand and hence more useful in applications. Correlation has three important
properties.

First, it is a dimensionless quantity, a pure number. We don’t think much
about units, but if we do, as we noted before the units X and sd(X) are the
same and a little thought shows that the units of cov(X,Y ) are the product of
the units of X and Y . Thus in the formula for the correlation all units cancel.

Second, correlation is unaltered by changes of units of measurement, that is,

cor(a + bX, c + dY ) = sign(bd) cor(X,Y ), (2.33)

where sign(bd) denotes the sign (plus or minus) of bd. The proof is left as an
exercise (Problem 2-25).

Third, we have the correlation inequality.

Theorem 2.24 (Correlation Inequality). For any random variables X and
Y for which correlation is defined

−1 ≤ cor(X,Y ) ≤ 1. (2.34)

Proof. This is an immediate consequence of Cauchy-Schwarz. Plug in X − µX

for X and Y − µY for Y in (2.32), which is implied by Cauchy-Schwarz by the
comment following the proof of the inequality, giving

|cov(X,Y )| ≤
√

var(X) var(Y ).

Dividing through by the right hand side gives the correlation inequality.

The correlation has a widely used Greek letter symbol ρ (lower case rho). As
usual, if correlations of several pairs of random variables are under consideration,
we distinguish them by decorating the ρ with subscripts indicating the random
variables, for example, ρX,Y = cor(X,Y ). Note that by definition of correlation

cov(X,Y ) = cor(X,Y ) sd(X) sd(Y )
= ρX,Y σXσY

This is perhaps one reason why covariance doesn’t have a widely used Greek-
letter symbol (recall that we said the symbol σX,Y used by Lindgren is nonstan-
dard and not understood by anyone who has not had a course using Lindgren
as the textbook).

Problems

2-1. Fill in the details at the end of the proof of Corollary 2.2. Specifically,
answer the following questions.
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(a) Why does (2.7) assert the same thing as (2.6) in different notation?

(b) What happened to the existence assertion of the corollary? Why it is clear
from the use made of Theorem 2.1 in the proof that a+bX has expectation
whenever X does?

2-2. Prove Corollary 2.4. As the text says, this may be done either using
Axiom E1 and mathematical induction, the proof being similar to that of Theo-
rem 2.3 but simpler, or you can use Theorem 2.3 without repeating the induction
argument (the latter is simpler).

In all of the following problems the rules are as follows. You may assume in
the proof of a particular theorem that all of the preceding theorems have been
proved, whether the proof has been given in the course or left as an exercise.
But you may not use any later theorems. That is, you may use without proof
any theorem or corollary with a lower number, but you may not use any with
a higher number. (The point of the rule is to avoid circular so-called proofs,
which aren’t really proofs because of the circular argument.)

2-3. Prove Corollary 2.5.

2-4. Prove Corollary 2.6.

2-5. If X1, X2, . . . is a sequence of random variables all having the same ex-
pectation µ, show that

E(Xn) = µ,

where, as usual, Xn is defined by (2.1).

2-6. Prove Corollary 2.7.

2-7. Prove Theorem 2.8 from Axiom E3 and Theorem 2.5.

2-8. A gambler makes 100 one-dollar bets on red at roulette. The probability
of winning a single bet is 18/38. The bets pay even odds, so the gambler gains
$1 when he wins and loses $1 when he loses.

What is the mean and the standard deviation of the gambler’s net gain
(amount won minus amount lost) on the 100 bets?

2-9. Prove Theorem 2.9.

2-10. Prove Theorem 2.10.

2-11. Lindgren (Definition on p. 94) defines a continuous random variable to
be symmetric about a point a if it has a density f that satisfies

f(a + x) = f(a − x), for all x.

We, on the other hand, gave a different definition (p. 39 in these notes) gave a
different definition (that X − a and a − X have the same distribution), which
is more useful for problems involving expectations and is also more general
(applying to arbitrary random variables, not just continuous ones). Show that
for continuous random variables, the two definitions are equivalent, that is,
suppose X is a continuous random variable with density fX , and
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(a) Find the density of Y = X − a.

(b) Find the density of Z = a − X.

(c) Show that these two densities are the same function if and only if

fX(a + x) = fX(a − x), for all x.

2-12. For the densities in Problem 4-8 in Lindgren, find the medians of the
distributions.

2-13. Prove Corollary 2.12.

2-14. Suppose X is a zero-one-valued random variable, that is, X(s) is either
zero or one for all s. Suppose X has mean µ.

(a) Show that αk = µ for all positive integers k.

(b) Show that 0 ≤ µ ≤ 1.

(c) Show that var(X) = µ(1 − µ).

2-15. Prove Theorem 2.13. Hint: It helps to define Y = a + bX and to use
Property 2.2. Since there are now two random variables under discussion, the
means must be denoted µX and µY (what does Property 2.2 say about µY ) and
similarly for the variances (what is to be shown is that σ2

Y = b2σ2
X).

2-16. Give the general formula for the variance of a linear combination of un-
correlated random variables.

2-17. Prove Theorem 2.15.

2-18. Suppose X is a random variable having mean µX and standard deviation
σX and σX > 0. Find a linear transformation Y = a + bX so that Y has
mean µY and σY , where µY is any real number and σY is any nonnegative real
number.

2-19. If X1, X2, . . . is a sequence of uncorrelated random variables all having
the same expectation µ and variance σ2, show that

sd(Xn) =
σ√
n

,

where, as usual, Xn is defined by (2.1).

2-20. State the result analogous to Theorem 2.22 giving var(Xn). You need
not prove your theorem (the proof is an obvious variation of the proof of Theo-
rem 2.22).

2-21. Suppose X1, X2, . . ., Xn are exchangeable with nonzero variance and

X1 + X2 + · · · + Xn = 0.

What is cor(Xi, Xj) for i 6= j.
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2-22. Suppose X1, . . ., Xn are exchangeable random variables. Show that

− 1
n − 1

≤ cor(Xi, Xj).

Hint: Consider var(X1 + · · · + Xn). Compare with the preceding problem.

2-23. An infinite sequence of random variables X1, X2, . . . is said to be ex-
changeable if the finite sequence X1, . . ., Xn is exchangeable for each n.

(a) Show that correlations cor(Xi, Xj) for an exchangeable infinite sequence
must be nonnegative. Hint: Consider Problem 2-22.

(b) Show that the following construction gives an exchangeable infinite se-
quence X1, X2, . . . of random variables having any correlation in the range
0 ≤ ρ ≤ 1. Let Y1, Y2, . . . be an i. i. d. sequence of random variables with
variance σ2, let Z be a random variable independent of all the Yi with
variance τ2, and define Xi = Yi + Z.

2-24. Consider an infinite sequence of random variables X1, X2, . . . having
covariances

cov(Xi, Xj) = ρ|i−j|σ2

where −1 < ρ < 1 and σ > 0. Find var(Xn) where, as usual, Xn is defined by
(2.1). Try to simplify your formula so that it does not have an explicit sum.
Hint: The geometric series

n−1∑
k=0

ak =
1 − an

1 − a
, −1 < a < 1

helps.

2-25. Prove (2.33).

2-26. Show that for any linear function, that is, a function T satisfying (2.35),
T (0) = 0.

2.5 Probability Theory as Linear Algebra

This section has two objectives.
The minor objective is to explain something that might be bothering the

astute reader. What is the connection between the linearity property of expec-
tation (Property 2.1) and the linearity property that defines linear transforma-
tions in linear algebra. They look similar. What’s the connection?

The major objective is to provide some mathematical models for expectation.
Everything we have done so far, important as it is, mostly tells us how some
expectations relate to other expectations. Linearity of expectation, for example
tells us that if we know E(X) and E(Y ), then we can calculate E(aX + bY ). It
doesn’t tell us where E(X) and E(Y ) come from in the first place.
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2.5.1 The Vector Space L1

Although we haven’t gotten to it yet, we will be using linear algebra in this
course. The linearity property of linear transformations between vector spaces
will be important. If these two linearity properties (the one from linear algebra
and the one from probability theory) are different, what is the difference and
how can you keep from confusing them?

Fortunately, there is nothing to confuse. The two properties are the same,
or, more precisely, expectation is a linear transformation.

Theorem 2.25. L1 is a real vector space, and E is a linear functional on L1.

The proof is trivial (we will give it below). The hard part is understanding
the terminology, especially if your linear algebra is a bit rusty. So our main
effort will be reviewing enough linear algebra to understand what the theorem
means.

Vector Spaces

Every linear algebra book starts with a definition of a vector space that
consists of a long list of formal properties. We won’t repeat them. If you are
interested, look in a linear algebra book. We’ll only review the facts we need
here.

First a vector space is a set of objects called vectors. They are often denoted
by boldface type. It is associated with another set of objects called scalars. In
probability theory, the scalars are always the real numbers. In linear algebra,
the scalars are often the complex numbers. More can be proved about complex
vector spaces (with complex scalars) than about real vector spaces (with real
scalars), so complex vector spaces are more interesting to linear algebraists.
But they have no application in probability theory. So to us “scalar” is just a
synonym for “real number.”

There are two things you can do with vectors.

• You can add them (vector addition). If x and y are vectors, then there
exists another vector x + y.

• You can multiply them by scalars (scalar multiplication). If x is a vector
and a is a scalar, then there exists another vector ax.

If you got the impression from your previous exposure to linear algebra (or
from Chapter 1 of these notes) that the typical vector is an n-tuple

x = (x1, . . . , xn)

or perhaps a “column vector” (n × 1 matrix)

x =

x1

...
xn
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you may be wondering what the connection between random variables and vec-
tors could possibly be. Random variables are functions (on the sample space)
and functions aren’t n-tuples or matrices.

But n-tuples are functions. You just have to change notation to see it. Write
x(i) instead of xi, and it’s clear that n-tuples are a special case of the function
concept. An n-tuple is a function that maps the index i to the value xi.

So the problem here is an insufficiently general notion of vectors. You should
think of functions (rather than n-tuples or matrices) as the most general notion
of vectors. Functions can be added. If f and g are functions on the same
domain, then h = f + g means

h(s) = f(s) + g(s), for all s in the domain.

Functions can be multiplied by scalars. If f is a function and a is a scalar (real
number), then h = af means

h(s) = af(s), for all s in the domain.

Thus the set of scalar-valued functions on a common domain form a vector space.
In particular, the scalar-valued random variables of a probability model (all real-
valued functions on the sample space) form a vector space. Theorem 2.25 asserts
that L1 is a subspace of this vector space.

Linear Transformations and Linear Functionals

If U and V are vector spaces and T is a function from U to V , then we say
that T is linear if

T (ax + by) = aT (x) + bT (y),
for all vectors x and y and scalars a and b. (2.35)

Such a T is sometimes called a linear transformation or a linear mapping rather
than a linear function.

The set of scalars (the real numbers) can also be thought of as a (one-
dimensional) vector space, because scalars can be added and multiplied by
scalars. Thus we can also talk about scalar-valued (real-valued) linear functions
on a vector space. Such a function satisfies the same property (2.35). The only
difference is that it is scalar-valued rather than vector-valued. In linear algebra,
a scalar-valued linear function is given the special name linear functional.

Theorem 2.25 asserts that the mapping from random variables X to their
expectations E(X) is a linear functional on L1. To understand this you have to
think of E as a function, a rule that assigns values E(X) to elements X of L1.

Proof of Theorem 2.25. The existence assertions of Properties E1 and E2 assert
that random variables in L1 can be added and multiplied by scalars yielding a
result in L1. Thus L1 is a vector space. Property 2.1 now says the same thing
as (2.35) in different notation. The map E, being scalar-valued, is thus a linear
functional on L1.
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2.5.2 Two Notions of Linear Functions

The preceding section showed that there was no difference between the notion
of linearity used in linear algebra and linearity of expectation in probability
theory.

There is, however, another notion of linearity. In fact, we already used it in
(2.9) and silently skipped over the conflict with (2.35). To be more precise, we
should say that (2.9) defines a function that is linear in the sense of high-school
algebra or first-year calculus (or in the sense used in statistics and various other
kinds of applied mathematics), and (2.35) defines a function that is linear in
the sense of linear algebra (and other higher mathematics).

To simplify terminology and indicate the two notions with single words,
mathematicians call the first class of functions affine and the second class linear.
Note that affine functions are what everyone but pure mathematicians calls
linear functions.

The two notions are closely related, but slightly different. An affine function
is a linear function plus a constant. If T is a linear function from a vector space
U to a vector space V , that is, a function satisfying (2.35), and a is any vector
in V , then the map A defined by

A(x) = a + T (x), x ∈ V (2.36)

is an affine function.
If we were mathematical purists, we would always call functions of the form

(2.36) “affine,” but if we taught you to do that, no one would understand what
you were talking about except for pure mathematicians. So we won’t. We will
call functions of the form (2.36) “linear,” like everyone but pure mathematicians.
Only when we think confusion is likely will we call them “linear in the ordinary
sense” or “affine.”

Confusion between the two is fairly easy to clear up. Linear functions (in the
strict sense) are a special case of affine functions. They are the ones satisfying
T (0) = 0 (Problem 2-26). So just check whether this holds. If so, linear is
meant in the strict sense, if not, linear is meant in the ordinary sense.

So that explains the difference between affine and linear. The only question
remaining is why (2.9) defines an affine function. What does (2.9) have to
do with (2.36)? First (2.9) defines a scalar-valued affine function of a scalar
variable. This makes both the constant and the function values in (2.36) scalar,
so we can rewrite it as

g(x) = a + h(x), x ∈ R,

where a is a scalar and h is a scalar-valued linear function on R. To get this in
the form (2.9) we only need to show that the most general scalar-valued linear
function on R has the form

h(x) = bx, x ∈ R,

where b is a real number. The homogeneity property applied to h says

h(x) = h(x · 1) = xh(1), x ∈ R.
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So we are done, the identification b = h(1) makes the two equations the same.

2.5.3 Expectation on Finite Sample Spaces

Consider a finite set S and define L1 to be the set of all real-valued functions
on S. This makes L1 a finite-dimensional vector space. The elements of L1 differ
from n-tuples only in notation. A random variable X ∈ L1 is determined by its
values

X(s), s ∈ S,

and since S is finite, this means X is determined by a finite list of real numbers.
If S is indexed

S = {s1, . . . , sn}
then we could even, if we wanted, collect these values into an n-tuple

(x1, . . . , xn)

where
xi = X(si), i = 1, . . . , n,

which shows explicitly the correspondence between n-tuples and functions on a
set of cardinality n.

However, we don’t want to make too much of this correspondence. In fact
the only use we want to make of it is the following fact: every linear functional
T on an n-dimensional vector space has the form

T (x) =
n∑

i=1

aixi (2.37)

where, as usual, x = (x1, . . . , xn). This is sometimes written

T (x) = a′x

where a = (a1, . . . , an) the prime indicating transpose and a and x being con-
sidered as column vectors. Other people write

T (x) = a · x
the operation indicated by the dot being called the scalar product or dot product
of the vectors a and x.

We now want to change back to our original notation, writing vectors as
functions on a finite set S rather than n-tuples, in which case (2.37) becomes

T (x) =
∑
s∈S

a(s)x(s)

Now we want to make another change of notation. If we want to talk about
vectors that are elements of L1 (and we do), we should use the usual notation,
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denoting those elements (which are random variables) by X rather than x and
their components by X(s) giving

T (X) =
∑
s∈S

a(s)X(s). (2.38)

To summarize the argument of this section so far

Theorem 2.26. For probability models on a finite sample space S, every linear
functional on L1 has the form (2.38).

But not every linear functional is an expectation operator. Every linear
functional satisfies two of the probability axioms (homogeneity and additivity).
But a linear functional need not satisfy the other two (positivity and norm).

In order that (2.38) be positive whenever X ≥ 0, that is, when X(s) ≥ 0,
for all s, it is required that

a(s) ≥ 0, s ∈ S. (2.39a)

In order that (2.38) satisfy the norm property (2.4) it is required that∑
s∈S

a(s) = 1, (2.39b)

because X = 1 means X(s) = 1, for all s. We have met functions like this
before: a function a satisfying (2.39a) and (2.39b) we call a probability density.
Lindgren calls them probability functions (p. f.’s).

Theorem 2.27. For probability models on a finite sample space S, every ex-
pectation operator on L1 has the form

E(X) =
∑
s∈S

p(s)X(s) (2.40)

for some function p : S → R satisfying

p(s) ≥ 0, s ∈ S, (2.41a)

and ∑
s∈S

p(s) = 1. (2.41b)

A function p as defined in the theorem is called a probability density or just
a density.

Remark. Theorem 2.27 is also true if the word “finite” in the first sentence is
replaced by “countable” (see Theorem 2.30).
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A little section about mathematics is invariant under changes of notation.
We often write (2.40) in different notation. If X is a random variable with
density fX having domain S (the range of possible values of X), then

E{g(X)} =
∑
x∈S

g(x)fX(x). (2.42)

Note that (2.42) is exactly the same as (2.40) except for purely notational dif-
ferences. The special case where g is the identity function

E(X) =
∑
x∈S

xfX(x) (2.43)

is of some interest. Lindgren takes (2.43) as the definition of expectation. For us
it is a trivial special case of the more general formula (2.42), which in turn is not
a definition but a theorem (Theorem 2.27). For us the definition of expectation
is “an operator satisfying the axioms.”

Example 2.5.1 (The Binomial Distribution).
Recall the binomial distribution (Section B.1.2 of Appendix B) having density

f(x) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n.

We want to calculate E(X). By the formulas in the preceding discussion

E(X) =
n∑

x=0

xf(x)

=
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k

=
n∑

k=0

k
n!

k!(n − k)!
pk(1 − p)n−k

=
n∑

k=1

n!
(k − 1)!(n − k)!

pk(1 − p)n−k

= np
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

pk−1(1 − p)n−k

= np

n∑
k=1

(
n − 1
k − 1

)
pk−1(1 − p)n−k

= np

n−1∑
m=0

(
n − 1

m

)
pm(1 − p)n−1−m

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
changed the dummy variable of summation from x to k.
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•Going from line 2 to line 3 we just plugged in the definition of the binomial
coefficient.

•Going from line 3 to line 4 we just observed that the k = 0 term is zero
and then canceled the k in the numerator with the k in the k! in the
denominator.

•Going from line 4 to line 5 we pulled an n out of the n! and a p out of the
pk.

•Going from line 5 to line 6 we just used the definition of the binomial
coefficient again.

•Going from line 6 to line 7 we changed the dummy variable of summation
to m = k − 1.

Now the binomial theorem says the sum in the last line is equal to one. Alter-
natively, the sum in the last line is equal to one because the summand is the
Bin(n − 1, p) density, and every probability density sums to one. Hence

E(X) = np.

2.5.4 Axioms for Expectation (Part II)

Absolute Values

Axiom E5 (Absolute Values). If X is in L1, then so is |X|.
Note that this axiom trivially applies to the probability models on a finite

sample space discussed in the preceding section, because every real-valued func-
tion is in L1. This axiom is only interesting when the sample space is infinite.

With this axiom, we can prove another basic property of expectation that is
mostly used in theoretical arguments.

Theorem 2.28 (Absolute Values). If X is in L1, then

|E(X)| ≤ E(|X|).
The name of this theorem is “taking an absolute value inside an expectation

can only increase it.” That’s a long-winded name, but there is no widely used
short name for the theorem.

Derivation of Property 2.28. First note that X ≤ |X|. Applying Property 2.8
to these two random variables gives

E(X) ≤ E(|X|),
which is what was to be proved in the case that E(X) is nonnegative.

To prove the other case, we start with the fact that −X ≤ |X|. Another
application of Property 2.8 along with Property 2.6 gives

−E(X) = E(−X) ≤ E(|X|).
But when E(X) is negative −E(X) = |E(X)|, so that proves the other case.
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Note that there is no explicit mention of Axiom E5 in the proof. The implicit
mention is that only the axiom allows us to talk about E(|X|). None of the
other axioms guarantee that |X| has expectation.

Monotone Convergence

The last axiom for expectation analogous to the countable additivity axiom
for probability (called Axiom 3a on p. 30 in Lindgren). This is the monotone
convergence axiom. To understand it we need a preliminary definition. For
a sequence of numbers {xn}, the notation xn ↑ x means x1 ≤ x2 ≤ . . . and
xn → x. For a sequence of random variables {Xn} on a sample space S, the
notation Xn ↑ X means Xn(s) ↑ X(s) for all s ∈ S.

Axiom E6 (Monotone Convergence). Suppose X1, X2, . . . is a sequence
of random variables in L1 such that Xn ↑ X. If

lim
n→∞E(Xn) < ∞,

then X ∈ L1 and
E(Xn) ↑ E(X).

Conversely, if
lim

n→∞E(Xn) = ∞,

then X /∈ L1.

The monotone convergence axiom is a fairly difficult subject, so difficult
that Lindgren omits it entirely from his book, although this makes no sense
because the countable additivity axiom for probability is equally difficult and is
included. So this is really more treating expectation is a second class concept,
subsidiary to probability. Our insistence on including it is part and parcel of
our notion that probability and expectation are equally important and deserve
equal treatment.

That having been said, this axiom can be considered the dividing line be-
tween material at the level of this course and material over our heads. If a proof
involves monotone convergence, it is too hard for us. We will state some results
that can only be proved using the monotone convergence axiom, but we will
leave the proofs for more advanced courses.

There is a “down arrow” concept defined in obvious analogy to the “up
arrow” concept (the sequence converges down rather than up), and there is an
analogous form of monotone convergence

Corollary 2.29 (Monotone Convergence). Suppose X1, X2, . . . is a se-
quence of random variables in L1 such that Xn ↓ X. If

lim
n→∞E(Xn) > −∞,

then X ∈ L1 and
E(Xn) ↓ E(X).
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Conversely, if
lim

n→∞E(Xn) = −∞,

then X /∈ L1.

2.5.5 General Discrete Probability Models

If the sample space S of a probability model is countably infinite, we would
like to use the same formulas (2.40), (2.41a) and (2.41b), that we used for
finite sample spaces, but we run into problems related to infinite series. The
sum may not exist (the series may not converge), and if it does exist, its value
may depend on the particular enumeration of the sample space that is used.
Specifically, there are many ways to enumerate the sample space, writing it as
a sequence S = {s1, s2, . . . }, and when we write out the infinite sum explicitly
as

E(X) =
∞∑

i=1

X(si)p(si) = lim
n→∞

n∑
i=1

X(si)p(si)

the limit may depend on the particular enumeration chosen. The axioms of
expectation, however, solve both of these problems.

First, not all random variables have expectation, only those in L1 so the
fact that expectation may not be defined for some random variables should not
bother us. For discrete probability models on a sample space S defined by a
probability density p, we define L1 to be the set of all functions X : S → R
satisfying ∑

s∈S

|X(s)|p(s) < ∞. (2.44)

This definition trivially satisfies Axiom E5 and also satisfies the existence parts
of Axioms E1, E2, and E4.

For X ∈ L1 we define expectation by the same formula (2.40) as in the
finite sample space case. Note that then the sum in (2.44) is E(|X|). Thus our
definition says that X has expectation if and only if |X| also has expectation.
Another way to say the same thing is that (2.40) defines an expectation if and
only if the series is absolutely summable, which means the sum of the absolute
values of the terms of the series exists.

Because of the rearrangement of series theorem from calculus, which says
that if a series is absolutely summable then the sum of the series does not
depend on the order in which the terms are summed, we can rearrange the
terms in the sum as we please without changing the result. That is why we
can write (2.40) as an unordered sum using notation that does not specify any
particular ordering.

Theorem 2.30. All probability models on a countable sample space S are de-
fined by a function function p : S → R satisfying

p(s) ≥ 0, s ∈ S, (2.45a)
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and ∑
s∈S

p(s) = 1. (2.45b)

The corresponding expectation operator is E : L1 → R, where L1 is the set of
functions X : S → R such that∑

s∈S

p(s)|X(s)| < ∞,

and
E(X) =

∑
s∈S

p(s)X(s) (2.46)

Following our policy that any proof that involves dominated convergence is
beyond the scope of this course, we won’t try to prove the theorem.

Note that the remarks about mathematics is invariant under changes of
notation in the preceding section apply here too. In particular, (2.42) and
(2.43) apply just as well in the case that S is countably infinite (so long as the
expectation in question exists).

Example 2.5.2 (The Poisson Distribution).
The the Poisson distribution is the discrete distribution having density

f(x) =
µx

x!
e−µ, x = 0, 1, . . . .

(Section B.1.4 of Appendix B). If X ∼ Poi(µ), then

E(X) =
∞∑

x=0

xf(x)

=
∞∑

k=0

k
µk

k!
e−µ

= µ
∞∑

k=1

µ(k − 1)
(k − 1)!

e−µ

= µ
∞∑

m=0

µm

m!
e−µ

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
changed the dummy variable of summation from x to k.

•Going from line 2 to line 3 we just observed that the k = 0 term is
zero, then canceled the k in the numerator with the k in the k! in the
denominator, and then pulled a µ out of the µk.

•Going from line 3 to line 4 we changed the dummy variable of summation
to m = k − 1.
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The sum in the last line is equal to one because the summand is the Poi(µ)
density, and every probability density sums to one. Hence

E(X) = µ.

2.5.6 Continuous Probability Models

When the sample space is uncountable, like R or Rd we cannot use the
formulas of Theorem 2.27 to define expectation. There is no notion of sums
with an uncountably infinite number of terms.

There is, however, another concept that behaves much like summation, which
is integration. We just replace the sums by integrals.

Theorem 2.31. Probability models on having a subset S of R or Rd can be
defined by a function function f : S → R satisfying

f(x) ≥ 0, x ∈ S, (2.47a)

and ∫
S

f(x) dx = 1. (2.47b)

The space L1 of random variables having expectations is the set of real-valued
functions g : S → R such that∫

S

|g(x)|f(x) dx < ∞.

The corresponding expectation operator is E : L1 → R is defined by

E{g(X)} =
∫

S

g(x)f(x) dx. (2.48)

As in the discrete case, we define expectation so that Y has expectation only
if |Y | also has expectation. Since we are using integrals rather than sums, we
are now interested in absolute integrability rather than absolute summability,
but there is a complete analogy between the two cases.

Similar formulas hold when the sample space is Rd or a subset S of Rd.
The general formula, written in vector notation and ordinary multiple-integral
notation is

E{g(X)} =
∫

S

g(x)f(x) dx

=
∫∫

· · ·
∫

S

g(x1, x2, . . . , xn)f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

(2.49)

Now we take a time out for a comment that is “beyond the scope of this
course.” We just lied to you, sort of. Theorem 2.31 is not true if the integral
signs indicate the kind of integral (the so-called Riemann integral) described in
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elementary calculus courses. All the axioms except monotone convergence are
satisfied, and monotone convergence

lim
n→∞

∫
gn(x)f(x) dx =

∫
g(x)f(x) dx, if gn ↑ g. (2.50)

holds sometimes but not always.
The problem is that the limit of a sequence of Riemann integrable functions

is not necessarily Riemann integrable. So even though (2.50) is true whenever
all the functions involved are Riemann integrable, that isn’t enough to satisfy
the monotone convergence axiom. The way around this problem is a tour de
force of higher mathematics. One just makes (2.50) hold by definition. First
one shows that for two sequences gn ↑ g and hn ↑ g increasing to the same limit

lim
n→∞

∫
gn(x)f(x) dx = lim

n→∞

∫
hn(x)f(x) dx (2.51)

Therefore if we just define the right hand side of (2.50) to be the left hand side,
the equation is then true by definition. This definition is unambiguous because
the value of the limit does not depend on the sequence chosen (2.51). This
“extension by monotone convergence” of the definition of the integral is called
the Lebesgue integral .

Note that the Riemann integral always agrees with the Lebesgue integral
whenever both are defined, so this is not a totally new concept. Every function
you already know how to integrate has the same integral in both senses. The
only point of Lebesgue integration is that it allows the integration of some really
weird functions, too weird to have Riemann integrals. Since no really weird
functions are of any practical interest, the only point of the whole exercise is
to prove theorems using the monotone convergence axiom. And since that is
beyond the scope of this course, we won’t worry about it.

Example 2.5.3 (The Gamma Distribution).
The the Gamma distribution is the continuous distribution having density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0

(Section B.2.3 of Appendix B). If X ∼ Gam(α, λ), then

E(X) =
∫ ∞

0

xf(x) dx

=
∫ ∞

0

λα

Γ(α)
xαe−λx dx

=
Γ(α + 1)
λΓ(α)

∫ ∞

0

λα+1

Γ(α + 1)
xαe−λx dx

•Going from line 1 to line 2 we just plugged in the definition of f(x) and
collected the x and xα−1 terms together.
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•Going from line 2 to line 3 we just pulled some constants outside of the
integral.

The integral in the last line is equal to one because the integrand is the density
of the Gam(α + 1, λ) distribution, and every probability density integrates to
one. Hence

E(X) =
Γ(α + 1)
λΓ(α)

=
α

λ

the second equality being the recurrence relation for the gamma function (B.3)
in Section B.3.1 of Appendix B.

2.5.7 The Trick of Recognizing a Probability Density

The astute reader may have recognized a pattern to Examples 2.5.1, 2.5.2,
and 2.5.3. In each case the sum or integral was done by recognizing that by
moving certain constants (terms not containing the variable of summation or
integration) outside of the sum or integral leaving only the sum or integral of a
known probability density, which is equal to one by definition.

Of course, you don’t have to use the trick. There is more than one way to
do it. In fact, we even mentioned that you could instead say that we used the
binomial theorem to do the sum in Example 2.5.1. Similarly, you could say we
use the Maclaurin series for the exponential function

ex = 1 + x +
x2

2
+ · · · + xk

k!
+ · · ·

to do the sum in Example 2.5.2, and you could say we use the definition of the
gamma function, (B.2) in Appendix B plus the change-of-variable formula to do
the integral in Example 2.5.3. In fact, the argument we gave using the fact that
densities sum or integrate to one as the case may be does use these indirectly,
because those are the reasons why these densities sum or integrate to one.

The point we are making here is that in every problem involving an expec-
tation in which you are doing a sum or integral, you already have a know sum
or integral to work with. This is expecially important when there is a whole
parametric family of densities to work with. In calculating the mean of a Γ(α, λ)
distribution, we used the fact that a Γ(α + 1, λ) density, like all densities, in-
tegrates to one. This is a very common trick. One former student said that
if you can’t do an integral using this trick, then you can’t do it at all, which
is not quite true, but close. Most integrals and sums you will do to calculate
expectations can be done using this trick.

2.5.8 Probability Zero

Events of probability zero are rather a nuisance, but they cannot be avoided
in continuous probability models. First note that every outcome is an event of
probability zero in a continuous probability model, because by definition

P (X = a) =
∫ a

a

f(x) dx,
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and a definite integral over an interval of length zero is zero.
Often when we want to assert a fact, it turns out that the best we can get

from probability is an assertion “with probability one” or “except for an event of
probability zero.” The most important of these is the following theorem, which
is essentially the same as Theorem 5 of Chapter 4 in Lindgren.

Theorem 2.32. If Y = 0 with probability one, then E(Y ) = 0. Conversely, if
Y ≥ 0 and E(Y ) = 0, then Y = 0 with probability one.

The phrase “Y = 0 with probability one” means P (Y = 0) = 1. The proof
of the theorem involves dominated convergence and is beyond the scope of this
course.

Applying linearity of expectation to the first half of the theorem, we get an
obvious corollary.

Corollary 2.33. If X = Y with probability one, then E(X) = E(Y ).

If X = Y with probability one, then the set

A = { s : X(s) 6= Y (s) }
has probability zero. Thus a colloquial way to rephrase the corollary is “what
happens on a set of probability zero doesn’t matter.” Another rephrasing is “a
random variable can be arbitrarily redefined on a set of probability zero without
changing any expectations.”

There are two more corollaries of this theorem that are important in statis-
tics.

Corollary 2.34. var(X) = 0 if and only if X is constant with probability one.

Proof. First, suppose X = a with probability one. Then E(X) = a = µ,
and (X − µ)2 equals zero with probability one, hence by Theorem 2.32 its
expectation, which is var(X), is zero.

Conversely, by the second part of Theorem 2.32, var(X) = E{(X −µ)2} = 0
implies (X−µ)2 = 0 with probability one because (X−µ)2 is a random variable
that is nonnegative and integrates to zero. Since (X − µ)2 is zero only when
X = µ, this implies X = µ with probability one.

Corollary 2.35. |cor(X,Y )| = 1 if and only if there exist constants α and β
such that Y = α + βX with probability one.

Proof. First suppose Y = α + βX with probability one. Then by (2.33)

cor(α + βX,X) = sign(β) cor(X,X) = ±1.

That proves one direction of the “if and only if.”
To prove the other direction, we assume ρX,Y = ±1 and have to prove that

Y = α+βX with probability one, where α and β are constants we may choose.
I claim that the appropriate choices are

β = ρX,Y
σY

σX

α = µY − βµX
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(these are just pulled out of the air here, the choice will make sense after we
have done best linear prediction).

We want to prove that Y = α + βX with probability one. We can do this
by showing that (Y −α−βX)2 is zero with probability one, and this will follow
from Theorem 2.32 if we can show that (Y − α − βX)2 has expectation zero.
Hence let us calculate

E
{
(Y − α − βX)2

}
= E

{(
Y − µY − ρX,Y

σY

σX
(X − µX)

)2
}

= E
{

(Y − µY )2
}

− 2E

{
(Y − µY )

(
ρX,Y

σY

σX
(X − µX)

)}
+ E

{(
ρX,Y

σY

σX
(X − µX)

)2
}

= var(Y ) − 2ρX,Y
σY

σX
cov(X,Y ) + ρ2

X,Y

σ2
Y

σ2
X

var(X)

= σ2
Y − 2ρ2

X,Y σ2
Y + ρ2

X,Y σ2
Y

= σ2
Y (1 − ρ2

X,Y )

which equals zero because of the assumption |ρX,Y | = 1.

2.5.9 How to Tell When Expectations Exist

We say a random variable Y dominates a random variable X if |X| ≤ |Y |.
Theorem 2.36. If Y dominates X and Y has expectation, then X also has
expectation. Conversely if Y dominates X and the expectation of X does not
exist, then the expectation of Y does not exist either.

The proof involves monotone convergence and is hence beyond the scope of
this this course.1

We say a random variable X is bounded if |X| ≤ a for some constant a.
1Actually this theorem is way, way beyond the scope of this course, the one subject we will

touch on that is really, really, really weird. Whether this theorem is true or false is a matter
of taste. Its truth depends on an axiom of set theory (the so-called axiom of choice), which
can be assumed or not without affecting anything of practical importance. If the theorem is
false, that means there exists a random variable X dominated by another random variable Y
such that Y is in L1 and X isn’t. However, the usual assumptions of advanced probability
theory imply that every Riemann integrable random variable dominated by Y is in L1, hence
X cannot be written as the limit of a sequence Xn ↑ X for a sequence of Riemann integrable
random variables Xn. This means that X is weird indeed. Any conceivable description of
X (which like any random variable is a function on the sample space) would have not only
infinite length but uncountably infinite length. That’s weird! What is not widely known, even
among experts, is that there is no need to assume such weird functions actually exist. The
entirety of advanced probability theory can be carried through under the assumption that
Theorem 2.36 is true (R. M. Solovay, “A Model of Set-Theory in Which Every Set of Reals is
Lebesgue Measurable,” Annals of Mathematics, 92:1-56, 1970).
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Corollary 2.37. Every bounded random variable is in L1.

Corollary 2.38. In a probability model with a finite sample space, every random
variable is in L1.

The corollaries take care of the trivial cases. Thus the question of existence
or non-existence of expectations only applies to unbounded random variables
in probability models on infinite sample spaces. Then Theorem 2.36 is used
to determine whether expectations exist. An expectation is an infinite sum in
the discrete case or an integral in the continuous case. The question is whether
the integral or sum converges absolutely. That is, if we are interested in the
expectation of the random variable Y = g(X) where X has density f , we need
to test the integral

E(|Y |) =
∫

|g(x)|f(x) dx

for finiteness in the continuous case, and we need to test the corresponding sum

E(|Y |) =
∑
x∈S

|g(x)|f(x)

for finiteness in the discrete case. The fact that the integrand or summand has
the particular product form |g(x)|f(x) is irrelevant. What we need to know here
are the rules for determining when an integral or infinite sum is finite.

We will cover the rules for integrals first. The rules for sums are very anal-
ogous. Since we are only interested in nonnegative integrands, we can always
treat the integral as representing “area under the curve” where the curve in
question is the graph of the integrand. Any part of the region under the curve
that fits in a finite rectangle is, of course, finite. So the only way the area under
the curve can be infinite is if part of the region does not fit in a finite rectangle:
either the integrand has a singularity (a point where it goes to infinity), or the
domain of integration is an unbounded interval. It helps if we focus on each
problem separately: we test whether integrals over neighborhoods of singulari-
ties are finite, and we test whether integrals over unbounded intervals are finite.
Integrals over bounded intervals not containing singularities do not need to be
checked at all.

For example, suppose we want to test whether∫ ∞

0

h(x) dx

is finite, and suppose that the only singularity of h is at zero. For any numbers
a and b such that 0 < a < b < ∞ we can divide up this integral as∫ ∞

0

h(x) dx =
∫ a

0

h(x) dx +
∫ b

a

h(x) dx +
∫ ∞

b

h(x) dx

The first integral on the right hand side may be infinite because of the singu-
larity. The third integral on the right hand side may be infinite because of the
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unbounded domain of integration. The second integral on the right hand side
must be finite: the integral of a bounded function over a bounded domain is
always finite, we do not need to check.

It is rare that we can exactly evaluate the integrals. Usually we have to use
Theorem 2.36 to settle the existence question by comparing with a simpler inte-
gral. The following lemmas give the most useful integrals for such comparisons.
While we are at it, we give the analogous useful infinite sums. The proofs are
all elementary calculus.

Lemma 2.39. For any positive real number a or any positive integer m∫ ∞

a

xb dx and
∞∑

n=m

nb

exist if and only if b < −1.

Lemma 2.40. For any positive real number a∫ a

0

xb dx

exists if and only if b > −1.

Lemma 2.41. For any positive real number a or any positive integer m and
any positive real number c and any real number b (positive or negative)∫ ∞

a

xbe−cx dx and
∞∑

n=m

nbe−cn

exist.

The following two lemmas give us more help using the domination theorem.

Lemma 2.42. Suppose g and h are bounded, strictly positive functions on an
interval [a,∞) and

lim
x→∞

g(x)
h(x)

= k, (2.52)

where k is a strictly positive constant, then either both of the integrals∫ ∞

a

g(x) dx and
∫ ∞

a

h(x) dx (2.53)

are finite, or neither is. Similarly, either both of the sums

∞∑
k=m

g(k) and
∞∑

k=m

h(k) (2.54)

are finite, or neither is, where m is any integer greater than a.



2.5. PROBABILITY THEORY AS LINEAR ALGEBRA 73

Example 2.5.4 (Exponentially Decreasing Tails).
The following densities

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞

and
f(x) =

1
2
e−|x|, −∞ < x < ∞

have moments of all orders, that is, E(|X|p) exists for all p > 0.
Why? Because the densities are bounded (no singularities) and have expo-

nentially decreasing tails, so Lemma 2.41 assures us that all moments exist.

Example 2.5.5 (Polynomially Decreasing Tails).
The following densities

f(x) =
1

π(1 + x2)
, −∞ < x < ∞

and
f(x) =

6
π2x2

, x = 1, 2, . . .

do not have moments of all orders. In fact, for both E(|X|p) exists for p > 0 if
and only if p < 1. Thus for these two distributions, neither the mean, nor the
variance, nor any higher moment exists.

Why? In both cases, if we look at the integrand or summand |x|pf(x) in
the integral or sum we need to check, we see that it behaves like |x|p−2 at
infinity. (More formally, the limit of the integrand or summand divided by
|x|p−2 converges to a constant as x goes to plus or minus infinity. Hence by
Lemma 2.42, the expectation exists if and only if the integral or sum of |x|p−2

exists.) By Lemma 2.39 the integral or sum exists if and only if p − 2 < −1,
that is, p < 1.

To do problems involving singularities, we need another lemma analogous to
Lemma 2.42. This lemma involves only integrals not sums because sequences
cannot go to infinity except at infinity (all the terms are actually finite).

Lemma 2.43. Suppose g and h are strictly positive functions on an interval
(a, b) and both have singularities at a but are bounded elsewhere, and suppose

lim
x→a

g(x)
h(x)

= k,

where k is a strictly positive constant, then either both of the integrals∫ b

a

g(x) dx and
∫ b

a

h(x) dx

are finite, or neither is.
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Example 2.5.6 (The Gamma Distribution Again).
The the Gamma distribution is the continuous distribution having density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0

(Section B.2.3 of Appendix B). For X ∼ Gam(α, λ), we consider here when Xp

is in L1 for any real number p, positive or negative. The integral that defines
the expectation is

E(Xp) =
∫ ∞

0

xp λα

Γ(α)
xα−1e−λx dx =

λα

Γ(α)

∫ ∞

0

xα+p−1e−λx dx

if the integral exists (which is the question we are examining).
From Lemma 2.41, the integral over (a,∞) exists for for any a > 0 and any

p positive or negative. The only issue is the possible singularity of the integrand
at the origin. There is a singularity if α + p − 1 < 0. Otherwise the integrand
is bounded and the expectation exists.

Since e0 = 1, the integrand behaves like xα+p−1 at zero and according to
Lemma 2.43 this is integrable over a neighborhood of zero if and only if α+p−1 >
−1, that is, if and only if p > −α.

2.5.10 Lp Spaces

We start with another consequence of the domination theorem and the meth-
ods for telling when expectations exist developed in the preceding section.

Theorem 2.44. If X is a real-valued random variable and |X − a|p is in L1

for some constant a and some p ≥ 1, then

|X − b|q ∈ L1,

for any constants b and any q such that 1 ≤ q ≤ p.

Proof. First the case q = p. The ratio of the integrands defining the expectations
of |X − a|p and |X − b|p converges, that is

|x − b|pf(x)
|x − a|pf(x)

=
∣∣∣∣ x − b

x − a

∣∣∣∣p
goes to 1 as x goes to plus or minus infinity. Thus both integrals exist, and
|X − b|p ∈ L1.

In the case q < p, the ratio of integrands

|x − b|qf(x)
|x − a|pf(x)

=
|x − b|q
|x − a|p

converges to zero as x goes to plus or minus infinity. Again this implies both
integrals exist and |X − b|p ∈ L1.
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Definition 2.5.1 (Lp Spaces).
For any p ≥ 1, the set of random variables X such that |X|p ∈ L1 is called Lp.

With this definition, we can rephrase the theorem. The condition of the
theorem can now be stated concisely as X ∈ Lp, because if |X − a|p ∈ L1,
then the theorem implies |X|p ∈ L1 too, which is the same as X ∈ Lp. The
conclusion of the theorem can also be restated as X ∈ Lq. Hence L1 ⊃ Lq ⊃ Lp

when 1 ≤ q ≤ p.
The reason for the name “Lp space” is the following theorem, which we will

not prove.

Theorem 2.45. Each Lp is a vector space.

What the theorem says is that Lp is closed under addition and scalar mul-
tiplication, that is,

X ∈ Lp and Y ∈ Lp implies X + Y ∈ Lp

and
X ∈ Lp and a ∈ R implies aX ∈ Lp.

All of this having been said, I have to admit that the main use of the Lp

concept at this level is purely as a shorthand. L2 is the set of random variables
having variances. By Theorem 2.44 and the following comment L1 ⊃ L2 so these
random variables also have means. Thus we could have stated the condition
“X is a random variable having first and second moments” in Corollary 2.12
and succeeding theorems about second moments much more concisely as “X ∈
L2.” Whether you like the shorthand or not is a matter of taste. One thing,
though, that we did learn in this section is that the words “first and” could
have been deleted from the condition of Corollary 2.12 and theorems with similar
conditions. If second moments exist, then so do first moments by Theorem 2.44.

2.6 Probability is a Special Case of Expectation

A special kind of random variable is the indicator function (or indicator
random variable) of an event A (a random variable is a function on the sample
space, so an indicator function is a random variable). This is denoted IA and
defined by

IA(ω) =

{
1, ω ∈ A

0, ω /∈ A

The indicator function characterizes the set A. It is the set of points ω such
that IA(ω) = 1. More importantly from our point of view, indicator functions
connect probability and expectation. The relation

P (A) = E(IA) (2.55)

holds for all events A. Probability is just expectation of indicator functions.
Thus probability is a dispensable concept. It is just a special case of expectation.
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The proof of (2.55) for discrete probability models is trivial.

E(IA) =
∑
ω∈Ω

IA(ω)p(ω)

=
∑
ω∈A

p(ω)

= P (A)

The first equality is the definition (2.40), the third is the definition of probability
(p. 30 in Lindgren), and the middle equality just uses the definition of indicator
functions: terms for ω ∈ A have IA(ω) = 1 and terms for ω /∈ A have IA(ω) = 0
and can be dropped from the sum. The proof of (2.55) for continuous probability
models is the same except that we replace sums by integrals.

All of the probability axioms can be derived from the expectation axioms by
just taking the special case when the random variables are indicator functions.
Since indicator functions are nonnegative, Axiom E1 implies

E(IA) = P (A) ≥ 0

which is the first probability axiom. Axiom E2 implies

E(1) = E(IΩ) = P (Ω) = 1

which is the second probability axiom. The sum of indicator functions is not
necessarily an indicator function, in fact

IA + IB = IA∪B + IA∩B. (2.56)

This is easily verified by checking the four possible cases, ω in or not in A and
in or not in B. Applying Axiom E4 to both sides of (2.56) gives

P (A) + P (B) = E(IA) + E(IB)
= E(IA∪B) + E(IA∩B)
= P (A ∪ B) + P (A ∩ B)

which is the general addition rule for probabilities and implies the third proba-
bility axiom, which is the special case A ∩ B = ∅.

The countable additivity axiom is applied by the monotone convergence. A
nondecreasing sequence of indicator functions corresponds to a nondecreasing
sequence of sets. Hence Axiom E5 implies

P (An) ↑ P (A), whenever An ↑ A

This statement, continuity of probability, implies countable additivity (just run
the proof on p. 29 in Lindgren backwards).
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2.7 Independence

2.7.1 Two Definitions

Lindgren (p. 79, equation (3)) gives the following as a definition of indepen-
dent random variables.

Definition 2.7.1 (Independent Random Variables).
Random variables X and Y are independent if

P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B). (2.57)

for every event A in the range of X and B in the range of Y .

We take a quite different statement as the definition.

Definition 2.7.2 (Independent Random Variables).
Random variables X and Y are independent if

E{g(X)h(Y )} = E{g(X)}E{h(Y )} (2.58)

for all real-valued functions g and h such that these expectations exist.

These two definitions are equivalent—meaning they define the same concept.
That means that we could take either statement as the definition and prove the
other. Lindgren takes (2.57) as the definition and “proves” (2.58). This is
Theorem 11 of Chapter 4 in Lindgren. But the “proof” contains a lot of hand
waving. A correct proof is beyond the scope of this course.

That’s one reason why we take Definition 2.7.2 as the definition of the con-
cept. Then Definition 2.7.1 describes the trivial special case of Definition 2.7.2
in which the functions in question are indicator functions, that is, (2.57) says
exactly the same thing as

E{IA(X)IB(Y )} = E{IA(X)}E{IB(Y )}. (2.59)

only in different notation. Thus if we take Definition 2.7.2 as the definition, we
easily (trivially) prove (2.57). But the other way around, the proof is beyond
the scope of this course.

2.7.2 The Factorization Criterion

Theorem 2.46 (Factorization Criterion). A finite set of real-valued random
variables is independent if and only if their joint distribution is the product of
the marginals.

What this says is that X1, . . ., Xn are independent if and only if

fX1,...,Xn
(x1, . . . , xn) =

n∏
i=1

fXi
(xi) (2.60)
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One direction of the theorem is easy to establish. If (2.60) holds

E

{
n∏

i=1

gi(Xi)

}
=

∫
· · ·

∫ (
n∏

i=1

gi(xi)fXi
(xi)

)
dx1 · · · dxn

=
n∏

i=1

∫
gi(xi)fXi

(xi)dxi

=
n∏

i=1

E {gi(Xi)}

So the Xi are independent. The proof of the other direction of the theorem is
beyond the scope of this course.

The simple statement of Theorem 2.46 assumes the marginal densities are
defined on the whole real line If necessary, they are extended by zero off the
supports of the variables.

It is not enough to look only at the formulas defining the densities.
You must also look at the domains of definition.

The following example shows why.

Example 2.7.1 (A Cautionary Example).
The random variables X and Y having joint density

f(x, y) = 4xy, 0 < x < 1 and 0 < y < 1 (2.61)

are independent, but the random variables X and Y having joint density

f(x, y) = 8xy, 0 < x < y < 1 (2.62)

are not! For more on this, see Problem 2-35.
The difference is easy to miss. The formulas defining the densities are very

similar, both factor as a function of x times a function of y. The difference is in
the domains of definition. The one for which the factorization criterion holds is
a rectangle with sides parallel to the axes. The other isn’t.

2.7.3 Independence and Correlation

Theorem 2.47. Independent random variables are uncorrelated.

The converse is false!

Example 2.7.2.
Suppose X is a nonconstant random variable having a distribution symmetric
about zero, and suppose Y = X2 is also nonconstant. For example, we could
take X ∼ U(−1, 1), but the details of the distribution do not matter, only that
it is symmetric about zero and nonconstant and that X2 also has a nonconstant
distribution.
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Then X and Y are uncorrelated (Problem 2-37) but not independent. Inde-
pendence would require that

E{g(X)h(Y )} = E{g(X)}E{h(Y )}

hold for all functions g and h. But it obviously does not hold when, to pick just
one example, g is the squaring function and h is the identity function so g(X) =
Y and h(Y ) = Y , because no nonconstant random variable is independent of
itself.2

Problems

2-27. Suppose X ∼ Bin(n, p).

(a) Show that
E{X(X − 1)} = n(n − 1)p2

Hint: Follow the pattern of Example 2.5.1.

(b) Show that
var(X) = np(1 − p).

Hint: Use part (a).

2-28. Suppose X ∼ Poi(µ).

(a) Show that
E{X(X − 1)} = µ2

Hint: Follow the pattern of Example 2.5.2.

(b) Show that
var(X) = µ.

Hint: Use part (a).

2-29. Verify the moments of the DU(1, n) distribution given in Section B.1.1
of Appendix B.
Hint: First establish

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6

by mathematical induction.

2Bizarrely, constant random variables are independent of all random variables, including
themselves. This is just the homogeneity axiom and the “expectation of a constant is the
constant” property:

E{g(a)h(X)} = g(a)E{h(X)} = E{g(a)}E{h(X)}
for any constant a and random variable X.



80 Stat 5101 (Geyer) Course Notes

2-30. Verify the moments of the U(a, b) distribution given in Section B.2.1 of
Appendix B.

2-31. The proof of Corollary 2.35 used cor(X,X) = 1 without comment. Prove
this.

2-32. Suppose X ∼ Gam(α, λ).

(a) For any real number p > −α, the p-th ordinary moment

αp = E(Xp)

exists. Calculate it.

Hint: Follow the pattern of Example 2.5.3. Your answer will involve
gamma functions that cannot be simplified using the recurrence relation if
p is not an integer (which we didn’t say it was).

(b) Show that
var(X) =

α

λ2

Hint: Use part (a) and the recurrence relation for gamma functions, (B.3)
in Appendix B.

2-33. Suppose X has probability density

f(x) =
3
x4

, x > 1

(note the domain).

(a) For what positive integers k is Xk in L1?

(b) Calculate E(Xk) for the positive integers k such that the expectation ex-
ists.

2-34. Suppose X has probability density

f(x) =
1

2
√

x
, 0 < x < 1

(note the domain).

(a) For what positive integers k is Xk in L1?

(b) Calculate E(Xk) for the positive integers k such that the expectation ex-
ists.

2-35. Calculate the marginal distributions for

(a) the density (2.61) and

(b) the density (2.62).
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Show that the factorization criterion

(c) holds for the density (2.61) and

(d) fails for the density (2.62).

2-36. Prove Theorem 2.47.

2-37. This fills in some details left unsaid in Example 2.7.2.

(a) Prove that X and Y defined in Example 2.7.2 are uncorrelated.

Hint: Use Theorem 2.10.

(b) Prove that no nonconstant random variable is independent of itself.

Hint: If all we know is that X is nonconstant, then all we know is that
there exists an event A such that 0 < P (X ∈ A) < 1. Now use Defini-
tion 2.7.1.

2-38. Prove the following identities. For any n ≥ 1

µn =
n∑

k=0

(
n

k

)
(−1)kαk

1αn−k

and

αn =
n∑

k=0

(
n

k

)
αk

1µn−k

where, as defined in Section 2.4, µk is the k-th central moment and αk is the
k-th ordinary moment.
Hint: Use the binomial theorem (Problem 1-14 on p. 7 of Lindgren).
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Chapter 3

Conditional Probability and
Expectation

3.1 Parametric Families of Distributions

Scalar Variable and Parameter

Sometimes, like in the “brand name distributions” in Appendix B of these
notes, we consider probability models having an adjustable constant in the for-
mula for the density. Generically, we refer to such a constant as a parameter
of the distribution. Usually, though not always, we use Greek letters for pa-
rameters to distinguish them from random variables (large Roman letters) and
possible values of random variables (small Roman letters). A lot of different
Greek letters are used for parameters (check out Appendix B), the Greek letter
used for a “generic” parameter (when we are talking generally, not about any
particular distribution) is θ (lower case theta, see Appendix A).

When we want to emphasize the dependence of the density on the parameter,
we write fθ or f( · | θ) rather than just f for the density function and fθ(x) or
f(x | θ) for the value of the density function at the point x. Why two notations?
The former is simpler and a good deal less clumsy in certain situations, but the
latter shows explicitly the close connection between conditional probability and
parametric families, which is the subject of this section and the following section.

Thus we say: let X be a random variable having density fθ on a sample space
S. This means that for each particular value of the parameter θ the function fθ

is a density, that is,
fθ(x) ≥ 0, x ∈ S (3.1a)

and ∫
fθ(x) dx = 1 (3.1b)

(with, as usual, the integral replaced by a sum in the discrete case). Note that
this is exactly the usual condition for a function to be a probability density, just

83
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like (2.47a) and (2.47b). The only novelty is writing fθ in place of f . If you
prefer the other notation, this condition would become

f(x | θ) ≥ 0, x ∈ S (3.2a)

and ∫
f(x | θ) dx = 1 (3.2b)

Again, there is no novelty here except for the purely notational novelty of writing
f(x | θ) instead of fθ(x) or f(x).

Example 3.1.1 (The Exponential Distribution).
We want to write the exponential distribution (Section B.2.2 in Appendix B) in
the notation of parametric families. The parameter is λ. We write the density
as

fλ(x) = λe−λx, x > 0

or as

f(x | λ) = λe−λx, x > 0

the only difference between either of these or the definition in Section B.2.2
being the notation on the left hand side: f(x) or fλ(x) or f(x | λ).

Each different value of the parameter θ gives a different probability distri-
bution. As θ ranges over its possible values, which we call the parameter space,
often denoted Θ when the parameter is denoted θ, we get a parametric family
of densities

{ fθ : θ ∈ Θ }
although we won’t see this notation much until we get to statistics next semester.

Vector Variable or Parameter

Vector Variable

Another purely notational variant involves random vectors. We typically
indicate vector variables with boldface type, as discussed in Section 1.3 of these
notes, that is, we would write f(x) or fθ(x) or f(x | θ). As usual we are sloppy
about whether these are functions of a single vector variable x = (x1, . . . , xn) or
of many scalar variables x1, . . ., xn. When we are thinking in the latter mode,
we write f(x1, . . . , xn) or fθ(x1, . . . , xn) or f(x1, . . . , xn | θ).

Example 3.1.2 (The Exponential Distribution).
Suppose X1, . . ., Xn are independent and identically distributed Exp(λ) random
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variables. We write the density of the random vector X = (X1, . . . , Xn) as

fλ(x) =
n∏

i=1

λe−λxi

= λn exp

(
−λ

n∑
i=1

xi

)
, xi > 0, i = 1, . . . , n.

or, according to taste, we might write the left hand side as fλ(x1, . . . , xn) or
f(x | λ) or f(x1, . . . , xn | λ).

Vector Parameter

Similarly, when we have a vector parameter θ = (θ1, . . . , θm), we write the
density as fθ(x) or f(x | θ). And, as usual, we are sloppy about whether there
is really one vector parameter or several scalar parameters θ1, . . ., θm. When
we are thinking in the latter mode, we write fθ1,...,θm

(x) or f(x | θ1, . . . , θm).

Example 3.1.3 (The Gamma Distribution).
We want to write the gamma distribution (Section B.2.3 in Appendix B) in the
notation of parametric families. The parameter is θ = (α, λ). We write the
density as

fθ(x) = fα,λ(x) =
λα

Γ(α)
xα−1e−λx, x > 0

or if we prefer the other notation we write the left hand side as f(x | θ) or
f(x | α, λ).

The parameter space of this probability model is

Θ = { (α, λ) ∈ R2 : α > 0, λ > 0 }

that is, the first quadrant with boundary points excluded.

Vector Variable and Vector Parameter

And, of course, the two preceeding cases can be combined. If we have a vector
random variable X = (X1, . . . , Xn) and a vector parameter θ = (θ1, . . . , θm),
we can write write the density as any of

fθ(x)
f(x | θ)

fθ1,...,θm
(x1, . . . , xn)

f(x1, . . . , xn | θ1, . . . , θm)

according to taste.
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3.2 Conditional Probability Distributions

Scalar Variables

The conditional probability distribution of one random variable Y given
another X is the probability model you are supposed to use in the situation
when you have seen X and know its value but have not yet seen Y and don’t
know its value. The point is that X is no longer random. Once you know its
value x, it’s a constant not a random variable.

We write the density of this probability model, the conditional distribution
of Y given X as f(y | x). We write expectations with respect to this model as
E(Y | x), and we write probabilities as

P (Y ∈ A | x) = E{IA(Y ) | x}

(couldn’t resist an opportunity to reiterate the lesson of Section 2.6 that prob-
ability is a special case of expectation).

We calculate probabilities or expectations from the density in the usual way
with integrals in the continuous case

E{g(Y ) | x} =
∫

g(y)f(y | x) dy (3.3)

P{Y ∈ A | x} =
∫

A

f(y | x) dy (3.4)

and with the integrals replaced by sums in the discrete case.
Note that

A conditional probability density is just an ordinary probability den-
sity, when considered as a function of the variable(s) in front of the
bar alone with the variable(s) behind the bar considered fixed.

This means that in calculating a conditional probability or expectation from a
conditional density

always integrate with respect to the variable(s) in front of the bar

(with, of course, “integrate” replaced by “sum” in the discrete case).

Example 3.2.1 (Exponential Distribution).
Of course, one doesn’t always have to do an integral or sum, expecially when a
“brand name” distribution is involved. Suppose the conditional distribution of
Y given X is Exp(X), denoted

Y | X ∼ Exp(X)

for short. This means, of course, that the conditional density is

f(y | x) = xe−xy, y > 0
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(just plug in x for λ in the formula in Section B.2.2 in Appendix B), but we
don’t need to use the density to calculate the conditional expectation, because
we know that the mean of the Exp(λ) distribution is 1/λ, hence (again just
plugging in x for λ

E(Y | x) =
1
x

or
E(Y | X) =

1
X

depending on whether we are thinking of the variable behind the bar as random
(big X) or fixed (little x) As we shall see, both viewpoints are useful and we
shall use both in different situations.

If the known formulas for a “brand name” distribution don’t answer the
question, then we do need an integral

P (a < Y < b | x) =
∫ b

a

f(y | x) dy

=
∫ b

a

xe−xy dy

= −e−xy
∣∣∣b
a

= e−xa − e−xb

and, of course, if we are thinking of X as being random too, we would write

P (a < Y < b | X) = e−aX − e−bX

just the same except for big X instead of little x.

The astute reader will by now have understood from the hint given by the
notation why this chapter started with a section on the seemingly unrelated
topic of parametric families of distributions.

Conditional probability distributions are no different from parametric
families of distributions.

For each fixed value of x, the conditional density f(y | x), considered as a
function of y alone, is just an ordinary probability density. Hence it satisfies the
two properties

f(y | x) ≥ 0, for all y (3.5a)

and ∫
f(y | x) dy = 1 (3.5b)

(with the integral replaced by a sum in the discrete case). Notice that there
is no difference, except a purely notational one, between the pair of conditions
(3.5a) and (3.5b) and the pair of conditions (3.2a) and (3.2b). Here we have a
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Roman letter behind the bar; there we had a Greek letter behind the bar, but
(mathematics is invariant under changes of notation) that makes no conceptual
difference whatsoever.

The fact that conditional probability is a special case of ordinary probability
(when we consider the variable or variables behind the bar fixed) means that we
already know a lot about conditional probability. Every fact we have learned
so far in the course about ordinary probability and expectation applies to its
special case conditional probability and expectation. Caution: What we just
said applies only when the variable(s) behind the bar are considered fixed. As
we shall see, things become more complicated when both are treated as random
variables.

Vector Variables

Of course, either of the variables involved in a conditional probability distri-
bution can be vectors. Then we write either of

f(y | x)
f(y1, . . . yn | x1, . . . xm)

according to taste, and similarly either of

E(Y | x)
E(Y1, . . . Yn | x1, . . . xm)

Since we’ve already made this point in the context of parametric families of
distributions, and conditional probability distributions are no different, we will
leave it at that.

3.3 Axioms for Conditional Expectation

The conditional expectation E(Y | x) is just another expectation operator,
obeying all the axioms for expectation. This follows from the view explained
in the preceeding section that conditional expectation is a special case of ordi-
nary unconditional expectation (at least when we are considering the variable
or variables behind the bar fixed). If we just replace unconditional expecta-
tions with conditional expectations everywhere in the axioms for unconditional
expectation, they are still true.

There are, however, a couple of additional axioms for conditional expecta-
tion. Axiom E2 can be strengthened (as described in the next section), and an
entirely new axiom (described in the two sections following the next) can be
added to the set of axioms.

3.3.1 Functions of Conditioning Variables

Any function of the variable or variables behind the bar (the conditioning
variables) behaves like a constant in conditional expectations.
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Axiom CE1. If Y is in L1 and a is any function, then

E{a(X)Y | X} = a(X)E(Y | X).

We don’t have to verify that conditional expectation obeys the axioms of
ordinary unconditional expectation, because conditional expectation is a special
case of unconditional expectation (when thought about the right way), but this
axiom isn’t a property of unconditional expectation, so we do need to verify
that it holds for conditional expectation as we have already defined it. But the
verification is easy.

E{a(X)Y | X} =
∫

a(X)yf(y | X) dy

= a(X)
∫

yf(y | X) dy

= a(X)E(Y | X)

because any term that is not a function of the variable of integration can be
pulled outside the integral (or sum in the discrete case).

Two comments:

• We could replace big X by little x if we want

E{a(x)Y | x} = a(x)E(Y | x)

though, of course, this now follows from Axiom E2 of ordinary expectation
because a(x) is a constant when x is a constant.

• We could replace big Y by any random variable, for example, g(Y ) for
any function g, obtaining

E{a(X)g(Y ) | X} = a(X)E{g(Y ) | X}.

3.3.2 The Regression Function

It is now time to confront squarely an issue we have been tiptoeing around
with comments about writing E(Y | x) or E(Y | X) “according to taste.” In
order to clearly see the contrast with unconditional expectation, let first review
something about ordinary unconditional expectation.

E(X) is not a function of X. It’s a constant, not a random variable.

This doesn’t conflict with the fact that an expectation operator is a function
E : L1 → R when considered abstractly. This is the usual distinction between a
function and it’s values: E is indeed a function (from L1 to R), but E(X) isn’t
a function, it’s the value that the expectation operator assigns to the random
variable X, and that value is a real number, a constant, not a random variable
(not a function on the sample space).

So E(X) is very different from g(X), where g is an ordinary function. The
latter is a random variable (any function of a random variable is a random
variable).

So what’s the corresponding fact about conditional expectation?
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E(Y | X) is not a function of Y , but it is a function of X, hence a
random variable.

We saw this in Example 3.2.1

Y | X ∼ Exp(X)

implies

E(Y | X) =
1
X

which is, apparently, a function of X and not a function of Y .
In a way, there is nothing surprising here. If we consider the conditioning

variable fixed, then E(Y | x) is just a special case of ordinary expectation.
Hence E(Y | x) is not a function of Y any more than E(Y ) is. Furthermore,
E(Y | x) is not a random variable because x isn’t a random variable (little x).

In another way, this is surprising. If we consider the conditioning variable
to be random, then it no longer looks like conditional expectation is a special
case of ordinary expectation, because the former is a random variable and the
latter isn’t! What happens is that which is a special case of which gets turned
around.

Unconditional expectation is the special case of conditional expecta-
tion obtained by conditioning on an empty set of variables.

This accords with the naive view that a conditional probability model for Y
given X is what you use when you have seen X but not yet seen Y . Clearly,
what you use when you have seen (nothing) but not yet seen Y is the the
ordinary unconditional models we have been using all along. It says that E(Y )
can be thought of as E(Y | ) with nothing behind the bar. Applying our other
slogan to this special case we see that

E(Y ) = E(Y | ) is not a function of Y , but it is a function of
(nothing), hence a constant random variable.

Thus when we think of unconditional expectation as a special case of conditional
expectation E(Y ) isn’t a constant but a constant random variable, which is
almost the same thing—only a mathematician and a rather pedantic one could
care about the difference.

So we have two somewhat conflicting views of conditional probability and
expectation.

• When we consider the conditioning variables (the variables behind the bar)
fixed, conditional expectation is just a special case of ordinary uncondi-
tional expectation. The conditioning variables behave like parameters of
the probability model.

• When we consider the conditioning variables (the variables behind the
bar) random, unconditional expectation is just a special case of conditional
expectation, what happens when we condition on an empty set of variables.
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What’s to blame for the confusion is partly just the notation, it’s not clear
from the notation that E(Y | X) is a function of X but not a function of Y ,
and partly the real conflict between seeing the conditioning variable sometimes
as random and sometimes as constant. There’s nothing to be done about the
second problem except to be very careful to always understand which situation
you are in. For the first, we can change terminology and notation.

If E(Y | X) is a function of X, we can write it as a function of X, say g(X).
In Example 3.2.1 we had

E(Y | X) = g(X) =
1
X

which means that g is the function defined by

g(x) =
1
x

, x > 0

just an ordinary function of an ordinary variable, that is, g is an ordinary
function, and g(x) is an ordinary number, but, of course, g(X) is a random
variable (because of the big X).

Another name for this function g is the regression function of Y on X.
When it’s clear from the context which is the conditioning variable and which is
the other variable, we can say just regression function. But when any confusion
might arise, the longer form is essential. The regression function of Y on X,
that is, E(Y | X) is quite different from the regression function of X on Y ,
that is, E(X | Y ). For one thing, the former is a function of X and the latter
is a function of Y . But not only that, they are in general quite different and
unrelated functions.

3.3.3 Iterated Expectations

We saw in the preceding section that E(Y | X) is a random variable, a
function of X, say g(X). This means we can take its expectation

E{g(X)} = E{E(Y | X)}.
The left hand side is nothing unusual, just an expectation like any other. The
right hand side looks like something new. We call it an “iterated expectation”
(an unconditional expectation of a conditional expectation). Iterated expec-
tation has a very important property which is the last axiom for conditional
probability.

Axiom CE2. If Y ∈ L1, then

E{E(Y | X)} = E(Y ). (3.6)

A proof that the notion of conditional expectation we have so far developed
satisfies this axiom will have to wait until the next section. First we give some
examples and consequences.
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Example 3.3.1 (Random Sum of Random Variables).
Suppose X0, X1, . . . is an infinite sequence of identically distributed random
variables, having mean E(Xi) = µX , and suppose N is a nonnegative integer-
valued random variable independent of the Xi and having mean E(N) = µN .
It is getting a bit ahead of ourselves, but we shall see in the next section that
this implies

E(Xi | N) = E(Xi) = µX . (3.7)

Question: What is the expectation of

SN = X1 + · · · + XN

(a sum with a random number N of terms and each term Xi a random variable)
where the sum with zero terms when N = 0 is defined to be zero?

Linearity of expectation, which applies to conditional as well as uncondi-
tional probability, implies

E(SN | N) = E(X1 + · · ·Xn | N)
= E(X1 | N) + · · · + E(Xn | N)
= E(X1) + · · · + E(XN )
= NµX

the next to last equality being (3.7). Hence by the iterated expectation axiom

E(SN ) = E{E(SN | N)} = E(NµX) = E(N)µX = µNµX .

Note that this example is impossible to do any other way than using the iter-
ated expectation formula. Since no formulas were given for any of the densities,
you can’t use any formula involving explicit integrals.

If we combine the two conditional probability axioms, we get the following.

Theorem 3.1. If X and Y are random variables and g and h are functions
such that g(X) and h(Y ) are in L1, then

E{g(X)E[h(Y ) | X]} = E{g(X)h(Y )}. (3.8)

Proof. Replace Y by g(X)h(Y ) in Axiom CE2 obtaining

E{E[g(X)h(Y ) | X]} = E{g(X)h(Y )}.
then apply Axiom CE1 to pull g(X) out of the inner conditional expectation
obtaining (3.8).

The reader should be advised that our treatment of conditional expectation
is a bit unusual. Rather than state two axioms for conditional expectation,
standard treatments in advanced probability textbooks give just one, which
is essentially the statement of this theorem. As we have just seen, our two
axioms imply this one, and conversely our two axioms are special cases of this
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one: taking g = a and h the identity function in (3.8) gives our Axiom CE1,
and taking g = 1 and h the identity function in (3.8) gives our Axiom CE2.
Thus our treatment characterizes the same notion of conditional probability as
standard treatments.

Another aspect of advanced treatments of conditional probability is that
standard treatments usually take the statement Theorem 3.1 as a definition
rather than an axiom. The subtle difference is the following uniqueness asser-
tion.

Theorem 3.2. If X and Y are random variables and h is a function such that
h(Y ) ∈ L1, then then there exists a function f such that f(X) ∈ L1 and

E{g(X)f(X)} = E{g(X)h(Y )} (3.9)

for every function g such that g(X)h(Y ) ∈ L1. The function f is unique up to
redefinition on sets of probability zero.

The proof of this theorem is far beyond the scope of this course. Having
proved this theorem, advanced treatments take it as a definition of conditional
expectation. The unique function f whose existence is guaranteed by the theo-
rem is defined to be the conditional expectation, that is,

E{h(Y ) | X} = f(X).

The theorem makes it clear that (as everywhere else in probability theory)
redefinition on a set (event) of probability zero makes no difference.

Although we cannot prove Theorem 3.2, we can use it to prove a fancy
version of the iterated expectation formula.

Theorem 3.3. If Y ∈ L1, then

E
{
E(Z | X,Y )

∣∣ X
}

= E(Z | X). (3.10)

Of course, the theorem also holds when the conditioning variables are vec-
tors, that is, if m < n

E
{
E(Z | X1, . . . , Xn)

∣∣ X1, . . . Xm

}
= E(Z | X1, . . . , Xm).

In words, an iterated conditional expectation (a conditional expectation inside
another conditional expectation) is just the conditional expectation condition-
ing on the set of variables of the outer conditional expectation, if the set of
conditioning variables in the outer expectation is a subset of the conditioning
variables in the inner expectation. That’s a mouthful. The formula (3.10) is
simpler.

Proof of Theorem 3.3. By Theorem 3.2 and the following comment,

• E(Z | X,Y ) is the unique (up to redefinition on sets of probability zero)
function f1(X,Y ) such that

E{g1(X,Y )f1(X,Y )} = E{g1(X,Y )Z} (3.11a)

for all functions g1 such that g1(X,Y )Z ∈ L1.
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• The iterated expectation on the left hand side of (3.10) is the unique (up
to redefinition on sets of probability zero) function f2(X) such that

E{g2(X)f2(X)} = E{g2(X)f1(X,Y )} (3.11b)

for all functions g2 such that g2(X)f1(X,Y ) ∈ L1.

• E(Z | X) is the unique (up to redefinition on sets of probability zero)
function f3(X) such that

E{g3(X)f3(X)} = E{g3(X)Z} (3.11c)

for all functions g3 such that g3(X)Z ∈ L1.

Since (3.11a) holds for any function g1, it holds when g1(X,Y ) = g3(X),
from which, combining (3.11a) and (3.11c), we get

E{g3(X)f3(X)} = E{g3(X)Z} = E{g3(X)f1(X,Y )} (3.11d)

Reading (3.11d) from end to end, we see it is the same as (3.11b), because (3.11d)
must hold for any function g3 and (3.11b) must hold for any function g2. Thus
by the uniqueness assertion of Theorem 3.2 we must have f2(X) = f3(X), except
perhaps on a set of probability zero (which does not matter). Since f2(X) is
the left hand side of (3.10) and f3(X) is the right hand side, that is what was
to be proved.

Theorem 3.2 can also be used to prove a very important fact about indepen-
dence and conditioning.

Theorem 3.4. If X and Y are independent random variables and h is a func-
tion such that h(Y ) ∈ L1, then

E{h(Y ) | X} = E{h(Y )}.
In short, conditioning on an independent variable or variables is the same

as conditioning on no variables, making conditional expectation the same as
unconditional expectation.

Proof. If X and Y are independent, the right hand side of (3.9) becomes
E{g(X)}E{h(Y )} by Definition 2.7.2. Hence, in this special case, Theorem 3.2
asserts that E{h(Y ) | X} is the unique function f(X) such that

E{g(X)f(X)} = E{g(X)}E{h(Y )}
whenever g(X) ∈ L1. Certainly the constant f(X) = a, where a = E{h(Y )} is
one such function, because

E{g(X)a} = E{g(X)}a = E{g(X)}E{h(Y )}
so by the uniqueness part of Theorem 3.2 this is the conditional expectation, as
was to be proved.
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3.4 Joint, Conditional, and Marginal

As was the case with unconditional expectation, our “axioms first” treat-
ment of conditional expectation has been a bit abstract. When the problem
is solved by pulling a function of the conditioning variables outside of a con-
ditional expectation or by the iterated expectation formula, either the special
case in Axiom CE2 with the outside expectation an unconditional one or the
general case in Theorem 3.3 in which both expectations are conditional, then
the axioms are just what you need. But for other problems you need to be able
to calculate conditional probability densities and expectations by doing sums
and integrals, and that is the subject to which we now turn.

3.4.1 Joint Equals Conditional Times Marginal

Note that the iterated expectation axiom (Axiom CE2), when we write out
the expectations as integrals, equates

E{E(Y | X)} =
∫ (∫

yf(y | x) dy

)
fX(x) dx

=
∫∫

yf(y | x)fX(x) dx dy

(3.12a)

and
E(Y ) =

∫∫
yf(x, y) dx dy. (3.12b)

Equation (3.12b) is correct, because of the general definition of expectation of
a function of two variables:

E{g(X,Y )} =
∫∫

g(x, y)f(x, y) dx dy

whenever the expectation exists. Now just take g(x, y) = y.
One way that the right hand sides of (3.12a) and (3.12b) can be equal is if

f(x, y) = f(y | x)fX(x) (3.13)

or in words,
joint = conditional × marginal

In fact, by the uniqueness theorem (Theorem 3.2), this is the only way the
iterated expectation axiom can hold, except, as usual, for possible redefinition
on sets of probability zero.

This gives a formula for calculating a conditional probability density from
the joint

f(y | x) =
f(x, y)
fX(x)

(3.14)

or in words,

conditional =
joint

marginal
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Of course, there is a slight problem with (3.14) when the denominator is zero,
but since the set of x such that fX(x) = 0 is a set of probability zero, this does
not matter, and f(y | x) can be defined arbitrarily for all such x.

Example 3.4.1 (Uniform Distribution on a Triangle).
This continues Example 1.5.2. Recall from that example that if X and Y have
joint density

f(x, y) = 2, 0 < x and 0 < y and x + y < 1

that the marginal of X is

fX(x) = 2(1 − x), 0 < x < 1.

Thus the conditional is

f(y | x) =
2

2(1 − x)
=

1
1 − x

Or we should say this is the conditional for some values of x and y. As
usual, we have to be careful about domains of definition or we get nonsense.
First, the marginal only has the formula we used when 0 < x < 1, so that is one
requirement. Then for x in that range, the joint is only defined by the formula
we used when 0 < y and x + y < 1, that is, when 0 < y < 1 − x. Thus to be
precise, we must say

f(y | x) =
1

1 − x
, 0 < y < 1 − x and 0 < x < 1. (3.15)

What about other values of x and y? What if we want the definition for
all real x and y? First, for f(y | x) to be a probability density (considered as
a function of y for fixed x) it must integrate to 1 (integrating with respect to
y). Since our formula already does integrate to one over its domain of definition
0 < y < 1 − x, it must be zero elsewhere. Thus when 0 < x < 1

f(y | x) =

{
1

1−x , 0 < y < 1 − x

0, elsewhere

or, if you prefer a definition using an indicator function,

f(y | x) =
1

1 − x
I(0,1−x)(y), y ∈ R.

What about x outside (0, 1)? Those are x such that the marginal is zero, so
the formula “joint over marginal” is undefined. As we have already said, the
definition is then arbitrary, so we may say

f(y | x) = 42

or whatever we please when x ≤ 0 or 1 ≤ x. (It doesn’t even matter that this
function doesn’t integrate to one!) Mostly we will ignore such nonsense and
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only define conditional densities where the values are not arbitrary and actually
matter. The only reason we mention this issue at all is so that you won’t think
f(y | x) has to have a sensible definition for all possible x.

So how about conditional expectations? Given the formula (3.15) for the
conditional density, we just plug and chug

E(Y | x) =
∫

yf(y | x) dy =
1 − x

2
(3.16a)

E(Y 2 | x) =
∫

y2f(y | x) dy =
(1 − x)2

3
(3.16b)

var(Y | x) = E(Y 2 | x) − E(Y | x)2 =
(1 − x)2

12
(3.16c)

and so forth, (3.16c) holding because of Corollary 2.12, which like every other
fact about unconditional expectation, also holds for conditional expectation so
long as we are considering the conditioning variables fixed.

We could end Section 3.4 right here. Formulas (3.13) and (3.14) tell us how
to calculate conditionals from joints and joints from conditionals and marginals.
And the fact that “conditional expectation is a special case of ordinary expec-
tation” (so long as we are considering the conditioning variables fixed) tells how
to compute expectations. So what else is there to know? Well, nothing, but a
lot more can be said on the subject. The rest of Section 3.4 should give you a
much better feel for the subject and allow you to calculate conditional densities
and expectations more easily.

3.4.2 Normalization

A standard homework problem for courses like this specifies some nonneg-
ative function h(x) and then asks for what real number k is f(x) = kh(x) a
probability density.

Clearly we must have k > 0, because k < 0 would entail negative prob-
abilities and k = 0 would make the density integrate (or sum in the discrete
case) to zero. Either violates the defining properties for a probability density,
which are (1.20a) and (1.20b) in the discrete case and (1.21a) and (1.21b) in
the continuous case.

For reasons that will soon become apparent, we prefer to use c = 1/k. This
is allowed because k 6= 0. Thus the problem becomes: for what real number c is

f(x) =
1
c
h(x)

a density function? The process of determining c is called normalization and c
is called the normalizing constant for the unnormalized density h(x).

To determine c we use the second defining property for a probability density
(1.20b) or (1.21b) as the case may be, which implies

c =
∫

h(x) dx (3.17)
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(with integration replaced by summation if the probability model is discrete).
In order for c to be a positive number, the integral (or sum in the discrete
case) must exist and be nonzero. This gives us two conditions on unnormalized
densities. A real-valued function h(x) is an unnormalized density provided the
following two conditions hold.

• It is nonnegative: h(x) ≥ 0, for all x.

• It is integrable in the continuous case or summable in the discrete case
and the integral or sum is nonzero.

Then
f(x) =

1
c
h(x)

is a normalized probability density, where c is given by (3.17) in the continuous
case and by (3.17) with the integral replaced by a sum in the discrete case.

Example 3.4.2.
Consider the function

h(x) = xα−1e−x, x > 0,

where α > 0. How do we normalize it to make a probability density?
The normalizing constant is

c =
∫ ∞

0

xα−1e−x dx = Γ(α)

by (B.2) in Appendix B. Thus we obtain a gamma distribution density

f(x) =
1

Γ(α)
xα−1e−x.

So what’s the big deal? We already knew that! Is “normalization” just a
fancy name for something trivial? Well, yes and no. You can form your own
opinion, but not until the end of Section 3.4.

3.4.3 Renormalization

We start with a slogan

Conditional probability is renormalization.

What this means will become apparent presently.
First, f(y | x) is just an ordinary probability density when considered as a

function of y for fixed x. We maintain this view, y is the variable and x is fixed,
throughout this subsection.

Second, since x is fixed, the denominator in

f(y | x) =
f(x, y)
fX(x)

(3.18)
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is constant (not a function of y). Thus we can also write

f(y | x) ∝ f(x, y) (3.19)

the symbol ∝ meaning “proportional to” (still thinking of y as the only variable,
the proportionality does not hold if we vary x). This says the joint is just like the
conditional, at least proportional to it, the only thing wrong is that it doesn’t
integrate to one (still thinking of y as the only variable, the joint does, of course,
integrate to one if we integrate with respect to x and y). Formula (3.19) says
that if we graph the conditional and the joint (as functions of y!) we get the
same picture, they are the same shape, the only difference is the scale on the
vertical axis (the constant of proportionality). So if we put in the constant of
proportionality, we get

f(y | x) =
1

c(x)
f(x, y). (3.20)

We have written the “constant” as c(x) because it is a function of x, in fact,
comparing with (3.18) we see that

c(x) = fX(x).

We call it a “constant” because we are considering x fixed.
All of this can be summarized in the following slogan.

A joint density is an unnormalized conditional density. Its normal-
izing constant is a marginal density.

Spelled out in more detail, the joint density f(x, y) considered as a function of
y alone is an unnormalized probability density, in fact, is it proportional to the
conditional density (3.19). In order to calculate the conditional density, we need
to calculate the normalizing constant, which just happens to turn out to be the
marginal fX(x), and divide by it (3.18).

If we take this argument a bit further and plug the definition of the marginal
into (3.18), we get

f(y | x) =
f(x, y)∫
f(x, y) dy

(3.21)

This shows more explicitly how “conditional probability is renormalization.”
You find a conditional probability density by dividing the joint density by what
it integrates to. How do we remember which variable is the variable of inte-
gration here? That’s easy. In this whole subsection y is the only variable; x is
fixed. In general, a conditional density is an ordinary density (integrates to one,
etc.) when considered a function of the variable “in front of the bar” with the
conditioning variable, the variable “behind the bar” fixed. That’s what we are
doing here. Hence we divide by the integral of the joint density with respect to
the variable “in front of the bar.”

It is occasionally useful that (3.21) holds whether or not the joint density is
normalized. Suppose we are given an unnormalized joint density h(x, y) so that

f(x, y) =
1
c
h(x, y)
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for some normalizing constant c. Plugging this into (3.21) gives

f(y | x) =
h(x, y)∫
h(x, y) dy

(3.22)

The c’s cancel in the numerator and denominator.
Our slogan about conditional probability and renormalization helps us re-

member which marginal is meant in

conditional =
joint

marginal

• If the conditional in question is f(y | x), then we are considering y the
variable (x is fixed).

• Thus the marginal in question is the one obtained by integrating with
respect to y (that’s what we are considering variable).

• The marginal obtained by integrating out y is the marginal of the other
variable (slogan on p. 19 in these notes). Hence the marginal is fX(x).

But even if you are confused about how to calculate marginals or which
marginal you need to divide by, you should still be able to calculate conditionals
using (3.21) and (3.22), which contain no marginals and are in fact derivable
on the spot. Both are obvious consequences of the facts that

• Conditional densities are proportional to joint densities considered as func-
tions of the variable(s) in front of the bar.

• Conditional densities integrate to one considered as functions of the vari-
able(s) in front of the bar.

Example 3.4.3.
Consider the function

h(x, y) = (x + y2)e−x−y, x > 0, y > 0.

If we take this to be an unnormalized joint density, what are the two conditional
densities f(x | y) and f(y | x)?

Integrating with respect to x gives∫ ∞

0

h(x, y) dx = e−y

∫ ∞

0

xe−x dx + y2e−y

∫ ∞

0

e−x dx

= (1 + y2)e−y

We used the formula ∫ ∞

0

xne−x dx = Γ(n + 1) = n! (3.23)
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to evaluate the integrals. Hence

f(x | y) =
f(x, y)∫
f(x, y) dx

=
x + y2

1 + y2
e−x

Similarly∫ ∞

0

h(x, y) dy = xe−x

∫ ∞

0

e−y dy + e−x

∫ ∞

0

y2e−y dy

= (x + 2)e−x

Again, we used (3.23) to evaluate the integrals. So

f(y | x) =
f(x, y)∫
f(x, y) dy

=
x + y2

x + 2
e−y

Things become considerably more complicated when the support of the joint
density is not a rectangle with sides parallel to the axes. Then the domains of
integration depend on the values of the conditioning variable.

Example 3.4.4 (A Density with Weird Support).
Consider the function

h(x, y) =

{
x + y2, x > 0, y > 0, x + y < 1
0, otherwise

If we take this to be an unnormalized joint density, what is the conditional
density f(x | y)?

Integrating with respect to x gives∫ ∞

−∞
h(x, y) dx =

∫ 1−y

0

(x + y2) dx =
x2

2
+ xy2

∣∣∣∣1−y

0

= 1
2 (1 − y)(1 − y + 2y2)

What is tricky is that the formula x + y2 for h(x, y) is valid only when x > 0
and y > 0 and x + y < 1. This means 0 < x < 1 − y. For other values of x, the
integrand is zero. Hence the domain of integration in the second integral must
be 0 < x < 1 − y. If you miss this point about the domain of integration, you
make a complete mess of the problem. If you get this point, the rest is easy

f(x | y) =
f(x, y)∫
f(x, y) dx

=
2(x + y2)

(1 − y)(1 − y + 2y2)

3.4.4 Renormalization, Part II

This subsection drops the other shoe in regard to “conditional probability is
renormalization.” So is conditional expectation. Plugging the definition (3.21)
of conditional densities into (3.3) gives

E{g(Y ) | x} =
∫

g(y)f(x, y) dy∫
f(x, y) dy

(3.24)
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(and, of course, the discrete case is analogous with the integrals replaced by
sums). It is a useful mnemonic device to write (3.24) lining up the analogous
bits in the numerator and denominator

E{g(Y ) | x} =
∫

g(y)f(x, y) dy∫
f(x, y) dy

.

This looks a little funny, but it reminds us that the density in the numerator
and denominator is the same, and the variable of integration is the same. The
only difference between the numerator and denominator is the function g(y)
appearing in the numerator.

If we plug in (3.22) instead of (3.21) for f(y | x) we get

E{g(Y ) | x} =
∫

g(y)h(x, y) dy∫
h(x, y) dy

(3.25)

where h(x, y) is an unnormalized joint density.
These formulas make it clear that we are choosing the denominator so that

E(1 | x) = 1, which is the form the norm axiom takes when applied to condi-
tional probability. That is, when we take the special case in which the function
g(y) is equal to one for all y, the numerator and denominator are the same.

Example 3.4.5.
Suppose X and Y have the unnormalized joint density

h(x, y) = (x + y)e−x−y, x > 0, y > 0,

what is E(X | y)?
Using (3.25) with the roles of X and Y interchanged and g the identity

function we get

E(X | y) =
∫

xh(x, y) dx∫
h(x, y) dx

=
∫

x(x + y)e−x−y dx∫
(x + y)e−x−y dx

Using (3.23) the denominator is∫ ∞

0

(x + y)e−x−y dx = e−y

∫ ∞

0

xe−x dx + ye−y

∫ ∞

0

e−x dx

= (1 + y)e−y

and the numerator is∫ ∞

0

x(x + y)e−x−y dx = e−y

∫ ∞

0

x2e−x dx + ye−y

∫ ∞

0

xe−x dx

= (2 + y)e−y

Hence
E(X | y) =

2 + y

1 + y
, y > 0.



3.4. JOINT, CONDITIONAL, AND MARGINAL 103

Recall from p. 90 in these notes

Sanity Check: E(X | Y ) is a function of Y and is not a function
of X.

Good. We did get a function of y. If you get confused about which variable
to integrate with respect to, this sanity check will straighten you out. If you
through some mistake get a function of both variables, this sanity check will at
least tell you that you messed up somewhere.

3.4.5 Bayes Rule

Now we want to study the consequences of

joint = conditional × marginal (3.26)

Again we have the problem of remembering which marginal. If we recall our
analysis of

conditional =
joint

marginal

on p. 100 in these notes, we recall that it is the marginal of the variable “behind
the bar.”

Because “mathematics is invariant under changes of notation” (3.26) is also
true when we interchange the roles of the variables Hence we can “factor” a
joint density into marginal and conditional two different ways

f(x, y) = f(x | y)fY (y) (3.27)
f(x, y) = f(y | x)fX(x) (3.28)

Plugging (3.27) into (3.21) gives

f(y | x) =
f(x | y)fY (y)∫
f(x | y)fY (y) dy

(3.29)

This equation is called Bayes rule. It allows us to “turn around” conditional
probabilities. That is, it is useful for problems that say: given f(x | y), find
f(y | x). Or vice versa. Of course, because “mathematics is invariant under
changes of notation” (3.29) is also true with all the x’s and y’s interchanged.

Example 3.4.6.
Suppose that X and Y are positive real-valued random variables and

f(x | y) = 1
2x2y3e−xy

fY (y) = e−y

what is f(y | x)?
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Note that this is slightly tricky in that the conditional wanted is not the one
given by the Bayes rule formula (3.29). You need to interchange x’s and y’s in
(3.29) to get the formula needed to do this problem

f(y | x) =
f(x | y)fY (y)∫
f(x | y)fY (y) dy

The denominator is∫ ∞

0

x2y3e−xy−y dy = x2

∫ ∞

0

y3e−(1+x)y dy

The change of variable y = u/(1 + x) makes the right hand side

x2

(1 + x)4

∫ ∞

0

u3e−u du =
6x2

(1 + x)4

Thus
f(y | x) = 1

6 (1 + x)4y3e−(1+x)y, y > 0

Example 3.4.7 (Bayes and Brand Name Distributions).
Suppose

X ∼ Exp(λ)
Y | X ∼ Exp(X)

meaning the marginal distribution of X is Exp(λ) and the conditional distribu-
tion of Y given X is Exp(X), that is,

f(y | x) = xe−xy, y > 0. (3.30)

This is a bit tricky, so let’s go through it slowly. The formula for the density of
the exponential distribution given in Section B.2.2 in Appendix B is

f(x | λ) = λe−λx, x > 0. (3.31)

We want to change x to y and λ to x. Note that it matters which order we do
the substitution. If we change λ to x first, we get

f(x | x) = λe−x2
, x > 0.

but that’s nonsense. First, the right hand side isn’t a density. Second, the left
hand side is the density of X given X, but this distribution is concentrated at
X (if we know X, then we know X) and so isn’t even continuous. So change x
in (3.31) to y obtaining

f(y | λ) = λe−λy, y > 0.

and then change λ to x obtaining (3.30).
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Of course, the joint is conditional times marginal

f(x, y) = f(y | x)fX(x) = xe−xy · λe−λx = λxe−(λ+y)x (3.32)

Question: What is the other marginal (of Y ) and the other conditional (of
X given Y )? Note that these two problems are related. If we answer one, the
answer to the other is easy, just a division

f(x | y) =
f(x, y)
fY (y)

or

fY (y) =
f(x, y)
f(x | y)

I find it a bit easier to get the conditional first. Note that the joint (3.32) is an
unnormalized conditional when thought of as a function of x alone. Checking
our inventory of “brand name” distributions, we see that the only one like
(3.32) in having both a power and an exponential of the variable is the gamma
distribution with density

f(x | α, λ) =
λα

Γ(α)
xα−1e−λx, x > 0. (3.33)

Comparing the analogous parts of (3.32) and (3.33), we see that we must match
up x with xα−1, which tells us we need α = 2, and we must match up e−(λ+y)x

with e−λx which tells us we need λ + y in (3.32) to be the λ in (3.33), which
is the second parameter of the gamma distribution. Thus (3.32) must be an
unnormalized Γ(2, λ + y) density, and the properly normalized density is

f(x | y) = (λ + y)2xe−(λ+y)x, x > 0 (3.34)

Again this is a bit tricky, so let’s go through it slowly. We want to change α to
2 and λ to λ + y in (3.33). That gives

f(x | y) =
(λ + y)2

Γ(2)
x2−1e−(λ+y)x, x > 0.

and this cleans up to give (3.34).

3.5 Conditional Expectation and Prediction

The parallel axis theorem (Theorem 2.11 in these notes)

E[(X − a)2] = var(X) + [a − E(X)]2

has an analog for conditional expectation. Just replace expectations by condi-
tional expectations (and variances by conditional variances) and, because func-
tions of the conditioning variable behave like constants, replace the constant by
a function of the conditioning variable.
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Theorem 3.5 (Conditional Parallel Axis Theorem). If Y ∈ L1

E{[Y − a(X)]2 | X} = var(Y | X) + [a(X) − E(Y | X)]2 (3.35)

The argument is exactly the same as that given for the unconditional version,
except for the need to use Axiom CE1 instead of Axiom E2 to pull a function
of the conditioning variable out of the conditional expectation. Otherwise, only
the notation changes.

If we take the unconditional expectation of both sides of (3.35), we get

E
(
E{[Y − a(X)]2 | X}) = E{var(Y | X)} + E{[a(X) − E(Y | X)]2}

and by the iterated expectation axiom, the left hand side is the the unconditional
expectation, that is,

E{[Y − a(X)]2} = E{var(Y | X)} + E{[a(X) − E(Y | X)]2} (3.36)

This relation has no special name, but it has two very important special cases.
The first is the prediction theorem.

Theorem 3.6. For predicting a random variable Y given the value of another
random variable X, the predictor function a(X) that minimizes the expected
squared prediction error

E{[Y − a(X)]2}
is the conditional expectation a(X) = E(Y | X).

The proof is extremely simple. The expected squared prediction error is
the left hand side of (3.36). On the right hand side of (3.36), the first term
does not contain a(X). The second term is the expectation of the square of
a(X) − E(Y | X). Since a square is nonnegative and the expectation of a
nonnegative random variable is nonnegative (Axiom E1), the second term is
always nonnegative and hence is minimized when it is zero. By Theorem 2.32,
that happens if and only if a(X) = E(Y | X) with probability one. (Yet
another place where redefinition on a set of probability zero changes nothing of
importance).

Example 3.5.1 (Best Prediction).
Suppose X and Y have the unnormalized joint density

h(x, y) = (x + y)e−x−y, x > 0, y > 0,

what function of Y is the best predictor of X in the sense of minimizing expected
squared prediction error?

The predictor that minimizes expected squared prediction error is the re-
gression function

a(Y ) = E(X | Y ) =
2 + Y

1 + Y

found in Example 3.4.5.
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The other important consequence of (3.36) is obtained by taking a(X) =
E(Y ) = µY (that is, a is the constant function equal to µY ). This gives

E{[Y − µY ]2} = E{var(Y | X)} + E{[µY − E(Y | X)]2} (3.37)

The left hand side of (3.37) is, by definition var(Y ). By the iterated expectation
axiom, E{E(Y | X)} = E(Y ) = µY , so the second term on the right hand side
is the expected squared deviation of E(Y | X) from its expectation, which is,
by definition, its variance. Thus we have obtained the following theorem.

Theorem 3.7 (Iterated Variance Formula). If Y ∈ L2,

var(Y ) = E{var(Y | X)} + var{E(Y | X)}.
Example 3.5.2 (Example 3.3.1 Continued).
Suppose X0, X1, . . . is an infinite sequence of identically distributed random
variables, having mean E(Xi) = µX and variance var(Xi) = σ2

X , and suppose N
is a nonnegative integer-valued random variable independent of the Xi having
mean E(N) = µN and variance var(N) = σ2

N . Note that we have now tied
up the loose end in Example 3.3.1. We now know from Theorem 3.4 that
independence of the Xi and N implies

E(Xi | N) = E(Xi) = µX .

and similarly
var(Xi | N) = var(Xi) = σ2

X .

Question: What is the variance of

SN = X1 + · · · + XN

expressed in terms of the means and variances of the Xi and N?
This is easy using the iterated variance formula. First, as we found in Ex-

ample 3.3.1,
E(SN | N) = NE(Xi | N) = NµX .

A similar calculation gives

var(SN | N) = N var(Xi | N) = Nσ2
X

(because of the assumed independence of the Xi and N). Hence

var(SN ) = E{var(SN | N)} + var{E(SN | N)}
= E(Nσ2

X) + var(NµX)

= σ2
XE(N) + µ2

X var(N)

= σ2
XµN + µ2

Xσ2
N

Again notice that it is impossible to do this problem any other way. There
is not enough information given to use any other approach.

Also notice that the answer is not exactly obvious. You might just guess,
using your intuition, the answer to Example 3.3.1. But you wouldn’t guess this.
You need the theory.
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Problems

3-1. In class we found the moment generating function of the geometric distri-
bution (Section B.1.3 in Appendix B) is defined by

ψ(t) =
1 − p

1 − pet

on some neighborhood of zero. Find the variance of this random variable.

3-2. Verify the details in (3.16a), (3.16b), and (3.16c).

3-3. Suppose X is a positive random variable and the density of Y given X is

f(y | x) =
2y

x2
, 0 < y < x.

(a) Find E(Y | X).

(b) Find var(Y | X).

3-4. For what real values of θ is

fθ(x) =
1

c(θ)
xθ, 0 < x < 1

a probability density, and what is the function c(θ)?

3-5. Suppose X, Y , and Z are random variables such that

E(X | Y,Z) = Y and var(X | Y,Z) = Z.

Find the (unconditional) mean and variance of X in terms of the means, vari-
ances, and covariance of Y and Z.

3-6. Suppose the random vector (X,Y ) is uniformly distributed on the disk

S = { (x, y) ∈ R2 : x2 + y2 < 4 }
that is, (X,Y ) has the U(S) distribution in the notation of Section B.2.1 of
Appendix B.

(a) Find the conditional distributions of X given Y and of Y given X.

(b) Find the marginal distributions of X and Y .

(c) Find E(Y | x).

(d) Find P (|Y | < 1 | x).

3-7. Suppose the conditional distribution of Y given X is N (0, 1/X) and the
marginal distribution of X is Gam(α, λ).

(a) What is the conditional density of X given Y ?



3.5. CONDITIONAL EXPECTATION AND PREDICTION 109

(b) What is the marginal density of Y ?

3-8. Suppose X and Z are independent random variables and E(Z) = 0. Define
Y = X + X2 + Z.

(a) Find E(Y | X).

(b) Find var(Y | X).

(c) What function of X is the best predictor of Y in the sense of minimizing
expected squared prediction error?

(d) What is the expected squared prediction error of this predictor?

Note: Any of the answers may involve moments of X and Z.
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Chapter 4

Parametric Families of
Distributions

The first thing the reader should do before reading the rest of this chapter
is go back and review Section 3.1, since that establishes the basic notation for
parametric families of distributions.

4.1 Location-Scale Families

Consider a probability density f of a real-valued random variable X. By the
theorem on linear changes of variables (Theorem 7 of Chapter 3 in Lindgren),
for any real number µ and any positive real number σ, the random variable
Y = µ + σX has the density

fµ,σ(y) =
1
σ

f

(
y − µ

σ

)
.

This generates a two-parameter family of densities called the location-scale fam-
ily generated by the reference density f . The parameter µ is called the location
parameter, and the parameter σ is called the scale parameter.

We could choose any distribution in the family as the reference distribution
with density f . This gives a different parameterization of the family, but the
same family. Suppose we choose fα,β as the reference density. The family it
generates has densities

fµ,σ(y) =
1
σ

fα,β

(
y − µ

σ

)
.

=
1

σβ
f

(
1
β

[
y − µ

σ
− α

])
=

1
σβ

f

(
y − µ − σα

σβ

)

111
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It is clear that as µ and σ run over all possible values we get the same family
of distributions as before. The parameter values that go with each particular
distribution have changed, but each density that appears in one family also
appears in the other. The correspondence between the parameters in the two
parameterizations is

µ ←→ µ + σα

σ ←→ σβ

If the reference random variable X has a variance, then every distribution in
the family has a variance (by Theorem 2.44 in these notes), and the distributions
of the family have every possible mean and variance. Since we are free to choose
the reference distribution as any distribution in the family, we may as well choose
so that E(X) = 0 and var(X) = 1, then µ is the mean and σ the standard
deviation of the variable Y with density fµ,σ.

But the distributions of the family do not have to have either means or vari-
ances. In that case we cannot call µ the mean or σ the standard deviation. That
is the reason why in general we call µ and σ the location and scale parameters.

Example 4.1.1 (Uniform Distributions).
The U(a, b) family of distribution defined in Section B.2.1 of Appendix B has
densities

f(x | a, b) =
1

b − a
, a < x < b (4.1)

and moments

E(X | a, b) =
a + b

2

var(X | a, b) =
(b − a)2

12

Therefore the parameters a and b of the distribution having mean zero and
standard deviation one is found by solving

a + b

2
= 0

(from which we see that b = −a) and

(b − a)2

12
= 1

which becomes, plugging in b = −a,

(2 · b)2
12

= 1

Hence b =
√

3. Giving the density

f(x) =
1

2
√

3
, −

√
3 < x < +

√
3
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Then use the formula for a general location-scale family, obtaining

f(y | µ, σ) =
1
σ

f

(
y − µ

σ

)
=

1
2σ

√
3

on the domain of definition, whatever that is. The change of variable is y =
µ+σx, so x = ±√

3 maps to µ±σ
√

3, and those are the endpoints of the domain
of definition. So

f(y | µ, σ) =
1

2σ
√

3
, µ − σ

√
3 < y < µ + σ

√
3 (4.2)

The reader may have lost track in all the formula smearing of how simple
this all is. We have another description of the same family of densities. The
correspondence between the two parameterizations is

a ←→ µ − σ
√

3

b ←→ µ + σ
√

3

It should be clear that (4.2) defines a density that is constant on an interval,
just like (4.1) does. Furthermore, it should also be clear that as µ and σ range
over all possible values we get distributions on all possible intervals. This is not
so obvious from the range specification in (4.2), but is clear from the definition
of µ and σ in terms of a and b

µ =
a + b

2

σ =

√
(b − a)2

12

The only virtue of the new parameterization (4.2) over the old one (4.1)
is that it explicitly describes the density in terms of the mean and standard
deviation (µ is the mean and σ is the standard deviation, as explained in the
comments immediately preceding the example). But for most people that is not
a good enough reason to use the more complicated parameterization. Hence
(4.1) is much more widely used.

Example 4.1.2 (Cauchy Distributions).
The function

f(x) =
1

π(1 + x2)
, −∞ < x < +∞

is a probability density, because∫ ∞

−∞

1
1 + x2

dx = tan−1 x

∣∣∣∣∞
−∞

= π

This density is called the standard Cauchy density (Section 6.12 in Lindgren).
This distribution has no mean or variance. If we try to calculate

E(|X|) =
∫ ∞

−∞

|x|
1 + x2

dx = 2
∫ ∞

0

x

1 + x2
dx
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we see that, because the integrand is bounded, only the behavior of the integrand
near infinity is important. And for large x

x

1 + x2
≈ 1

x

and so by Lemma 2.39 the integral does not exist. Hence by Theorem 2.44
neither does any moment of first or higher order. That is, no moments exist.

The Cauchy location-scale family has densities

fµ,σ(x) =
σ

π(σ2 + [x − µ]2)
, −∞ < x < +∞ (4.3)

Here µ is not the mean, because Cauchy distributions do not have means. It
is, however, the median because this distribution is symmetric with center of
symmetry µ. Neither is σ the standard deviation, because Cauchy distributions
do not have variances.

Example 4.1.3 (Blurfle Distributions).
All of the distributions in a location-scale family have the same shape. In fact we
could use the same curve as the graph of every density in the family. Changing µ
and σ only changes the scales on the axes, not the shape of the curve. Consider
the distribution with the density shown below, which is of no particular interest,
just an arbitrary p. d. f. Call it the “blurfle” distribution. It has been chosen
so to have mean zero and variance one, so we can refer to it as the standard
blurfle distribution.

x

f(
x)

-2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Like any other distribution, it generates a location-scale family, which we
can call the blurfle family. Different blurfle distributions have the same shape,
just different location and scale parameters. Changing the location parameter,
but leaving the scale parameter unchanged just shifts the curve to the right or
left along the number line.
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Shown below are two different blurfle densities with same scale parameter
but different location parameters.

x

f(
x)

-2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

And shown below are two different blurfle densities with same location param-
eter but different scale parameters.

x

f(
x)

-5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

4.2 The Gamma Distribution

The gamma function is defined for all real α > 0 by

Γ(α) =
∫ ∞

0

xα−1e−x dx. (4.4)

Theorem 4.1 (Gamma Function Recursion Relation).

Γ(α + 1) = αΓ(α) (4.5)

holds for all α > 0.
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Proof. This can be proved using the integration by parts formula:
∫

u dv =
uv−∫

v du. Let u = xα and dv = e−x dx, so du = αxα−1 du and v = −e−x, and

Γ(α + 1) =
∫ ∞

0

xαe−x dx

= −xαe−x
∣∣∣∞
0

−
∫ ∞

0

αxα−1e−x dx

= αΓ(α)

The uv term in the integration by parts is zero, because xαe−x goes to zero as
x goes to either zero or infinity.

Since
Γ(1) =

∫ ∞

0

e−x dx = −e−x
∣∣∣∞
0

= 1,

the gamma function interpolates the factorials

Γ(2) = 1 · Γ(1) = 1!
Γ(3) = 2 · Γ(2) = 2!

...
Γ(n + 1) = n · Γ(n) = n!

In a later section, we will find out that Γ(1
2 ) =

√
π, which can be used with the

recursion relation (4.5) to find Γ(n
2 ) for odd positive integers n.

The integrand in the integral defining the gamma function (4.4) is non-
negative and integrates to a finite, nonzero constant. Hence, as we saw in
Example 3.4.2, dividing it by what it integrates to makes a probability density

f(x | α) =
1

Γ(α)
xα−1e−x, x > 0. (4.6)

The parameter α of the family is neither a location nor a scale parameter. Each
of these densities has a different shape. Hence we call it a shape parameter.

It is useful to enlarge the family of densities by adding a scale parameter. If
X has the density (4.6), then σX has the density

f(x | α, σ) =
1
σ

f
(x

σ

∣∣∣ α
)

=
1

σαΓ(α)
xα−1e−x/σ. (4.7)

For reasons that will become apparent later Lindgren prefers to use the recip-
rocal scale parameter λ = 1/σ. If the units of X are feet, then so are the units
of σ. The units of λ are reciprocal feet (ft−1). In this parameterization the
densities are

f(x | α, λ) =
λα

Γ(α)
xα−1e−λx. (4.8)

You should be warned that there is no generally accepted parameterization of
the gamma family of densities. Some books prefer one, some the other. In this
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course we will always use (4.8), and following Lindgren we will use the notation
Gam(α, λ) to denote the distribution with density (4.8). We will call λ the
inverse scale parameter or, for reasons to be explained later (Section 4.4.3), the
rate parameter. The fact that (4.8) must integrate to one tells us∫ ∞

0

xα−1e−λx dx =
Γ(α)
λα

.

We can find the mean and variance of the gamma using the trick of recog-
nizing a probability density (Section 2.5.7).

E(X) =
∫ ∞

0

xf(x | α, λ) dx

=
λα

Γ(α)

∫ ∞

0

xαe−λx dx

=
λα

Γ(α)
Γ(α + 1)

λα+1

=
α

λ

(we used the recursion (4.5) to simplify the ratio of gamma functions). Similarly

E(X2) =
∫ ∞

0

x2f(x | α, λ) dx

=
λα

Γ(α)

∫ ∞

0

xα+1e−λx dx

=
λα

Γ(α)
Γ(α + 2)

λα+2

=
(α + 1)α

λ2

(we used the recursion (4.5) twice). Hence

var(X) = E(X2) − E(X)2 =
(α + 1)α

λ2
−

(α

λ

)2

=
α

λ2

The sum of independent gamma random variables with the same scale pa-
rameter is also gamma. If X1, . . ., Xk are independent with Xi ∼ Gam(αi, λ),
then

X1 + · · · + Xk ∼ Gam(α1 + · · · + αk, λ).

This will be proved in the following section (Theorem 4.2).

4.3 The Beta Distribution

For any real numbers s > 0 and t > 0, the function

h(x) = xs−1(1 − x)t−1, 0 < x < 1
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is an unnormalized probability density. This is clear when s ≥ 1 and t ≥ 1,
because then it is bounded. When s < 1, it is unbounded near zero. When
t < 1, it is unbounded near one. But even when unbounded it is integrable. For
x near zero

h(x) ≈ xs−1

Hence h is integrable on (0, ε) for any ε > 0 by Lemmas 2.40 and 2.43 because
the exponent s−1 is greater than −1. The same argument (or just changing the
variable from x to 1 − x) shows that the unnormalized density h is integrable
near one.

The normalizing constant for h depends on s and t and is called the beta
function

B(s, t) =
∫ 1

0

xs−1(1 − x)t−1 dx.

Dividing by the normalizing constant gives normalized densities

f(x | s, t) =
1

B(s, t)
xs−1(1 − x)t−1, 0 < x < 1.

The probability distributions having these densities are called beta distributions
and are denoted Beta(s, t).

The next theorem gives the “addition rule” for gamma distributions men-
tioned in the preceding section and a connection between the gamma and beta
distributions.

Theorem 4.2. If X and Y are independent random variables

X ∼ Gam(s, λ)
Y ∼ Gam(t, λ)

Then

U = X + Y

V =
X

X + Y

are also independent random variables, and

U ∼ Gam(s + t, λ)
V ∼ Beta(s, t)

Proof. To use the multivariate change of variable formula, we first solve for the
old variables x and y in terms of the new

x = uv

y = u(1 − v)
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Hence the Jacobian is

J(u, v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣ v u

1 − v −u

∣∣∣∣∣∣ = −u

The joint density of X and Y is fX(x)fY (y) by independence. By the change
of variable formula, the joint density of U and V is

fU,V (u, v) = fX,Y [uv, u(1 − v)]|J(u, v)|
= fX(uv)fY [u(1 − v)]u

=
λs

Γ(s)
(uv)s−1e−λuv λt

Γ(t)
[u(1 − v)]t−1e−λu(1−v)u

=
λs+t

Γ(s)Γ(t)
us+t−1e−λuvs−1(1 − v)t−1

Since the joint density factors into a function of u times a function of v, the
variables U and V are independent. Since these functions are proportional to
the gamma and beta densities asserted by the theorem, U and V must actually
have these distributions.

Corollary 4.3.

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

Proof. The constant in the joint density found in the proof of the theorem must
be the product of the constants for the beta and gamma densities. Hence

λs+t

Γ(s)Γ(t)
=

λs+t

Γ(s + t)
1

B(s, t)

Solving for B(s, t) gives the corollary.

For moments of the beta distribution, see Lindgren pp. 176–177.

4.4 The Poisson Process

4.4.1 Spatial Point Processes

A spatial point process is a random pattern of points in a region of space.
The space can be any dimension.

A point process is simple if it never has points on top of each other so that
each point of the process is at a different location in space. A point process is
boundedly finite if with probability one it has only a finite number of points in
any bounded set.

Let NA denote the number of points in a region A. Since the point pattern
is random, NA is a random variable. Since it counts points, NA is a discrete
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random variable taking values 0, 1, 2, . . . . If A is a bounded set and the point
process is boundedly finite, then the event NA = ∞ has probability zero.

A point x is a fixed atom if P (N{x} > 0) > 0, that is, if there is positive
probability of seeing a point at the particular location x in every random pattern.
We are interested in point processes in which the locations of the points are
continuous random variables, in which case the probability of seeing a point at
any particular location is zero, so there are no fixed atoms.

For a general spatial point process, the joint distribution of the variables NA

for various sets A is very complicated. There is one process for which it is not
complicated. This is the Poisson process, which is a model for a “completely
random” pattern of points. One example of this process is given in Figure 4.1.

Figure 4.1: A single realization of a homogeneous Poisson process.

4.4.2 The Poisson Process

A Poisson process is a spatial point process characterized by a simple inde-
pendence property.
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Definition 4.4.1.
A Poisson process is a simple, boundedly finite spatial point process with
no fixed atoms having the property that NA1 , NA2 , . . ., NAk

are independent
random variables, whenever A1, A2, . . ., Ak are disjoint bounded sets.

In short, counts of points in disjoint regions are independent random vari-
ables. It is a remarkable fact that the independence property alone determines
the distribution of the counts.

Theorem 4.4. For a Poisson process, NA has a Poisson distribution for every
bounded set A. Conversely, a simple point process with no fixed atoms such that
NA has a Poisson distribution for every bounded set A is a Poisson process.

Write Λ(A) = E(NA). Since the parameter of the Poisson distribution is the
mean, the theorem says NA has the Poisson distribution with parameter Λ(A).
The function Λ(A) is called the intensity measure of the process.

An important special case of the Poisson process occurs when the intensity
measure is proportional to ordinary measure (length in one dimension, area in
two, volume in three, and so forth): if we denote the ordinary measure of a
region A by m(A), then

Λ(A) = λm(A) (4.9)

for some λ > 0. The parameter λ is called the rate parameter of the process. A
Poisson process for which (4.9) holds, the process is said to be a homogeneous
Poisson process. Otherwise it is inhomogeneous.

The space could be the three-dimensional space of our ordinary experience.
For example, the points could be the locations of raisins in a carrot cake. If
the process is homogeneous, that models the situation where regions of equal
volume have an equal number of raisins on average, as would happen if the
batter was stirred well and the raisins didn’t settle to the bottom of the cake
pan before baking. If the process is inhomogeneous, that models the situation
where some regions get more raisins per unit volume than others on average.
Either the batter wasn’t stirred well or the raisins settled or something of the
sort.

There are two important corollaries of the characterization theorem.

Corollary 4.5. The sum of independent Poisson random variables is a Poisson
random variable.

If Xi ∼ Poi(µi) then the Xi could be the counts NAi
in disjoint regions Ai

having measures m(Ai) = µi in a homogeneous Poisson process with unit rate
parameter. The sum is the count in the combined region

X1 + · · · + Xn = NA1∪···∪An

which has a Poisson distribution with mean

m(A1 ∪ · · · ∪ An) = m(A1) + · · ·m(An)
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because the measure of the union of disjoint regions is the sum of the measures.
This is also obvious from linearity of expectation. We must have

E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn).

Corollary 4.6. The conditional distribution of a Poisson process in a region
Ac given the process in A is the same as the unconditional distribution of the
process in Ac.

In other words, finding the point pattern in A tells you nothing whatso-
ever about the pattern in Ac. The pattern in Ac has the same distribution
conditionally or unconditionally.

Proof. By Definition 4.4.1 and Theorem 4.4 NB is independent of NC when
B ⊂ Ac and C ⊂ A. Since this is true for all such C, the random variable NB

is independent of the whole pattern in A, and its conditional distribution given
the pattern in A is the same as its unconditional distribution. Theorem 4.4 says
Poisson distributions of the NB for all subsets B of Ac imply that the process
in Ac is a Poisson process.

4.4.3 One-Dimensional Poisson Processes

In this section we consider Poisson processes in one-dimensional space, that
is, on the real line. So a realization of the process is a pattern of points on the
line. For specificity, we will call the dimension along the line “time” because for
many applications it is time. For example, the calls arriving at a telephone ex-
change are often modeled by a Poisson process. So are the arrivals of customers
at a bank teller’s window, or at a toll plaza on an toll road. But you should
remember that there is nothing in the theory specific to time. The theory is the
same for all one-dimensional Poisson processes.

Continuing the time metaphor, the points of the process will always in the
rest of this section be called arrivals. The time from a fixed point to the next
arrival is called the waiting time until the arrival.

The special case of the gamma distribution with shape parameter one is
called the exponential distribution, denoted Exp(λ). Its density is

f(x) = λe−λx, x > 0. (4.10)

Theorem 4.7. The distribution of the waiting time in a homogeneous Poisson
process with rate parameter λ is Exp(λ). The distribution is the same uncon-
ditionally, or conditional on the past history up to and including the time we
start waiting.

Call the waiting time X and the point where we start waiting a. Fix an
x > 0, let A = (a, a + x), and let Y = N(a,a+x) be the number of arrivals in the
interval A. Then Y has a Poisson distribution with mean λm(A) = λx, since
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measure in one dimension is length. Then the c. d. f. of X is given by

F (x) = P (X ≤ x)
= P (there is at least one arrival in (a, a + x))
= P (Y ≥ 1)
= 1 − P (Y = 0)

= 1 − e−λx

Differentiating gives the density (4.10).
The assertion about the conditional and unconditional distributions being

the same is just the fact that the process on (−∞, a] is independent of the
process on (a,+∞). Hence the waiting time distribution is the same whether
or not we condition on the point pattern in (−∞, a].

The length of time between two consecutive arrivals is called the interarrival
time. Theorem 4.7 also gives the distribution of the interarrival times, because
it says the distribution is the same whether or not we condition on there being
an arrival at the time we start waiting. Finally, the theorem says an interarrival
time is independent of any past interarrival times. Since independence is a
symmetric property (X is independent of Y if and only if Y is independent of
X), this means all interarrival times are independent.

This means we can think of a one-dimensional Poisson process two different
ways.

• The number of arrivals in disjoint intervals are independent Poisson ran-
dom variables. The number of arrivals in an interval of length t is Poi(λt).

• Starting at an arbitrary point (say time zero), the waiting time to the
first arrival is Exp(λ). Then all the successive interarrival times are also
Exp(λ). And all the interarrival times are independent of each other and
the waiting time to the first arrival.

Thus if X1, X2, . . . are i. i. d. Exp(λ) random variables, the times T1, T2,
. . . defined by

Tn =
n∑

i=1

Xi (4.11)

form a Poisson process on (0,∞).

Note that by the addition rule for the gamma distribution, the time of the
nth arrival is the sum of n i. i. d. Gam(1, λ) random variables and hence has a
Gam(n, λ) distribution.

These two ways of thinking give us a c. d. f. for the Gam(n, λ) distribution
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of Tn.

F (x) = P (Tn ≤ x)
= P (there are at least n arrivals in (0, x))
= 1 − P (there are no more than n − 1 arrivals in (0, x))

= 1 −
n−1∑
k=0

(λx)k

k!
e−λx

Unfortunately, this trick does not work for gamma distributions with noninteger
shape parameters. There is no closed form expression for the c. d. f. of a general
gamma distribution.

In problems, it is best to use the way of thinking that makes the problem
easiest.

Example 4.4.1.
Assume the service times for a bank teller form a homogeneous Poisson process
with rate parameter λ. I arrive at the window, and am fifth in line with four
people in front of me. What is the expected time until I leave?

There are four interarrival times and the waiting time until the first person
in line is finished. All five times are i. i. d. Exp(λ) by the Poisson process
assumption. The times have mean 1/λ. The expectation of the sum is the sum
of the expectations 5/λ.

Alternatively, the distribution of the time I leave is the sum of the five
interarrival and waiting times, which is Gam(5, λ), which has mean 5/λ.

Example 4.4.2.
With the same assumptions in the preceding example, suppose λ = 10 per hour.
What is the probability that I get out in less than a half hour.

This is the probability that there are at least five points of the Poisson
process in the interval (0, 0.5), measuring time in hours (the time I leave is the
fifth point in the process). The number of points Y has a Poi(λt) distribution
with t = 0.5, hence λt = 5. From Table II in the back of Lindgren P (Y ≥ 5) =
1 − P (Y ≤ 4) = 1 − .44 = .56.

Problems

4-1. Prove Corollary 4.5 for the case of two Poisson random variables directly
using the convolution formula Theorem 1.7 from Chapter 1 of these notes. Note
that the two Poisson variables are allowed to have different means.
Hint: Use the binomial theorem (Problem 1-14 on p. 7 of Lindgren).

4-2. Suppose X1, X2, . . . are i. i. d. random variables with mean µ and variance
σ2, and N is a Geo(p) random variable independent of the Xi. What is the mean
and variance of

Y = X1 + X2 + · · · + XN

(note N is random).
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4-3. A brand of raisin bran averages 84.2 raisins per box. The boxes are filled
from large bins of well mixed raisin bran. What is the standard deviation of the
number of raisins per box.

4-4. Let X be the number of winners of a lottery. If we assume that players
pick their lottery numbers at random, then their choices are i. i. d. random
variables and X is binomially distributed. Since the mean number of winners
is small, the Poisson approximation is very good. Hence we may assume that
X ∼ Poi(µ) where µ is a constant that depends on the rules of the lottery and
the number of tickets sold.

Because of our independence assumption, what other players do is indepen-
dent of what you do. Hence the conditional distribution of the number of other
winners given that you win is also Poi(µ). If you are lucky enough to win, you
must split the prize with X other winners. You win A/(X + 1) where A is the
total prize money. Thus

E

(
A

X + 1

)
is your expected winnings given that you win. Calculate this expectation.

4-5. Suppose X and Y are independent, but not necessarily identically dis-
tributed Poisson random variables, and define N = X + Y .

(a) Show that
X | N ∼ Bin(N, p),

where p is some function of the parameters of the distributions of X, Y .
Specify the function.

(b) Assume
Z | N ∼ Bin(N, q),

where 0 < q < 1. Show that

Z ∼ Poi(µ),

where µ is some function of q and the parameters of the distribution of X,
Y . Specify the function.

4-6. Suppose X ∼ Gam(α, λ). Let Y = 1/X.

(a) For which values of α and λ does E(Y ) exist?

(b) What is E(Y ) when it exists?

4-7. Suppose that X, Y , and Z are independent N (2, 2) random variables.
What is P (X > Y + Z)? Hint: What is the distribution of X − Y − Z?
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Chapter 5

Multivariate Distribution
Theory

5.1 Random Vectors

5.1.1 Vectors, Scalars, and Matrices

It is common in linear algebra to refer to single numbers as scalars (in
contrast to vectors and matrices). So in this chapter a real variable x or a
real-valued random variable X will also be referred to as a scalar variable or a
scalar random variable, respectively.

A matrix (plural matrices) is a rectangular array of scalars, called called
the elements or components of the matrix, considered as a single mathematical
object. We use the convention that matrices are denoted by boldface capital
letters. The elements of a matrix are indicated by double subscripts, for example
the elements of a matrix A may be denoted aij . Conventionally, the array is
displayed as follows

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
. . .

...
am1 am2 am3 · · · amn

 (5.1)

The first index indicates the element’s row, and the second index indicates the
column. The matrix (5.1) has row dimension m and column dimension n, which
is indicated by saying it is an m × n matrix.

The transpose of a matrix A with elements aij is the matrix A′ with elements
aji, that is, A′ is obtained from A by making the rows columns and vice versa.

There are several ways to think of vectors. In the preceeding chapters of
these notes we wrote vectors as tuples x = (x1, . . . , xn). Now we will also

127
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consider vectors as special cases of matrices. A column vector is an n×1 matrix

x =


x1

x2

...
xn

 (5.2)

and a row vector is a 1 × n matrix

x′ =
(
x1 x2 · · · xn

)
(5.3)

Note that (5.2) is indeed the transpose of (5.3) as the notation x and x′ indicates.
Note that even when we consider vectors as special matrices we still use boldface
lower case letters for nonrandom vectors, as we always have, rather than the
boldface capital letters we use for matrices.

5.1.2 Random Vectors

A random vector is just a vector whose components are random scalars.
We have always denoted random vectors using boldface capital letters X =
(X1, . . . , Xn), which conflicts with the new convention that matrices are boldface
capital letters. So when you see a boldface capital letter, you must decide
whether this indicates a random vector or a constant (nonrandom) matrix. One
hint is that we usually use letters like X, Y and Z for random vectors, and we
will usually use letters earlier in the alphabet for matrices. If you are not sure
what is meant by this notation (or any notation), look at the context, it should
be defined nearby.

The expectation or mean of a random vector X = (X1, . . . , Xn) is defined
componentwise. The mean of X is the vector

µX = E(X) =
(
E(X1), . . . , E(Xn)

)
having components that are the expectations of the corresponding components
of X.

5.1.3 Random Matrices

Similarly, we define random matrix to be a matrix whose components are
random scalars. Let X denote a random matrix with elements Xij . We can see
that the boldface and capital letter conventions have now pooped out. There is
no “double bold” or “double capital” type face to indicate the difference between
a random vector and a random matrix.1 The reader will just have to remember
in this section X is a matrix not a vector.

1This is one reason to avoid the “vectors are bold” and “random objects are capitals”
conventions. They violate “mathematics is invariant under changes of notation.” The type
face conventions work in simple situations, but in complicated situations they are part of
the problem rather than part of the solution. That’s why modern advanced mathematics
doesn’t use the “vectors are bold” convention. It’s nineteenth century notation still surviving
in statistics.
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Again like random vectors, the expectation or mean of a random matrix is
a nonrandom matrix. If X is a random m × n matrix with elements Xij , then
the mean of X is the matrix M with elements

µij = E(Xij), (5.4)

and we also write E(X) = M to indicate all of the mn equations (5.4) with one
matrix equation.

5.1.4 Variance Matrices

In the preceding two sections we defined random vectors and random matri-
ces and their expectations. The next topic is variances. One might think that
the variance of a random vector should be similar to the mean, a vector having
components that are the variances of the corresponding components of X, but
it turns out that this notion is not useful. The reason is that variances and
covariances are inextricably entangled. We see this in the fact that the variance
of a sum involves both variances and covariances (Corollary 2.19 of these notes
and the following comments). Thus the following definition.

The variance matrix of an n-dimensional random vector X = (X1, . . . , Xn)
is the nonrandom n × n matrix M having elements

mij = cov(Xi, Xj). (5.5)

As with variances of random scalars, we also use the notation var(X) for the
variance matrix. Note that the diagonal elements of M are variances because
the covariance of a random scalar with itself is the variance, that is,

mii = cov(Xi, Xi) = var(Xi).

This concept is well established, but the name is not. Lindgren calls M
the covariance matrix of X, presumably because its elements are covariances.
Other authors call it the variance-covariance matrix, because some of its ele-
ments are variances too. Some authors, to avoid the confusion about variance,
covariance, or variance-covariance, call it the dispersion matrix. In my humble
opinion, “variance matrix” is the right name because it is the generalization of
the variance of a scalar random variable. But you’re entitled to call it what you
like. There is no standard terminology.

Example 5.1.1.
What are the mean vector and variance matrix of the random vector (X,X2),
where X is some random scalar? Let

αk = E(Xk)

denote the ordinary moments of X. Then, of course, the mean and variance of
X are µ = α1 and

σ2 = E(X2) − E(X)2 = α2 − α2
1,
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but it will be simpler if we stick to the notation using the α’s. The mean vector
is

µ =
(

E(X)
E(X2)

)
=

(
α1

α2

)
(5.6)

The moment matrix is the 2 × 2 matrix M with elements

m11 = var(X)

= α2 − α2
1

m22 = var(X2)

= E(X4) − E(X2)2

= α4 − α2
2

m12 = cov(X,X2)

= E(X3) − E(X)E(X2)
= α3 − α1α2

Putting this all together we get

M =
(

α2 − α2
1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)
(5.7)

5.1.5 What is the Variance of a Random Matrix?

By analogy with random vectors, the variance of X should be a mathematical
object with four indexes, the elements being

vijkl = cov(Xij , Xkl).

Even naming such an object takes outside the realm of linear algebra. One
terminology for objects with more than two indices is tensors. So we can say
that the variance of a random matrix is a nonrandom tensor. But this doesn’t
get us anywhere because we don’t know anything about operations that apply
to tensors.

Thus we see that random matrices present no problem so long as we only are
interested in their means, but their variances are problematical. Fortunately, we
can avoid random matrices except when we are interested only in their means,
not their variances.2

2A solution to the problem of defining the variance of a random matrix that avoids tensors
is to change notation and consider the random matrix a random vector. For example, a
random m × n matrix X can be written as a vector

Y = (X11, X12, . . . X1n, X21, X22, . . . , X2n, . . . Xm1, Xm2, . . . Xmn)

So Y1 = X11, Y2 = X12, . . ., Yn+1 = X2n, and so forth. Now there is no problem defining the
variance matrix of Y, but this is unnatural and clumsy notation that will in most problems
make things exceedingly messy.
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5.1.6 Covariance Matrices

The covariance matrix of an m-dimensional random vector X and an n-
dimensional random vector Y is the nonrandom matrix C with elements

cij = cov(Xi, Yj), (5.8)

(where, as usual Xi is an element of X and Yj an element of Y). Note that if X is
an m-dimensional vector and Y is an n-dimensional vector, then C = cov(X,Y)
is an m×n matrix. Swapping the roles of X and Y we see that cov(Y,X) is an
n×m matrix. Thus it is obvious that the property cov(X,Y ) = cov(Y,X) that
holds for covariances of scalar random variables, does not hold for covariances
of random vectors. In fact, if we write

C = cov(X,Y)
D = cov(Y,X),

then the elements of C are given by (5.8) and the elements of D are

dij = cov(Yi, Xj) = cji

Thus the two matrices are transposes of each other: D = C′.
With these definitions, we can easily generalize most of the formulas about

variances and covariances of scalar random variables to vector random variables.
We won’t bother to go through all of them. The most important one is the
formula for the variance of a sum of random vectors.

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi,Xj) (5.9)

which is the same as Corollary 2.19, except that it applies to vector random
variables in place of scalar ones. The special case in which X1, . . ., Xn are
uncorrelated random vectors, meaning cov(Xi,Xj) = 0 when i 6= j, gives

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi) (5.10)

that is, the variance of the sum is the sum of the variances, which is the same
as Corollary 2.21, except that it applies to vector random variables in place of
scalar ones.

As with random scalars, independence implies lack of correlation, because
C = cov(X,Y) has elements cij = cov(Xi, Yj) which are all zero by this property
for random scalars (Theorem 2.47). Hence (5.10) also holds when X1, . . ., Xn

are independent random vectors. This is by far the most important application
of (5.10). As in the scalar case, you should remember

Independent implies uncorrelated, but uncorrelated does not imply
independent.
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Thus independence is a sufficient but not necessary condition for (5.10) to hold.
It is enough that the variables be uncorrelated.

In statistics, our main interest is not in sums per se but rather in averages

Xn =
1
n

n∑
i=1

Xi. (5.11a)

The analogous formula for random vectors is just the same formula with boldface

Xn =
1
n

n∑
i=1

Xi. (5.11b)

Warning: the subscripts on the right hand side in (5.11b) do not indicate
components of a vector, rather X1, X2, . . . is simply a sequence of random
vectors just as in (5.11a) X1, X2, . . . is a sequence of random scalars. The
formulas for the mean and variance of a sum also give us the mean and variance
of an average.

Theorem 5.1. If X1, X2, . . . are random vectors having the same mean vector
µ, then

E(Xn) = µ. (5.12a)

If X1, X2, . . . also have the same variance matrix M and are uncorrelated, then

var(Xn) =
1
n
M. (5.12b)

This is exactly analogous to the scalar case

E(Xn) = µ (5.13a)

and

var(Xn) =
σ2

n
(5.13b)

Theorem 5.2 (Alternate Variance and Covariance Formulas). If X and
Y are random vectors with means µX and µY, then

cov(X,Y) = E{(X − µX)(Y − µY)′} (5.14a)
var(X) = E{(X − µX)(Y − µY)′} (5.14b)

This hardly deserves the name “theorem” since it is obvious once one inter-
prets the matrix notation. If X is m-dimensional and Y is n-dimensional, then
when we consider the vectors as matrices (“column vectors”) we see that the
dimensions are

(X − µX)
m × 1

(Y − µY)′

1 × n

so the “sum” implicit in the matrix multiplication has only one term. Thus
(5.14a) is the m × n matrix with i, j element

E{(Xi − µXi
)(Yj − µYj

)} = cov(Xi, Yj)

and hence is the covariance matrix cov(X,Y). Then we see that (5.14b) is just
the special case where Y = X.
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5.1.7 Linear Transformations

In this section, we derive the analogs of the formulas

E(a + bX) = a + bE(X) (5.15a)

var(a + bX) = b2 var(X) (5.15b)

(Corollary 2.2 and Theorem 2.13 in Chapter 2 of these notes) that describe
the moments of a linear transformation of a random variable. A general linear
transformation has the form

y = a + Bx

where y and a are m-dimensional vectors, B is an m × n matrix, and x is an
n-dimensional vector. The dimensions of each object, considering the vectors
as column vectors (that is, as matrices with just a single column), are

y
m × 1

= a
m × 1

+ B
m × n

a
n × 1

(5.16)

Note that the column dimension of B and the row dimension of x must agree,
as in any matrix multiplication. Also note that the dimensions of x and y are
not the same. We are mapping n-dimensional vectors to m-dimensional vectors.

Theorem 5.3. If Y = a + BX, where a is a constant vector, B is a constant
matrix, and X is a random vector, then

E(Y) = a + BE(X) (5.17a)
var(Y) = B var(X)B′ (5.17b)

If we write µX and MX for the mean and variance of X and similarly for
Y, then (5.17a) and (5.17b) become

µY = a + BµX (5.18a)
MY = BMXB′ (5.18b)

If we were to add dimension information to (5.18a), it would look much like
(5.16). If we add such information to (5.18b) it becomes

MY

m × m
= B

m × n
MX

n × n
B′

n × m

Note again that, as in any matrix multiplication, the column dimension of the
left hand factor agrees with row dimension of the right hand factor. In partic-
ular, the column dimension of B is the row dimension of MX, and the column
dimension of MX is the row dimension of B′. Indeed, this is the only way these
matrices can be multiplied together to get a result of the appropriate dimension.
So merely getting the dimensions right tells you what the formula has to be.
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Proof of Theorem 5.3. Since our only definition of the mean of a random vector
involves components, we will have to prove this componentwise. The component
equations of Y = a + BX are

Yi = ai +
n∑

j=1

bijXj

(where, as usual, the ai are the components of a, the bij are the components of
B, and so forth). Applying linearity of expectation for scalars gives

E(Yi) = ai +
n∑

j=1

bijE(Xj),

which are the component equations of (5.18a).
Now we can be a bit slicker about the second half of the proof using the

alternate variance formula (5.14b).

var(a + BX) = E{(a + BX − µa+BX)(a + BX − µa+BX)′}
= E{(BX − BµX)(BX − BµX)′}
= E{B(X − µX)(X − µX)′B′}
= BE{(X − µX)(X − µX)′}B′

Going from the first line to the second is just (5.18a). Going from the second
line to the third uses the fact that the transpose of a matrix product is the
product of the transposes in reverse order, that is, (BC)′ = C′B. And going
from the third line to the forth uses (5.18a) again to pull the constant matrices
outside the expectation.

Of particular interest is the special case in which the linear transformation
is scalar-valued, that is, m = 1 in (5.16). Then the matrix B must be 1 × n,
hence a row vector. We usually write row vectors as transposes, say c′, because
convention requires unadorned vectors like c to be column vectors. Thus we
write B = c′ and obtain

Corollary 5.4. If Y = a + c′X, where a is a constant scalar, c is a constant
vector, and X is a random vector, then

E(Y ) = a + c′E(X) (5.19a)
var(Y ) = c′ var(X)c (5.19b)

Or, if you prefer the other notation

µY = a + c′µX (5.20a)

σ2
Y = c′MXc (5.20b)

Note that, since m = 1, both Y and a are scalars (1 × 1 matrices), so we have
written them in normal (not boldface) type and used the usual notation σ2

Y for
the variance of a scalar. Also note that because B = c′ the transposes have
switched sides in going from (5.18b) to (5.20b).
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Example 5.1.2.
(This continues Example 5.1.1.) What are the mean and variance of X + X2,
where X is some random scalar? We don’t have to use an multivariate theory to
answer this question. We could just use the formulas for the mean and variance
of a sum of random variables from Chapter 2 of these notes. But here we want
to use the multivariate theory to illustrate how it works.

Write Y = X + X2 and let

Z =
(

X
X2

)
be the random vector whose mean vector and variance matrix were found in
Example 5.1.1. Then Y = u′Z, where

u =
(

1
1

)
Thus by (5.20a) and (5.6)

E(Y ) = u′µZ =
(
1 1

) (
α1

α2

)
= α1 + α2

And by (5.20b) and (5.7)

var(Y ) = u′MZu

=
(
1 1

) (
α2 − α2

1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)(
1
1

)
= α2 − α2

1 + 2(α3 − α1α2) + α4 − α2
2

Alternate Solution We could also do this problem the “old fashioned way”
(without matrices)

var(X + X2) = var(X) + 2 cov(X,X2) + var(X2)

= (α2 − α2
1) + 2(α3 − α1α2) + (α4 − α2

2)

Of course, both ways must give the same answer. We’re just using matrices here
to illustrate the use of matrices.

5.1.8 Characterization of Variance Matrices

A matrix A is said to be positive semi-definite if

c′Ac ≥ 0, for every vector c (5.21)

and positive definite if

c′Ac > 0, for every nonzero vector c.
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Corollary 5.5. The variance matrix of any random vector is symmetric and
positive semi-definite.

Proof. Symmetry follows from the symmetry property of covariances of random
scalars: cov(Xi, Xj) = cov(Xj , Xi).

The random scalar Y in Corollary 5.4 must have nonnegative variance. Thus
(5.19b) implies c′ var(X)c ≥ 0. Since c was an arbitrary vector, this proves
var(X) is positive semi-definite.

The corollary says that a necessary condition for a matrix M to be the
variance matrix of some random vector X is that M be symmetric and positive
semi-definite. This raises the obvious question: is this a sufficient condition,
that is, for any symmetric and positive semi-definite matrix M does there exist
a random vector X such that M = var(X)? We can’t address this question now,
because we don’t have enough examples of random vectors for which we know
the distributions. It will turn out that the answer to the sufficiency question is
“yes.” When we come to the multivariate normal distribution (Section 5.2) we
will see that for any symmetric and positive semi-definite matrix M there is a
multivariate normal random vector X such that M = var(X).

A hyperplane in n-dimensional space Rn is a set of the form

H = {x ∈ Rn : c′x = a } (5.22)

for some nonzero vector c and some scalar a. We say a random vector X is
concentrated on the hyperplane H if P (X ∈ H) = 1. Another way of describing
the same phenomenon is to say that that H is a support of X.

Corollary 5.6. The variance matrix of a random vector X is positive definite
if and only if X is not concentrated on any hyperplane.

Proof. We will prove the equivalent statement that the variance matrix is not
positive definite if and only if is is concentrated on some hyperplane.

First, suppose that M = var(X) is not positive definite. Then there is some
nonzero vector c such that c′Mc = 0. Consider the random scalar Y = c′X.
By Corollary 5.4 var(Y ) = c′Mc = 0. Now by Corollary 2.34 of these notes
Y = µY with probability one. Since E(Y ) = c′µX by (5.19a), this says that X
is concentrated on the hyperplane (5.22) where a = c′µX.

Conversely, suppose that X is concentrated on the hyperplane (5.22). Then
the random scalar Y = c′x is concentrated at the point a, and hence has variance
zero, which is c′Mc by Corollary 5.4. Thus M is not positive definite.

5.1.9 Degenerate Random Vectors

Random vectors are sometimes called degenerate by those who believe in
the kindergarten principle of calling things we don’t like bad names. And why
wouldn’t we like a random vector concentrated on a hyperplane? Because it
doesn’t have a density. A hyperplane is a set of measure zero, hence any inte-
gral over the hyperplane is zero and cannot be used to define probabilities and
expectations.
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Example 5.1.3 (A Degenerate Random Vector).
Suppose U , V , and W are independent and identically distributed random vari-
ables having a distribution not concentrated at one point, so σ2 = var(U) =
var(V ) = var(W ) is strictly positive. Consider the random vector

X =

U − V
V − W
W − U

 (5.23)

Because of the assumed independence of U , V , and W , the diagonal elements
of var(X) are all equal to

var(U − V ) = var(U) + var(V ) = 2σ2

and the off-diagonal elements are all equal to

cov(U − V, V − W ) = cov(U, V ) − cov(U,W ) − var(V ) + cov(V,W ) = −σ2

Thus

var(X) = σ2

 2 −1 −1
−1 2 −1
−1 −1 2


Question Is X degenerate or non-degenerate? If degenerate, what hyperplane
or hyperplanes is it concentrated on?

Answer We give two different ways of finding this out. The first uses some
mathematical cleverness, the second brute force and ignorance (also called plug
and chug).

The first way starts with the observation that each of the variables U , V ,
and W occurs twice in the components of X, once with each sign, so the sum
of the components of X is zero, that is X1 + X2 + X3 = 0 with probability one.
But if we introduce the vector

u =

1
1
1


we see that X1 + X2 + X3 = u′X. Hence X is concentrated on the hyperplane
defined by

H = {x ∈ R3 : u′x = 0 }
or if you prefer

H = { (x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0 }.
Thus we see that X is indeed degenerate (concentrated on H). Is is concentrated
on any other hyperplanes? The answer is no, but our cleverness has run out.
It’s hard so show that there are no more except by the brute force approach.
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The brute force approach is to find the eigenvalues and eigenvectors of the
variance matrix. The random vector in question is concentrated on hyperplanes
defined by eigenvectors corresponding to zero eigenvalues (Lemma 5.7 below).
Eigenvalues and eigenvectors can be found by many numerical math packages.
Here we will just demonstrate doing it in R.

> M <- matrix(c(2, -1, -1, -1, 2, -1, -1, -1, 2), nrow=3)
> M

[,1] [,2] [,3]
[1,] 2 -1 -1
[2,] -1 2 -1
[3,] -1 -1 2
> eigen(M)
$values
[1] 3.000000e+00 3.000000e+00 -8.881784e-16

$vectors
[,1] [,2] [,3]

[1,] 0.8156595 0.0369637 0.5773503
[2,] -0.3758182 -0.7248637 0.5773503
[3,] -0.4398412 0.6879000 0.5773503

Each eigenvector corresponding to a zero eigenvalue is a vector c defining a
hyperplane by (5.22) on which the random vector is concentrated. There is just
one zero eigenvalue. The corresponding eigenvector is

c =

0.5773503
0.5773503
0.5773503


(the eigenvectors are the columns of the $vectors matrix returned by the eigen
function). Since c is a multiple of u in the first answer, they define the same
hyperplane. Since there is only one zero eigenvalue, there is only one hyperplane
supporting the random vector.

Lemma 5.7. A random vector X is concentrated on a hyperplane (5.22) if and
only if the vector c in (5.22) is an eigenvector of var(X) corresponding to a zero
eigenvalue.

Proof. First suppose c is an eigenvector of M = var(X) corresponding to a zero
eigenvalue. This means Mc = 0, which implies c′Mc = 0, which, as in the
proof of Corollary 5.6, implies that X is concentrated on the hyperplane defined
by (5.22).

Conversely, suppose X is concentrated on the hyperplane defined by (5.22),
which, as in the proof of Corollary 5.6, implies c′Mc = 0. Write, using the
spectral decomposition (Theorem E.4 in Appendix E) M = ODO′, where D is
diagonal and O is orthogonal. Then

0 = c′Mc = c′ODO′c = w′Dw
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where we have written w = O′c. Writing out the matrix multiplications with
subscripts

w′Dw =
∑

i

diiw
2
i = 0

which implies, since dii ≥ 0 for all i that

dii = 0 or wi = 0, for all i

and this implies that actually Dw = 0. Hence, plugging back in the definition
of w, that DO′c = 0, and, multiplying on the left by O, that

Mc = ODO′c = 0

which says that c is an eigenvector of M corresponding to a zero eigenvalue,
which is what we were proving.

Degeneracy is not solely a phenomenon of concentration on hyperplanes. We
say a random vector is degenerate if it is concentrated on any set of measure
zero.

Example 5.1.4.
In Example 2.7.2 we considered the random vector Z = (X,Y ), where Y = X2

and X was any nonconstant random variable having a distribution symmetric
about zero. It served there as an example of random variables X and Y that
were uncorrelated but not independent.

Here we merely point out that the random vector Z is degenerate, because
it is clearly concentrated on the parabola

S = { (x, y) ∈ R2 : y = x2 }

which is, being a one-dimensional curve in R2, a set of measure zero.

So how does one handle degenerate random vectors? If they don’t have
densities, and most of the methods we know involve densities, what do we do?
First let me remind you that we do know some useful methods that don’t involve
densities.

• The first part of Chapter 2 of these notes, through Section 2.4 never
mentions densities. The same goes for Sections 3.3 and 3.5 in Chapter 3.

• In order to calculate E(Y) where Y = g(X), you don’t need the density
of Y. You can use

E(Y) =
∫

g(x)fX(x) dx

instead. Thus even if Y is degenerate, but is a known function of some
non-degenerate random vector X, we are still in business.
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When a random vector X is degenerate, it is always possible in theory (not
necessarily in practice) to eliminate one of the variables. For example, if X is
concentrated on the hyperplane H defined by (5.22), then, since c is nonzero,
it has at least one nonzero component, say cj . Then rewriting c′x = a with an
explicit sum we get

n∑
i=1

ciXi = a,

which can be solved for Xj

Xj =
1
cj

a −
n∑

i=1
i6=j

ciXi


Thus we can eliminate Xj and work with the remaining variables. If the random
vector

X′ = (X1, . . . , Xj−1, Xj+1, . . . , Xn)

of the remaining variables is non-degenerate, then it has a density. If X′ is still
degenerate, then there is another variable we can eliminate. Eventually, unless
X is a constant random vector, we get to some subset of variables that have
a non-degenerate joint distribution and hence a density. Since the rest of the
variables are a function of this subset, that indirectly describes all the variables.

Example 5.1.5 (Example 5.1.3 Continued).
In Example 5.1.3 we considered the random vector

X =

X1

X2

X3

 =

U − V
V − W
W − U


where U , V , and W are independent and identically distributed random vari-
ables. Now suppose they are independent standard normal.

In Example 5.1.3 we saw that X was degenerate because X1 + X2 + X3 = 0
with probability one. We can eliminate X3, since

X3 = −(X1 + X2)

and consider the distribution of the vector (X1, X2), which we will see (in Sec-
tion 5.2 below) has a non-degenerate multivariate normal distribution.

5.1.10 Correlation Matrices

If X = (X1, . . . , Xn) is a random vector having no constant components,
that is, var(Xi) > 0 for all i, the correlation matrix of X is the n× n matrix C
with elements

cij =
cov(Xi, Xj)√

var(Xi) var(Xi)
= cor(Xi, Xj)
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If M = var(X) has elements mij , then

cij =
mij√

miimjj

Note that the diagonal elements cii of a correlation matrix are all equal to one,
because the correlation of any random variable with itself is one.

Theorem 5.8. Every correlation matrix is positive semi-definite. The correla-
tion matrix of a random vector X is positive definite if and only the variance
matrix of X is positive definite.

Proof. This follows from the analogous facts about variance matrices.

It is important to understand that the requirement that a variance matrix
(or correlation matrix) be positive semi-definite is a much stronger requirement
than the correlation inequality (correlations must be between −1 and +1). The
two requirements are related: positive semi-definiteness implies the correlation
inequality, but not vice versa. That positive semi-definiteness implies the cor-
relation inequality is left as an exercise (Problem 5-4). That the two conditions
are not equivalent is shown by the following example.

Example 5.1.6 (All Correlations the Same).
Suppose X = (X1, . . . , Xn) is a random vector and all the components have
the same correlation, as would be the case if the components are exchangeable
random variables, that is, cor(Xi, Xj) = ρ for all i and j with i 6= j. Then
the correlation matrix of X has one for all diagonal elements and ρ for all off-
diagonal elements. In Problem 2-22 it is shown that positive definiteness of the
correlation matrix requires

− 1
n − 1

≤ ρ.

This is an additional inequality not implied by the correlation inequality.

The example says there is a limit to how negatively correlated a sequence
of exchangeable random variables can be. But even more important than this
specific discovery, is the general message that there is more to know about
correlations than that they are always between −1 and +1. The requirement
that a correlation matrix (or a variance matrix) be positive semi-definite is much
stronger. It implies a lot of other inequalities. In fact it implies an infinite family
of inequalities: M is positive semi-definite only if c′Mc ≥ 0 for every vector
c. That’s a different inequality for every vector c and there are infinitely many
such vectors.

5.2 The Multivariate Normal Distribution

The standard multivariate normal distribution is the distribution of the ran-
dom vector Z = (Z1, . . . , Zn) having independent and identically N (0, 1) dis-
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tributed components. Its density is, of course,

fZ(z) =
n∏

i=1

1√
2π

e−z2
i /2 =

1
(2π)n/2

e−z′z/2, z ∈ Rn

Note for future reference that

E(Z) = 0
var(Z) = I

where I denotes an identity matrix. These are obvious from the definition of Z.
Its components are independent and standard normal, hence have mean zero,
variance one, and covariances zero. Thus the variance matrix has ones on the
diagonal and zeroes off the diagonal, which makes it an identity matrix.

As in the univariate case, we call a linear transformation of a standard normal
random vector a (general) normal random vector. If we define X = a + BZ,
then by Theorem 5.3

E(X) = a + BE(Z)
= a

var(X) = B var(Z)B′

= BB′

We say that X has the multivariate normal distribution with mean (vector) a
and variance (matrix) M = BB′, and abbreviate it as Nn(a,M) if we want
to emphasize the dimension n of the random vector, or just as N (a,M) if we
don’t want to explicitly note the dimension. No confusion should arise between
the univariate and multivariate case, because the parameters are scalars in the
univariate case and a vector and a matrix in the multivariate case and are clearly
distinguishable by capitalization and type face.

Lemma 5.9. If M is a positive semi-definite matrix, then there exists a normal
random vector X such that E(X) = µ and var(X) = M.

Proof. In Corollary E.7 in Appendix E the symmetric square root M1/2 of M is
defined. Now define X = µ+M1/2Z, where Z is multivariate standard normal.
Then by Theorem 5.3

E(X) = µ + M1/2E(Z) = µ

and

var(X) = M1/2 var(Z)M1/2 = M1/2IM1/2 = M1/2M1/2 = M
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5.2.1 The Density of a Non-Degenerate Normal Random
Vector

How about the density of the multivariate normal distribution? First we
have to say that it may not have a density. If the variance parameter M is not
positive definite, then the random vector will be concentrated on a hyperplane
(will be degenerate) by Theorem 5.6, in which case it won’t have a density.
Otherwise, it will.

Another approach to the same issue is to consider that X will have support
on the whole of Rn only if the transformation

g(z) = a + Bz

is invertible, in which case its inverse is

h(x) = B−1(x − a)

and has derivative matrix
∇h(x) = B−1

Thus we find the density of X by the multivariate change of variable theorem
(Corollary 1.6 of Chapter 1 of these notes)

fX(x) = fZ[h(x)] · ∣∣det
(∇h(x)

)∣∣ .

= fZ

(
B−1(x − a)

) · ∣∣det
(
B−1

)∣∣ .

=

∣∣det
(
B−1

)∣∣
(2π)n/2

exp
(− 1

2 [B−1(x − a)]′B−1(x − a)
)

=

∣∣det
(
B−1

)∣∣
(2π)n/2

exp
(− 1

2 (x − a)′(B−1)′B−1(x − a)
)

Now we need several facts about matrices and determinants to clean this up.
First, (B−1)′B−1 = M−1, where, as above, M = var(X) because of two facts
about inverses, transposes, and products.

• The inverse of a transpose is the transpose of the inverse.

Hence (B−1)′ = (B′)−1

• The inverse of a product is the product of the inverses in reverse order,
that is, (CD)−1 = D−1C−1 for any invertible matrices C and D.

Hence (B′)−1B−1 = (BB′)−1 = M−1.

Second, |det
(
B−1

)| = det(M)−1/2 because of two facts about determinants,
inverses, and products.

• The determinant of an inverse is the multiplicative inverse (reciprocal) of
the determinant.

Hence det
(
B−1

)
= det(B)−1.
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• The determinant of a matrix and its transpose are the same.

Hence det(B) = det(B′).

• The determinant of a product is the product of the determinants, that is,
det(CD) = det(C) det(D) for any matrices C and D.

Hence det(M) = det(BB′) = det(B)2.

Putting this all together, we get

fX(x) =
1

(2π)n/2 det(M)1/2
exp

(− 1
2 (x − a)′M−1(x − a)

)
, x ∈ Rn (5.24)

Note that the formula does not involve B. The distribution does indeed only
depend on the parameters a and M as the notation Nn(a,M) implies.

Recall from Lemma 5.9 that there exists a N (a,M) for every vector a and
every symmetric positive semi-definite matrix M. If M is not positive definite,
then the distribution is degenerate and has no density. Otherwise, it has the
density (5.24).

While we are on the subject, we want to point out that every density that
looks like even vaguely like (5.24) is multivariate normal. Of course, we will
have to be a bit more precise than “even vaguely like” to get a theorem. A
general quadratic form is a function q : Rn → R defined by

q(x) = 1
2x

′Ax + b′x + c (5.25)

where A is an n×n matrix, b is an n vector, and c is a scalar. There is no loss
of generality in assuming A is symmetric, because

1
2x

′Ax = 1
2x

′A′x = x′(A + A′)x,

the first equality following from the rule for the transpose of a product, and the
second equality coming from averaging the two sides of the first equality. The
matrix in the middle of the expression on the right hand side is symmetric. If
we replaced A in the definition of q by the symmetric matrix 1

2 (A + A′), we
would still be defining the same function. Thus we assume from here on that
the matrix in the definition of any quadratic form is symmetric.

Theorem 5.10. If q is a quadratic form defined by (5.25) and

f(x) = e−q(x), x ∈ Rn

is the probability density of a random variable X, then

(a) A is positive definite,

(b) X has a non-degenerate multivariate normal distribution,

(c) var(X) = A−1, and

(d) E(X) = −A−1b.



5.2. THE MULTIVARIATE NORMAL DISTRIBUTION 145

Proof. The proof that A is positive definite has to do with the existence of the
integral

∫
f(x) dx = 1. We claim that unless A is positive definite the integral

does not exist and cannot define a probability density.
First note that, since the density is continuous, it is bounded on bounded

sets. We only need to worry about the behavior of the integrand near infinity.
Second, since

f(x)
e−x′Ax/2

→ 1, as x → ∞,

we may in determining when the integral exists consider only the quadratic
part in the definition of q. Let A = ODO′ be the spectral decomposition
(Theorem E.4 in Appendix E) of A, and consider the change of variables y =
O′x, which has inverse transformation x = Oy and Jacobian one. Using this
change of variables we see∫

e−x′Ax/2 dx =
∫

e−y′Dy/2 dy

=
∫∫

· · ·
∫

exp

(
−1

2

n∑
i=1

diiy
2
i

)
dy1 dy2 · · · dyn

=
n∏

i=1

(∫ ∞

−∞
e−diiy

2
i /2 dyi

)
It is obvious that all the integrals in the last line exist if and only if each dii

is strictly positive, which happens if and only if A is positive definite. That
proves (a).

Now we just “complete the square.” We want to put q(x) in the same form
as the quadratic form

1
2 (x − µ)′M−1(x − µ) (5.26)

in the exponent of the usual expression for the normal distribution. Expand
(5.26)

1
2 (x − µ)′M−1(x − µ) = 1

2x
′M−1x − 1

2x
′M−1µ − 1

2µ′M−1x + 1
2µ′M−1µ

= 1
2x

′M−1x − µ′M−1x + 1
2µ′M−1µ

(the second equality holding because of the rule for the transpose of a product).
Now the only way q(x) can match up with this is if the constants in the quadratic
and linear terms both match, that is,

A = M−1

and
b′ = −µ′M−1,

and these in turn imply

µ = −A−1b (5.27)

M = A−1 (5.28)
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which in turn are (c) and (d) if (b) is true. So all that remains is to prove (b).
We have now shown that the quadratic and linear terms of q(x) and (5.26)

match when we define µ and M by (5.27) and (5.28). Hence

q(x) = 1
2 (x − µ)′M−1(x − µ) + c − 1

2µ′M−1µ

and
f(x) = exp

(− 1
2 (x − µ)′M−1(x − µ)

)
exp

(
c − 1

2µ′M−1µ
)

Since the first term on the right hand side is an unnormalized density of the
N (µ,M) distribution, the second term must be the reciprocal of the normalizing
constant so that f(x) integrates to one. That proves (b), and we are done.

I call this the “e to a quadratic” theorem. If the density is the exponential
of a quadratic form, then the distribution must be non-degenerate multivariate
normal, and the mean and variance can be read off the density.

5.2.2 Marginals

Lemma 5.11. Every linear transformation of a multivariate normal random
vector is (multivariate or univariate) normal.

This obvious because a linear transformation of a linear transformation is
linear. If X is multivariate normal, then, by definition, it has the form X =
a+BZ, where Z is standard normal, a is a constant vector, and B is a constant
matrix. So if Y = c + DX, where c is a constant vector and D is a constant
matrix, then

Y = c + DX

= c + D(a + BZ)
= (c + Da) + (DB)Z,

which is clearly a linear transformation of Z, hence normal.

Corollary 5.12. Every marginal distribution of a multivariate normal distri-
bution is (multivariate or univariate) normal.

This is an obvious consequence of the lemma, because the operation of find-
ing a marginal defines a linear transformation, simply because of the definitions
of vector addition and scalar multiplication, that is, because the i-th component
of aX + bY is aXi + bYi.

5.2.3 Partitioned Matrices

This section has no probability theory, just an odd bit of matrix algebra.
The notation

B =
(
B11 B12

B21 B22

)
(5.29)
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indicates a partitioned matrix. Here each of the Bij is itself a matrix. B is just
the matrix having the elements of B11 in its upper left corner, with the elements
of B12 to their right, and so forth. Of course the dimensions of the Bij must fit
together the right way.

One thing about partitioned matrices that makes them very useful is that
matrix multiplication looks “just like” matrix multiplication of non-partitioned
matrices. You just treat the matrices like scalar elements of an ordinary array(

B11 B12

B21 B22

)(
C11 C12

C21 C22

)
=

(
B11C11 + B12C21 B11C12 + B12C22

B21C11 + B22C21 B21C12 + B22C22

)
If one of the matrixes is a partitioned column vector, it looks like the mul-

tiplication of a vector by a matrix(
B11 B12

B21 B22

) (
x1

x2

)
=

(
B11x1 + B12x2

B21x1 + B22x2

)
and similarly for(

x1

x2

)′ (B11 B12

B21 B22

) (
x1

x2

)
=

(
x′

1 x′
2

) (
B11 B12

B21 B22

) (
x1

x2

)
=

(
x′

1 x′
2

) (
B11x1 + B12x2

B21x1 + B22x2

)
= x′

1B11x1 + x′
1B12x2 + x′

2B21x1 + x′
2B22x2

Of course, in all of these, the dimensions have be such that the matrix multi-
plications make sense.

If X is a partitioned random vector

X =
(
X1

X2

)
, (5.30a)

then its mean mean vector is

µ =
(

µ1

µ2

)
, (5.30b)

where
µi = E(Xi),

and its variance matrix is

M =
(
M11 M12

M21 M22

)
, (5.30c)

where
Mij = cov(Xi,Xj).

Again, every thing looks very analogous to the situation with scalar rather than
vector or matrix components.
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A partitioned matrix is called block diagonal if the “off-diagonal” matrices
are all zero. The partitioned matrix (5.29) is block diagonal if B12 = 0 and
B21 = 0. The partitioned matrix (5.30c) is block diagonal if X1 and X2 are
uncorrelated, that is, cov(X1,X2) = 0.

A block diagonal matrix with square blocks on the diagonal, is easy to invert,
just invert each block. For example, if (5.30c) is block diagonal, then

M−1 =
(
M11 0
0 M22

)−1

=
(
M−1

11 0
0 M−1

22

)
(5.31)

5.2.4 Conditionals and Independence

In this section we consider a normal random vector X partitioned as in
(5.30a) with variance matrix M, which must be partitioned as in (5.30c). We
will need a notation for the inverse variance matrix: we adopt W = M−1. Of
course, it can be partitioned in the same way

W =
(
W11 W12

W21 W22

)
(5.32)

Note from (5.31) that if M is block diagonal and invertible, then so is W and
Wii = M−1

ii . When M is not block diagonal, then neither is W and the relation
between the two is complicated.

Theorem 5.13. Random vectors that are jointly multivariate normal and un-
correlated are independent.

In notation, what the theorem says is that if X is multivariate normal and
partitioned as in (5.30a) with variance matrix (5.30c), then

M12 = cov(X1,X2) = 0

implies that X1 and X2 are actually independent random vectors.
Please note the contrast with the general case.

In general independent implies uncorrelated, but uncorrelated does
not imply independent.

Only when the random variables are jointly multivariate normal
does uncorrelated imply independent.

Proof. Without loss of generality, we may assume the means are zero, because
X1 and X2 are independent if and only if X1−µ1 and X2−µ2 are independent.

We first prove the special case in which X has a non-degenerate distribution.
Then the unnormalized density (ignoring constants) is

exp
(− 1

2x
′Wx

)
= exp

(− 1
2x

′
1W11x1

)
exp

(− 1
2x

′
2W22x2

)
In general, there is also a x′

1W12x2 term in the exponent, but it vanishes here
because W is block diagonal because of (5.31). Since the density factors, the
random vectors are independent.
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We now prove the general case by expressing some variables in terms of
the others. If X is concentrated on a hyperplane, then we can express one
variable as a linear combination of the remaining n − 1 variables. If these are
still concentrated on a hyperplane, then we can express another variable as a
linear combination of the remaining n− 2 and so forth. We stop when we have
expressed some variables as linear combinations of a set of k variables which
have a non-degenerate multivariate normal distribution. We can now partition
X as

X =


U1

V1

U2

V2


where (U1,U2) has a non-degenerate multivariate normal distribution and

V1 = B11U1 + B12U2

V2 = B21U1 + B22U2

for some matrix B partitioned as in (5.29), and Xi = (Ui,Vi). Note that the
assumption that X1 and X2 are uncorrelated implies that U1 and U2 are also
uncorrelated and hence, by what has already been proved independent (since
they are jointly non-degenerate multivariate normal).

Then, using the additional notation

var(U1) = S11

var(U2) = S22

we calculate that var(X) is
S11 S11B′

11 0 S11B′
21

B11S11 B11S11B′
11 + B12S22B′

12 B12S22 B11S11B′
21 + B12S22B′

22

0 S22B′
12 S22 S22B′

22

B21S11 B21S11B′
11 + B22S22B′

12 B22S22 B21S11B′
21 + B22S22B′

22


Now the assumption of the theorem is that this matrix is block diagonal, with the
blocks now 2 × 2. Since U1 and U2 are nondegenerate, their variance matrices
are invertible, thus the only way we can have B21S11 = 0 and B12S22 = 0 is if
B21 = 0 and B12 = 0. But this implies

Xi =
(

Ui

BiiUi

)
for i = 1, 2, and since these are functions of the independent random vectors
U1 and U2, they are independent.

Every conditional of a normal random vector is normal too, but it is hard for
us to give an explicit expression for the degenerate case. This is not surprising,
because all our methods for finding conditional distributions involve densities
and degenerate normal distributions don’t have densities.

First a lemma.
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Lemma 5.14. Suppose X is partitioned as in (5.30a) and has variance matrix
(5.30c), and suppose that M22 is positive definite. Then

X1 − M12M−1
22 X2 and X2

are uncorrelated.

And, we should note, by Theorem 5.13, if X is multivariate normal, then
X1 − M12M−1

22 X2 is independent of X2.

Proof. Obvious, just calculate the covariance

cov(X1 − M12M−1
22 X2,X2) = cov(X1,X2) − M12M−1

22 cov(X2,X2)

= M12 − M12M−1
22 M22

= 0

Every conditional of a normal random vector is also normal, but it is hard for
us to give an explicit expression for the degenerate case. This is not surprising,
because all our methods for finding conditional densities and degenerate normal
distributions don’t have densities. So here we will be satisfied with describing
the non-degenerate case.

Theorem 5.15. Every condition distribution of a non-degenerate multivariate
normal distribution is non-degenerate (multivariate or univariate) normal.

In particular, if X is partitioned as in (5.30a), has the multivariate normal
distribution with mean vector (5.30b) and variance matrix (5.30c), then

X1 | X2 ∼ N (µ1 + M12M−1
22 [X2 − µ2],M11 − M12M−1

22 M21). (5.33)

Proof. First note that the conditional distribution is multivariate normal by
Lemma 5.10, because the joint density is the exponential of a quadratic, hence
so is the conditional, which is just the joint density considered as a function of
x1 with x2 fixed renormalized.

So all that remains to be done is figuring out the conditional mean and
variance. For the conditional mean, we use Lemma 5.14 and the comment
following it. Because of the independence of X1 − M12M−1

22 X2 and X2,

E(X1 − M12M−1
22 X2 | X2) = E(X1 − M12M−1

22 X2)

but
E(X1 − M12M−1

22 X2 | X2) = E(X1 | X2) − M12M−1
22 X2

by linearity of expectations and functions of the conditioning variable behaving
like constants, and

E(X1 − M12M−1
22 X2) = µ1 − M12M−1

22 µ2.
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Thus
E(X1 | X2) − M12M−1

22 X2 = µ1 − M12M−1
22 µ2,

which establishes the conditional expectation given in (5.33).
To calculate the variance, we first observe that

var(X1 | X2) = W−1
11 (5.34)

where W = M−1 is partitioned as in (5.32), because the quadratic form in the
exponent of the density has quadratic term x1W11x1 and Theorem 5.10 says
that is the inverse variance matrix of the vector in question, which in this case
is x1 given x2. We don’t know what the form of W11 or it’s inverse it, but we
do know it is a constant matrix, which is all we need. The rest of the job can
be done by the vector version of the iterated variance formula (Theorem 3.7)

var(X1) = var{E(X1 | X2)} + E{var(X1 | X2)} (5.35)

(which we haven’t actually proved but is proved in exactly the same way as the
scalar formula). We know

var(X1) = M11

but

var{E(X1 | X2)} + E{var(X1 | X2)}
= var{µ1 + M12M−1

22 (X2 − µ2)} + E{W−1
11 }

= var(M12M−1
22 X2) + W−1

11

= M12M−1
22 var(X2)M−1

22 M′
12 + W−1

11

= M12M−1
22 M22M−1

22 M21 + W−1
11

= M12M−1
22 M21 + W−1

11

Equating the two gives

M11 = M12M−1
22 M21 + W−1

11

which along with (5.34) establishes the conditional variance given in (5.33).

5.3 Bernoulli Random Vectors

To start we generalize the notion of a Bernoulli random variables. One might
think that should be a vector with i. i. d. Bernoulli components, but something
quite different is in order. A (univariate) Bernoulli random variable is really
an indicator function. All zero-or-one valued random variables are indicator
functions: they indicate the set on which they are one. How do we generalize
the notion of an indicator function to the multivariate case? We consider a
vector of indicator functions.

We give three closely related definitions.
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Definition 5.3.1 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are the indicators
of a partition of the sample space, that is,

Xi = IAi

where
Ai ∩ Aj = ∅, i 6= j

and
k⋃

i=1

Ai

is the whole sample space.

Definition 5.3.2 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are zero-or-one-
valued random variables and

X1 + · · · + Xk = 1.

with probability one.

Definition 5.3.3 (Bernoulli Random Vector).
A random vector X = (X1, . . . , Xk) is Bernoulli if the Xi are zero-or-one-
valued random variables and with probability one exactly one of X1, . . ., Xk is
one and the rest are zero.

The equivalence of Definitions 5.3.2 and 5.3.3 is obvious. The only way a
bunch of zeros and ones can add to one is if there is exactly one one.

The equivalence of Definitions 5.3.1 and 5.3.3 is also obvious. If the Ai form
a partition, then exactly one of the

Xi(ω) = IAi
(ω)

is equal to one for any outcome ω, the one for which ω ∈ Ai. There is, of course,
exactly one i such that ω ∈ Ai just by definition of “partition.”

5.3.1 Categorical Random Variables

Bernoulli random vectors are closely related to categorical random variables
taking values in an arbitrary finite set. You may have gotten the impression
up to know that probability theorists have a heavy preference for numerical
random variables. That’s so. Our only “brand name” distribution that is not
necessarily numerical valued is the discrete uniform distribution. In principle,
though a random variable can take values in any set. So although we haven’t
done much with such variables so far, we haven’t ruled them out either. Of
course, if Y is a random variable taking values in the set

S = {strongly agree, agree,neutral,disagree, strongly disagree} (5.36)
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you can’t talk about expectations or moments, E(Y ) is defined only for numeri-
cal (or numerical vector) random variables, not for categorical random variables.

However, if we number the categories

S = {s1, s2, . . . , s5}

with s1 = strongly agree, and so forth, then we can identify the categorical
random variable Y with a Bernoulli random vector X

Xi = I{si}(Y )

that is
Xi = 1 if and only if Y = si.

Thus Bernoulli random variables are an artifice. They are introduced to
inject some numbers into categorical problems. We can’t talk about E(Y ),
but we can talk about E(X). A thorough analysis of the properties of the
distribution of the random vector X will also tell us everything we want to
know about the categorical random variable Y , and it will do so allowing us to
use the tools (moments, etc.) that we already know.

5.3.2 Moments

Each of the Xi is, of course, univariate Bernoulli, write

Xi ∼ Ber(pi)

and collect these parameters into a vector

p = (p1, . . . ,pk)

Then we abbreviate the distribution of X as

X ∼ Berk(p)

if we want to indicate the dimension k or just as X ∼ Ber(p) if the dimension is
clear from the context (the boldface type indicating a vector parameter makes
it clear this is not the univariate Bernoulli).

Since each Xi is univariate Bernoulli,

E(Xi) = pi

var(Xi) = pi(1 − pi)

That tells us
E(X) = p.

To find the variance matrix we need to calculate covariances. For i 6= j,

cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj) = −pipj ,
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because XiXj = 0 with probability one.
Hence var(X) = M has components

mij =

{
pi(1 − pi), i = j

−pipj i 6= j
(5.37)

We can also write this using more matrixy notation by introducing the diagonal
matrix P having diagonal elements pi and noting that the “outer product” pp′

has elements pipj , hence
var(X) = P − pp′

Question: Is var(X) positive definite? This is of course related to the question
of whether X is degenerate. We haven’t said anything explicit about either,
but the information needed to answer these questions is in the text above. It
should be obvious if you know what to look for (a good exercise testing your
understanding of degenerate random vectors).

5.4 The Multinomial Distribution

The multinomial distribution is the multivariate analog of the binomial dis-
tribution. It is sort of, but not quite, the multivariate generalization, that is, the
binomial distribution is sort of, but not precisely, a special case of the multi-
nomial distribution. Thus is unlike the normal, where the univariate normal
distribution is precisely the one-dimensional case of the multivariate normal.

Suppose X1, X2 are an i. i. d. sequence of Berk(p) random vectors (caution:
the subscripts on the Xi indicate elements of an infinite sequence of i. i. d.
random vectors, not components of one vector). Then

Y = X1 + · · · + Xn

has the multinomial distribution with sample size n and dimension k, abbrevi-
ated

Y ∼ Multik(n,p)

if we want to indicate the dimension in the notation or just Y ∼ Multi(n,p) if
the dimension is clear from the context.

Note the dimension is k, not n, that is, both Y and p are vectors of dimension
k.

5.4.1 Categorical Random Variables

Recall that a multinomial random vector is the sum of i. i. d. Bernoullis

Y = X1 + · + Xn

and that each Bernoulli is related to a categorical random variable: Xi,j = 1 if
and only if the i-th observation fell in the j-th category. Thus Yj =

∑
i Xi,j is

the number of individuals that fell in the j-th category.
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This gives us another distribution of multinomial random vectors. A random
vector Y = Multi(n, p) arises by observing a sequence of n independent random
variables (taking values in any set) and letting Yj be the number of observations
that fall in the j-th category. The parameter pj is the probability of any one
individual observation falling in the j-th category.

5.4.2 Moments

Obvious, just n times the moments of Ber(p)

E(X) = np

var(X) = n(P − pp′)

5.4.3 Degeneracy

Since the components of a Ber(p) random vector sum to one, the components
of a Multi(n,p) random vector sum to n. That is, if Y ∼ Multi(n,p), then

Y1 + · · ·Yk = n

with probability one. This can be written u′Y = n with probability one, where
u = (1, 1, . . . , 1). Thus Y is concentrated on the hyperplane

H = {y ∈ Rk : u′y = n }

Is Y concentrated on any other hyperplanes? Since the Berk(p) distribution
and the Multik(n,p) distribution have the same variance matrices except for a
constant of proportionality (M and nM, respectively), they both are supported
on the same hyperplanes. We might as well drop the n and ask the question
about the Bernoulli.

Let c = (c1, . . . , ck) be an arbitrary vector. Such a vector is associated with
a hyperplane supporting the distribution if

c′Mc =
k∑

i=1

k∑
j=1

mijcicj

=
k∑

i=1

pic
2
i −

k∑
i=1

k∑
j=1

pipjcicj

=
k∑

i=1

pic
2
i −

 k∑
j=1

pjcj

2

is zero. Thinking of this as a function of c for fixed p, write it as q(c). Being
a variance, it is nonnegative, hence it is zero only where it is achieving its
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minimum value, and where, since it is a smooth function, its derivative must be
zero, that is,

∂q(c)
∂ci

= 2pici − 2pi

 k∑
j=1

pjcj

 = 0

Now we do not know what the quantity in parentheses is, but it does not depend
on i or j, so we can write it as a single letter d with no subscripts. Thus we
have to solve

2pici − 2dpi = 0 (5.38)

for ci. This splits into two cases.
Case I. If none of the pi are zero, the only solution is ci = d. Thus the only

null eigenvectors are proportional to the vector u = (1, 1, . . . , 1). And all such
vectors determine the same hyperplane.

Case II. If any of the pi are zero, we get more solutions. Equation (5.38)
becomes 0 = 0 when pi = 0, and since this is the only equation containing ci,
the equations say nothing about ci, thus the solution is

ci = d, pi > 0
ci = arbitrary, pi = 0

In hindsight, case II was rather obvious too. If pi = 0 then Xi = 0 with
probability one, and that is another degeneracy. But our real interest is in
case I. If none of the success probabilities are zero, then the only degeneracy is
Y1 + · · · + Yk = n with probability one.

5.4.4 Density

Density? Don’t degenerate distribution have no densities? In the continuous
case, yes. Degenerate continuous random vectors have no densities. But discrete
random vectors always have densities, as always, f(x) = P (X = x).

The derivation of the density is exactly like the derivation of the binomial
density. First we look at one particular outcome, then collect the outcomes that
lead to the same Y values. Write Xi,j for the components of Xi, and note that
if we know Xi,m = 1, then we also know Xi,j = 0 for j 6= m, so it is enough to
determine the probability of an outcome if we simply record the Xij that are
equal to one. Then by the multiplication rule

P (X1,j1 = 1and · · · andXn,jn
= 1) =

n∏
i=1

P (Xi,ji
= 1)

=
n∏

i=1

pji

=
k∏

j=1

p
yj

j
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The last equality records the same kind of simplification we saw in deriving the
binomial density. The product from 1 to n in the next to last line may repeat
some of the p’s. How often are they repeated? There is one pj for each Xij that
is equal to one, and there are Yj =

∑
i Xij of them.

We are not done, however, because more than one outcome can lead to the
same right hand side here. How many ways are there to get exactly yj of the
Xij equal to one? This is the same as asking how many ways there are to assign
the numbers i = 1, . . ., n to one of k categories, so that there are yi in the i-th
category, and the answer is the multinomial coefficient(

n

y1, . . . , yk

)
=

n!
y1! · · · yk!

Thus the density is

f(y) =
(

n

y1, . . . , yk

) k∏
j=1

p
yj

j , y ∈ S

where the sample space S is defined by

S = {y ∈ Nk : y1 + · · · yk = n }
where N denotes the “natural numbers” 0, 1, 2, . . . . In other words, the sample
space S consists of vectors y having nonnegative integer coordinates that sum
to n.

5.4.5 Marginals and “Sort Of” Marginals

The univariate marginals are obvious. Since the univariate marginals of
Ber(p) are Ber(pi), the univariate marginals of Multi(n,p) are Bin(n, pi).

Strictly speaking, the multivariate marginals do not have a brand name dis-
tribution. Lindgren (Theorem 8 of Chapter 6) says the marginals of a multino-
mial are multinomial, but this is, strictly speaking, complete rubbish, given the
way he (and we) defined “marginal” and “multinomial.” It is obviously wrong.
If X = (X1, . . . , Xk) is multinomial, then it is degenerate. But (X1, . . . , Xk−1)
is not degenerate, hence not multinomial (all multinomial distributions are de-
generate). The same goes for any other subvector, (X2, X5, X10), for example.

Of course, Lindgren knows this as well as I do. He is just being sloppy
about terminology. What he means is clear from his discussion leading up to
the “theorem” (really a non-theorem). Here’s the correct statement.

Theorem 5.16. Suppose Y = Multik(n,p) and Z is a random vector formed
by collapsing some of the categories for Y, that is, each component of Z has the
form

Zj = Yi1 + · · · + Yimj

where each Yi contributes to exactly one Zj so that

Z1 + · · · + Zl = Y1 + · · · + Yk = n,
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then
Z ∼ Multil(n,q)

where the parameter vector q has components

qj = pi1 + · · · + pimj

is formed by collapsing the categories in the same way as in forming Z from Y.

No wonder Lindgren felt the urge to sloppiness here. The correct statement
is a really obnoxious mess of notation. But the idea is simple and obvious. If we
collapse some categories, that gives a different (coarser) partition of the sample
space and a multinomial distribution with fewer categories.

Example 5.4.1.
Consider the multinomial random vector Y associated with i. i. d. sampling of a
categorical random variable taking values in the set (5.36). Let Z be the multi-
nomial random vector associated with the categorical random variable obtained
by collapsing the categories on the ends, that is, we collapse the categories
“strongly agree” and “agree” and we collapse the categories “strongly disagree”
and “disagree.” Thus

Y ∼ Multi5(n,p)
Z ∼ Multi3(n,q)

where

Z1 = Y1 + Y2

Z2 = Y3

Z3 = Y4 + Y5

and

q1 = p1 + p2

q2 = p3

q3 = p4 + p5

The notation is simpler than in the theorem, but still messy, obscuring the
simple idea of collapsing categories. Maybe Lindgren has the right idea. Slop
is good here. The marginals of a multinomial are sort of, but not precisely,
multinomial. Or should that be the sort-of-but-not-precisely marginals of a
multinomial are multinomial?

Recall that we started this section with the observation that one-dimensional
marginal distributions of a multinomial are binomial (with no “sort of”). But
two-dimensional multinomial distributions must also be somehow related to the
binomial distribution. The k = 2 multinomial coefficients are binomial coeffi-
cients, that is, (

n

y1, y2

)
=

n!
y1!y2!

=
(

n

y1

)
=

(
n

y2

)
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because the multinomial coefficient is only defined when the numbers in the
second row add up to number in the first row, that is, here y1 + y2 = n.

And the relation between distributions is obvious too, just because the
marginals are binomial. If

Y = Multi2(n,p),

then
Yi = Bin(n, pi)

and
Y2 = n − Y1.

Conversely, if
X ∼ Bin(n, p),

then
(X,n − X) ∼ Multi2

(
n, (p, 1 − p)

)
So the two-dimensional multinomial is the distribution of (X,n − X) when X
is binomial. Recall the conventional terminology that X is the number of “suc-
cesses” in n Bernoulli “trials” and n − X is the number of “failures.” Either of
the successes or the failures considered by themselves are binomial. When we
paste them together in a two-dimensional vector, the vector is degenerate be-
cause the successes and failures sum to the number of trials, and that degenerate
random vector is the two-dimensional multinomial.

5.4.6 Conditionals

Theorem 5.17. Every conditional of a multinomial is multinomial. Suppose
Y ∼ Multik(n,p), then

(Y1, . . . , Yj) | (Yj+1, . . . , Yk) ∼ Multij(n − Yj+1 − · · · − Yk,q), (5.39a)

where
qi =

pi

p1 + · · · + pj
, i = 1, . . . , j. (5.39b)

In words, the variables that are still random (the ones “in front of the bar”)
are multinomial. The number of categories is the number (here j) of such
variables. The sample size is the number of observations still random, which is
the original sample size minus the observations in the variables now known (the
ones “behind the bar”). And the parameter vector q is the part of the original
parameter vector corresponding to the variables in front of the bar renormalized.

Renormalized? Why are we renormalizing parameters? The parameter vec-
tor for a multinomial distribution can be thought of as a probability density (it’s
numbers that are nonnegative and sum to one). When we take a subvector, we
need to renormalize to get another multinomial parameter vector (do what it
takes to make the numbers sum to one). That’s what’s going on in (5.39b).
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Proof of Theorem 5.17. Just calculate. The relevant marginal is the distribu-
tion of (Yj+1, . . . , Yk) but that isn’t a brand name distribution. Almost as good
is the marginal of

Z = (Y1 + · · · + Yj , Yj+1, . . . , Yk) = (n − Yj+1 − · · · − Yk, Yj+1, . . . , Yk) (5.40)

which is Multik−j+1(n,q) with

q = (p1 + · · · + pj , pj+1, . . . , pk) = (n − pj+1 − · · · − pk, pj+1, . . . , pk)

It’s almost the same thing really, because the right hand side of (5.40) is a
function of Yj+1, . . ., Yk alone, hence

P (Yi = yi, i = j + 1, . . . , k)

=
(

n

n − yj+1 − · · · − yk, yj+1, . . . , yk

)
× (1 − pj+1 − · · · − pk)n−yj+1−···−ykp

yj+1
j+1 · · · pyk

k

And, of course, conditional equals joint over marginal(
n

y1,...,yk

)
py1
1 · · · pyk

k(
n

n−yj+1−···−yk,yj+1,...,yk

)
(1 − pj+1 − · · · − pk)n−yj+1−···−ykp

yj+1
j+1 · · · pyk

k

=
n!

y1! · · · yk!
· (n − yj+1 − · · · − yk)!yj+1! · · · yk!

n!

× py1
1 · · · pyj

j

(1 − pj+1 − · · · − pk)n−yj+1−···yk

=
(n − yj+1 − · · · − yk)!

y1! · · · yj !

j∏
i=1

(
pi

1 − pj+1 − · · · pk

)yj

=
(

n − yj+1 − · · · − yk

y1, . . . , yj

) j∏
i=1

(
pi

p1 + · · · + pj

)yj

and that’s the conditional density asserted by the theorem.

Problems

5-1. Is  3 2 −1
2 3 2
−1 2 3


a covariance matrix? If not, why not?
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5-2. Is  3 2 −1/3
2 3 2

−1/3 2 3


a covariance matrix? If not, why not? If it is a covariance matrix, is a random
vector having this covariance matrix degenerate or non-degenerate?

5-3. Consider the degenerate random vector (X,Y ) in R2 defined by

X = sin(U)
Y = cos(U)

where U ∼ U(0, 2π). We say that (X,Y ) has the uniform distribution on the
unit circle. Find the mean vector and covariance matrix of (X,Y ).

5-4. Let M be any symmetric positive semi-definite matrix, and denote its
elements mij . Show that for any i and j

−1 ≤ mij√
miimjj

≤ 1 (5.41)

Hint: Consider w′Mw for vectors w having all elements zero except the i-th
and j-th.

The point of the problem (this isn’t part of the problem, just the explanation
of why it is interesting) is that if M is a variance, then the fraction in (5.41) is
cor(Xi, Xj). Thus positive semi-definiteness is a stronger requirement than the
correlation inequality, as claimed in Section 5.1.4.

5-5. Show that the usual formula for the univariate normal distribution is the
one-dimensional case of the formula for the multivariate normal distribution.

5-6. Show that a constant random vector (a random vector having a distribution
concentrated at one point) is a (degenerate) special case of the multivariate
normal distribution.

5-7. Suppose X = (X1, . . . , Xk) has the multinomial distribution with sample
size n and parameter vector p = (p1, . . . , pk), show that for i 6= j

var(Xi − Xj)
n

= pi + pj − (pi − pj)2

5-8. If X ∼ N (0,M) is a non-degenerate normal random vector, what is the
distribution of Y = M−1X?

5-9. Prove (5.35).
Hint: Write

X1 − µ1 = [X1 − E(X1 | X2)] + [E(X1 | X2) − µ1]

then use the alternate variance and covariance expressions in Theorem 5.2 and
linearity of expectation.
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5-10. Specialize the formula (5.24) for the non-degenerate multivariate normal
density to the two-dimensional case, obtaining

f(x, y) =
1

2πσXσY

√
1 − ρ2

×

exp
(
− 1

2(1 − ρ2)

[
(x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

])
Hint: To do this you need to know how to invert a 2 × 2 matrix and calculate
its determinant. If

A =
(

a11 a12

a21 a22

)
then

det(A) = a11a22 − a12a21

and

A−1 =

(
a22 −a12

−a21 a11

)
det(A)

(This is a special case of Cramer’s rule. It can also be verified by just doing the
matrix multiplication. Verification of the formulas in the hint is not part of the
problem.)

5-11. Specialize the conditional mean and variance in Theorem 5.15 to the
two-dimensional case, obtaining

E(X | Y ) = µX + ρ
σX

σY
(Y − µY )

var(X | Y ) = σ2
X(1 − ρ2)

5-12 (Ellipsoids of Concentration). Suppose X is a non-degenerate normal
random variable with density (5.24), which we rewrite as

f(x) =
e−q(x)/2

(2π)n/2 det(M)1/2

A level set of the density, also called a highest density region is a set of the form

S = {x ∈ Rn : f(x) > c }
for some constant c. Show that this can also be written

S = {x ∈ Rn : q(x) < d }
for some other constant d. (A set like this, a level set of a positive definite
quadratic form, is called an ellipsoid.) Give a formula for P (X ∈ S) as a
function of the constant d in terms of the probabilities for a univariate brand
name distribution. (Hint: Use Problem 12-32 in Lindgren.)
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5-13. For the random vector X defined by (5.23) in Example 5.1.3 suppose U ,
V , and W are i. i. d. standard normal random variables.

(a) What is the joint distribution of the two-dimensional random vector whose
components are the first two components of X?

(b) What is the conditional distribution of the first component of X given the
second?

5-14. Suppose Z1, Z2, . . . are i. i. d. N (0, τ2) random variables and X1, X2,
. . . are defined recursively as follows.

• X1 is a N (0, σ2) random variable that is independent of all the Zi.

• for i > 1
Xi+1 = ρXi + Zi.

There are three unknown parameters, ρ, σ2, and τ2, in this model. Because
they are variances, we must have σ2 > 0 and τ2 > 0. The model is called an
autoregressive time series of order one or AR(1) for short. The model is said to
be stationary if Xi has the same marginal distribution for all i.

(a) Show that the joint distribution of X1, X2, . . ., Xn is multivariate normal.

(b) Show that E(Xi) = 0 for all i.

(c) Show that the model is stationary only if ρ2 < 1 and

σ2 =
τ2

1 − ρ2

Hint: Consider var(Xi).

(d) Show that
cov(Xi, Xi+k) = ρkσ2, k ≥ 0

in the stationary model.
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Chapter 6

Convergence Concepts

6.1 Univariate Theory

Chapter 5 in Lindgren is a jumble of convergence theory. Here we will follow
one thread through the jumble, ignoring many of the convergence concepts
discussed by Lindgren. The only ones widely used in statistics are convergence
in distribution and its special case convergence in probability to a constant. We
will concentrate on them.

6.1.1 Convergence in Distribution

Definition 6.1.1 (Convergence in Distribution).
A sequence of random variables X1, X2, . . . with Xn having distribution function
Fn converges in distribution to a random variable X with distribution function
F if

Fn(x) → F (x), as n → ∞
for every real number x that is a continuity point of F . We indicate this by
writing

Xn
D−→ X, as n → ∞.

“Continuity point” means a point x such that F is continuous at x (a point
where F does not jump). If the limiting random variable X is continuous,
then every point is a continuity point. If X is discrete or of mixed type, then
Fn(x) → F (x) must hold at points x where F does not jump but it does not
have to hold at the jumps.

From the definition it is clear that convergence in distribution is a state-
ment about distributions not variables. Though we write Xn

D−→ X, what this
means is that the distribution of Xn converges to the distribution of X. We
could dispense with the notion of convergence in distribution and always write
FXn

(x) → FX(x) for all continuity points x of FX in place of Xn
D−→ X, but

that would be terribly cumbersome.

165
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There is a much more general notion of convergence in distribution (also
called convergence in law or weak convergence) that is equivalent to the concept
defined in Definition 6.1.1.

Theorem 6.1 (Helly-Bray). A sequence of random variables X1, X2, . . .
converges in distribution to a random variable X if and only if

E{g(Xn)} → E{g(X)}

for every bounded continuous function g : R → R.

For comparison, Definition 6.1.1 says, when rewritten in analogous notation

E{I(−∞,x](Xn)} → E{I(−∞,x](X)}, whenever P (X = x) = 0. (6.1)

Theorem 6.1 doesn’t explicitly mention continuity points, but the continuity
issue is there implicitly. Note that

E{IA(Xn)} = P (Xn ∈ A)

may fail to converge to
E{IA(X)} = P (X ∈ A)

because indicator functions, though bounded, are not continuous. And (6.1)
says that expectations of some indicator functions converge and others don’t
(at least not necessarily).

Also note that E(Xn) may fail to converge to E(X) because the identity
function, though continuous, is unbounded. Nevertheless, the Theorem 6.1 does
imply convergence of expectations of many interesting functions.

How does one establish that a sequence of random variables converges in
distribution? By writing down the distribution functions and showing that
they converge? No. In the common applications of convergence in distribution
in statistics, convergence in distribution is a consequence of the central limit
theorem or the law of large numbers.

6.1.2 The Central Limit Theorem

Theorem 6.2 (The Central Limit Theorem (CLT)). If X1, X2, . . . is a
sequence of independent, identically distributed random variables having mean
µ and variance σ2 and

Xn =
1
n

n∑
i=1

Xi (6.2)

is the sample mean for sample size n, then

√
n

(
Xn − µ

) D−→ Y, as n → ∞, (6.3)

where Y ∼ N (0, σ2).
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It simplifies notation if we are allowed to write a distribution on the right
hand side of a statement about convergence in distribution, simplifying (6.3)
and the rest of the sentence following it to

√
n

(
Xn − µ

) D−→ N (0, σ2), as n → ∞. (6.4)

There’s nothing wrong with this mixed notation because (to repeat something
said earlier) convergence in distribution is a statement about distributions of
random variables, not about the random variables themselves. So when we
replace a random variable with its distribution, the meaning is still clear.

The only requirement for the CLT to hold is that the variance σ2 exist (this
implies that the mean µ also exists by Theorem 2.44 of Chapter 2 of these notes.
No other property of the distribution of the Xi matters.

The left hand side of (6.3) always has mean zero and variance σ2 for all n,
regardless of the distribution of the Xi so long as the variance exists. Thus the
central limit theorem doesn’t say anything about means and variances, rather it
says that the shape of the distribution of Xn approaches the bell-shaped curve
of the normal distribution as n → ∞.

A sloppy way of rephrasing (6.3) is

Xn ≈ N
(
µ, σ2

n

)
for “large n.” Most of the time the sloppiness causes no harm and no one is
confused. The mean and variance of Xn are indeed µ and σ2/n and the shape
of the distribution is approximately normal if n is large. What one cannot do
is say Xn converges in distribution to Z where Z is N (µ, σ2/n). Having an n
in the supposed limit of a sequence is mathematical nonsense.

Example 6.1.1 (A Symmetric Bimodal Distribution).
Let us take a look at how the CLT works in practice. How large does n have to
be before the distribution of Xn is approximately normal?

density of X density of X10

On the left is a severely bimodal probability density function. On the right is
the density of (6.2), where n = 10 and the Xi are i. i. d. with the density on the
left. The wiggly curve is the density of X10 and the smooth curve is the normal
density with the same mean and variance. The two densities on the right are
not very close. The CLT doesn’t provide a good approximation at n = 10.
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density of X20 density of X30

At n = 20 and n = 30 we have much better results. The density of X30 is almost
indistinguishable from the normal density with the same mean and variance.
There is a bit of wiggle at the top of the curve, but everywhere else the fit is
terrific. It is this kind of behavior that leads to the rule of thumb propounded
in elementary statistics texts that n > 30 is “large sample” territory, thirty is
practically infinity.

The symmetric bimodal density we started with in this example is of no
practical importance. Its only virtue giving rise to a density for Xn that is easy
to calculate. If you are not interested in the details of this example, skip to the
next example. If you wish to play around with this example, varying different
aspects to see what happens, go to the web page

http://www.stat.umn.edu/geyer/5101/clt.html#bi

The symmetric bimodal density here is the density of X = Y + Z, where
Y ∼ Ber(p) and Z ∼ N (0, σ2), where p = 1

2 and σ = 0.1. If Yi and Zi are i. i. d.
sequences, then, of course

n∑
i=1

Yi ∼ Bin (n, p)

n∑
i=1

Zi ∼ N (
0, nσ2

)
So by the convolution theorem the density of their sum is

fX1+···+Xn
(s) =

n∑
k=0

f(k | n, p)φ(s − k | 0, nσ2)

where f(k | n, p) is the the Bin(n, p) density and φ(z | µ, σ2) is the N (µ, σ2)
density. The the distribution of Xn is given by

fXn
(w) = nfX1+···+Xn

(nw) = n

n∑
k=0

f(k | n, p)φ(nw − k | 0, nσ2) (6.5)

Example 6.1.2 (A Skewed Distribution).
The 30 = ∞ “rule” promulgated in introductory statistics texts does not hold
for skewed distributions. Consider X having the chi-square distribution with
one degree of freedom.
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density of X density of X30

The density of X is shown on the left. It is extremely skewed going to infinity at
zero. On the right is the density of X30 and the normal density with the same
mean and variance. The fit is not good. The density of X30, a rescaled chi2(30)
density, is still rather skewed and so cannot be close to a normal density, which
of course is symmetric.

density of X100 density of X300

The fit is better at n = 100 and n = 300, but still not as good as our bimodal
example at n = 30. The moral of the story is that skewness slows convergence
in the central limit theorem.

If you wish to play around with this example, varying different aspects to
see what happens, go to the web page

http://www.stat.umn.edu/geyer/5101/clt.html#expo

6.1.3 Convergence in Probability

A special case of convergence in distribution is convergence in distribution
to a degenerate random variable concentrated at one point, Xn

D−→ a where a
is a constant. Theorem 2 of Chapter 5 in Lindgren says that this is equivalent
to the following notion.

Definition 6.1.2 (Convergence in Probability to a Constant).
A sequence of random variables X1, X2, . . . converges in probability to a con-
stant a if for every ε > 0

P (|Xn − a| > ε) → 0, as n → ∞.

We indicate Xn converging in probability to a by writing

Xn
P−→ a, as n → ∞.
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Convergence in probability to a constant and convergence in distribution to
a constant are the same thing, so we could write Xn

D−→ a instead of Xn
P−→ a,

but the latter is traditional. There is also a more general notion of convergence
in probability to a random variable, but it has no application in statistics and
we shall ignore it.

6.1.4 The Law of Large Numbers

One place convergence in probability appears is in the law of large numbers.

Theorem 6.3 (Law of Large Numbers (LLN)). If X1, X2, . . . is a sequence
of independent, identically distributed random variables having mean µ, and

Xn =
1
n

n∑
i=1

Xi

is the sample mean for sample size n, then

Xn
P−→ µ, as n → ∞. (6.6)

The only requirement is that the mean µ exist. No other property of the
distribution of the Xi matters.

6.1.5 The Continuous Mapping Theorem

Theorem 6.4 (Continuous Mapping). If g is a function continuous at all
points of a set A, if Xn

D−→ X, and if P (X ∈ A) = 1, then g(Xn) D−→ g(X).

The main point of the theorem is the following two corollaries.

Corollary 6.5. If g is an everywhere continuous function and Xn
D−→ X, then

g(Xn) D−→ g(X).

Here the set A in the theorem is the whole real line. Hence the condition
P (X ∈ A) = 1 is trivial.

Corollary 6.6. If g is a function continuous at the point a and Xn
P−→ a, then

g(Xn) P−→ g(a).

Here the set A in the theorem is just the singleton set {a}, but the limit
variable in question is the constant random variable satisfying P (X = a) = 1.

These theorems say that convergence in distribution and convergence in
probability to a constant behave well under a continuous change of variable.
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Rewriting the CLT

The CLT can be written in a variety of slightly different forms. To start, let
us rewrite (6.3) as

√
n

(
Xn − µ

) D−→ σZ, as n → ∞,

where now Z is a standard normal random variable. If σ > 0, then we can
divide both sides by σ. This is a simple application of the continuous mapping
theorem, the function defined by g(x) = x/σ being continuous. It gives

√
n

Xn − µ

σ

D−→ Z

Moving the
√

n from the numerator to the denominator of the denominator
gives

Xn − µ

σ/
√

n

D−→ Z (6.7)

6.1.6 Slutsky’s Theorem

Theorem 6.7 (Slutsky). If g(x, y) is a function jointly continuous at every
point of the form (x, a) for some fixed a, and if Xn

D−→ X and Yn
P−→ a, then

g(Xn, Yn) D−→ g(X, a).

Corollary 6.8. If Xn
D−→ X and Yn

P−→ a, then

Xn + Yn
D−→ X + a,

YnXn
D−→ aX,

and if a 6= 0

Xn/Yn
D−→ X/a.

In other words, we have all the nice properties we expect of limits, the limit
of a sum is the sum of the limits, and so forth. The point of the theorem is
this is not true unless one of the limits is a constant. If we only had Xn

D−→ X

and Yn
D−→ Y , we couldn’t say anything about the limit of Xn + Yn without

knowing about the joint distribution of Xn and Yn. When Yn converges to a
constant, Slutsky’s theorem tells us that we don’t need to know anything about
joint distributions.

A special case of Slutsky’s theorem involves two sequences converging in
probability. If Xn

P−→ a and Yn
P−→ b, then Xn + Yn

P−→ a + b, and so forth.
This is a special case of Slutsky’s theorem because convergence in probability
to a constant is the same as convergence in distribution to a constant.
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6.1.7 Comparison of the LLN and the CLT

When X1, X2, . . . is an i. i. d. sequence of random variables having a variance,
both the law of large numbers and the central limit theorem apply, but the CLT
tells us much more than the LLN.

It could not tell us less, because the CLT implies the LLN. By Slutsky’s
theorem, the CLT (6.3) implies

Xn − µ =
1√
n
· √n

(
Xn − µ

) D−→ 0 · Y = 0

where Y ∼ N (0, σ2). Because convergence in distribution to a constant and
convergence in probability to a constant are the same thing, this implies the
LLN.

But the CLT gives much more information than the LLN. It says that the
size of the estimation error Xn − µ is about σ/

√
n and also gives us the shape

of the error distribution (i. e., normal).
So why do we even care about the law of large numbers? Is it because there

are lots of important probability models having a mean but no variance (so the
LLN holds but the CLT does not)? No, not any used for real data. The point is
that sometimes we don’t care about the information obtained from the central
limit theorem. When the only fact we want to use is Xn

P−→ µ, we refer to the
law of large numbers as our authority. Its statement is simpler, and there is no
point in dragging an unnecessary assumption about variance in where it’s not
needed.

6.1.8 Applying the CLT to Addition Rules

The central limit theorem says that the sum of i. i. d. random variables with
a variance is approximately normally distributed if the number of variables in
the sum is “large.” Applying this to the addition rules above gives several
normal approximations.

Binomial The Bin(n, p) distribution is approximately normal with mean np
and variance np(1 − p) if n is large.

Negative Binomial The NegBin(n, p) distribution is approximately normal
with mean n/p and variance n(1 − p)/p2 if n is large.

Poisson The Poi(µ) distribution is approximately normal with mean µ and
variance µ if µ is large.

Gamma The Gam(α, λ) distribution is approximately normal with mean α/λ
and variance α/λ2 if α is large.

Chi-Square The chi2(n) distribution is approximately normal with mean n
and variance 2n if n is large.
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Comment The rules containing n are obvious combinations of the relevant
addition rule and the CLT. The rules for the Poisson and gamma distributions
are a bit weird in that there is no n. To understand them we need the notion
of an infinitely divisible distribution.

Definition 6.1.3.
A probability distribution P is infinitely divisible if for every positive integer
n there exist independent and identically distributed random variables X1, . . .,
Xn such that X1 + · · · + Xn has the distribution P .

Example 6.1.3 (Infinite Divisibility of the Poisson).
By the addition rule for Poisson random variables, X1 + · · ·+Xn ∼ Poi(µ) when
the Xi are i. i. d. Poi(µ/n). Thus the Poi(µ) distribution is infinitely divisible
for any µ > 0.

Example 6.1.4 (Infinite Divisibility of the Gamma).
By the addition rule for gamma random variables, X1 + · · · + Xn ∼ Gam(α, λ)
when the Xi are i. i. d. Gam(α/n, λ). Thus the Gam(α, λ) distribution is in-
finitely divisible for any α > 0 and λ > 0.

The infinite divisibility of the Poisson and gamma distributions explains the
applicability of the CLT. But we have to be careful. Things are not quite as
simple as they look.

A Bogus Proof that Poisson is Normal Every Poisson random variable
is the sum of n i. i. d. random variables and n can be chosen as large as we
please. Thus by the CLT the Poisson distribution is arbitrarily close to normal.
Therefore it is normal.

Critique of the Bogus Proof For one thing, it is obviously wrong. The
Poisson discrete is discrete. The Normal distribution is continuous. They can’t
be equal. But what’s wrong with the proof?

The problem is in sloppy application of the CLT. It is often taken to say
what the bogus proof uses, and the sloppy notation (6.4) encourages this sloppy
use, which usually does no harm, but is the problem here.

A more careful statement of the CLT says that for any fixed µ and large
enough n the Poi(nµ) distribution is approximately normal. The n that is
required to get close to normal depends on µ. This does tell us that for sufficient
large values of the parameter, the Poisson distribution is approximately normal.
It does not tell us the Poisson distribution is approximately normal for any value
of the parameter, which the sloppy version seems to imply.

The argument for the gamma distribution is exactly analogous to the argu-
ment for the Poisson. For large enough values of the parameter α involved in
the infinite divisibility argument, the distribution is approximately normal. The
statement about the chi-square distribution is a special case of the statement
for the gamma distribution.
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6.1.9 The Cauchy Distribution

The Cauchy location-scale family, abbreviated Cauchy(µ, σ) is described in
Section B.2.7 of Appendix B an addition rule given by (C.11) in Appendix C,
which we repeat here

X1 + · · · + Xn ∼ Cauchy(nµ, nσ) (6.8)

from which we can derive the distribution of the sample mean

Xn ∼ Cauchy(µ, σ) (6.9)

(Problem 6-1).
The Cauchy family is not a useful model for real data, but it is theoretically

important as a source of counterexamples. A Cauchy(µ, σ) distribution has
center of symmetry µ. Hence µ is the median, but µ is not the mean because
the mean does not exist.

The rule for the mean (6.9) can be trivially restated as a convergence in
distribution result

Xn
D−→ Cauchy(µ, σ), as n → ∞ (6.10)

a “trivial” result because Xn actually has exactly the Cauchy(µ, σ) distribution
for all n, so the assertion that is gets close to that distribution for large n is
trivial (exactly correct is indeed a special case of “close”).

The reason for stating (6.10) is for contrast with the law of large numbers
(LLN), which can be stated as follows: if X1, X2, . . . are i. i. d. from a distri-
bution with mean µ, then

Xn
P−→ µ as n → ∞ (6.11)

The condition for the LLN, that the mean exist, does not hold for the Cauchy.
Furthermore, since µ does not exist, Xn cannot converge to it. But it is con-
ceivable that

Xn
P−→ c as n → ∞ (6.12)

for some constant c, even though this does not follow from the LLN. The result
(6.10) for the Cauchy rules this out. Convergence in probability to a constant is
the same as convergence in distribution to a constant (Theorem 2 of Chapter 5
in Lindgren). Thus (6.12) and (6.10) are contradictory. Since (6.10) is correct,
(6.12) must be wrong. For the Cauchy distribution Xn does not converge in
probability to anything.

Of course, the CLT also fails for the Cauchy distribution. The CLT implies
the LLN. Hence if the CLT held, the LLN would also hold. Since the LLN
doesn’t hold for the Cauchy, the CLT can’t hold either.
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Problems

6-1. Derive (6.9) from (6.8) using the change of variable theorem.

6-2. Suppose that S1, S2, . . . is any sequence of random variables such that
Sn

P−→ σ, and X1, X2, . . . are independent and identically distributed with
mean µ and variance σ2 and σ > 0. Show that

Xn − µ

Sn/
√

n

D−→ N (0, 1), as n → ∞,

where, as usual,

Xn =
1
n

n∑
i=1

Xi

6-3. Suppose X1, X2, . . . are i. i. d. with common probability measure P , and
define Yn = IA(Xn) for some event A, that is,

Yn =

{
1, Xn ∈ A

0, Xn /∈ A

Show that Y n
P−→ P (A).

6-4. Suppose the sequences X1, X2, . . . and Y1, Y2, . . . are defined as in Prob-
lem 6-3, and write P (A) = p. Show that

√
n(Y n − p) D−→ N (

0, p(1 − p)
)

and also show that
Y n − p√

Y n(1 − Y n)/n

D−→ N (0, 1)

Hint: What is the distribution of
∑

i Yi? Also use Problem 6-2.
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Chapter 7

Sampling Theory

7.1 Empirical Distributions

In statistics, we often deal with complicated data, but for learning it is best
to start simple. The simplest sort of data is just a set of numbers that are
measurements of one variable on a set of individuals. In the next section we will
see that it is important that these individuals be a random sample from some
population of interest. For now we will just treat the data as a set of numbers.

Example 7.1.1 (A Data Set).
The numbers below were generated by computer and are a random sample
from an Exp(1) distribution rounded to one significant figure. Because of the
rounding, there are duplicate values. If not rounded the values would all be
different, as would be the case for any sample from any continuous distribution.

0.12 3.15 0.77 1.02 0.08 0.35 0.29 1.05 0.49 0.81

A vector

x = (x1, . . . , xn) (7.1)

can be thought of as a function of the index variable i. To indicate this we can
write the components as x(i) instead of xi. Then x is a function on the index
set {1, . . . , n}. Sometimes we don’t even bother to change the notation but still
think of the vector as being the function i 7→ xi.

This idea is useful in probability theory because of the dogma “a random
variable is a function on the sample space.” So let us think of the index set
S = {1, . . . , n} as the sample space, and X as a random variable having values
X(i), also written xi. When we consider a uniform distribution on the sample
space, which means each point gets probability 1/n since there are n points,
then the distribution of X is called the empirical distribution associated with
the vector (7.1).

177
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By definition, the probability function of X is

f(x) = P (X = x) =
∑
i∈S

xi=x

1
n

=
card({ i ∈ S : xi = x })

n

where, as usual, card(A) denotes the cardinality of the set A. If all of the xi

are distinct, then the distribution of X is also uniform. Otherwise, it is not.
If the point x occurs m times among the xi, then f(x) = m/n. This makes
the definition of the empirical distribution in terms of its probability function
rather messy. So we won’t use it.

The description in terms of expectation is much simpler.

Definition 7.1.1 (Empirical Expectation).
The empirical expectation operator associated with the vector (x1, . . . , xn) is
denoted En and defined by

En{g(X)} =
1
n

n∑
i=1

g(xi). (7.2)

Example 7.1.2.
For the data in Example 7.1.1 we have for the function g(x) = x

En(X) =
1
n

n∑
i=1

xi = 0.813

and for the function g(x) = x2

En(X2) =
1
n

n∑
i=1

x2
i = 1.37819

The corresponding probability measure Pn is found by using “probability is
just expectation of indicator functions.”

Definition 7.1.2 (Empirical Probability Measure).
The empirical probability measure associated with the vector (x1, . . . , xn) is de-
noted Pn and defined by

Pn(A) =
1
n

n∑
i=1

IA(xi). (7.3)

Example 7.1.3.
For the data in Example 7.1.1 we have for the event X > 2

Pn(X > 2) =
1
n

n∑
i=1

I(2,∞)(xi) =
number of xi greater than 2

n
= 0.1

and for the event 1 < X < 2

Pn(1 < X < 2) =
1
n

n∑
i=1

I(1,2)(xi) =
number of xi between 1 and 2

n
= 0.2
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7.1.1 The Mean of the Empirical Distribution

For the rest of this section we consider the special case in which all of the
xi are real numbers.

The mean of the empirical distribution is conventionally denoted by x̄n and
is obtained by taking the case g(x) = x in (7.2)

x̄n = En(X) =
1
n

n∑
i=1

xi.

7.1.2 The Variance of the Empirical Distribution

The variance of the empirical distribution has no conventional notation, but
we will use both varn(X) and vn. Just like any other variance, it is the expected
squared deviation from the mean. The mean is x̄n, so

vn = varn(X) = En{(X − x̄n)2} =
1
n

n∑
i=1

(xi − x̄n)2 (7.4)

It is important that you think of the empirical distribution as a probability
distribution just like any other. This gives us many facts about empirical distri-
butions, that are derived from general facts about probability and expectation.
For example, the parallel axis theorem holds, just as it does for any probability
distribution. For ease of comparison, we repeat the general parallel axis theorem
(Theorem 2.11 of Chapter 2.27 of these notes).

If X is a real-valued random variable having finite variance and a is any real
number, then

E{(X − a)2} = var(X) + [a − E(X)]2 (7.5)

Corollary 7.1 (Empirical Parallel Axis Theorem).

En{(X − a)2} = varn(X) + [a − En(X)]2

or, in other notation,

1
n

n∑
i=1

(xi − a)2 = vn + (a − x̄n)2 (7.6)

In particular, the case a = 0 gives the empirical version of

var(X) = E(X2) − E(X)2

which is

varn(X) = En(X2) − En(X)2

or, in other notation,

vn =
1
n

n∑
i=1

x2
i − x̄2

n. (7.7)
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Example 7.1.4.
In Example 7.1.2 we found for the data in Example 7.1.1

x̄n = En(X) = 0.813

and
En(X2) = 1.37819.

Although we could use the definition (7.4) directly, we can also use the empirical
parallel axis theorem in the form (7.7)

vn = 1.37819 − 0.8132 = 0.717221.

7.1.3 Characterization of the Mean

Considering a as a variable in (7.5) or (7.6) gives the following pair of theo-
rems. The first one is just the corollary to the parallel axis theorem in Lindgren
(p. 107) in different language. It is also the special case of the characterization
of conditional expectation as best prediction (Theorem 3.6 in Chapter 3 of these
notes) when the conditional expectation is actually unconditional.

Corollary 7.2 (Characterization of the Mean). The mean of a real-valued
random variable X having finite variance is the value of a that minimizes the
function

g(a) = E{(X − a)2}
which is the expected squared deviation from a.

Corollary 7.3 (Characterization of the Empirical Mean). The mean of
the empirical distribution is the value of a that minimizes the function

g(a) = En{(X − a)2} =
1
n

n∑
i=1

(xi − a)2

which is the average squared deviation from a.

The point of these two corollaries is that they describe the sense in which the
mean is the “center” of a distribution. It is the point to which all other points
are closest on average, when “close” is defined in terms of squared differences.
The mean is the point from which the average squared deviation is the smallest.
We will contrast this characterization with an analogous characterization of the
median in Section 7.1.7.

7.1.4 Review of Quantiles

Recall from Section 3.2 in Lindgren the definition of a quantile of a proba-
bility distribution.
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Definition 7.1.3 (Quantile).
For 0 < p < 1, a point x is a p-th quantile of the distribution of a real-valued
random variable X if

P (X ≤ x) ≥ p and P (X ≥ x) ≥ 1 − p

If the c. d. f. of X is invertible, then there is a much simpler characterization
of quantiles. For 0 < p < 1, the p-th quantile is the unique solution x of the
equation

F (x) = p, (7.8a)

or in other notation
x = F−1(p). (7.8b)

The following lemma tells us we are usually in this situation when dealing with
continuous random variables

Lemma 7.4. A continuous random variable having a strictly positive p. d. f.
has an invertible c. d. f.

Proof. There exists a solution to (7.8a), by the intermediate value theorem from
calculus, because F is continuous and goes from zero to one as x goes from −∞
to +∞. The solution is unique because

F (x + h) = F (x) +
∫ x+h

x

f(x) dx

and the integral is not zero unless h = 0, because the integral of a strictly
positive function cannot be zero.

In general, the p-th quantile need not be unique and it need not be a point
satisfying F (x) = p (see Figure 3.3 in Lindgren for examples of each of these
phenomena). Hence the technical fussiness of Definition 7.1.3. That definition
can be rephrased in terms of c. d. f.’s as follows. A point x is a p-th quantile of
a random variable with c. d. f. F if

F (x) ≥ p and F (y) ≤ p, for all y < x

Here the asymmetry of the definition of c. d. f.’s (right continuous but not nec-
essarily left continuous) makes the two conditions asymmetric. Definition 7.1.3
makes the symmetry between left and right clear. If x is a p-th quantile of X,
then −x is also a q-th quantile of −X, where q = 1 − p.

7.1.5 Quantiles of the Empirical Distribution

Now we want to look at the quantiles of the empirical distribution associated
with a vector x. In order to discuss this, it helps to establish the following
notation. We denote the sorted values of the components of x by

x(1) ≤ x(2) ≤ · · · ≤ x(n).
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That is, when we put parentheses around the subscripts, that means we have put
the values in ascending order. For any real number x, the notation dxe denotes
the smallest integer greater than or equal to x, which is called the ceiling of x,
and the notation bxc denotes the largest integer less than or equal to x, which
is called the floor of x,

Theorem 7.5. If np is not an integer, then the p-th quantile of the empirical
distribution associated with the vector x is unique and is equal to x(dnpe).

When np is an integer, then any point x such that

x(np) ≤ x ≤ x(np+1) (7.9)

is a p-th quantile.

Proof. The p-th quantile must be a point x such that there are at least np of
the xi at or below x and at least n(1 − p) at or above x.

In the case that np is not an integer, let k = dnpe. Since np is not an integer,
and dnpe is the least integer greater than k, we have k > np > k − 1. What we
must show is that x(k) is the unique p-th quantile.

There are at least k > np data points

x(1) ≤ · · · ≤ x(k)

at or below x(k). Furthermore, if i < k, then i ≤ k − 1 < np so there are fewer
than np data points at or below x(i) unless x(i) happens to be equal to x(k).

Similarly, there are at least n − k + 1 > n(1 − p) data points

x(k) ≤ · · · ≤ x(n)

at or above x(k). Furthermore, if i > k, then n − i + 1 ≤ n − k < n(1 − p) so
there are fewer than n(1 − p) data points at or above x(i) unless x(i) happens
to be equal to x(k).

In the case np = k, let x be any point satisfying (7.9). Then there are at
least k = np data points

x(1) ≤ · · · ≤ x(k) ≤ x

at or below x, and there are at least n − k = n(1 − p) data points

x ≤ x(k+1) ≤ · · · ≤ x(n)

at or above x. Hence x is a p-th quantile.

Example 7.1.5.
The data in Example 7.1.1 have 10 data points. Thus by the theorem, the
empirical quantiles are uniquely defined when np is not an integer, that is,
when p is not a multiple of one-tenth.

The first step in figuring out empirical quantiles is always to sort the data.
Don’t forget this step. The sorted data are

0.08 0.12 0.29 0.35 0.49 0.77 0.81 1.02 1.05 3.15
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To find the 0.25 quantile, also called the 25-th percentile, the theorem says we
find dnpe, which is the integer above np = 2.5, which is 3, and then the empirical
quantile is the corresponding order statistic, that is x(3) = 0.29.

We remark in passing that if the 25-th percentile is 3 in from the left end of
the data in sorted order, then the 75-th percentile is 3 in from the right end, so
the definition behaves as we expect. Let’s check this. First np = 7.5. Rounding
up gives 8. And x(8) = 1.02 is indeed the third from the right.

The definition gets tricky is when np is an integer. If we want the 40-th
percentile, np = 4. Then the theorem says that any point x between x(4) = 0.35
and x(5) = 0.49 is a 40-th percentile (0.4 quantile) of these data. For example,
0.35, 0.39, 0.43, and 0.49 are all 40-th percentiles. A bit weird, but that’s how
the definition works.

7.1.6 The Empirical Median

The median of the empirical distribution we denote by x̃n. It is the p-th
quantile for p = 1/2. By the theorem, the median is unique when np is not
an integer, which happens whenever n is an odd number. When n is an even
number, the empirical median is not unique. It is any point x satisfying (7.9),
where k = n/2. This nonuniqueness is unsettling to ordinary users of statistics,
so a convention has grown up of taking the empirical median to be the midpoint
of the interval given by (7.9).

Definition 7.1.4 (Empirical Median).
The median of the values x1, . . ., xn is the middle value in sorted order when
n is odd

x̃n = x(dn/2e)
and the average of the two middle values when n is even

x̃n =
x(n/2) + x(n/2+1)

2

Example 7.1.6.
The data in Example 7.1.1 have 10 data points. So we are in the “n even” case,
and the empirical median is the average of the two middle values of the data in
sorted order, that is,

x̃n =
x(5) + x(6)

2
=

0.49 + 0.77
2

= 0.63

7.1.7 Characterization of the Median

Corollary 7.6 (Characterization of the Median). If X is a real-valued
random variable having finite expectation, then a median of X is any value of
a that minimizes the function

g(a) = E{|X − a|}
which is the expected absolute deviation from a.
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Proof. What we need to show is that if m is a median, that is, if

P (X ≤ m) ≥ 1
2 and P (X ≥ m) ≥ 1

2

and a is any real number, then

E(|X − a|) ≥ E(|X − m|).
Without loss of generality, we may suppose a > m. (The case a = m is trivial.
The case a < m follows from the other case by considering the distribution of
−X.)

Define
g(x) = |x − a| − |x − m|

so, by linearity of expectation,

E(|X − a|) − E(|X − m|) = E(|X − a| − |X − m|) = E{g(X)}
So what must be shown is that E{g(X)} ≥ 0.

When x ≤ m < a,

g(x) = (a − x) − (m − x) = a − m.

Similarly, when m < a ≤ x,

g(x) = −(a − m).

When m < x < a,

g(x) = (x − a) − (m − x) = 2(x − m) − (a − m) ≥ −(a − m).

Thus g(x) ≥ h(x) for all x, where

h(x) =

{
a − m, x ≤ m

−(a − m), x > m

The point is that h can be written in terms of indicator functions

h(x) = (a − m)
[
I(−∞,m](x) − I(m,+∞)(x)

]
so by monotonicity of expectation, linearity of expectation, and “probability is
expectation of indicator functions”

E{g(X)} ≥ E{h(X)} = (a − m)
[
P (X ≤ m) − P (X > m)

]
Because m is a median, the quantity in the square brackets is nonnegative.

Corollary 7.7 (Characterization of the Empirical Median). A median
of the empirical distribution is a value of a that minimizes the function

g(a) = En{|X − a|} =
1
n

n∑
i=1

|xi − a| (7.10)

which is the average absolute deviation from a.
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There is no end to this game. Every notion that is defined for general
probability models, we can specialize to empirical distributions. We can define
empirical moments and central moments of all orders, and so forth and so on.
But we won’t do that in gory detail. What we’ve done so far is enough for now.

7.2 Samples and Populations

7.2.1 Finite Population Sampling

It is common to apply statistics to a sample from a population. The pop-
ulation can be any finite set of individuals. Examples are the population of
Minnesota today, the set of registered voters in Minneapolis on election day, the
set of wolves in Minnesota. A sample is any subset of the population. Exam-
ples are the set of voters called by an opinion poll and asked how they intend
to vote, the set of wolves fitted with radio collars for a biological experiment.
By convention we denote the population size by N and the sample size by n.
Typically n is much less than N . For an opinion poll, n is typically about a
thousand, and N is in the millions.

Random Sampling

A random sample is one drawn so that every individual in the population is
equally likely to be in the sample. There are two kinds.

Sampling without Replacement The model for sampling without replace-
ment is dealing from a well-shuffled deck of cards. If we deal n cards from a
deck of N cards, there are (N)n possible outcomes, all equally likely (here we
are considering that the order in which the cards are dealt matters). Similarly
there are (N)n possible samples without replacement of size n from a population
of size N . If the samples are drawn in such a way that all are equally likely we
say we have a random sample without replacement from the population.

Sampling with Replacement The model for sampling with replacement is
spinning a roulette wheel. If we do n spins and the wheel has N pockets, there
are Nn possible outcomes, all equally likely. Similarly there are Nn possible
samples with replacement of size n from a population of size N . If the samples
are drawn in such a way that all are equally likely we say we have a random
sample with replacement from the population.

Lindgren calls this a simple random sample, although there is no standard
meaning of the word “simple” here. Many statisticians would apply “simple” to
sampling either with or without replacement using it to mean that all samples
are equally likely in contrast to more complicated sampling schemes in which
the samples are not all equally likely.
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Random Variables

Suppose we are interested in a particular variable, which in principle could be
measured for each individual in the population. Write the vector of population
values

x = (x1, . . . , xN ).

Sometimes when x is the only variable of interest we think of this collection
of x values as being the population (as opposed to the population being the
collection of individuals on whom these measurements could be made).

The vector of population values is not a random vector.1 The population is
what it is, and the value xi for the i-th individual of the population is what it
is. Because x is not random, we use a lower case letter, following the “big X”
for random and “little x” for nonrandom convention.

When we take a random sample of size n from the population we obtain a
sequence X1, . . ., Xn of values of the variable. Each sample value Xi is one of
the population values xj , but which one is random. That is why we use capital
letters for the sample values. When we think of the sample as one thing rather
than n things, it is a vector

X = (X1, . . . , Xn).

Thus we can talk about the probability distributions of each Xi and the
joint distribution of all the Xi, which is the same thing as the distribution of
the random vector X.

Theorem 7.8 (Sampling Distributions). If X1, . . ., Xn are a random sam-
ple from a population of size n, then the marginal distribution of each Xi is the
empirical distribution associated with the population values x1, . . ., xN .

If the sampling is with replacement, then the Xi are independent and iden-
tically distributed. If the sampling is without replacement, then the Xi are ex-
changeable but not independent.

Proof. The Xi are exchangeable by definition: every permutation of the sample
is equally likely. Hence they are identically distributed, and the marginal dis-
tribution of the Xi is the marginal distribution of X1. Since every individual is
equally likely to be the first one drawn, X1 has the empirical distribution.

Under sampling with replacement, every sample has probability 1/Nn, which
is the product of the marginals. Hence the Xi are independent random variables.
Under sampling without replacement, every sample has probability 1/(N)n,
which is not the product of the marginals. Hence the Xi are dependent random
variables.

Thus, when we have sampling with replacement, we can use formulas that
require independence, the most important of these being

1When we get to the chapter on Bayesian inference we will see that this sentence carries
unexamined philosophical baggage. A Bayesian would say the population values are random
too. But we won’t worry about that for now.
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• the variance of a sum is the sum of the variances

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var(Xi) = nσ2 (7.11)

where we have written σ2 for the variance of all of the Xi (they must have
the same variance because they are identically distributed), and

• the joint density is the product of the marginals

fX(x) =
n∏

i=1

fXi
(xi) =

n∏
i=1

f(xi) (7.12)

where we have written f for the marginal density of all of the Xi (they
must have the same density because they are identically distributed).

When we have sampling without replacement neither (7.11) nor (7.12) holds.
The analog of (7.11) is derived as follows.

Theorem 7.9 (Finite Population Correction). If X1, X2, . . ., Xn are a
random sample without replacement from a finite population of size N , then all
the Xi have the same variance σ2 and

var

(
n∑

i=1

Xi

)
= nσ2 · N − n

N − 1
(7.13)

The factor (N − n)/(N − 1) by which (7.13) differs from (7.11) is called the
finite population correction.

Proof. Since the Xi are exchangeable, each Xi has the same variance σ2 and
each pair Xi and Xj has the same correlation ρ. Thus

var

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

cov(Xi, Xj)

= nσ2 + n(n − 1)σ2ρ

= nσ2 [1 + (n − 1)ρ]

(7.14)

The correlation ρ does not depend on the sample size, because by exchangeabil-
ity it is the correlation of X1 and X2, and the marginal distribution of these two
individuals does not depend on what happens after they are drawn. Therefore
(a trick!) we can determine ρ by looking at the special case when N = n, when
the sample is the whole population and

n∑
i=1

Xi =
N∑

i=1

xi
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is not random (as is clear from the “little x” notation on the right hand side).
Hence when N = n the variance is zero, and we must have

1 + (N − 1)ρ = 0

which, solving for ρ, implies

ρ = − 1
N − 1

Plugging this into (7.14) gives (7.13).

7.2.2 Repeated Experiments

If X1, . . ., Xn are the outcomes of a series of random experiments which
are absolutely identical and have nothing to do with each other, then they are
independent and identically distributed, a phrase so widely used in statistics
that its abbreviation i. i. d. is universally recognized.

This situation is analogous to sampling with replacement in that the vari-
ables of interest are i. i. d. and all the consequences of the i. i. d. property, such
as (7.11) and (7.12), hold. The situation is so analogous that many people use
the language of random sampling to describe this situation too. Saying that X1,
. . ., Xn are a random sample from a hypothetical infinite population. There is
nothing wrong with this so long as everyone understands it is only an analogy.
There is no sense in which i. i. d. random variables actually are a random sample
from some population.

We will use the same language. It lends color to otherwise dry and dusty
discussions if you imagine we are sampling a population to answer some in-
teresting question. That may lead us into some language a pedant would call
sloppy, such as, “suppose we have a sample of size n from a population with
finite variance.” If the population is finite, then it automatically has a finite
variance. If the population is infinite, then the variance is not really defined,
since infinite populations don’t exist except as a vague analogy. What is meant,
of course, is “suppose X1, . . ., Xn are i. i. d. and have finite variance.” That’s
well defined.

7.3 Sampling Distributions of Sample Moments

7.3.1 Sample Moments

If X1, . . ., Xn are a random sample, the sample moments are the moments
of the empirical distribution associated with the vector X = (X1, . . . , Xn). The
first moment is the sample mean

Xn = En(X) =
1
n

n∑
i=1

Xi (7.15)
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The k-th moment is

Ak,n = En(Xk) =
1
n

n∑
i=1

Xk
i .

The central moments of this empirical distribution are

Mk,n = En

{
[X − En(X)]k

}
= En

{
(X − Xn)k

}
=

1
n

n∑
i=1

(Xi − Xn)k

As with any distribution, the first central moment is zero, and the second is

Vn = varn(X) = En

{
(X − Xn)2

}
=

1
n

n∑
i=1

(Xi − Xn)2. (7.16)

If there were any logic to statistics Vn would be called the “sample variance,”
but Lindgren, agreeing with most other textbooks, uses that term for something
slightly different

S2
n =

n

n − 1
Vn =

1
n − 1

n∑
i=1

(Xi − Xn)2. (7.17)

The n− 1 rather than n in the definition makes all of the formulas involving S2
n

ugly, and makes S2
n not satisfy any of the usual rules involving variances. So be

warned, and be careful! For example, Vn obeys the parallel axis theorem, hence

Vn = En(X2) − En(X)2 =
1
n

n∑
i=1

X2
i − X

2

n.

Clearly S2
n cannot satisfy the same rule or it would be Vn. The only way to

figure out the analogous rule for S2
n is to remember the rule for Vn (which makes

sense) and derive the one for S2
n.

S2
n =

n

n − 1
Vn

=
n

n − 1

[
1
n

n∑
i=1

X2
i − X

2

n

]

=
1

n − 1

n∑
i=1

X2
i − n

n − 1
X

2

n

No matter how you try to write it, it involves both n and n − 1, and makes no
sense.

Since S2
n is so ugly, why does anyone use it? The answer, as with so many

other things, is circular. Almost everyone uses it because it’s the standard,
and it’s the standard because almost everyone uses it. And “almost everyone”
includes a lot of people, because S2

n is a topic in most introductory statistics
courses.
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Our position is that it simply does not matter whether you use Vn or S2
n.

Since one is a constant times the other, any place you could use one, you could
use the other, so long as you make the appropriate changes in formulas. So the
only reason for using S2

n is to avoid fighting tradition. Sometimes it’s easier to
follow the herd.

7.3.2 Sampling Distributions

Since a sample moment is a random variable, it has a probability distri-
bution. We may not be able to give a formula for the density or distribution
function, but it does have a distribution. So we can talk about its distribution
and investigate its properties.

In a few specific cases we know the distribution of Xn. It is given implicitly
by what we call “addition rules” and which are summarized in Appendix C of
these notes. They give the distribution of Y =

∑
i Xi when the Xi are i. i. d.

• Binomial (including Bernoulli)

• Negative Binomial (including Geometric)

• Poisson

• Gamma (including Exponential and Chi-Square)

• Normal

• Cauchy

Given the distribution of Y , the distribution of Xn is found by a simple change
of scale. If the Xi are continuous random variables, then

fXn
(z) = nfY (nz). (7.18)

Example 7.3.1 (I. I. D. Exponential).
Let X1, . . ., Xn be i. i. d. Exp(λ). Then the distribution of Y = X1 + · · · + Xn

is Gam(n, λ) by the addition rule for Gamma distributions (Appendix C) and
the fact that the Exp(λ) is Gam(1, λ). Hence by Problem 7-10

Xn ∼ Gam(n, nλ).

Many statistics textbooks, including Lindgren, have no tables of the gamma
distribution. Thus we have to use the fact that gamma random variables hav-
ing integer and half-integer values of their shape parameters are proportional
to chi-square random variables, because chi2(n) = Gam(n

2 , 1
2 ) and the second

parameter of the gamma distribution is a shape parameter (Problem 7-10).

Lemma 7.10. Suppose
X ∼ Gam(n, λ)

where n is an integer, then

2λX ∼ chi2(2n).
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The proof is Exercise 7-2.

Example 7.3.2 (Table Look-Up).
(Continues Example 7.3.1). Using the lemma, we can calculate probabilities for
the sampling distribution of the sample mean of i. i. d. Exp(λ) data. Suppose
λ = 6.25 so µ = 1/λ = 0.16, and n = 9. What is P (Xn > 0.24).

In Example 7.3.1 we figured out that

Xn ∼ Gam(n, nλ)

so in this case
Xn ∼ Gam(9, 56.25) (7.19)

(nλ = 9 × 6.25 = 56.25).
But to use the tables in Lindgren, we must use the lemma, which says

2nλXn ∼ chi2(2n).

(there is an n on the left hand side, because the scale parameter of the gamma
distribution is nλ here rather than λ).

If Xn = 0.24, then 2nλXn = 2 · 9 · 6.25 · 0.24 = 27.0, and the answer to our
problem is P (Y > 27.0), where Y ∼ chi2(18). Looking this up in Table Va in
Lindgren, we get 0.079 for the answer.

Example 7.3.3 (Table Look-Up using Computers).
(Continues Example 7.3.1). The tables in Lindgren, or in other statistics books
are not adequate for many problems. For many problems you need either a huge
book of tables, commonly found in the reference section of a math library, or a
computer.

Many mathematics and statistics computer software packages do calculations
about probability distributions. In this course, we will only describe two of them:
the statistical computing language R and the symbolic mathematics language
Mathematica.

R In R the lookup is very simple. It uses the function pgamma which evaluates
the gamma c. d. f.

> 1 - pgamma(0.24, 9, 1 / 56.25)
[1] 0.07899549

This statement evaluates P (X ≤ x) when X ∼ Gam(9, 56.25) and x = 0.24,
as (7.19) requires. We don’t have to use the property that this gamma distri-
bution is also a chi-square distribution. One caution: both R and Mathematica
use a different parameterization of the gamma distribution than Lindgren. The
shape parameter is the same, but the scale parameter is the reciprocal of Lind-
gren’s scale parameter (See Problem 7-10). That’s why the third argument of
the pgamma function is 1/56.25 rather than 56.25.
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Mathematica Mathematica makes things a bit more complicated. First you
have to load a special package for probability distributions (always available, but
not loaded by default), then you have to tell Mathematica which distribution
you want, then you do the calculation

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = GammaDistribution[9, 1 / 56.25]

Out[2]= GammaDistribution[9, 0.0177778]

In[3]:= F[x_] = CDF[dist, x]

Out[3]= GammaRegularized[9, 0, 56.25 x]

In[4]:= 1 - F[0.24]

Out[4]= 0.0789955

of course, the last three statements can be combined into one but just plug-
ging in definitions

In[5]:= 1 - CDF[GammaDistribution[9, 1 / 56.25], 0.24]

Out[5]= 0.0789955

but that’s a cluttered and obscure. For more on computing in general see the
course computing web page

http://www.stat.umn.edu/geyer/5101/compute

and the pages on Probability Distributions in R and Mathematica in particular
(follow the links from the main computing page).

Example 7.3.4 (I. I. D. Bernoulli).
If X1, . . ., Xn are i. i. d. Ber(p) random variables, then Y =

∑
i Xi is a Bin(n, p)

random variable, and since Xn = Y/n, we also have

nXn ∼ Bin(n, p).

Example 7.3.5 (Another Computer Table Look-Up).
(Continues Example 7.3.4). Suppose Xn is the sample mean of 10 i. i. d. Ber(0.2)
random variables. What is the probability P (Xn ≤ 0.1)?

By the preceding example, nXn ∼ Bin(10, 0.2) and here nXn = 10 · 0.1 = 1.
So we need to look up P (Y ≤ 1) when Y ∼ Bin(10, 0.2). In R this is

> pbinom(1, 10, 0.2)
[1] 0.3758096

In Mathematica it is
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In[1]:= <<Statistics‘DiscreteDistributions‘

In[2]:= dist = BinomialDistribution[10, 0.2]

Out[2]= BinomialDistribution[10, 0.2]

In[3]:= F[x_] = CDF[dist, x]

Out[3]= BetaRegularized[0.8, 10 - Floor[x], 1 + Floor[x]]

In[4]:= F[1]

Out[4]= 0.37581

Our textbook has no tables of the binomial distribution, so there is no way
to do this problem with pencil and paper except by evaluating the terms(

n

0

)
p0qn +

(
n

1

)
p1qn−1

(not so hard here, but very messy if there are many terms). You can’t use
the normal approximation because n is not large enough. Anyway, why use an
approximation when the computer gives you the exact answer?

We can calculate the density using the convolution theorem. Mathemati-
cal induction applied to the convolution formula (Theorem 23 of Chapter 4 in
Lindgren) gives the following result.

Theorem 7.11. If X1, . . ., Xn are i. i. d. continuous random variables with
common marginal density fX , then Y = X1 + · · · + Xn has density

fY (y) =
∫

· · ·
∫∫

fX(y − x2 − · · · − xn)fX(x2) · · · fX(xn) dx2 · · · dxn (7.20)

Then (7.18) gives the density of Xn. But this is no help if we can’t do the
integrals, which we usually can’t, with the notable exceptions of the “brand
name” distributions with “addition rules” (Appendix C).

Higher Moments So far we haven’t considered any sample moment except
Xn. For other sample moments, the situation is even more complicated.

It is a sad fact is that the methods discussed in this section don’t always
work. In fact they usually don’t work. Usually, nothing works, and you just
can’t find a closed form expression for the sampling distribution of a particular
sample moment.

What is important to understand, though, and understand clearly, is that
every sample moment does have a sampling distribution. Hence we can talk
about properties of that distribution. The properties exist in principle, so we
can talk about them whether or not we can calculate them.
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7.3.3 Moments

In this section we calculate moments of sample moments. At first this sounds
confusing, even bizarre, but sample moments are random variables and like any
random variables they have moments.

Theorem 7.12. If X1, . . ., Xn are identically distributed random variables with
mean µ and variance σ2, then

E(Xn) = µ. (7.21a)

If in addition, they are uncorrelated, then

var(Xn) =
σ2

n
. (7.21b)

If instead they are samples without replacement from a population of size N ,
then

var(Xn) =
σ2

n
· N − n

N − 1
. (7.21c)

Note in particular, that because independence implies lack of correlation,
(7.21a) and (7.21b) hold in the i. i. d. case.

Proof. By the usual rules for linear transformations, E(a + bX) = a + bE(X)
and var(a + bX) = b2 var(X)

E(Xn) =
1
n

E

(
n∑

i=1

Xi

)

and

var(Xn) =
1
n2

var

(
n∑

i=1

Xi

)

Now apply Corollary 1 of Theorem 9 of Chapter 4 in Lindgren and (7.11) and
(7.13).

Theorem 7.13. If X1, . . ., Xn are uncorrelated, identically distributed random
variables with variance σ2, then

E(Vn) =
n − 1

n
σ2, (7.22a)

and

E(S2
n) = σ2. (7.22b)
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Proof. The reason why (7.22a) doesn’t work out simply is that Vn involves devi-
ations from the sample mean Xn and σ2 involves deviations from the population
mean µ. So use the empirical parallel axis theorem to rewrite Vn in terms of
deviations from µ

En{(X − µ)2} = Vn + (Xn − µ)2. (7.23)

The left hand side is just Y n, where Yi = (Xi − µ)2. Taking expectations of
both sides of (7.23) gives

E(Y n) = E(Vn) + E{(Xn − µ)2}
On the left hand side we have

E(Y n) = E(Yi) = var(Xi) = σ2

And the second term on the right hand side is

var(Xn) =
σ2

n
.

Collecting terms gives (7.22a). Then linearity of expectation gives (7.22b).

The assertions (7.22a) and (7.22b) of this theorem are one place where S2
n

seems simpler than Vn. It’s why S2
n was invented, to make (7.22b) simple.

The sample moment formulas (7.21a), (7.21b), and (7.22b) are the ones most
commonly used in everyday statistics. Moments of other sample moments exist
but are mostly of theoretical interest.

Theorem 7.14. If X1, . . ., Xn are i. i. d. random variables having moments
of order k, then all sample moments of order k have expectation. If the Xi have
moments of order 2k, then sample moments of order k have finite variance. In
particular,

E(Ak,n) = αk

and

var(Ak,n) =
α2k − α2

k

n
,

where αk is the k-th population moment.

We do not give formulas for the central moments because they are a mess.
Even the formula for the variance of the sample variance given (though not
proved) in Theorem 7 of Chapter 7 in Lindgren is already a mess. The formulas
for higher moments are worse. They are, however, a straightforward mess. The
proof below shows how the calculation would start. Continuing the calculation
without making any mistakes would produce an explicit formula (a symbolic
mathematics computer package like Maple or Mathematica would help a lot).
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Proof. The k-th sample moment Ak,n is the sample average of the random
variables Yi = Xk

i . Since

E(Yi) = E(Xk
i ) = αk (7.24a)

and

var(Yi) = E(Y 2
i ) − E(Yi)2

= E(X2k
i ) − E(Xk

i )2

= α2k − α2
k

(7.24b)

the formulas in the theorem follow by the usual rules for the moments of a
sample mean.

The k-th central sample moment

Mk,n =
1
n

n∑
i=1

(
Xi − Xn

)k

=
1
n

n∑
i=1

n − 1
n

Xi −
∑
j 6=i

1
n

Xj

k

is a k-th degree polynomial in the Xi. A single term of such a polynomial has
the form

a

n∏
i=1

Xmi
i

where the mi are nonnegative integers such that m1 + · · · + mn = k, and a is
some constant (a different constant for each term of the polynomial, although
the notation doesn’t indicate that). By independence

E

(
a

n∏
i=1

Xmi
i

)
= a

n∏
i=1

E(Xmi
i ) = a

n∏
i=1

αmi
. (7.25)

If k-th moments exist, then all of the moments αmi
in (7.25) exist because

mi ≤ k.
Similarly, M2

k,n is a polynomial of degree 2k in the Xi and hence has expec-
tation if population moments of order 2k exist. Then var(Mk,n) = E(M2

k,n) −
E(Mk,n)2 also exists.

7.3.4 Asymptotic Distributions

Often we cannot calculate the exact sampling distribution of a sample mo-
ment, but we can always get large sample properties of the distribution from
law of large numbers, the central limit theorem, and Slutsky’s theorem.

Theorem 7.15. Under i. i. d. sampling every sample moment converges in
probability to the corresponding population moment provided the population mo-
ment exists.



7.3. SAMPLING DISTRIBUTIONS OF SAMPLE MOMENTS 197

Proof. For ordinary moments, this was done as a homework problem (Prob-
lem 5-3 in Lindgren). If we let αk be the k-th ordinary population moment and
Ak,n be the corresponding ordinary sample moment for sample size n, then

Ak,n =
1
n

n∑
i=1

Xk
i

P−→ E(Xk
1 ) = αk.

Let µk be the k-th population central moment and Mk,n be the corresponding
sample central moment, then

Mk,n =
1
n

n∑
i=1

(Xi − Xn)k (7.26a)

=
1
n

n∑
i=1

k∑
j=0

(
k

j

)
(−1)j(Xn − µ)j(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)j 1

n

n∑
i=1

(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)jM ′

k−j,n (7.26b)

where we have introduced the notation

M ′
k,n =

1
n

n∑
i=1

(Xi − µ)k.

This is almost the same as (7.26a), the only difference being the replacement
of Xn by µ. The asymptotics of M ′

k,n are much simpler than those for Mk,n

because M ′
k,n is the sum of i. i. d. terms so the LLN and CLT apply directly to

it. In particular
M ′

k,n
P−→ E{(Xi − µ)k} = µk (7.27)

also
Xn − µ

P−→ 0 (7.28)

by the LLN and the continuous mapping theorem. Then (7.28) and Slutsky’s
theorem imply that every term of (7.26b) converges in probability to zero except
the j = 0 term, which is M ′

k,n. Thus (7.27) establishes

Mk,n
P−→ µk (7.29)

which is what was to be proved.

Theorem 7.16. Under i. i. d. sampling every sample k-th moment is asymp-
totically normal if population moments of order 2k exist. In particular,

√
n(Ak,n − αk) D−→ N (0, α2k − α2

k) (7.30)
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and

√
n(Mk,n − µk) D−→ N (0, µ2k − µ2

k − 2kµk−1µk+1 + k2µ2µ
2
k−1) (7.31)

For ordinary moments, this is a homework problem (Problem 7-17 in Lind-
gren). For central moments, the proof will have to wait until we have developed
multivariate convergence in distribution in the following chapter.

The special case k = 2 is worth noting.

Corollary 7.17. Suppose X1, X2, . . . are i. i. d. and have fourth moments.
Then √

n(Vn − σ2) D−→ N (0, µ4 − µ2
2)

where Vn is defined by (7.16).

This is the case Vn = M2,n of the theorem. The third and forth terms of the
asymptotic variance formula are zero because µ1 = 0 (Theorem 2.9 in Chapter 2
of these notes).

Example 7.3.6 (I. I. D. Normal).
Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the asymptotic distribution
of Xn, of Vn, of M3,n?

The CLT, of course, tells us the asymptotic distribution of Xn. Here we
just want to check that the k = 1 case of (7.30) agrees with the CLT. Note
that A1,n = Xn and α1 = µ, so the left hand side of (7.30) is the same as
the left hand side of the CLT (6.7). Also α2 − α2

1 = σ2 because this is just
var(X) = E(X2) − E(X)2 in different notation. So the k = 1 case of (7.30)
does agree with the CLT.

The asymptotic distribution of Vn = M2,n is given by the k = 2 case of (7.31)
or by Theorem 7.17. All we need to do is calculate the asymptotic variance
µ4 − µ2

2. The fourth central moment of the standard normal distribution is
given by the k = 2 case of equation (5) on p. 178 in Lindgren to be µ4 = 3.
A general normal random variable has the form X = µ + σZ, where Z is
standard normal, and this has fourth central moment 3σ4 by Problem 7-11.
Thus µ4 − µ2

2 = 3σ4 − σ4 = 2σ4, and finally we get

Vn ≈ N
(

σ2,
2σ4

n

)
Note this formula holds for i. i. d. normal data only. Other statistical models
can have rather different distributions (Problem 7-12).

The asymptotic distribution of M3,n is given by the k = 3 case of (7.31)

µ6 − µ2
3 − 2 · 3µ2µ4 + 32µ2 · µ2

2 = µ6 − µ2
3 − 6µ2µ4 + 9µ3

2

= µ6 − 6µ2µ4 + 9µ3
2

because odd central moments are zero (Theorem 2.10 of Chapter 2 of these
notes). We already know µ2 = σ2 and µ4 = 3σ2. Now we need to use the
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k = 3 case of equation (5) on p. 178 in Lindgren and Problem 7-11 to get to be
µ6 = 15σ2. Hence the asymptotic variance is

µ6 − 6µ2µ4 + 9µ3
2 = (15 − 6 · 1 · 3 + 9)σ6 = 6σ6

and

M3,n ≈ N
(

0,
6σ6

n

)
(the asymptotic mean is µ3 = 0).

7.3.5 The t Distribution

We now derive two other “brand name” distributions that arise as exact
sampling distributions of statistics derived from sampling normal populations.
The distributions are called the t and F distributions (whoever thought up those
names must have had a real imagination!)

Before we get to them, we want to generalize the notion of degrees of freedom
to noninteger values. This will be useful when we come to Bayesian inference.

Definition 7.3.1 (Chi-Square Distribution).
The chi-square with noninteger degrees of freedom ν > 0 is the Gam(ν

2 , 1
2 ) dis-

tribution.

This agrees with our previous definition when ν is an integer.

Definition 7.3.2 (Student’s t Distribution).
If Z and Y are independent random variables, Z is standard normal and Y is
chi2(ν), then the random variable

T =
Z√
Y/ν

is said to have a t-distribution with ν degrees of freedom, abbreviated t(ν). The
parameter ν can be any strictly positive real number.

The reason for the “Student” sometimes attached to the name of the distri-
bution is that the distribution was discovered and published by W. S. Gosset,
the chief statistician for the Guiness brewery in Ireland. The brewery had a
company policy that employees were not allowed to publish under their own
names, so Gosset used the pseudonym “Student” and this pseudonym is still
attached to the distribution by those who like eponyms.

Theorem 7.18. The p. d. f. of the t(ν) distribution is

fν(x) =
1√
νπ

· Γ(ν+1
2 )

Γ(ν
2 )

· 1(
1 + x2

ν

)(ν+1)/2
, −∞ < x < +∞ (7.32)
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The normalizing constant can also be written using a beta function because
Γ( 1

2 ) =
√

π. Thus
1√
νπ

· Γ(ν+1
2 )

Γ(ν
2 )

=
1√
ν
· 1
B(ν

2 , 1
2 )

The connection with the beta distribution is obscure but will be clear after we
finish this section and do Problem 7-3.

Proof. The joint distribution of Z and Y in the definition is

f(z, y) =
1√
2π

e−z2/2

(
1
2

)ν/2

Γ(ν/2)
yν/2−1e−y/2

Make the change of variables t = z/
√

y/ν and u = y, which has inverse trans-
formation

z = t
√

u/ν

y = u

and Jacobian ∣∣∣∣√u/ν t/2
√

uν
0 1

∣∣∣∣ =
√

u/ν

Thus the joint distribution of T and U given by the multivariate change of
variable formula is

f(t, u) =
1√
2π

e−(t
√

u/ν)2/2

(
1
2

)ν/2

Γ(ν/2)
uν/2−1e−u/2 ·

√
u/ν

=
1√
2π

(
1
2

)ν/2

Γ(ν/2)
1√
ν

uν/2−1/2 exp
{
−

(
1 +

t2

ν

)
u

2

}
Thought of as a function of u for fixed t, this is proportional to a gamma density
with shape parameter (ν + 1)/2 and inverse scale parameter 1

2 (1 + t2

ν ). Hence
we can use the “recognize the unnormalized density trick” (Section 2.5.7 in
Chapter 2 of these notes) to integrate out u getting the marginal of t

f(t) =
1√
2π

·
(

1
2

)ν/2

Γ(ν/2)
· 1√

ν
· Γ(ν+1

2 )

[12 (1 + t2

ν )](ν+1)/2

which, after changing t to x, simplifies to (7.32).

The formula for the density of the t distribution shows that it is symmetric
about zero. Hence the median is zero, and the mean is also zero when it exists.
In fact, all odd central moments are zero when they exist, because this is true
of any symmetric random variable (Theorem 2.10 of Chapter 2 of these notes).

The question of when moments exist is settled by the following theorem.
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Theorem 7.19. If X has a Student t distribution with ν degrees of freedom,
then moments of order k exist if and only if k < ν.

Proof. The density (7.32) is clearly bounded. Hence we only need to check
whether |x|kf(x) is integrable near infinity. Since the density is symmetric, we
only need to check one tail. For x near +∞

|x|kf(x) ≈ kxk−(ν+1)

for some constant k. From Lemma 2.39 of Chapter 2 of these notes the integral
is finite if and only if k − (ν + 1) < −1, which the same as ν > k.

We also want to know the variance of the t distribution.

Theorem 7.20. If ν > 2 and X ∼ t(ν), then

var(X) =
ν

ν − 2
.

The proof is a homework problem (7-5).
Another important property of the t distribution is given in the following

theorem, which we state without proof since it involves the Stirling approxima-
tion for the gamma function, which we have not developed, although we will
prove a weaker form of the second statement of the theorem in the next chapter
after we have developed some more tools.

Theorem 7.21. For every x ∈ R

fν(x) → φ(x), as ν → ∞,

where φ is the standard normal density, and

t(ν) D−→ N (0, 1), as ν → ∞.

Comparison of the t(1) density to the standard Cauchy density given by
equation (1) on p. 191 in Lindgren shows they are the same (it is obvious that
the part depending on x is the same, hence the normalizing constants must be
the same if both integrate to one, but in fact we already know that Γ(1

2 ) =
√

π
also shows the normalizing constants are equal). Thus t(1) is another name
for the standard Cauchy distribution. The theorem above says we can think
of t(∞) as another name for the standard normal distribution. Tables of the t
distribution, including Tables IIIa and IIIb in the Appendix of Lindgren include
the normal distribution labeled as ∞ degrees of freedom. Thus the t family of
distributions provides lots of examples between the best behaved distribution
of those we’ve studied, which is the normal, and the worst behaved, which is
the Cauchy. In particular, the t(2) distribution has a mean but no variance,
hence the sample mean of i. i. d. t(2) random variables obeys the LLN but not
the CLT. For ν > 2, The t(ν) distribution has both mean and variance, hence
the sample mean of i. i. d. t(ν) random variables obeys both LLN and CLT,
but the t(ν) distribution is much more heavy-tailed than other distributions we
have previously considered.
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7.3.6 The F Distribution

The letter F for the random variable having the “F distribution” was cho-
sen by Snedecor in honor of R. A. Fisher who more or less invented the F
distribution. Actually, he proposed a monotone transformation of this variable
Z = 1

2 log F , which has a better normal approximation.

Definition 7.3.3 (The F Distribution).
If Y1 and Y2 are independent random variables, and Yi ∼ chi2(νi), then the
random variable

U =
Y1/ν1

Y2/ν2

has an F distribution with ν1 numerator degrees of freedom and ν2 denominator
degrees of freedom, abbreviated F (ν1, ν2).

Theorem 7.22. If Y1 and Y2 are independent random variables, and Yi ∼
chi2(νi), then the random variable

W =
Y1

Y1 + Y2

has a Beta(ν1
2 , ν2

2 ) distribution.

Proof. Since we know that the chi-square distribution is a special case of the
gamma distribution chi2(k) = Gam(k

2 , 1
2 ), this is one of the conclusions of The-

orem 4.2 of Chapter 4 of these notes.

Corollary 7.23. If U ∼ F (ν1, ν2), then

W =
ν1
ν2

U

1 + ν1
ν2

U

has a Beta( ν1
2 , ν2

2 ) distribution.

Hence the F distribution is not really new, it is just a transformed beta
distribution. The only reason for defining the F distribution is convention.
Tables of the F distribution are common. There is one in the appendix of
Lindgren. Tables of the beta distribution are rare. So we mostly use F tables
rather than beta tables. When using a computer, the distinction doesn’t matter.
Mathematica and R have functions that evaluate either F or beta probabilities.

7.3.7 Sampling Distributions Related to the Normal

When the data are i. i. d. normal, the exact (not asymptotic) sampling
distributions are known for many quantities of interest.

Theorem 7.24. If X1, . . ., Xn are i. i. d. N (µ, σ2), then Xn and S2
n given by

(7.15) and (7.17) are independent random variables and

Xn ∼ N
(

µ,
σ2

n

)
(7.33a)

(n − 1)S2
n/σ2 ∼ chi2(n − 1) (7.33b)
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This is a combination of Theorems 9, 10, and 11 and the Corollary to The-
orem 10 in Section 7.5 of Lindgren.

Note that the theorem implicitly gives the distribution of S2
n, since chi2(n−1)

is just another name for Gam(n−1
2 , 1

2 ) and the second parameter of the gamma
is an upside down scale parameter, which implies

S2
n ∼ Gam

(
n − 1

2
,
n − 1
2σ2

)
(7.34)

The theorem is stated the way it is because chi-square tables are widely available
(including in the Appendix of Lindgren) and gamma tables are not. Hence
(7.33b) is a more useful description of the sampling distribution of S2

n than is
(7.34) when you are using tables (if you are using a computer, either works).

The main importance of the t distribution in statistics comes from the fol-
lowing corollary.

Corollary 7.25. If X1, . . ., Xn are i. i. d. N (µ, σ2), then

T =
Xn − µ

Sn/
√

n

has a t(n − 1) distribution.

Proof.

Z =
Xn − µ

σ/
√

n

is standard normal, and independent of Y = (n − 1)S2
n/σ2 which is chi2(n − 1)

by Theorem 7.24. Then Z/
√

Y/(n − 1) is T .

One use of the F distribution in statistics (not the most important) comes
from the following corollary.

Corollary 7.26. If X1, . . ., Xm are i. i. d. N (µX , σ2
X) and Y1, . . ., Yn are

i. i. d. N (µY , σ2
Y ), and all of the Xi are independent of all of the Yj, then

F =
S2

m,X

S2
n,Y

· σ2
Y

σ2
X

has an F (m − 1, n − 1) distribution, where S2
m,X is the sample variance of the

Xi and S2
n,Y is the sample variance of the Yi.

The proof is obvious from Theorem 7.24 and the definition of the F distri-
bution.

Example 7.3.7 (T Distribution).
Suppose X1, . . ., X20 are i. i. d. standard normal. Compare P (Xn > σ/

√
n)
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and P (Xn > Sn/
√

n). We know that

Xn

σ/
√

n
∼ N (0, 1)

Xn

Sn/
√

n
∼ t(19)

So we need to compare P (Z > 1) where Z is standard normal and P (T > 1)
where T ∼ t(19).

From Tables I and IIIa in Lindgren, these probabilities are .1587 and .165,
respectively. The following R commands do the same lookup

> 1 - pnorm(1)
[1] 0.1586553
> 1 - pt(1, 19)
[1] 0.1649384

Example 7.3.8 (F Distribution).
Suppose S2

1 and S2
2 are sample variances of two independent samples from two

normal populations with equal variances, and the sample sizes are n1 = 10 and
n2 = 20, respectively. What is P (S2

1 > 2S2
2)? We know that

S2
1

S2
2

∼ F (9, 19)

So the answer is P (Y > 2) where Y ∼ F (9, 19). Tables IVa and IVb in Lindgren
(his only tables of the F distribution) are useless for this problem. We must use
the computer. In R it’s simple

> 1 - pf(2, 9, 19)
[1] 0.0974132

For this example, we also show how to do it in Mathematica

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = FRatioDistribution[9, 19]

Out[2]= FRatioDistribution[9, 19]

In[3]:= F[x_] = CDF[dist, x]

19 19 9
Out[3]= BetaRegularized[--------, 1, --, -]

19 + 9 x 2 2

In[4]:= 1 - F[2]
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19 19 9
Out[4]= 1 - BetaRegularized[--, 1, --, -]

37 2 2

In[5]:= N[%]

Out[5]= 0.0974132

(The last command tells Mathematica to evaluate the immediately preceding
expression giving a numerical result). This can be done more concisely if less
intelligibly as

In[6]:= N[1 - CDF[FRatioDistribution[9, 19], 2]]

Out[6]= 0.0974132

7.4 Sampling Distributions of Sample Quantiles

The sample quantiles are the quantiles of the empirical distribution associ-
ated with the data vector X = (X1, . . . , Xn). They are mostly of interest only
for continuous population distributions. A sample quantile can always be taken
to be an order statistic by Theorem 7.5. Hence the exact sampling distributions
of the empirical quantiles are given by the exact sampling distributions for order
statistics, which are given by equation (5) on p. 217 of Lindgren

fX(k)(y) =
n!

(k − 1)!(n − k)!
F (y)k−1[1 − F (y)]n−kf(y) (7.35)

when the population distribution is continuous, (where, as usual, F is the c. d. f.
of the Xi and f is their p. d. f.). Although this is a nice formula, it is fairly
useless. We can’t calculate any moments or other useful quantities, except in the
special case where the Xi have a U(0, 1) distribution, so F (y) = y and f(y) = 1
for all y and we recognize

fX(k)(y) =
n!

(k − 1)!(n − k)!
yk−1(1 − y)n−k (7.36)

as a Beta(k, n − k + 1) distribution.
Much more useful is the asymptotic distribution of the sample quantiles

given by the following. We will delay the proof of the theorem until the fol-
lowing chapter, where we will develop the tools of multivariate convergence in
distribution used in the proof.

Theorem 7.27. Suppose X1, X2, . . . are continuous random variables that are
independent and identically distributed with density f that is nonzero at the p-th
quantile xp, and suppose

√
n

(
kn

n
− p

)
→ 0, as n → ∞, (7.37)
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then √
n
(
X(kn) − xp

) D−→ N
(

0,
p(1 − p)
f(xp)2

)
, as n → ∞. (7.38)

Or the sloppy version

X(kn) ≈ N
(

xp,
p(1 − p)
nf(xp)2

)
.

In particular, if we define kn = dnpe, then X(kn) is a sample p-th quantile
by Theorem 7.5. The reason for the extra generality, is that the theorem makes
it clear that X(kn+1) also has the same asymptotic distribution. Since X(kn) ≤
X(kn+1) always holds by definition of order statistics, this can only happen if

√
n
(
X(kn+1) − X(kn)

) P−→ 0.

Hence the average

X̃n =
X(kn) + X(kn+1)

2
which is the conventional definition of the sample median, has the same asymp-
totic normal distribution as either X(kn) or X(kn+1).

Corollary 7.28. Suppose X1, X2, . . . are continuous random variables that
are independent and identically distributed with density f that is nonzero the
population median m, then

√
n
(
X̃n − m

) D−→ N
(

0,
1

4f(xp)2

)
, as n → ∞.

This is just the theorem with xp = m and p = 1/2. The sloppy version is

X̃n ≈ N
(

m,
1

4nf(m)2

)
.

Example 7.4.1 (Median, Normal Population).
If X1, X2, . . . are i. i. d. N (µ, σ2), then the population median is µ by symmetry
and the p. d. f. at the median is

f(µ) =
1

σ
√

2π

Hence

X̃n ≈ N
(

µ,
πσ2

2n

)
.

or, more precisely,
√

n(X̃n − µ) D−→ N
(

0,
πσ2

2

)
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Problems

7-1. The median absolute deviation from the median (MAD) of a random vari-
able X with unique median m is the median of the random variable Y = |X−m|.
The MAD of the values x1, . . ., xn is the median of the values xi− x̃n, where x̃n

is the empirical median defined in Definition 7.1.4. This is much more widely
used than the “other MAD,” mean absolute deviation from the mean, discussed
in Lindgren.

(a) Show that for a symmetric continuous random variable with strictly posi-
tive p. d. f. the MAD is half the interquartile range. (The point of requiring
a strictly positive p. d. f. is that this makes all the quantiles unique and dis-
tinct. The phenomena illustrated in the middle and right panels of Figure
3-3 in Lindgren cannot occur.)

(b) Calculate the MAD for the standard normal distribution.

(c) Calculate the MAD for the data in Problem 7-4 in Lindgren.

7-2. Prove Lemma 7.10.

7-3. Show that if T ∼ t(ν), then T 2 ∼ F (1, ν).

7-4. Show that if X ∼ F (µ, ν) and ν > 2, then

E(X) =
ν

ν − 2

7-5. Prove Theorem 7.20.

7-6. Find the asymptotic distribution of the sample median of an i. i. d. sample
from the following distributions:

(a) Cauchy(µ, σ) with density fµ,σ given by

fµ,σ(x) =
σ

π(σ2 + [x − µ]2)
, −∞ < x < +∞

(b) The double exponential distribution (also called Laplace distribution) hav-
ing density

fµ,σ(x) =
1
2σ

e−|x−µ|/σ, −∞ < x < +∞

7-7. Suppose X1, X2, . . . are i. i. d. U(0, θ). As usual X(n) denotes the n-th
order statistic, which is the maximum of the Xi.

(a) Show that

X(n)
P−→ θ, as n → ∞.
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(b) Show that
n
(
θ − X(n)

) D−→ Exp(1/θ), as n → ∞.

Hints This is a rare problem (the only one of the kind we will meet in this
course) when we can’t use the LLN or the CLT to get convergence in probability
and convergence in distribution results (obvious because the problem is not
about Xn and the asymptotic distribution we seek isn’t normal). Thus we need
to derive convergence in distribution directly from the definition (Definition 6.1.1
in these notes or the definition on p. 135 in Lindgren).
Hint for Part (a): Show that the c. d. f. of X(n) converges to the c. d. f. of
the constant random variable θ. (Why does this do the job?)
Hint for Part (b): Define

Yn = n
(
θ − X(n)

)
(the random variable we’re trying to get an asymptotic distribution for). Derive
its c. d. f. FYn

(y). What you need to show is that

FYn
(y) → F (y), for all y

where F is the c. d. f. of the Exp(1/θ) distribution. The fact from calculus

lim
n→∞

(
1 +

x

n

)n

= ex

is useful in this.
You can derive the c. d. f. of Yn from the c. d. f. of X(n), which is given in

the first displayed equation (unnumbered) of Section 7.6 in Lindgren.

7-8. Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the probability that
|Xn − µ| > 2Sn/

√
n if n = 10?

7-9. Suppose X1, . . ., Xn are i. i. d. N (µ, σ2). What is the probability that
S2

n > 2σ2 if n = 10?

7-10. R and Mathematica and many textbooks use a different parameterization
of the gamma distribution. They write

f(x | α, β) =
1

βαΓ(α)
xα−1e−x/β (7.39)

rather than
f(x | α, λ) =

λα

Γ(α)
xα−1e−λx (7.40)

Clearly the two parameterizations have the same first parameter α, as the no-
tation suggests, and second parameters related by λ = 1/β.

(a) Show that β is the usual kind of scale parameter, that if X has p. d. f.
(7.39), then σX has p. d. f. f(x | α, σβ), where again the p. d. f. is defined
by (7.39).
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(b) Show that λ is an “upside down” scale parameter, that if X has p. d. f.
(7.40), then σX has p. d. f. f(x | α, λ/σ), where now the p. d. f. is defined
by (7.40).

7-11. Show if X has k-th central moment

µk = E{(X − µ)k}

where, as usual, µ = E(X), then Y = a + bX has k-th central moment bkµk.

7-12. What is the asymptotic distribution of the variance Vn of the empirical
distribution for an i. i. d. Exp(λ) sample?

7-13. Suppose X is standard normal (so µX = 0 and σX = 1).

(a) What is P (|X| > 2σX)?

In contrast, suppose X has a t(3) distribution (so µX = 0 and the variance σ2
X

is given by Problem 7-5)

(b) Now what is P (|X| > 2σX)?

7-14. With all the same assumptions as in Example 7.3.8, what are

(a) P (S2
2 > S2

1)?

(b) P (S2
2 > 2S2

1)?

7-15. Suppose X1, X2, X3, . . . is an i. i. d. sequence of random variables with
mean µ and variance σ2, and Xn is the sample mean. Show that

√
n

(
Xn − µ

)k P−→ 0

for any integer k > 1. (Hint: Use the CLT, the continuous mapping theorem
for convergence in distribution, and Slutsky’s theorem.)
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Appendix A

Greek Letters

Table A.1: Table of Greek Letters (Continued on following page.)

capital small
name letter letter pronunciation sound
alpha A α AL-fah short a
beta B β BAY-tah b
gamma Γ γ GAM-ah g
delta ∆ δ DEL-tah d
epsilon E ε EP-si-lon e
zeta Z ζ ZAY-tah z
eta H η AY-tah long a
theta Θ θ or ϑ THAY-thah soft th (as in thin)
iota I ι EYE-oh-tah i
kappa K κ KAP-ah k
lambda Λ λ LAM-dah l
mu M µ MYOO m
nu N ν NOO n
xi Ξ ξ KSEE x (as in box)
omicron O o OH-mi-kron o
pi Π π PIE p
rho R ρ RHOH rh1

sigma Σ σ SIG-mah s
tau T τ TAOW t
upsilon Υ υ UP-si-lon u

1The sound of the Greek letter ρ is not used in English. English words, like rhetoric and
rhinoceros that are descended from Greek words beginning with ρ have English pronunciations
beginning with an “r” sound rather than “rh” (though the spelling reminds us of the Greek
origin).
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Table A.2: Table of Greek Letters (Continued.)

capital small
name letter letter pronunciation sound
phi Φ φ or ϕ FIE f
chi X χ KIE guttural ch2

psi Ψ ψ PSY ps (as in stops)3

omega Ω ω oh-MEG-ah o

2The sound of the Greek letter χ is not used in English. It is heard in the German Buch
or Scottish loch. English words, like chemistry and chorus that are descended from Greek
words beginning with χ have English pronunciations beginning with a “k” sound rather than
“guttural ch” (though the spelling reminds us of the Greek origin).

3English words, like pseudonym and psychology that are descended from Greek words
beginning with ψ have English pronunciations beginning with an “s” sound rather than “ps”
(though the spelling reminds us of the Greek origin).



Appendix B

Summary of Brand-Name
Distributions

B.1 Discrete Distributions

B.1.1 The Discrete Uniform Distribution

The Abbreviation DU(S).

The Sample Space Any finite set S.

The Density

f(x) =
1
n

, x ∈ S,

where n = card(S).

Specialization The case in which the sample space consists of consecutive
integers S = {m,m + 1, . . . , n} is denoted DU(m,n).

Moments If X ∼ DU(1, n), then

E(X) =
n + 1

2

var(X) =
n2 − 1

12

B.1.2 The Binomial Distribution

The Abbreviation Bin(n, p)

The Sample Space The integers 0, . . ., n.

213
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The Parameter p such that 0 < p < 1.

The Density

f(x) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n.

Moments

E(X) = np

var(X) = np(1 − p)

Specialization
Ber(p) = Bin(1, p)

B.1.3 The Geometric Distribution, Type II

Note This section has changed. The roles of p and 1 − p have been reversed,
and the abbreviation Geo(p) is no longer used to refer to this distribution but
the distribution defined in Section B.1.8. All of the changes are to match up
with Chapter 6 in Lindgren.

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.8.

Relation Between the Types If X ∼ Geo(p), then Y = X − 1 has the
distribution defined in this section.

X is the number of trials before the first success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the first success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x, x = 0, 1, . . . .

Moments

E(X) =
1
p
− 1 =

1 − p

p

var(X) =
1 − p

p2
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B.1.4 The Poisson Distribution

The Abbreviation Poi(µ)

The Sample Space The integers 0, 1, . . . .

The Parameter µ such that µ > 0.

The Density

f(x) =
µx

x!
e−µ, x = 0, 1, . . . .

Moments

E(X) = µ

var(X) = µ

B.1.5 The Bernoulli Distribution

The Abbreviation Ber(p)

The Sample Space The integers 0 and 1.

The Parameter p such that 0 < p < 1.

The Density

f(x) =

{
p, x = 1
1 − p x = 0

Moments

E(X) = p

var(X) = p(1 − p)

Generalization
Ber(p) = Bin(1, p)

B.1.6 The Negative Binomial Distribution, Type I

The Abbreviation NegBin(k, p)

The Sample Space The integers k, k + 1, . . . .

The Parameter p such that 0 < p < 1.
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The Density

f(x) =
(

x − 1
k − 1

)
pk(1 − p)x−k, x = k, k + 1, . . . .

Moments

E(X) =
k

p

var(X) =
k(1 − p)

p2

Specialization
Geo(p) = NegBin(1, p)

B.1.7 The Negative Binomial Distribution, Type II

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.6.

Relation Between the Types If X ∼ NegBin(k, p), then Y = X − k has
the distribution defined in this section.

X is the number of trials before the k-th success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the k-th success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density

f(x) =
(

x − 1
k − 1

)
pk(1 − p)x, x = 0, 1, . . . .

Moments

E(X) =
k

p
− k =

k(1 − p)
p

var(X) =
k(1 − p)

p2

B.1.8 The Geometric Distribution, Type I

The Abbreviation Geo(p)

The Sample Space The integers 1, 2, . . . .
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The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x−1, x = 1, 2, . . . .

Moments

E(X) =
1
p

var(X) =
1 − p

p2

Generalization
Geo(p) = NegBin(1, p)

B.2 Continuous Distributions

B.2.1 The Uniform Distribution

The Abbreviation U(S).

The Sample Space Any subset S of Rd.

The Density

f(x) =
1
c
, x ∈ S,

where

c = m(S) =
∫

S

dx

is the measure of S (length in R1, area in R2, volume in R3, and so forth).

Specialization The case having S = (a, b) in R1 and density

f(x) =
1

b − a
, a < x < b

is denoted U(a, b).

Moments If X ∼ U(a, b), then

E(X) =
a + b

2

var(X) =
(b − a)2

12
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B.2.2 The Exponential Distribution

The Abbreviation Exp(λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameter λ such that λ > 0.

The Density
f(x) = λe−λx, x > 0.

Moments

E(X) =
1
λ

var(X) =
1
λ2

Generalization
Exp(λ) = Gam(1, λ)

B.2.3 The Gamma Distribution

The Abbreviation Gam(α, λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameters α and λ such that α > 0 and λ > 0.

The Density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0.

where Γ(α) is the gamma function (Section B.3.1 below).

Moments

E(X) =
α

λ

var(X) =
α

λ2

Specialization

Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
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B.2.4 The Beta Distribution

The Abbreviation Beta(s, t).

The Sample Space The interval (0, 1) of the real numbers.

The Parameters s and t such that s > 0 and t > 0.

The Density

f(x) =
1

B(s, t)
xs−1(1 − x)t−1 0 < x < 1.

where B(s, t) is the beta function defined by

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

(B.1)

Moments

E(X) =
s

s + t

var(X) =
st

(s + t)2(s + t + 1)

B.2.5 The Normal Distribution

The Abbreviation N (µ, σ2).

The Sample Space The real line R.

The Parameters µ and σ2 such that σ2 > 0.

The Density

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)
, x ∈ R.

Moments

E(X) = µ

var(X) = σ2

µ4 = 3σ4

B.2.6 The Chi-Square Distribution

The Abbreviation chi2(k).
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The Sample Space The interval (0,∞) of the real numbers.

The Parameter A positive integer k.

The Density

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0.

Moments

E(X) = k

var(X) = 2k

Generalization
chi2(k) = Gam

(
k
2 , 1

2

)
B.2.7 The Cauchy Distribution

The Abbreviation Cauchy(µ, σ).

The Sample Space The real line R.

The Parameters µ and σ such that σ > 0.

The Density

f(x) =
1
π
· σ

σ2 + (x − µ)2
, x ∈ R.

Moments None: E(|X|) = ∞.

B.3 Special Functions

B.3.1 The Gamma Function

The Definition

Γ(α) =
∫ ∞

0

xα−1e−x dx, α > 0 (B.2)

The Recursion Relation

Γ(α + 1) = αΓ(α) (B.3)
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Known Values
Γ(1) = 1

and hence using the recursion relation

Γ(n + 1) = n!

for any nonnegative integer n.
Also

Γ( 1
2 ) =

√
π

and hence using the recursion relation

Γ( 3
2 ) = 1

2

√
π

Γ( 5
2 ) = 3

2 · 1
2

√
π

Γ( 7
2 ) = 5

2 · 3
2 · 1

2

√
π

and so forth.

B.3.2 The Beta Function

The function B(s, t) defined by (B.1).

B.4 Discrete Multivariate Distributions

B.4.1 The Multinomial Distribution

The Abbreviation Multik(n,p) or Multi(n,p) if the dimension k is clear
from context.

The Sample Space

S = {y ∈ Nk : y1 + · · · yk = n }

where N denotes the “natural numbers” 0, 1, 2, . . . .

The Parameter p = (p1, . . . , pk) such that pi ≥ 0 for all i and
∑

i pi = 1.

The Density

f(y) =
(

n

y1, . . . , yk

) k∏
j=1

p
yj

j , y ∈ S
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Moments

E(Y) = np

var(Y) = M

where M is the k × k matrix with elements

mij =

{
npi(1 − pi), i = j

−npipj i 6= j

Specialization The special case n = 1 is called the multivariate Bernoulli
distribution

Berk(p) = Bink(1,p)

but for once we will not spell out the details with a special section for the
multivariate Bernoulli. Just take n = 1 in this section.

Marginal Distributions Distributions obtained by collapsing categories are
again multinomial (Section 5.4.5 in these notes).

In particular, if Y ∼ Multik(n,p), then

(Y1, . . . , Yj , Yj+1 + · · · + Yk) ∼ Multij+1(n,q) (B.4)

where

qi = pi, i ≤ j

qj+1 = pj+1 + · · · pk

Because the random vector in (B.4) is degenerate, this equation also gives
implicitly the marginal distribution of Y1, . . ., Yj

f(y1, . . . , yj)

=
(

n

y1, . . . , yj , n − y1 − · · · − yj

)
py1
1 · · · pyj

j (1 − p1 − · · · − pj)n−y1−···−yj

Univariate Marginal Distributions If Y ∼ Multi(n,p), then

Yi ∼ Bin(n, pi).

Conditional Distributions If Y ∼ Multik(n,p), then

(Y1, . . . , Yj) | (Yj+1, . . . , Yk) ∼ Multij(n − Yj+1 − · · · − Yk,q),

where
qi =

pi

p1 + · · · + pj
, i = 1, . . . , j.
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B.5 Continuous Multivariate Distributions

B.5.1 The Uniform Distribution

The uniform distribution defined in Section B.2.1 actually made no mention
of dimension. If the set S on which the distribution is defined lies in Rn, then
this is a multivariate distribution.

Conditional Distributions Every conditional distribution of a multivariate
uniform distribution is uniform.

Marginal Distributions No regularity. Depends on the particular distribu-
tion. Marginals of the uniform distribution on a rectangle with sides parallel
to the coordinate axes are uniform. Marginals of the uniform distribution on a
disk or triangle are not uniform.

B.5.2 The Standard Normal Distribution

The distribution of a random vector Z = (Z1, . . . , Zk) with the Zi i. i. d.
standard normal.

Moments

E(Z) = 0
var(Z) = I,

where I denotes the k × k identity matrix.

B.5.3 The Multivariate Normal Distribution

The distribution of a random vector X = a + BZ, where Z is multivariate
standard normal.

Moments

E(X) = µ = a

var(X) = M = BB′

The Abbreviation N k(µ,M) or N (µ,M) if the dimension k is clear from
context.

The Sample Space If M is positive definite, the sample space is Rk.
Otherwise, X is concentrated on the intersection of hyperplanes determined

by null eigenvectors of M

S = {x ∈ Rk : z′x = z′µ whenever Mz = 0 }
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The Parameters The mean vector µ and variance matrix M.

The Density Only exists if the distribution is nondegenerate (M is positive
definite). Then

fX(x) =
1

(2π)n/2 det(M)1/2
exp

(− 1
2 (x − µ)′M−1(x − µ)

)
, x ∈ Rk

Marginal Distributions All are normal. If

X =
(
X1

X2

)
is a partitioned random vector with (partitioned) mean vector

E(X) = µ =
(

µ1

µ2

)
and (partitioned) variance matrix

var(X) = M =
(
M11 M12

M21 M22

)
and X ∼ N (µ,M), then

X1 ∼ N (µ1,M11).

Conditional Distributions All are normal. If X is as in the preceding sec-
tion and X2 is nondegenerate, then the conditional distribution of X1 given X2

is normal with

E(X1 | X2) = µ1 + M12M−1
22 (X2 − µ2)

var(X1 | X2) = M11 − M12M−1
22 M21

If X2 is degenerate so M22 is not invertible, then the conditional distribution
of X1 given X2 is still normal and the same formulas work if M−1

22 is replaced
by a generalized inverse.

B.5.4 The Bivariate Normal Distribution

The special case k = 2 of the preceeding section.

The Density

f(x, y) =
1

2πσXσY

√
1 − ρ2

×

exp
(
− 1

2(1 − ρ2)

[
(x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

])
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Marginal Distributions
Y ∼ N (µY , σ2

Y )

Conditional Distributions The conditional distribution of X given Y is
normal with

E(X | Y ) = µX + ρ
σX

σY
(Y − µY )

var(X | Y ) = σ2
X(1 − ρ2)

where ρ = cor(X,Y ).
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Appendix C

Addition Rules for
Distributions

“Addition rules” for distributions are rules of the form: if X1, . . ., Xk are
independent with some specified distributions, then X1 + · · · + Xk has some
other specified distribution.

Bernoulli If X1, . . ., Xk are i. i. d. Ber(p), then

X1 + · · · + Xk ∼ Bin(k, p). (C.1)

• All the Bernoulli distributions must have the same success probability p.

Binomial If X1, . . ., Xk are independent with Xi ∼ Bin(ni, p), then

X1 + · · · + Xk ∼ Bin(n1 + · · · + nk, p). (C.2)

• All the binomial distributions must have the same success probability p.

• (C.1) is the special case of (C.2) obtained by setting n1 = · · · = nk = 1.

Geometric If X1, . . ., Xk are i. i. d. Geo(p), then

X1 + · · · + Xk ∼ NegBin(k, p). (C.3)

• All the geometric distributions must have the same success probability p.

Negative Binomial If X1, . . ., Xk are independent with Xi ∼ NegBin(ni, p),
then

X1 + · · · + Xk ∼ NegBin(n1 + · · · + nk, p). (C.4)

• All the negative binomial distributions must have the same success prob-
ability p.

• (C.3) is the special case of (C.4) obtained by setting n1 = · · · = nk = 1.
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Poisson If X1, . . ., Xk are independent with Xi ∼ Poi(µi), then

X1 + · · · + Xk ∼ Poi(µ1 + · · · + µk). (C.5)

Exponential If X1, . . ., Xk are i. i. d. Exp(λ), then

X1 + · · · + Xk ∼ Gam(n, λ). (C.6)

• All the exponential distributions must have the same rate parameter λ.

Gamma If X1, . . ., Xk are independent with Xi ∼ Gam(αi, λ), then

X1 + · · · + Xk ∼ Gam(α1 + · · · + αk, λ). (C.7)

• All the gamma distributions must have the same rate parameter λ.

• (C.6) is the special case of (C.7) obtained by setting α1 = · · · = αk = 1.

Chi-Square If X1, . . ., Xk are independent with Xi ∼ chi2(ni), then

X1 + · · · + Xk ∼ chi2(n1 + · · · + nk). (C.8)

• (C.8) is the special case of (C.7) obtained by setting

αi = ni/2 and λi = 1/2, i = 1, . . . , k.

Normal If X1, . . ., Xk are independent with Xi ∼ N (µi, σ
2
i ), then

X1 + · · · + Xk ∼ N (µ1 + · · · + µk, σ2
1 + · · · + σ2

k). (C.9)

Linear Combination of Normals If X1, . . ., Xk are independent with Xi ∼
N (µi, σ

2
i ) and a1, . . ., ak are constants, then

k∑
i=1

aiXi ∼ N
(

k∑
i=1

aiµi,
k∑

i=1

a2
i σ

2
i

)
. (C.10)

• (C.9) is the special case of (C.10) obtained by setting a1 = · · · = ak = 1.

Cauchy If X1, . . ., Xk are independent with Xi ∼ Cauchy(µ, σ), then

X1 + · · · + Xk ∼ Cauchy(nµ, nσ). (C.11)



Appendix D

Relations Among Brand
Name Distributions

D.1 Special Cases

First there are the special cases, which were also noted in Appendix B.

Ber(p) = Bin(1, p)
Geo(p) = NegBin(1, p)
Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
The main point of this appendix are the relationships that involve more

theoretical issues.

D.2 Relations Involving Bernoulli Sequences

Suppose X1, X2, . . . are i. i. d. Ber(p) random variables.
If n is a positive integer and

Y = X1 + · · · + Xn

is the number of “successes” in the n Bernoulli trials, then

Y ∼ Bin(n, p).

On the other hand, if y is positive integer and N is the trial at which the
y-th success occurs, that is the random number N such that

X1 + · · · + XN = y

X1 + · · · + Xk < y, k < N,

then
N ∼ NegBin(y, p).
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D.3 Relations Involving Poisson Processes

In a one-dimensional homogeneous Poisson process with rate parameter λ,
the counts are Poisson and the waiting and interarrival times are exponential.
Specifically, the number of points (arrivals) in an interval of length t has the
Poi(λt) distribution, and the waiting times and interarrival times are indepen-
dent and indentically Exp(λ) distributed.

Even more specifically, let X1, X2, . . . be i. i. d. Exp(λ) random variables.
Take these to be the waiting and interarrival times of a Poisson process. This
means the arrival times themselves are

Tk =
k∑

i=1

Xi

Note that
0 < T1 < T2 < · · ·

and
Xi = Ti − Ti−1, i > 1

so these are the interarrival times and X1 = T1 is the waiting time until the
first arrival.

The characteristic property of the Poisson process, that counts have the
Poisson distribution, says the number of points in the interval (0, t), that is, the
number of Ti such that Ti < t, has the Poi(λt) distribution.

D.4 Normal and Chi-Square

If Z1, Z2, . . . are i. i. d. N (0, 1), then

Z2
1 + . . . Z2

n ∼ chi2(n).



Appendix E

Eigenvalues and
Eigenvectors

E.1 Orthogonal and Orthonormal Vectors

If x and y are vectors of the same dimension, we say they are orthogonal
if x′y = 0. Since the transpose of a matrix product is the product of the
transposes in reverse order, an equivalent condition is y′x = 0. Orthogonality
is the n-dimensional generalization of perpendicularity. In a sense, it says that
two vectors make a right angle.

The length or norm of a vector x = (x1, . . . , xn) is defined to be

‖x‖ =
√

x′x =

√√√√ n∑
i=1

x2
i .

Squaring both sides gives

‖x‖2 =
n∑

i=1

x2
i ,

which is one version of the Pythagorean theorem, as it appears in analytic
geometry.

Orthogonal vectors give another generalization of the Pythagorean theorem.
We say a set of vectors {x1, . . . ,xk} is orthogonal if

x′
ixj = 0, i 6= j. (E.1)
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Then

‖x1 + · · · + xk‖2 = (x1 + · · · + xk)′(x1 + · · · + xk)

=
k∑

i=1

k∑
j=1

x′
ixj

=
k∑

i=1

x′
ixi

=
k∑

i=1

‖xi‖2

because, by definition of orthogonality, all terms in the second line with i 6= j
are zero.

We say an orthogonal set of vectors is orthonormal if

x′
ixi = 1. (E.2)

That is, a set of vectors {x1, . . . ,xk} is orthonormal if it satisfies both (E.1) and
(E.2).

An orthonormal set is automatically linearly independent because if

k∑
i=1

cixi = 0,

then

0 = x′
j

(
k∑

i=1

cixi

)
= cjx′

jxj = cj

holds for all j. Hence the only linear combination that is zero is the one with
all coefficients zero, which is the definition of linear independence.

Being linearly independent, an orthonormal set is always a basis for whatever
subspace it spans. If we are working in n-dimensional space, and there are n
vectors in the orthonormal set, then they make up a basis for the whole space.
If there are k < n vectors in the set, then they make up a basis for some proper
subspace.

It is always possible to choose an orthogonal basis for any vector space or
subspace. One way to do this is the Gram-Schmidt orthogonalization procedure,
which converts an arbitrary basis y1, . . ., yn to an orthonormal basis x1, . . .,
xn as follows. First let

x1 =
y1

‖y1‖ .

Then define the xi in order. After x1, . . ., xk−1 have been defined, let

zk = yk −
k−1∑
i=1

xix′
iy
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and
xk =

zk

‖zk‖ .

It is easily verified that this does produce an orthonormal set, and it is only
slightly harder to prove that none of the xi are zero because that would imply
linear dependence of the yi.

E.2 Eigenvalues and Eigenvectors

If A is any matrix, we say that λ is a right eigenvalue corresponding to a
right eigenvector x if

Ax = λx

Left eigenvalues and eigenvectors are defined analogously with “left multiplica-
tion” x′A = λx′, which is equivalent to A′x = λx. So the right eigenvalues
and eigenvectors of A′ are the left eigenvalues and eigenvectors of A. When
A is symmetric (A′ = A), the “left” and “right” concepts are the same and
the adjectives “left” and “right” are unnecessary. Fortunately, this is the most
interesting case, and the only one in which we will be interested. From now on
we discuss only eigenvalues and eigenvectors of symmetric matrices.

There are three important facts about eigenvalues and eigenvectors. Two
elementary and one very deep. Here’s the first (one of the elementary facts).

Lemma E.1. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

This means that if
Axi = λixi (E.3)

then
λi 6= λj implies x′

ixj = 0.

Proof. Suppose λi 6= λj , then at least one of the two is not zero, say λj . Then

x′
ixj =

x′
iAxj

λj
=

(Axi)′xj

λj
=

λix′
ixj

λj
=

λi

λj
· x′

ixj

and since λi 6= λj the only way this can happen is if x′
ixj = 0.

Here’s the second important fact (also elementary).

Lemma E.2. Every linear combination of eigenvectors corresponding to the
same eigenvalue is another eigenvector corresponding to that eigenvalue.

This means that if
Axi = λxi

then

A

(
k∑

i=1

cixi

)
= λ

(
k∑

i=1

cixi

)
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Proof. This is just linearity of matrix multiplication.

The second property means that all the eigenvectors corresponding to one
eigenvalue constitute a subspace. If the dimension of that subspace is k, then
it is possible to choose an orthonormal basis of k vectors that span the sub-
space. Since the first property of eigenvalues and eigenvectors says that (E.1)
is also satisfied by eigenvectors corresponding to different eigenvalues, all of the
eigenvectors chosen this way form an orthonormal set.

Thus our orthonormal set of eigenvectors spans a subspace of dimension m
which contains all eigenvectors of the matrix in question. The question then
arises whether this set is complete, that is, whether it is a basis for the whole
space, or in symbols whether m = n, where n is the dimension of the whole
space (A is an n × n matrix and the xi are vectors of dimension n). It turns
out that the set is always complete, and this is the third important fact about
eigenvalues and eigenvectors.

Lemma E.3. Every real symmetric matrix has an orthonormal set of eigenvec-
tors that form a basis for the space.

In contrast to the first two facts, this is deep, and we shall not say anything
about its proof, other than that about half of the typical linear algebra book is
given over to building up to the proof of this one fact.

The “third important fact” says that any vector can be written as a linear
combination of eigenvectors

y =
n∑

i=1

cixi

and this allows a very simple description of the action of the linear operator
described by the matrix

Ay =
n∑

i=1

ciAxi =
n∑

i=1

ciλixi (E.4)

So this says that when we use an orthonormal eigenvector basis, if y has the
representation (c1, . . . , cn), then Ay has the representation (c1λ1, . . . , cnλn).
Let D be the representation in the orthonormal eigenvector basis of the linear
operator represented by A in the standard basis. Then our analysis above says
the i-the element of Dc is ciλi, that is,

n∑
j=1

dijcj = λici.

In order for this to hold for all real numbers ci, it must be that D is diagonal

dii = λi

dij = 0, i 6= j
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In short, using the orthonormal eigenvector basis diagonalizes the linear opera-
tor represented by the matrix in question.

There is another way to describe this same fact without mentioning bases.
Many people find it a simpler description, though its relation to eigenvalues and
eigenvectors is hidden in the notation, no longer immediately apparent. Let O
denote the matrix whose columns are the orthonormal eigenvector basis (x1,
. . ., xn), that is, if oij are the elements of O, then

xi = (o1i, . . . , oni).

Now (E.1) and (E.2) can be combined as one matrix equation

O′O = I (E.5)

(where, as usual, I is the n × n identity matrix). A matrix O satisfying this
property is said to be orthogonal. Another way to read (E.5) is that it says
O′ = O−1 (an orthogonal matrix is one whose inverse is its transpose). The
fact that inverses are two-sided (AA−1 = A−1A = I for any invertible matrix
A) implies that OO′ = I as well.

Furthermore, the eigenvalue-eigenvector equation (E.3) can be written out
with explicit subscripts and summations as

n∑
j=1

aijojk = λkoik = oikdkk =
n∑

j=1

oijdjk

(where D is the the diagonal matrix with eigenvalues on the diagonal defined
above). Going back to matrix notation gives

AO = OD (E.6)

The two equations (E.3) and (E.6) may not look much alike, but as we have
just seen, they say exactly the same thing in different notation. Using the
orthogonality property (O′ = O−1) we can rewrite (E.6) in two different ways.

Theorem E.4 (Spectral Decomposition). Any real symmetric matrix A
can be written

A = ODO′ (E.7)

where D is diagonal and O is orthogonal.
Conversely, for any real symmetric matrix A there exists an orthogonal ma-

trix O such that
D = O′AO

is diagonal.

(The reason for the name of the theorem is that the set of eigenvalues is
sometimes called the spectrum of A). The spectral decomposition theorem says
nothing about eigenvalues and eigenvectors, but we know from the discussion
above that the diagonal elements of D are the eigenvalues of A, and the columns
of O are the corresponding eigenvectors.
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E.3 Positive Definite Matrices

Using the spectral theorem, we can prove several interesting things about
positive definite matrices.

Corollary E.5. A real symmetric matrix A is positive semi-definite if and only
if its spectrum is nonnegative. A real symmetric matrix A is positive definite if
and only if its spectrum is strictly positive.

Proof. First suppose that A is positive semi-definite with spectral decomposi-
tion (E.7). Let ei denote the vector having elements that are all zero except the
i-th, which is one, and define w = Oei, so

0 ≤ w′Aw = e′iO
′ODO′Oei = e′iDei = dii (E.8)

using O′O = I. Hence the spectrum is nonnegative.
Conversely, suppose the dii are nonnegative. Then for any vector w define

z = O′w, so
w′Aw = w′ODO′w = z′Dz =

∑
i
diiz

2
i ≥ 0

Hence A is positive semi-definite.
The assertions about positive definiteness are proved in almost the same

way. Suppose that A is positive definite. Since ei is nonzero, w in (E.8) is also
nonzero because ei = O′w would be zero (and it isn’t) if w were zero. Thus the
inequality in (E.8) is actually strict. Hence the spectrum of is strictly positive.

Conversely, suppose the dii are strictly positive. Then for any nonzero vector
w define z = O′w as before, and again note that z is nonzero because w = Oz
and w is nonzero. Thus w′Aw = z′Dz > 0, and hence A is positive definite.

Corollary E.6. A positive semi-definite matrix is invertible if and only if it is
positive definite.

Proof. It is easily verified that the product of diagonal matrices is diagonal and
the diagonal elements of the product are the products of the diagonal elements
of the multiplicands. Thus a diagonal matrix D is invertible if and only if all its
diagonal elements dii are nonzero, in which case D−1 is diagonal with diagonal
elements 1/dii.

Since O and O′ in the spectral decomposition (E.7) are invertible, A is
invertible if and only if D is, hence if and only if its spectrum is nonzero, in
which case

A−1 = OD−1O′.

By the preceding corollary the spectrum of a positive semi-definite matrix is
nonnegative, hence nonzero if and only if strictly positive, which (again by the
preceding corollary) occurs if and only if the matrix is positive definite.

Corollary E.7. Every real symmetric positive semi-definite matrix A has a
symmetric square root

A1/2 = OD1/2O′ (E.9)
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where (E.7) is the spectral decomposition of A and where D1/2 is defined to be
the diagonal matrix whose diagonal elements are

√
dii, where dii are the diagonal

elements of D.
Moreover, A1/2 is positive definite if and only if A is positive definite.

Note that by Corollary E.5 all of the diagonal elements of D are nonnegative
and hence have real square roots.

Proof.

A1/2A1/2 = OD1/2O′OD1/2O′ = OD1/2D1/2O′ = ODO′ = A

because O′O = I and D1/2D1/2 = D.
From Corollary E.5 we know that A is positive definite if and only if all the

dii are strictly positive. Since (E.9) is the spectral decomposition of A1/2, we
see that A1/2 is positive definite if and only if all the

√
dii are strictly positive.

Clearly dii > 0 if and only if
√

dii > 0.
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Appendix F

Normal Approximations for
Distributions

F.1 Binomial Distribution

The Bin(n, p) distribution is approximately normal with mean np and vari-
ance np(1 − p) if n is large.

F.2 Negative Binomial Distribution

The NegBin(n, p) distribution is approximately normal with mean n/p and
variance n(1 − p)/p2 if n is large.

F.3 Poisson Distribution

The Poi(µ) distribution is approximately normal with mean µ and variance
µ if µ is large.

F.4 Gamma Distribution

The Gam(α, λ) distribution is approximately normal with mean α/λ and
variance α/λ2 if α is large.

F.5 Chi-Square Distribution

The chi2(n) distribution is approximately normal with mean n and variance
2n if n is large.
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Chapter 8

Convergence Concepts
Continued

8.1 Multivariate Convergence Concepts

When we covered convergence concepts before (Chapter 6 of these notes), we
only did the scalar case because of the semester system. Logically, this chapter
goes with Chapter 6, but if we had done it then, students transferring into this
section this semester would be lost because the material isn’t in Lindgren. Then
we only covered convergence in probability and in distribution of scalar random
variables. Now we want to cover the same ground but this time for random
vectors. It will also be a good review.

8.1.1 Convergence in Probability to a Constant

Recall that convergence in probability to a constant has a definition (Def-
inition 6.1.2 in Chapter 6 of these notes), but we never used the definition.
Instead we obtained all of our convergence in probability results, either directly
or indirectly from the law of large numbers (LLN).

Now we want to discuss convergence of random vectors, which we can also
call multivariate convergence in probability to a constant. It turns out, that the
multivariate concept is a trivial generalization of the univariate concept.

Definition 8.1.1 (Convergence in Probability to a Constant).
A sequence of random vectors

Xn = (Xn1, . . . , Xnm), n = 1, 2, . . .

converges in probability to a constant vector

a = (a1, . . . , am)

written
Xn

P−→ a, as n → ∞

211
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if the corresponding components converge in probability, that is, if

Xni
P−→ ai, as n → ∞

for each i.

The reader should be warned that this isn’t the usual definition, but it is
equivalent to the usual definition (we have defined the usual concept but not in
the usual way).

8.1.2 The Law of Large Numbers

The componentwise nature of convergence in probability to a constant makes
the multivariate law of large numbers a trivial extension of the univariate law
(Theorem 6.3 in Chapter 6 of these notes).

Theorem 8.1 (Multivariate Law of Large Numbers). If X1, X2, . . . is
a sequence of independent, identically distributed random vectors having mean
vector µ, and

Xn =
1
n

n∑
i=1

Xi

is the sample mean for sample size n, then

Xn
P−→ µ, as n → ∞. (8.1)

The only requirement is that the mean µ exist. No other property of the
distribution of the Xi matters.

We will use the abbreviation LLN for either theorem. The multivariate
theorem is only interesting for giving us a notational shorthand that allows us
to write the law of large numbers for all the components at once. It has no
mathematical content over and above the univariate LLN’s for each component.
Convergence in probability (to a constant) of random vectors says no more
than the statement that each component converges. In the case of the LLN,
each statement about a component is just the univariate LLN.

8.1.3 Convergence in Distribution

Convergence in distribution is different. Example 8.1.1 below will show that,
unlike convergence in probability to a constant, convergence in distribution for
random vectors is not just convergence in distribution of each component.

Univariate convergence in distribution has a definition (Theorem 6.1.1 of
these notes), but the definition was not used except in Problem 7-7 in Chap-
ter 7 of these notes, which is an odd counterexample to the usual behavior of
statistical estimators.

Instead we obtained all of our convergence in distribution results, either
directly or indirectly, from the central limit theorem (CLT), which is Theo-
rem 6.2 of Chapter 6 of these notes. Multivariate convergence in distribution
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has a definition is much the same, we will obtain almost all such results directly
or indirectly from the (multivariate) CLT. Hence here we define multivariate
convergence in distribution in terms of univariate convergence in distribution.

Definition 8.1.2 (Convergence in Distribution).
A sequence of random vectors X1, X2, . . . converges in distribution to a random
vector X, written

Xn
D−→ X, as n → ∞.

if

t′Xn
D−→ t′X, for all constant vectors t. (8.2)

Again, the reader should be warned that this isn’t the usual definition, but
it is equivalent to the usual definition (we have defined the usual concept but
not in the usual way, the equivalence of our definition and the usual definition
is called the Cramér-Wold Theorem).

This shows us in what sense the notion of multivariate convergence in dis-
tribution is determined by the univariate notion. The multivariate convergence
in distribution Xn

D−→ X happens if and only if the univariate convergence in
distribution t′Xn

D−→ t′X happens for every constant vector t. The following
example shows that convergence in distribution of each component of a random
vector is not enough to imply convergence of the vector itself.

Example 8.1.1.
Let Xn = (Un, Vn) be defined as follows. Define Un to be standard normal for
all n. Then trivially Un

D−→ N (0, 1). Define Vn = (−1)nUn for all n. Then Vn

is also standard normal for all n, and hence trivially Vn
D−→ N (0, 1). Thus both

components of Xn converge in distribution. But if t′ =
(
1 1

)
, then

t′Xn = Un + Vn =

{
2Un, n even
0, n odd

This clearly does not converge in distribution, since the even terms all have one
distribution, N (0, 4) (and hence trivially converge to that distribution), and the
odd terms all have another, the distribution concentrated at zero (and hence
trivially converge to that distribution).

Thus, unlike convergence in probability to a constant, multivariate conver-
gence in distribution entails more than univariate convergence of each com-
ponent. Another way to say the same thing is that marginal convergence in
distribution does not imply joint convergence in distribution. Of course, the
converse does hold: joint convergence in distribution does imply marginal con-
vergence in distribution (just take a vector t in the definition having all but one
component equal to zero).
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8.1.4 The Central Limit Theorem

We can now derive the multivariate central limit theorem from the univariate
theorem (Theorem 6.2 of Chapter 6 of these notes).

Theorem 8.2 (Multivariate Central Limit Theorem). If X1, X2, . . . is
a sequence of independent, identically distributed random vectors having mean
vector µ and variance matrix M and

Xn =
1
n

n∑
i=1

Xi

is the sample mean for sample size n, then
√

n
(
Xn − µ

) D−→ N (0,M). (8.3)

The only requirement is that second moments (the elements of M) exist (this
implies first moments also exist by Theorem 2.44 of Chapter 2 of these notes).
No other property of the distribution of the Xi matters.

We often write the univariate CLT as

Xn ≈ N
(

µ,
σ2

n

)
(8.4)

and the multivariate CLT as

Xn ≈ N
(

µ,
M
n

)
(8.5)

These are simpler to interpret (though less precise and harder to use theoret-
ically). We often say that the right hand side of one of these equations is the
asymptotic distribution of the left hand side.

Derivation of the multivariate CLT from the univariate. For each constant vec-
tor t, the scalar random variables t′(Xn − µ) have mean 0 and variance t′Mt
and hence obey the univariate CLT

√
nt′

(
Xn − µ

) D−→ N (0, t′Mt).

The right hand side is the distribution of t′Z where Z ∼ N (0,M), hence (8.3)
follows by our definition of multivariate convergence in distribution.

Example 8.1.2.
(This continues Example 5.1.1.) Let X1, X2, . . . be a sequence of i. i. d. random
variables, and define random vectors

Zi =
(

Xi

X2
i

)
Then Z1, Z2, . . . is a sequence of i. i. d. random vectors having mean vector µ
given by (5.6) and variance matrix M given by (5.7), and the CLT applies

√
n

(
Zn − µ

) D−→ N (0,M).
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8.1.5 Slutsky and Related Theorems

As with univariate convergence in distribution, we are forced to state a num-
ber of theorems about multivariate convergence in distribution without proof.
The proofs are just too hard for this course.

Theorem 8.3. If a is a constant, then Xn
D−→ a if and only if Xn

P−→ a.

Thus, as was true in the univariate case, convergence in probability to a
constant and convergence in distribution to a constant are equivalent concepts.
We could dispense with one, but tradition and usage do not allow it. We must
be able to recognize both in order to read the literature.

Theorem 8.4 (Slutsky). If g(x,y) is a function jointly continuous at every
point of the form (x,a) for some fixed a, and if Xn

D−→ X and Yn
P−→ a, then

g(Xn,Yn) D−→ g(X,a).

The function g here can be either scalar or vector valued. The continuity
hypothesis means that g(xn,yn) → g(x,a) for all nonrandom sequences xn → x
and yn → a.

Sometimes Slutsky’s theorem is used in a rather trivial way with the sequence
“converging in probability” being nonrandom. This uses the following lemma.

Lemma 8.5. If an → a considered as a nonrandom sequence, then an
P−→ a

considered as a sequence of constant random vectors.

This is an obvious consequence of the definition of convergence in probability
(Definition 6.1.2 in Chapter 6 of these notes).

Example 8.1.3.
The so-called sample variance S2

n defined on p. 204 in Lindgren or in (7.17) in
Chapter 7 of these notes is asymptotically equivalent to the variance of the em-
pirical distribution Vn also defined on p. 204 in Lindgren or in (7.4) in Chapter 7
of these notes. The two estimators are related by

S2
n =

n

n − 1
Vn.

We know the asymptotics of Vn because it is a sample moment. By Theorem 7.15
of Chapter 7 of these notes

Vn
P−→ σ2 (8.6)

and by Theorem 7.16 of Chapter 7 of these notes

√
n(Vn − σ2) D−→ N (0, µ4 − µ2

2) (8.7)

(strictly speaking, we don’t actually know this last fact yet, because we haven’t
proved Theorem 7.16 yet, but we will).



216 Stat 5101 (Geyer) Course Notes

One application of Slutsky’s theorem shows that

S2
n

P−→ σ2 (8.8)

because
n

n − 1
Vn

P−→ 1 · σ2

because of (8.6) and
n

n − 1
→ 1

and Lemma 8.5.
To get the next level of asymptotics we write

√
n(S2

n − σ2) =
√

n

(
n

n − 1
Vn − σ2

)
=

n

n − 1

[√
n

(
Vn − σ2

)
+

√
n

n − 1
σ2

] (8.9)

Then two applications of Slutsky’s theorem give us what we want. Let W be a
random variable having the distribution of the right hand side of (8.7) so that
equation can be rewritten

√
n(Vn − σ2) D−→ W.

Then one application of Slutsky’s theorem (and the corollary following it in
Chapter 6 of these notes) shows that the term in square brackets in (8.9) also
converges to W

√
n

(
Vn − σ2

)
+

√
n

n − 1
σ2 D−→ W + 0

because of √
n

n − 1
σ2 → 0

and Lemma 8.5. Then another application of Slutsky’s theorem shows what we
want

n

n − 1
× term in square brackets D−→ 1 · W.

The special cases of Slutsky’s theorem which we only have only one sequence
of random variables converging in distribution or in probability are known as
“continuous mapping theorems.”

Theorem 8.6 (Continuous Mapping, Convergence in Distribution). If
g is an everywhere continuous function and Xn

D−→ X, then g(Xn) D−→ g(X).

The function g here can be either scalar or vector valued. The only require-
ment is that it be continuous, that is, g(xn) → g(x) for any point x and any
sequence xn → x.
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Theorem 8.7 (Continuous Mapping, Convergence in Probability). If
g is a function continuous at the point a and Xn

P−→ a, then g(Xn) P−→ g(a).

The function g here can be either scalar or vector valued. The only require-
ment is that it be continuous at a, that is, g(xn) → g(a) for any sequence
xn → a.

Example 8.1.4.
Suppose (8.8) holds for some sequence of random variables S2

n and σ > 0, then
the continuous mapping theorem for convergence in probability immediately
gives many other convergence in probability results, for example,

Sn
P−→ σ (8.10)

1
Sn

P−→ 1
σ

log(Sn) P−→ log(σ)

All of these applications are fairly obvious. These conclusions seem so natural
that it is hard to remember that we need the continuous mapping theorem to
tell us that they hold.

We will use the continuous mapping theorem for convergence in probability
many times in our study of statistics. In contrast, our uses of the continuous
mapping theorem for convergence in distribution will all be rather trivial. We
will only use it to see that we can divide both sides of a convergence in distri-
bution statement by the same constant, or add the same constant to both sides,
and so forth.

Example 8.1.5.
This was assigned for homework (Problem 6-2 of Chapter 6 of these notes) last
semester. We will see many other examples later, but all will be similar to this
one, which is by far the most important in statistics. Suppose X1, X2, . . . are
i. i. d. random variables with mean µ and variance σ2, suppose that Sn is any
sequence of random variables satisfying (8.10), and suppose σ > 0, then

Xn − µ

Sn/
√

n

D−→ N (0, 1). (8.11)

The most obvious choice of a sequence Sn satisfying (8.10) is the sample
standard deviation. That’s what Examples 8.1.3 and 8.1.4 showed. But the
exact way Sn is defined isn’t important for this example. In fact there are
many sequences of random variables having this property. The only thing that
is important is that such sequences exist.

How do we show (8.11) using the CLT and Slutsky’s theorem? First the
CLT says √

n
(
Xn − µ

) D−→ Y
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where Y ∼ N (0, σ2). Define the function

g(u, v) =
u

v
.

This is continuous everywhere except where v = 0, where it is undefined. Now
define

Un =
√

n
(
Xn − µ

)
and apply Slutsky’s theorem to g(Un, Sn). The first argument converges in
distribution and the second argument converges to a constant, so Slutsky’s
theorem does hold and says

√
n

Xn − µ

Sn
= g(Un, Sn) D−→ g(Y, σ) =

Y

σ

and the right hand side does have a standard normal distribution, as asserted,
by the rule giving the variance of a linear transformation (5.15b).

8.2 The Delta Method

8.2.1 The Univariate Delta Method

Suppose Tn is any sequence of random variables converging in probability
to a constant θ. Many such examples arise in statistics. Particular cases are
Xn

P−→ µ (which is the LLN) and Sn
P−→ σ (which we showed in Examples 8.1.3

and 8.1.4). It is conventional in statistics to use Tn as a default notation for all
such sequences and θ as a default notation for all the constants.

The continuous mapping theorem for convergence in probability tells us that
g(Tn) P−→ g(θ) for any function g that is continuous at the point θ. Many
different functions g arise in applications. The continuity requirement is not
very restrictive. Almost any function will do.

What this says is that g(Tn) gets closer and closer to g(θ) as n gets large.
The obvious next question is “How close?” We want a statement analogous to
the CLT that tells us the distribution of the “error” g(Tn)−g(θ). The continuous
mapping theorem for convergence in distribution doesn’t do this. It would tell
us, for example, that

g
(√

n
(
Xn − µ

)) D−→ g(Y ) (8.12a)

where Y ∼ N (0, σ2), but that’s not what we want. We want a convergence in
distribution result for √

n
(
g(Tn) − g(θ)

)
. (8.12b)

If g is a linear function, then (8.12b) and the left hand side of (8.12a) are equal.
If g is not linear, then they aren’t, and the continuous mapping theorem is of
no use. The delta method does do what we want: a convergence in distribution
result for (8.12b).
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Theorem 8.8 (Univariate Delta Method). Suppose

√
n(Tn − θ) D−→ Y (8.13)

and g is any function differentiable at θ, then

√
n
(
g(Tn) − g(θ)

) D−→ g′(θ)Y. (8.14)

By far the most important applications of the delta method have Y normally
distributed with mean zero, say Y ∼ N (0, σ2

Y ). In that case, we can put (8.14)
in “sloppy form” with “double squiggle” notation like (8.4) or (8.5). It becomes

g(Tn) ≈ N
(

g(θ),
g′(θ)2σ2

Y

n

)
and we say that the right hand side is the asymptotic distribution of g(Tn).

It is called the “delta method” because of the important role played by the
derivative. The “delta” is supposed to remind you of

dy

dx
= lim

∆x→0

∆y

∆x

the triangles being capital Greek letter deltas, and the fraction on the right
being pronounced “delta y over delta x.” The earlier term for this concept,
used throughout the nineteenth century and still used by some people, was
“propagation of errors.”

It is important to understand that the delta method does not produce a
convergence in distribution result out of thin air. It turns one convergence in
distribution statement (8.13) into another (8.14). In order to use the delta
method we must already have one convergence in distribution result. Usually
that comes either from the CLT or from a previous application of the delta
method.

Example 8.2.1.
Suppose X1, X2, . . . are i. i. d. Exp(λ). Then

E(Xi) =
1
λ

var(Xi) =
1
λ2

the LLN says

Xn
P−→ 1

λ

and the CLT says
√

n

(
Xn − 1

λ

)
D−→ N

(
0,

1
λ2

)
(8.15)
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That’s all well and good, but it seems more natural to look at the sequence
of random variables

Wn =
1

Xn

(8.16)

because then the continuous mapping theorem for convergence in probability
gives

Wn
P−→ λ.

So what is the asymptotic distribution of Wn?
We want to apply the delta method. To do that we already need one con-

vergence in distribution result. What we have is the CLT (8.15). This tells we
want to use the delta method with Tn = Xn and θ = 1/λ. Then, since we want
g(Tn) = Wn, we must have

g(t) =
1
t

and hence
g′(t) = − 1

t2

So
g(θ) = λ

and
g′(θ) = −λ2.

And the delta method tells us that Wn is asymptotically normally distributed
with mean λ and variance

g′(θ)2σ2

n
=

(−λ2
)2

nλ2
=

λ2

n

The argument is a bit involved, but in the end we arrive at the fairly simple
statement

Wn ≈ N
(

λ,
λ2

n

)
.

Proof of the Univariate Delta Method. By definition, the derivative is

g′(θ) = lim
t→θ

g(t) − g(θ)
t − θ

To be useful in our proof we need to rewrite this slightly. For t 6= θ define the
function

w(t) =
g(t) − g(θ)

t − θ
− g′(θ) (8.17)

then the definition of differentiation says that w(t) → 0 as t → θ, which is the
same thing as saying that w is continuous at the point θ if we define w(θ) = 0.
(The reason for phrasing things in terms of continuity rather than limits is
because Slutsky’s theorem uses continuity.) Then (8.17) can be rewritten as

g(t) − g(θ) = g′(θ)(t − θ) + w(t)(t − θ). (8.18)
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Now plug in Tn for t and multiply by
√

n giving
√

n
(
g(Tn) − g(θ)

)
= g′(θ)

√
n(Tn − θ) + w(Tn)

√
n(Tn − θ).

By the continuous mapping theorem, the first term on the right hand side
converges in distribution to g′(θ)Y . By Slutsky’s theorem, the second term on
the right hand side converges in distribution to w(θ)Y = 0. Hence by another
application of Slutsky’s theorem, the right hand side converges to g′(θ)Y , which
is the assertion of the delta method.

8.2.2 The Multivariate Delta Method

The multivariate delta method is a straightforward extension of the univari-
ate delta method, obvious if you know about derivatives of general vector-valued
functions. You already know this material because it was used in the change of
variable theorem for random vectors (Section 1.6.2 in Chapter 1 of these notes).
You may need to go back and review that.

In brief, that section introduced the derivative of a vector-valued function
of a vector variable g : Rn → Rm, which can also be thought of a a vector of
scalar-valued functions

g(x) =

 g1(x)
...

gm(x)


The derivative of the function g at the point x (assuming it exists) is the

matrix of partial derivatives. It is written ∇g(x) and pronounced “del g of x.”
Throughout this section we will also write it as the single letter G. So

G = ∇g(x)

is the matrix with elements

gij =
∂gi(x)
∂xj

Note that if g maps n-dimensional vectors to m-dimensional vectors, then it is
an m× n matrix (rather than the other way around). A concrete example that
may help you visualize the idea is Example 1.6.1 in Chapter 1 of these notes.

Theorem 8.9 (Multivariate Delta Method). Suppose
√

n(Tn − θ) D−→ Y (8.19)

and g is any function differentiable1 at θ, then
√

n
(
g(Tn) − g(θ)

) D−→ ∇g(θ)Y. (8.21)

1The notion of multivariate differentiability of is actually a bit complicated. We presented
only a simplified version of the facts, which is not completely correct. Here are the facts.
Most readers will only want to know the first item below, maybe the second. The third is
the pedantically correct mathematical definition of multivariate differentiability, which is of
theoretical interest only. It won’t help you do any problems. You are free to ignore it.
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By far the most important applications of the delta method have Y normally
distributed with mean zero, say Y ∼ N (0,MY). In that case, we can put (8.21)
in “sloppy form” with “double squiggle” notation like (8.4) or (8.5). It becomes

g(Tn) ≈ N
(
g(θ),

GMYG′

n

)
,

where, as we said we would, we are now defining G = ∇g(θ) to simplify nota-
tion. We say that the right hand side is the asymptotic distribution of g(Tn).

Example 8.2.2.
Suppose

Zi =
(

Xi

Yi

)
, i = 1, 2, . . .

are an i. i. d. sequence of random vectors with mean vector µ and variance
matrix M. Suppose we are interested in the parameter

ω = log
(

µ1

µ2

)
= log(µ1) − log(µ2)

The continuous mapping theorem applied to the LLN gives

Wn = log(Xn) − log(Y n) P−→ ω

and we want to use the delta method to find the asymptotic distribution of the
difference Wn − ω. The “g” involved is

g(x, y) = log(x) − log(y)

which has partial derivatives

∂g(x, y)
∂x

=
1
x

∂g(x, y)
∂y

= −1
y

1. If a function is differentiable, then the derivative is the matrix of partial derivatives.

2. If the partial derivatives exist and are continuous, then the function is differentiable.

3. A function can be differentiable without the partial derivatives being continuous. The
exact condition required is the multivariate analog of (8.18) in the proof of the univari-
ate delta method

g(t) − g(θ) = G(t − θ) + ‖t − θ‖w(t) (8.20)

where the double vertical bars indicate the norm of a vector

‖x‖ =
√

x′x =

√√√√ n∑
i=1

x2
i

A function g is differentiable at θ if there exists a matrix G and a function w that is
continuous at θ with w(θ) = 0 such that (8.20) holds, in which case G is the derivative
matrix ∇g(θ).

The nice thing about this definition, pedantic though it may be, is that it makes the
proof of the multivariate delta method just like the proof of the univariate proof. Start
from (8.20) and proceed just like the univariate proof, changing notation as necessary.
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Thus the derivative matrix is

∇g(x, y) =
( 1

x − 1
y

)
Evaluating at µ, we get

G =
( 1

µ1
− 1

µ2

)
As always, the asymptotic distribution produced by the delta method has mean
g(µ) = ω and variance GMG′/n. We just have to work out the latter

( 1
µ1

− 1
µ2

) (
m11 m12

m12 m22

) ( 1
µ1

− 1
µ2

)
=

m11

µ2
1

− 2m12

µ1µ2
+

m22

µ2
2

If you prefer to phrase everything in terms of the usual notation for the moments
of the components X and Y , this becomes

σ2
W =

σ2
X

µ2
X

− 2ρX,Y σXσY

µXµY
+

σ2
Y

µ2
Y

Thus the result of applying the delta method is
√

n(Wn − ω) D−→ N (0, σ2
W ),

where the asymptotic variance σ2
W is defined above.

8.2.3 Asymptotics for Sample Moments

This section supplies the proof of Theorem 7.16 which we stated in Chapter 7
but could not prove because it requires the multivariate delta method.

Proof of Theorem 7.16. For ordinary moments, this is a homework problem
(Problem 7-17 in Lindgren).

For Mk,n we proceed as in the proof of Theorem 7.15, using (7.26b), which
implies

√
n(Mk,n − µk) =

√
n(M ′

k,n − µk) +
k∑

j=1

(
k

j

)
(−1)j

√
n(Xn − µ)jM ′

k−j,n

the first term arising from the j = 0 term in (7.26b). Now the CLT says
√

n(Xn − µ) D−→ Z

where Z ∼ N (0, µ2), because µ2 = σ2. Then Slutsky’s theorem implies
√

n(Xn − µ)j D−→ 0

for any j > 1 (Problem 7-15). Thus all the terms for j > 1 make no contribution
to the asymptotics, and we only need to figure out the asymptotics of the sum
of the first two (j = 0 and j = 1) terms

√
n(M ′

k,n − µk) − k
√

n(Xn − µ)M ′
k−1,n.
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By Slutsky’s theorem and (7.29) this converges to

W − kµk−1Z (8.22)

where W and Z are defined by the multivariate CLT

√
n

(
Xn − µ

M ′
k,n − µk

)
D−→

(
Z
W

)
∼ N (0,M)

where

M = var
(

Xi − µ
(Xi − µ)k

)
=

(
µ2 µk+1

µk+1 µ2k − µ2
k

)
Now calculating the variance of (8.22) using the usual formulas for the variance
of a sum gives the asserted asymptotic variance in (7.31).

8.2.4 Asymptotics of Independent Sequences

In several places throughout the course we will need the following result. In
particular, we will use it in the section immediately following this one.

Theorem 8.10. Suppose

Xn
D−→ X

Yn
D−→ Y

(8.23)

and all of the Xi are independent of all of the Yi, and suppose

kn → ∞
mn → ∞

Then (
Xkn

Ymn

)
D−→

(
X
Y

)
where the right hand side denotes the random vector having independent com-
ponents having the same marginal distributions as the variables in (8.23).

As with many of the theorems in this section, we omit the proof.2 The
theorem seems very obvious. In fact, the marginal laws must be as stated in
the theorem by the continuous mapping theorem (the map that takes a vector
to one of its components being continuous). So the only nontrivial assertion of
the theorem is that the joint distribution of the limiting random variable has

2It It can be proved fairly easily from the relationship between characteristic functions
and convergence in distribution, slightly misstated as Theorem 26 of Chapter 4 in Lindgren
and the characteristic function uniqueness theorem, Theorem 25 of Chapter 4 in Lindgren, or
more precisely from the multivariate versions of these theorems, but since we gave no proof
of those theorems and didn’t even state their multivariate versions, there seems no point in
proofs using them.
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independent components. That seems obvious. What else could happen? The
only point of stating the theorem is to point out that this actually needs a proof,
which is given in texts on advanced probability theory.

The conclusion of the theorem is sometimes stated a bit less precisely as(
Xk

Ym

)
D−→

(
X
Y

)
as k → ∞ and m → ∞

(you have to imagine the sequences kn and mn if you want a more precise state-
ment), the point being that whenever k and m are both large the distribution
of the left hand side is close to the distribution of the right hand side (so the
latter can be used as an approximation of the former).

Corollary 8.11. Under the hypotheses of the theorem

Xk + Ym
D−→ X + Y, as k → ∞ and m → ∞,

where X and Y are independent random variables having the same marginal
distributions as the variables in (8.23).

This follows directly from the theorem by the continuous mapping theorem
for multivariate convergence in distribution (addition of components of a vector
being a continuous operation).

8.2.5 Asymptotics of Sample Quantiles

In this section we give a proof of Theorem 7.27, which we were also unable
to give in Chapter 7 because it too requires the multivariate delta method. We
give a proof not because it represents a useful technique. The proof is a rather
specialized trick that works only for this particular theorem. The reason we give
the proof is to show how asymptotic normality arises even when there are no
obvious averages anywhere in sight. After all, sample quantiles have nothing to
do with any averages. Still, asymptotic normality arises anyway. This is typical.
Most statistics that arise in practice are asymptotically normal whether or not
there is any obvious connection with the CLT. There are exceptions (Problem 7-
7), but they arise rarely in practice.

Before we begin the proof, we take a closer look at the relationship between
the general case and the U(0, 1) case. It turns out that the latter can be derived
from the former using the so-called quantile transformation.

Lemma 8.12. Suppose X is a continuous random variable having an invertible
c. d. f. F , then F (X) has the U(0, 1) distribution. Conversely if U ∼ U(0, 1),
then F−1(U) has the same distribution as X.

The first assertion is Theorem 9 of Chapter 3 in Lindgren. The second
assertion is a special case of Problem 3-35 in Lindgren. The transformation
X = F−1(U) is called the quantile transformation because it maps p to the p-th
quantile xp, and the transformation U = F (X) is called the inverse quantile
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transformation. These transformations are a bit odd at first sight because they
use F two different ways, both as a c. d. f. and as a change-of-variable function.
From calculus, we know that these two transformations have derivatives that
are inverses of each other, that is, if u = F (x), so x = F−1(u), then

f(x) = F ′(x) =
d

dx
F (x)

and
d

du
F−1(u) =

1
f(x)

. (8.24)

Because we want to use the quantile transformation, we need to add an addi-
tional condition to the theorem, that the variables have an invertible c. d. f.,
which will be the case when f(x) > 0 for all x by Lemma 7.4 (the theorem is
true without the additional condition, the proof is just a bit messier).

Proof of Theorem 7.27 assuming an invertible c. d. f. First we show how to de-
rive the general case from the U(0, 1) case

√
n
(
U(kn) − p

) D−→ N (
0, p(1 − p)

)
, (8.25)

where the U(k) are the order statistics of a sample from the U(0, 1) distribution.
Apply the quantile transformation so that F−1

(
U(kn)

)
has the same distribution

as X(kn) and apply the delta method with the derivative of the transformation
given by (8.24). The result is assertion of the theorem (7.38). Thus it is enough
to prove (8.25).

Now we use some facts about the relationships between various “brand
name” distributions. The distribution of U(k) is Beta(k, n − k + 1). By Theo-
rem 4.2, this distribution is the same as the distribution of Vk/(Vk +Wk), where
Vk and Wk are independent and

Vk ∼ Gam(k, λ)
Wk ∼ Gam(n − k + 1, λ)

where λ can have any value, for simplicity chose λ = 1. Then we use the normal
approximation for the gamma distribution (Appendix C of these notes) which
arises from the addition rule for the gamma distribution and the CLT

Vk ≈ N (k, k)
Wk ≈ N (n − k + 1, n − k + 1)

So √
n

(
Vkn

n
− kn

n

)
≈ N

(
0,

kn

n

)
and because of the assumption (7.37) and Slutsky’s theorem we can replace
kn/n on both sides by p giving

√
n

(
Vkn

n
− p

)
≈ N (0, p) ,
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and, similarly,
√

n

(
Wkn

n
− (1 − p)

)
≈ N (0, 1 − p) .

Because of the assumed independence of Vk and Wk we can use Theorem 8.10
to get a multivariate CLT for the joint distribution of these two random vectors

√
n

(
Vkn

n − p
Wkn

n − (1 − p)

)
D−→ N (0,M)

where

M =
(

p 0
0 1 − p

)
Note that we can write this as

√
n(Tn − θ) D−→ N (0,M)

where

Tn =
1
n

(
Vkn

Wkn

)
and θ =

(
p

1 − p

)
So we apply the multivariate delta method to this convergence in distribution
result. Note that g(Vkn

/n,Wkn
/n) has the same distribution as U(k). Hence we

want to use the transformation

g(v, w) =
v

v + w
,

which has partial derivatives

∂g(v, w)
∂v

=
w

(v + w)2

∂g(v, w)
∂w

= − v

(v + w)2

and derivative matrix

G = ∇g(θ) =
(
1 − p −p

)
Thus, finally, we see that U(k) is asymptotically normal with mean

g(θ) = p

and variance

GMG′ =
(
1 − p −p

) (
p 0
0 1 − p

) (
1 − p
−p

)
= p(1 − p)

and we are done.
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Problems

8-1. Suppose X is a random scalar with ordinary moments αk = E(Xk).

(a) What are the mean vector and variance matrix of the random vector

Z =

 X
X2

X3


(b) Suppose Z1, Z2, . . . is an i. i. d. sequence of random vectors having the

same distribution as Z. What are the mean vector and variance matrix of
Zn?

8-2. Suppose Y is a random scalar having mean µ and variance σ2 and Z is a
random vector with i. i. d. components Zi having mean zero and variance τ2,
and suppose also that Y is independent of Z. Define X = Y +Z (that is, X has
components Xi = Y + Zi).

(a) What are the mean vector and variance matrix of X?

(b) Suppose X1, X2, . . . is an i. i. d. sequence of random vectors having the
same distribution as X. What is the asymptotic distribution of Xn?

8-3. Suppose √
n(Tn − θ) D−→ Y.

Use the delta method to find convergence in distribution results for

(a) log(Tn)

(b)
√

Tn

(c)
exp(Tn)

1 + exp(Tn)

Note: In (a) and (b) we need to assume θ > 0.

8-4. Suppose X1, X2, X3, . . . is an i. i. d. sequence of Ber(p) random variables.

(a) State the LLN for Xn, expressing all constants in terms of the parameter
p (that is, don’t use µ and σ, express them as functions of p).

(b) State the CLT for Xn, expressing all constants in terms of the parameter
p.

(c) To what does Xn(1 − Xn) converge in probability? What theorem allows
you to conclude this?

(d) Use the delta method to determine the asymptotic distribution of the
random variable Xn(1 − Xn). (Note: there is something funny about the
case p = 1/2. Theorem 8.8 applies but its conclusion doesn’t satisfactorily
describe the “asymptotic distribution”.)
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8-5. Suppose Xn
D−→ X where X ∼ N (0, 1). To what does X2

n converge in
distribution? What is the name of the limiting distribution (it is some “brand
name” distribution). What theorem allows you to conclude this?

8-6. Suppose X1, X2, X3, . . . is an i. i. d. sequence of random variables with
mean µ and variance σ2, and Xn is the sample mean. To what does

√
n

(
Xn − µ

)2

converge in probability? (Hint: Use the CLT, the continuous mapping theorem
for convergence in distribution, Slutsky’s theorem, and Lemma 8.5.)

8-7. Suppose X1, X2, X3, . . . is an i. i. d. sequence of random variables with
mean µ and variance σ2, and Xn is the sample mean. Define

Yi = a + bXi,

where a and b are constants, and

Y n = a + bXn.

Derive the asymptotic distribution of Y n in two different ways.

(a) Use the delta method with g(u) = a + bu.

(b) Use the CLT applied to the sequence Y1, Y2, . . ..

8-8. Suppose

Zi =
(

Xi

Yi

)
, i = 1, 2, . . .

are an i. i. d. sequence of random vectors with mean vector µ and variance
matrix M. What is the asymptotic distribution of

Wn =
Xn

Y n

assuming µ2 6= 0.

8-9. Suppose √
n(Tn − θ) D−→ Y

Show that
Tn

P−→ θ.

(Hint: Lemma 8.5 and the continuous mapping theorem.)

8-10. In Example 8.1.3 we showed that S2
n and Vn have the same asymptotic

distribution, which is given by Corollary 7.17 in Chapter 7 of these notes. Find
the asymptotic distribution of Sn.
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8-11. (This problem has nothing to do with convergence concepts. It is a lemma
for the following problem.)

Consider two arbitrary events A and B, and, as usual, let IA and IB denote
their indicator functions. Show that

cov(IA, IB) = P (A ∩ B) − P (A)P (B).

Hint: IA∩B = IAIB.

8-12. (This is the bivariate analog of Problem 6-4 of Chapter 6 of these notes.)
Suppose X1, X2, . . . are i. i. d. with common probability measure P , and

define

Yn = IA(Xn)
Zn = IB(Xn)

for some events A and B. Find the asymptotic distribution of the vector
(Y n, Zn).



Chapter 9

Frequentist Statistical
Inference

9.1 Introduction

9.1.1 Inference

Statistics is Probability done backwards.

Probability theory allows us to do calculations given a probability model. If
we assume a random variable X has a particular distribution, then we can cal-
culate, at least in principle, P (|X| ≥ c) or E(X) or var(X). Roughly speaking,
given the distribution of X we can say some things about X. Statistics tries
to solve the inverse problem: given an observation of X, say some things about
the distribution of X. This is called statistical inference.

Needless to say, what statistics can say about the distribution of random
data is quite limited. If we ask too much, the problem is impossible. In a
typical situation, any value of the observed data is possible under any of the
distributions being considered as possible models. Thus an observation of the
data does not completely rule out any model. However, the observed data will
be more probable under some models and less probable under others. So we
ought to be able to say the data favor some distributions more than others or
that some distributions seem very unlikely (although not impossible).

9.1.2 The Sample and the Population

Usually the data for a statistical problem can be considered a random vector
X = (X1, . . . , Xn) representing a sample from a population. The statistical
problem is to infer the population distribution (which determines the probability
distribution of X). The simple-minded approach to this problem, which seems
natural to those who have not been exposed to formal statistical thinking, is
to just treat the sample as if it were the population. This is clearly a mistake,

231
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obvious as soon as it is described in these words. It violates the fundamental
issue that statistics must deal with.

The sample is not the population.

In introductory courses I try to repeat this slogan so often that it is drilled into
students by sheer force of repetition. Despite its simplicity, it is very important
to remember. I often see it violated by scientists who are trained in formal
statistics and think they are correctly applying their statistical training. It’s
easy to do. Just a little bit of confusion obscures the issues enough to make one
rely on intuition, which is always wrong.

Intuition is always wrong about statistics.

Statistics courses don’t develop good intuition about statistics. They
teach you how to calculate instead of using intuition.

Expert intuition is no better than anyone else’s. Experts are just
better at calculating and knowing what to calculate.

Intuition treats the sample as the population. Whenever you ignore “the sample
is not the population,” you will say stupid things and do stupid things.

9.1.3 Frequentist versus Bayesian Inference

The word “frequentist” in the chapter title refers to a great philosophical
divide in statistical inference. All statistical inference is divided into two parts.
One part is generally called “Bayesian” because of the prominent role played by
Bayes’ rule. It will be covered in a later chapter. The other part has no generally
accepted name. We could call it non-Bayesian, but that sounds negative and
is also inaccurate because it also sometimes uses Bayes’ rule. We could call it
“statistical inference based on sampling distributions,” which would be accurate
but too long for everyday use.

Devotees of Bayesian inference generally call the other camp “frequentist.”
This is intended to be pejorative, saddling the enemy with the philosophical bag-
gage of the frequentist philosophy of probability, which says that it only makes
sense to talk about probabilities in an infinite sequence of identical random ex-
periments. The idea is that it only makes sense to apply “frequentist” statistics
to actual infinite sequences of identical random experiments. Since that doesn’t
describe any real data, one should never use “frequentist” statistics.

These days, however, no one is really a “frequentist” about probability.
Probably no one, except a few philosophers, ever was. Everyone is a formalist,
holding the view that anything that satisfies the probability axioms is proba-
bility (if it waddles like a duck and quacks like a duck, then it is a duck). This
takes all the sting out of the “frequentist” label. No one minds the label, be-
cause everyone knows it isn’t accurate. As we will see, the only thing required
for so-called “frequentist” inference is probability models for data. It doesn’t
matter what you think probability really is.
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9.2 Models, Parameters, and Statistics

A statistical model is a family of probability distributions. This differs from
a probability model, which is only a single distribution.

9.2.1 Parametric Models

Often we consider probability models having an adjustable constant in the
formula for the density.1 Generically, we refer to such a constant as a parameter
of the distribution. This notion was introduced back in Section 3.1 of these
notes, and all of the “brand name distributions” described in Chapter 4 of these
notes and Chapter 6 of Lindgren and summarized in Appendix B of these notes
are examples of parametric models.

Usually, though not always, we use Greek letters for parameters to distin-
guish them from random variables (large Roman letters) and possible values of
random variables (small Roman letters). Among the brand-name distributions
(Appendix B of these notes), the only parameters we do not use Greek letters
for are the success probability p occurring in the Bernoulli, binomial, geometric,
and negative binomial distributions and the analogous vector parameter p of
the multinomial distribution, the parameters s and t of the beta distribution,
and the parameters a and b of the uniform distribution on the interval (a, b).
All the rest are Greek letters.

When we say let X be a random variable having density fθ, this means
that for each fixed value of the parameter θ the function fθ is a probability
density, which means it satisfies (3.1a) and (3.1b) of Chapter 3 of these notes.
Of course, we didn’t use θ for the parameter of any brand-name distribution.
The idea is that θ can stand for any parameter (for µ of the Poisson, for λ of
the exponential, and so forth).

Each different value of the parameter θ gives a different probability distri-
bution. As θ ranges over its possible values, which we call the parameter space,
often denoted Θ when the parameter is denoted θ, we get a parametric family
of densities

{ fθ : θ ∈ Θ }
Even the notation for parametric families is controversial. How can that be?

Mere notation generate controversy? You can see it in the conflict between the
notation fθ(x) used in these notes and the notation f(x | θ) used in Lindgren.

Lindgren uses the same notation that one uses for conditional probability
densities. The reason he uses that notation is because he belongs to the Bayesian

1In these notes and in the lecture we use the term density to refer to either of what
Lindgren calls the probability function (p. f.) of a discrete distribution of the probability density
function (p. d. f.) of a continuous distribution. We have two reasons for what seems at first
sight a somewhat eccentric notion (failing to draw a terminological distinction between these
two rather different concepts). First, these two concepts are special cases of a more general
concept, also called density, explained in more advanced probability courses. Second, and
even more important, these two concepts are used the same way in statistics, and it is a great
convenience to say “density” rather than “p. f. or p. d. f.” over and over.
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camp, and as a matter of philosophical principle is committed to the notion that
all parameters are random variables. Bayesians consider f(x | θ) the conditional
distribution of the random variable X given the random variable θ. We can’t
use the “big X” and “little x” distinction for Greek letters because we often use
the corresponding capital letters for something else. In particular, as explained
above, we use Θ for the parameter space, not for the parameter considered
as a random variable. But regardless of whether the “big X” and “little x”
convention can be applied, the important point is that Bayesians do consider
f(x | θ) a conditional density. The rest of the statistical profession, call them
“non-Bayesians” is at least willing to think of parameters as not being random.
They typically use the notation fθ(x) to show that θ is an adjustable constant
and is not being treated like a random variable.

It is also important to realize that in a statistical model, probabilities and
expectations depend on the actual value of the parameter. Thus it is ambiguous
to write P (A) or E(X). Sometimes we need to explicitly denote the dependence
on the parameter by writing Pθ(A) and Eθ(X), just as we write fθ(x) for den-
sities.

Location-Scale Families

Location-scale families were introduced in Section 4.1 of Chapter 4 of these
notes. The only brand name location-scale families are U(a, b), N (µ, σ2), and
Cauchy(µ, σ). But, as shown in Example 4.1.3 in Chapter 4 of these notes,
there are many more “non-brand-name” location scale families. In fact, every
probability distribution of a real-valued random variable generates a location-
scale family.

The only reason for bring up location-scale families here is to make the
point that a statistical model (family of probability distributions) can have
many different parameterizations. Example 4.1.1 of Chapter 4 of these works
out the relation between the usual parameters a and b of the U(a, b) distribution
and the mean µ and variance σ, which can also be used to parameterize this
family of distributions. The relation between the two parameterizations is given
by unnumbered displayed equations in that example, which we repeat here

µ =
a + b

2

σ =

√
(b − a)2

12

This is an invertible change of parameters, the inverse transformation being

a = µ − σ
√

3

b = µ + σ
√

3

This illustrates a very important principle.

A single statistical model can have many different parameterizations.
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We often change parameters, using the parameterization that seems simplest in
a particular problem.

Example 9.2.1 (Laplace Distributions).
The density

f(x) =
1
2
e−|x|, −∞ < x < +∞ (9.1)

is called a Laplace or double exponential density. It is two Exp(1) densities back
to back. The density is graphed below.
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The Laplace location-scale family thus has densities

fµ,σ(x) =
1
2σ

e−|x−µ|/σ, −∞ < x < +∞ (9.2)

Note (σ2 is not the variance, see Problem 9-1).

Models and Submodels

Any set of probability distributions is a statistical model. A statistical model
need not include all distributions of a certain type. It might have only a subset
of them. We then say we have a submodel of the larger family. In parametric
families, we specify submodels by specifying their parameter spaces.

Example 9.2.2 (All Normal Distributions).
The family of N (µ, σ2) distributions for −∞ < µ < +∞ and 0 < σ < ∞ is a
statistical model. (As mentioned in the preceding section, it is a location-scale
family, µ is the location parameter and σ is the scale parameter.) Because the
model has two parameters, the parameter space is a subset of R2

Θ = { (µ, σ) ∈ R2 : σ > 0 }.
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Example 9.2.3 (Normal Distributions, Unit Variance).
The family of N (µ, 1) distributions for −∞ < µ < +∞ is a also statistical
model. It is a submodel of the family of all normal distributions in the preceding
example. The model has one parameter µ, so the parameter space is a subset
of R. In fact, since µ is unrestricted, the parameter space is the whole real line:
Θ = R.

It is important to realize that the examples describe two different models. It
is not enough to say we are talking about a normal model. Different parameter
spaces make different models.

Example 9.2.4 (Translation Families).
If we take a location-scale family and fix the scale parameter, then we have a
one-parameter family. Example 9.2.3 is an example of this. Such a family is
called a location family or a translation family, the latter name arising because
the different random variables in the family are related by translations, which
are changes of variables of the form

Y = µ + X.

The distributions in the family differ only in location. They all have the same
shape and scale.

Example 9.2.5 (Scale Families).
Conversely, if we take a location-scale family and fix the location parameter,
then we also have a one-parameter family. But now the varying parameter is
the scale parameter, so the family is called a scale family. The distributions in
the family differ only in scale. They all have the same shape. They may also
differ in location, because a scale transformation of the form

Y = σX

changes both location and scale. For example, if X has a variance, then

E(Y ) = σE(X)

var(Y ) = σ2 var(X)

9.2.2 Nonparametric Models

Some families of distributions are too big to specify in parametric form. No
finite set of real parameters can serve to describe the family.

Example 9.2.6 (All Distributions with Finite Variance).
The family of all distributions with finite variance is a statistical model.

At the level of mathematics used in this course, it is hard to see that this
model cannot be parameterized, but that does not really matter. The important
point is that this is a statistical model even though we do not specify it using a
parametric family of densities.
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It is important to realize that probabilities and expectations depend on the
actual probability distribution of the data, in nonparametric models just as in
parametric models. Thus it is still ambiguous to write P (A) or E(X). The
probabilities and expectations depend on the actual distribution of X. Since
the model is not parametric, we cannot write Pθ(A) or Eθ(X) to remind us of
the dependence. But it is still there and must be kept in mind.

9.2.3 Semiparametric Models

Sometimes, rather confusingly, we speak of parameters of nonparametric
distributions. In this usage a parameter is any quantity that is determined by
a distribution. In Example 9.2.6 we can still speak of the mean µ as being a
parameter of the family. Every distribution in the family has a mean (because
it has a variance and this implies existence of moments of lower order). Many
different distributions in the family have the same mean, so the mean doesn’t
determine the distribution, and hence we don’t have a parametric family with
the mean as its parameter. But we still speak of the mean as being a parameter
(rather than the parameter) of the family.

Models of this sort are sometimes called semiparametric, meaning they have
a parametric part of the specification and a nonparametric part. In the example,
the parametric part of the specification of the distribution is the mean µ and the
nonparametric part is the rest of the description of the distribution (whatever
that may be).

9.2.4 Interest and Nuisance Parameters

In multiparameter models, we divide parameters into two categories: param-
eters of interest (also called interest parameters though that is not idiomatic
English) and nuisance parameters. The parameter or parameters of interest are
the ones we want to know something about, the nuisance parameters are just
complications. We have to deal with the nuisance parameters, but they are not
interesting in themselves (in the particular application at hand).

In semiparametric models, the parametric part is typically the parameter
of interest, the nonparametric part is the “nuisance” part of the model specifi-
cation, although we can no longer call it the “nuisance parameter” when it is
nonparametric.

Example 9.2.7 (All Distributions with Finite Variance).
The family of all distributions with finite variance is a semiparametric statistical
model when we consider the mean µ the parameter of interest.

9.2.5 Statistics

Also somewhat confusingly, the term “statistic” is used as a technical term in
this subject. Please do not confuse it with the name of the subject, “statistics.”
A statistic is a function of the data of a random experiment. It cannot involve
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any parameters or otherwise depend on the true distribution of the data. Since
the data make up a random vector and a function of a random variable is a
random variable, statistics are random variables. But a random variable can
depend on a parameter, and a statistic cannot.

All statistics are random variables, but some random variables are
not statistics.

For each fixed µ, the function X −µ is (if X is the data) a random variable.
But if µ is a parameter of the statistical model under consideration, X − µ
is not a statistic. The reason for the distinction is that assuming a statistical
model doesn’t completely specify the distribution. It only says that X has some
distribution in the family, but doesn’t say which one. Hence we don’t know what
µ is. So we can’t calculate X −µ having observed X. But we can calculate any
statistic, because a statistic is a function of the observed data only.

9.3 Point Estimation

One form of statistical inference is called point estimation. Given data X1,
. . ., Xn that are a random sample from some population or that are i. i. d.
having a distribution in some statistical model, the problem is to say something
about a parameter θ of the population or model, as the case may be. A point
estimate (also called point estimator) of the parameter is a function of the data

θ̂n(X) = θ̂n(X1, . . . , Xn) (9.3)

that we use as an estimate of the true unknown parameter value.
This is our first example of “hat” notation. The symbol θ̂ is read “theta hat,”

the symbol on top of the letter being universally called a “hat” in mathematical
contexts (outside math it is called a “caret” or “circumflex accent”). It changes
the convention that parameters are Greek letters (like θ) and random variables
are Roman letters (like X). Now we are adding Greek letters with hats to the
random variables. Since θ̂n given by (9.3) is a function of the data, it is a random
variable (and not just a random variable, more precisely, it is a statistic). The
reason we do this is to make the connection between the two clear: θ̂n is a point
estimator of θ. We often denote a point estimator of a parameter by putting
a hat on the parameter. Remember that this puts θ̂n in a different conceptual
category from θ. The point estimate θ̂n is a random variable. The parameter θ
is a nonrandom constant.

Example 9.3.1 (Estimating the Mean).
Given i. i. d. data X1, . . ., Xn from a distribution having a mean µ, one point
estimator of µ is the sample mean Xn defined by (7.15). Another point estimator
of µ is the sample median of the empirical distribution of the data X̃n defined
in Definition 7.1.4. Yet another point estimator of µ is the constant estimator
µ̂n ≡ 42 that completely ignores the data, producing the estimate 42 for any
data.
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It is important to understand that any function whatsoever of the data is a
point estimate of θ as long as it is a statistic (a function of data values only, not
parameters). Even really dumb functions, such as the constant function θ̂n ≡ 42
that completely ignores the data, are point estimates. Thus calling a function
of the data a “point estimate” doesn’t say anything at all about the properties
of the function except that it is a statistic. The only point of calling a statistic
a point estimate of θ is to establish a context for subsequent discussion. It only
says we intend to use the statistic as a point estimate.

As we just said, every statistic whatsoever is a point estimate of θ, but that
doesn’t end the story. Some will be better than others. The ones of actual
interest, the ones that get used in statistical practice, are the good ones. Much
of the theory of point estimation is about which estimators are good. In order
to characterize good estimators, we need some criterion of goodness. In fact,
there are several different criteria in common use, and different criteria judge
estimators differently. An estimator might be good under some criteria and bad
under others. But at least if we use an estimator that is good according to some
particular criterion, that says something.

The most obvious criterion, how often an estimator is correct, is unfortu-
nately worthless.

With continuous data, every continuous estimator is wrong with
probability one.

The true parameter value θ is just a point in the parameter space. We don’t
know which point, but it is some point. If θ̂(X) is a continuous random variable,
then Pθ{θ̂(X) = θ} is zero, because the probability of every point is zero, as is
true for any continuous random variable.

9.3.1 Bias

An estimator T of a parameter θ is unbiased if Eθ(T ) = θ, that is, if θ is the
mean of the sampling distribution of T when θ is the true parameter value. An
estimator that is not unbiased is said to be biased, and the difference

b(θ) = Eθ(T ) − θ

is called the bias of the estimator.

Example 9.3.2 (Estimating σ2).
By equations 7.22a and 7.22b, S2

n is an unbiased estimator of σ2 and Vn is a
biased estimator of σ2.

The bias of S2
n as an estimator of σ2 is zero (zero bias is the same as unbi-

ased).
The bias of Vn as an estimator of σ2 is

E(Vn) − σ2 =
n − 1

n
σ2 − σ2 = −σ2

n

Note that the bias is negative, meaning that the estimator Vn is below the
parameter σ2 on average.
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In a multiparameter problem with a single parameter of interest ϕ and a
nuisance parameter ψ, an estimator T of ϕ is unbiased if Eθ(T ) = ϕ, where
θ = (ϕ,ψ) is the parameter vector, and the difference

b(θ) = b(ϕ,ψ) = Eθ(T ) − ϕ

is called the bias of the estimator. Note that the bias generally depends on both
interest and nuisance parameters.

It is generally a bad idea to give mathematical concepts emotionally charged
names, and this concept is particularly badly named. Naturally we all want to
be unbiased, so we should avoid biased estimators right? Wrong! It is important
to remember that this mathematical concept has nothing whatsoever to do with
what we call bias in everyday life.

In fact, it can mean the exact opposite! Psychologists call an achievement
test unbiased if it satisfies the statistical definition, if it has the correct ex-
pectation. The tests are supposed to predict grades in school, and the test is
unbiased if it is wrong high and wrong low about equally often so that it is right
on average. But grades in school are themselves biased in the everyday sense
(unless teachers all turned into saints when I wasn’t looking). So in order to be
unbiased in the statistical sense the tests must accurately track whatever bias
in the everyday sense there is in the grades.

Note that this argument has nothing whatsoever to do with whether the
questions on the tests appear to be biased, which is what the argument about
“culturally biased” tests usually revolves around. Whatever the appearances,
enough cultural bias (or other kinds of bias) must be somehow built into the
tests, perhaps without any effort on the part of the people constructing the tests,
perhaps even despite efforts to avoid it, to exactly match whatever cultural bias
(or whatever) is in grades.

There are also technical arguments against unbiased estimation. I once had
a friend who claimed he was ambidextrous because he did equally poorly with
both hands. That’s the idea behind unbiased estimation, doing equally poorly
high and low.

Example 9.3.3 (Constrained Estimation).
Suppose the parameter satisfies a constraint, for example, θ might be a variance,
in which case θ ≥ 0. Any sensible estimator should take values in the parameter
space. Hence we should have T (X) ≥ 0 for all values of the data X. Suppose
also that our statistical model consists of probability distributions with the
same support, hence the same events of probability zero. Then Pθ

{
T (X) > 0

}
is either zero for all θ or nonzero for all θ, and by Theorem 5 of Chapter 4 in
Lindgren, this implies

Eθ(T ) = 0, θ ∈ Θ (9.4a)

or
Eθ(T ) > 0, θ ∈ Θ (9.4b)

If (9.4a) holds, then the estimator is biased because Eθ(T ) = θ does not hold
when θ 6= 0. If (9.4b) holds, then the estimator is also biased, because Eθ(T ) = θ
does not hold when θ = 0.
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Hence either way we get a biased estimator. The only way to get an unbiased
estimator is to sometimes estimate ridiculous (that is, negative) values of the
parameter.

So why specifically do I call the principle of unbiasedness the principle of
“doing equally poorly with both hands” in this situation? The constraint allows
you to do much better on the low side than the high side. Take any estimator
T (X), perhaps an unbiased one that sometimes estimates negative parameter
values. The estimator is clearly improved by setting all the negative estimates
to zero, that is,

Timproved(X) =

{
T (X), T (X) > 0
0, otherwise

is a better estimator, because when T (X) is not ridiculous (i. e., not negative)
Timproved(X) has the same value and when when T (X) is ridiculous (negative)
Timproved(X) is not (is zero). But Timproved(X) is biased whereas T (X) may
be unbiased. Adopting the principle of unbiasedness here means accepting that
one should, as a matter of principle, increase the errors of estimation on the
low side to make them as large as the inevitable errors on the high side. Stated
that way, it is a mystery why anyone thinks unbiasedness is a good thing. (The
solution to the mystery is that people who think unbiasedness is a good thing
have never seen this example or other examples where unbiasedness is clearly a
bad thing.)

Lest you think the example contrived, let me assure you that it does arise
in practice, and I have actually seen real scientists using ridiculous estimators
in order to achieve unbiasedness. They must have had a bad statistics course
that gave them the idea that unbiasedness is a good thing.

Even though it is not a particularly good thing, unbiasedness is an important
theoretical concept. We will meet several situations in which we can prove
something about unbiased estimators, but can’t do anything with estimators in
general. For example, there are theorems that say under certain circumstances
that a particular estimator is uniformly minimum variance unbiased (UMVU).
It is easy to misinterpret the theorem to say that the best estimator is unbiased,
but it doesn’t say that at all. In fact, it implicitly says the opposite. It says the
particular estimator is better than any other unbiased estimator. It says nothing
about biased estimators, presumably some of them are better still, otherwise we
could prove a stronger theorem.

Another issue about bias is that nonlinear functions of unbiased estimators
are usually not unbiased. For example, suppose T is an unbiased estimator of
θ. Is T 2 also an unbiased estimator of θ2? No! By the parallel axis theorem

Eθ(T 2) = varθ(T ) + Eθ(T )2.

Unless the distribution of T is concentrated at one point, varθ(T ) is strictly
greater than zero, and T 2 is biased high, that is, Eθ(T 2) > θ2, when T is
unbiased for θ. Conversely, if T 2 is unbiased for θ2, then T is biased low for θ,
that is Eθ(T ) < θ.
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Example 9.3.4 (Estimating σ).
Since S2

n is an unbiased estimator of σ2, it follows that Sn itself is a biased
estimator of σ, in fact E(Sn) < σ always holds.

9.3.2 Mean Squared Error

The mean squared error (m. s. e.) of an estimator T of a parameter θ is

mseθ(T ) = Eθ

{
(T − θ)2

}
By the parallel axis theorem

mseθ(T ) = varθ(T ) + b(θ)2

So mean squared error is variance plus bias squared, and for unbiased estimators
m. s. e. is just variance.

Mean squared error provides one sensible criterion for goodness of point
estimators. If T1 and T2 are estimators of the same parameter θ, then we can
say that T1 is better than T2 if mse(T1) < mse(T2). It goes without saying that
if we choose a different criterion, the order could come out differently.

An example of another criterion is mean absolute error Eθ{|T −θ|}, but that
one doesn’t work so well theoretically, because the parallel axis theorem doesn’t
apply, so there is less we can say about this criterion than about m. s. e.

Example 9.3.5.
Consider the class of estimators of σ2 of the form kVn, where k > 0 is some
constant. The choice k = 1 gives Vn itself. The choice k = n/(n − 1) gives S2

n.
It turns out that neither of these estimators is the best in this class when we use
mean squared error as the criterion. The best in the class is given by the choice
k = n/(n + 1). No proof is given here. It is a homework problem (Problem 8-7
in Lindgren).

Note that the optimal estimator is biased. This gives us yet another example
showing that unbiasedness is not necessarily a good thing. The same sort of
calculation that shows the choice k = n/(n + 1) is optimal, also shows that
mse(Vn) < mse(S2

n). So among the two more familiar estimators, the unbiased
one is worse (when mean square error is the criterion).

9.3.3 Consistency

Definition 9.3.1 (Consistency).
A sequence of point estimators {Tn} of a parameter θ is consistent if

Tn
P−→ θ, as n → ∞.

Generally we aren’t so pedantic as to emphasize that consistency is really a
property of a sequence. We usually just say Tn is a consistent estimator of θ.

Consistency is not a very strong property, since it doesn’t say anything about
how fast the errors go to zero nor does it say anything about the distribution
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of the errors. So we generally aren’t interested in estimators that are merely
consistent unless for some reason consistency is all we want. We will see the
most important such reason in the following section. For now we just list a few
consistent estimators.

By the law of large numbers, if X1, X2, . . . are i. i. d. from a distribution
with mean µ, then the sample mean Xn is a consistent estimator of µ. The only
requirement is that the expectation defining µ exist.

Similarly, by Theorem 7.15 every sample moment (ordinary or central) is
a consistent estimator of the corresponding population moment. The only re-
quirement is that the population moment exist. Here we have fallen into the
sloppy terminology of referring to i. i. d. random variables as a “sample” from
a hypothetical infinite “population.” What is meant, of course, is that if X1,
X2, . . . are i. i. d. from a distribution having ordinary moment αk or central
moment µk and if the corresponding sample moments are Ak,n and Mk,n in the
notation of Section 7.3.1, then

Ak,n
P−→ αk

Mk,n
P−→ µk

provided only that the moments αk and µk exist.
That doesn’t give us a lot of consistent estimators, but we can get a lot more

with the following.

Theorem 9.1. Any continuous function of consistent estimators is consistent.
Specifically, if Ti,n

P−→ θi, as n → ∞ for i = 1, . . ., m, then

g(T1,n, . . . , Tm,n) P−→ g(θ1, . . . , θm), as n → ∞

if g is jointly continuous at the point (θ1, . . . , θm).

This is just the multivariate version of the continuous mapping theorem for
convergence in probability (Theorem 8.7).

9.3.4 Asymptotic Normality

As we said in the preceding section, mere consistency is a fairly uninteresting
property, unless it just happens to be all we want. A much more important
property is asymptotic normality. Another way to restate the definition of
consistency is

Tn − θ
P−→ 0.

The estimator Tn is supposed to estimate the parameter θ, so Tn − θ is the
error of estimation. Consistency says the error goes to zero. We would like to
know more than that. We would like to know how about big the error is, more
specifically we would like an approximation of its sampling distribution.
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It turns out that almost all estimators of practical interest are not just
consistent but also asymptotically normal, that is,

√
n(Tn − θ) D−→ N (0, σ2) (9.5)

holds for some constant σ2, which may depend on the true distribution of the
data. We say an estimator Tn that satisfies (9.5) is consistent and asymptotically
normal (that is, asymptotically normal when centered at θ). It may be very
hard, even impossible, to work out theoretically what the constant σ2 actually
is, although these days one can often use computer simulations to calculate it
when pencil and paper analysis fails. Examples of consistent and asymptotically
normal estimators are ordinary and central sample moments (Theorems 7.15
and 7.16).

The property (9.5) is not much help by itself, because if σ2 actually depends
on the true distribution of the data (that is, σ2 is actually a function of the
parameter θ, although the notation doesn’t indicate this), then we don’t know
what it actually is because we don’t know the true distribution (or the true
value of θ). Then the following theorem is useful.

Theorem 9.2 (Plug-In). Suppose (9.5) holds and Sn is any consistent esti-
mator of σ, then

Tn − θ

Sn/
√

n

D−→ N (0, 1)

This was proved as a homework problem last semester, and we repeated the
proof in Example 8.1.5. It is just (9.5) and Slutsky’s theorem. We call this the
“plug-in” theorem, because it says asymptotics still works when you plug in Sn

for σ.

9.3.5 Method of Moments Estimators

A function of sample moments is called a method of moments estimator of a
parameter θ if the function evaluated at the corresponding population moments
is equal to θ.

Example 9.3.6.
Trivially, sample moments are “method of moments estimators” of the corre-
sponding population moments.

Example 9.3.7 (The Two-Parameter Gamma Model).
The mean and variance of the Gam(α, λ) distribution are

µ =
α

λ

σ2 =
α

λ2
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Solving for α and λ gives

α =
µ2

σ2

λ =
µ

σ2

Plugging in the corresponding sample moments gives

α̂n =
X

2

n

Vn
(9.6a)

λ̂n =
Xn

Vn
(9.6b)

These are method of moments estimators because they are functions of sample
moments, for example

α̂n = g(Xn, Vn),

where

g(u, v) =
u2

v
, (9.7)

and the function evaluated at the population moments is the parameter to be
estimated, for example

g(µ, σ2) =
µ2

σ2
= α.

Method of moments estimators are always consistent and asymptotically
normal if enough population moments exist and they are nice functions of the
sample moments.

Theorem 9.3. A method of moments estimator involving sample moments of
order k or less is consistent provided population moments of order k exist and
provided it is a continuous function of the sample moments.

This is just Theorem 7.15 combined with Theorem 9.1.

Theorem 9.4. A method of moments estimator involving sample moments of
order k or less is asymptotically normal provided population moments of order
2k exist and provided it is a differentiable function of the sample moments.

The proof of this theorem is just the multivariate delta method (Theo-
rem 8.9) applied to the multivariate convergence in distribution of sample mo-
ments, for which we have not stated a completely general theorem. What is
needed is the multivariate analog of Theorem 7.16 which would give the asymp-
totic joint distribution of several sample moments, rather than the asymptotic
marginal of just one. Rather than state such a general theorem, we will be
content by giving the specific case for the first two moments.
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Theorem 9.5. If X1, X2, . . . are i. i. d. from a distribution having fourth
moments, then

√
n

(
Xn − µ

A2,n − α2

)
D−→ N (0,M1), (9.8)

where A2,n is the sample ordinary second moment and

M1 =
(

α2 − α2
1 α3 − α1α2

α3 − α1α2 α4 − α2
2

)
(9.9)

and √
n

(
Xn − µ
Vn − σ2

)
D−→ N (0,M2), (9.10)

where

M2 =
(

µ2 µ3

µ3 µ4 − µ2
2

)
(9.11)

Proof. The first assertion of the theorem was proved in Examples 5.1.1 and 8.1.2.
The second assertion was almost, but not quite, proved while we were proving
Theorem 7.16. In that theorem, we obtained the asymptotic marginal distribu-
tion of Vn, but not the asymptotic joint distribution of Xn and Vn. However in
the unlabeled displayed equation just below (8.22) we determined

√
n

(
Xn − µ

M ′
2,n − µ2

)
D−→ N (0,M2)

where by the empirical central axis theorem

M ′
2,n =

1
n

n∑
i=1

(Xi − µ)2 = Vn + (Xn − µ)2

Hence √
n

(
Xn − µ

M ′
2,n − µ2

)
=

√
n

(
Xn − µ
Vn − µ2

)
+

√
n

(
0

(Xn − µ)2

)
and by Problem 8-6 the second term converges in probability to zero, hence
Slutsky’s theorem gives the asserted result.

Example 9.3.8.
In Example 8.2.1 we essentially did a method of moments estimator problem.
We just didn’t know at the time that “method of moments” is what statisticians
call that sort of problem. There we looked at the asymptotic behavior of 1/Xn

for an i. i. d. sample from an Exp(λ) distribution. From the fact that

E(X) =
1
λ

we see that
λ̂n =

1
Xn
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is the obvious method of moments estimator of λ. In Example 8.2.1 we calcu-
lated its asymptotic distribution

λ̂n ≈ N
(

λ,
λ2

n

)
Example 9.3.9.
For the method of moments estimators α̂n and λ̂n defined in Example 9.3.7,
these theorems imply that these estimators are consistent and asymptotically
normal, because the gamma distribution has moments of all orders and both
estimators are differentiable functions of the sample moments they involve.

Getting the actual asymptotic distribution of the estimators is more work.
We have to apply the multivariate delta method to the result of Theorem 9.5.
We’ll just do α̂n As was pointed out in Example 9.3.7 α̂n = g(Xn, Vn), where
the function g is given by (9.7), which has derivative

G = ∇g(µ, σ2) =
(

2µ
σ2 −µ2

σ4

)
(9.12)

The specific form of the asymptotic variance matrix of Xn and Vn is given by
(9.11) with the specific moments of the gamma distribution plugged in. Of
course, we already know

µ =
α

λ
and

σ2 = µ2 =
α

λ2

Plugging these into (9.12) gives

G =
(
2λ −λ2

)
(9.13)

To calculate M2, we need to also calculate µ3 and µ4.

µ3 =
λα

Γ(α)

∫ ∞

0

(
x − α

λ

)3

xα−1e−λx dx

=
λα

Γ(α)

∫ ∞

0

(
x3 − 3αx2

λ
+

3α2x

λ2
− α3

λ3

)
xα−1e−λx dx

=
λα

Γ(α)

∫ ∞

0

xα+3−1e−λx dx − 3αλα−1

Γ(α)

∫ ∞

0

xα+2−1e−λx dx

+
3α2λα−2

Γ(α)

∫ ∞

0

xα+1−1e−λx dx − α3λα−3

Γ(α)

∫ ∞

0

xα−1e−λx dx

=
λαΓ(α + 3)
λα+3Γ(α)

− 3αλα−1Γ(α + 2)
λα+2Γ(α)

+
3α2λα−2Γ(α + 1)

λα+1Γ(α)
− α3λα−3Γ(α)

λαΓ(α)

=
(α + 2)(α + 1)α

λ3
− 3α(α + 1)α

λ3
+

3α2α

λ3
− α3

λ3

=
(α + 2)(α + 1)α

λ3
− 3α(α + 1)α

λ3
+

3α2α

λ3
− α3

λ3

=
2α

λ3
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A fairly horrible calculation, but we can check it in Mathematica. In fact we
did this problem in the lab as the last question on the quiz. Let’s do µ4 in
Mathematica.

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = GammaDistribution[alpha, 1 / lambda]

1
Out[2]= GammaDistribution[alpha, ------]

lambda

In[3]:= f[x_] = PDF[dist, x]

-1 + alpha
x

Out[3]= ------------------------------------
lambda x 1 alpha
E (------) Gamma[alpha]

lambda

In[4]:= mu = Integrate[ x f[x], {x, 0, Infinity},
Assumptions -> {alpha > 0 && lambda > 0} ]

-1 - alpha
lambda Gamma[1 + alpha]

Out[4]= ---------------------------------
1 alpha

(------) Gamma[alpha]
lambda

In[5]:= mu = FullSimplify[mu]

-1 - alpha
alpha lambda

Out[5]= ----------------------
1 alpha

(------)
lambda

In[6]:= mu = PowerExpand[mu]

alpha
Out[6]= ------

lambda
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In[7]:= mu4 = Integrate[ (x - mu)^4 f[x], {x, 0, Infinity},
Assumptions -> {alpha > 0 && lambda > 0} ]

-4 - alpha 4
Out[7]= (lambda (-3 alpha Gamma[alpha] +

2
> 6 alpha Gamma[2 + alpha] - 4 alpha Gamma[3 + alpha] +

1 alpha
> Gamma[4 + alpha])) / ((------) Gamma[alpha])

lambda

In[8]:= mu4 = PowerExpand[FullSimplify[mu4]]

3 alpha (2 + alpha)
Out[8]= -------------------

4
lambda

Thus we finally obtain

µ4 − µ2
2 =

2α(3 + α)
λ4

and

M2 =

 α
λ2

2α
λ3

2α
λ3

2α(3+α)
λ4

 (9.14)

So the asymptotic variance of α̂n is

GM2G′ =
(
2λ −λ2

)  α
λ2

2α
λ3

2α
λ3

2α(3+α)
λ4

  2λ

−λ2


= 2α(1 + α)

and

α̂n ≈ N
(

α,
2α(1 + α)

n

)
(9.15)

9.3.6 Relative Efficiency

Definition 9.3.2 (Relative Efficiency).
The relative efficiency of two estimators of the same parameter is the ratio of
their mean squared errors.

Lindgren (p. 260) adds an additional proviso that the ratio must not depend
on the parameter, but this needlessly restricts the concept. Of course, if the
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relative efficiency does depend on the parameter then in actual practice you
don’t know exactly what it is because you don’t know the true parameter value.
However, you can still make useful statements comparing the estimators. It
might be, for example, that the relative efficiency is large for all likely values of
the parameter.

Unfortunately, this criterion is almost useless except in toy problems because
it is often impossible to calculate mean squared errors of complicated estimators.
A much more useful criterion is given in the following section.

9.3.7 Asymptotic Relative Efficiency (ARE)

Definition 9.3.3 (Asymptotic Relative Efficiency).
The asymptotic relative efficiency of two consistent and asymptotically normal
estimators of the same parameter is the ratio of their asymptotic variances.

Expressed in symbols, if Sn and Tn are two estimators of θ and
√

n(Sn − θ) D−→ N (0, σ2)
√

n(Tn − θ) D−→ N (0, τ2)

then the asymptotic relative efficiency is the ratio of σ2 to τ2.
It is unimportant whether you say the ARE is σ2/τ2 or τ2/σ2. No one can

remember which way is up anyway. It is much clearer if you say something like
Sn is better than Tn and the ARE is 0.95. It is then clear that σ2 is smaller
than τ2, because “better” means smaller asymptotic variance. Hence it is clear
that the ARE is in this case σ2/τ2. Typically the ARE depends on the true
distribution of the data.

Example 9.3.10 (Mean versus Median).
Whenever all the distributions in a statistical model are symmetric and have
means, the center of symmetry is both the mean and the median. Hence both
Xn and X̃n are sensible estimators. Which is better?

Generally, it depends on the shape of the population distribution. For a
concrete example, we will do the normal distribution. Then the asymptotic
variance of X̃n is given in Example 7.4.1, and the asymptotic variance of Xn is
of course σ2/n. Hence the sample mean is the better estimator and the ARE
is 2/π = 0.6366. Thus the sample median is only about 64% as efficient as the
sample mean for normal populations.

For other population distributions the conclusion can be reversed and the
sample median may be much better than the mean (Problem 9-12).

Why is ARE interesting? Why ratio of variances? Why not ratio of standard
deviations for example? The reason is that ARE has a direct relation to actual
costs. To get the same accuracy, we need the same variance. The asymptotic
variances are σ2/m and τ2/n if we choose sample sizes m and n for the two
estimators. So in order to have the same accuracy, we must have

m =
σ2

τ2
n = ARE × n
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A large part of the costs of any random experiment will be proportional to the
sample size. Hence ARE is the right scale, the one proportional to costs.

9.4 Interval Estimation

Since point estimators are never right, at least when the statistical model
is continuous, it makes sense to introduce some procedure that is right some
of the time. An interval estimate of a real-valued parameter θ is a random
interval having endpoints that are statistics, call them θ̂L(X) and θ̂R(X), the L
and R being for “left” and “right.” The idea is that the interval estimate says
the true parameter value is somewhere between these endpoints. The event
θ̂L(X) < θ < θ̂R(X) that the true parameter value is actually in the interval
is described as saying the interval covers the parameter, and the probability of
this event

Pθ

{
θ̂L(X) < θ < θ̂R(X)

}
(9.16)

is called the coverage probability of the interval estimator. This terminology,
“interval estimate,” “covers,” and “coverage probability,” is not widely used,
appearing only in fairly technical statistical literature, but the same concepts
are widely known under different names. The interval

(
θ̂L(X), θ̂R(X)

)
is called

a confidence interval and the probability (9.16) is called the confidence level,
conventionally expressed as a percentage. If the coverage probability is 0.95,
then the interval is said to be a “95 percent confidence interval.”

The careful reader may have noticed that an important issue was passed over
silently in defining the coverage probability (9.16). As the notation indicates,
the coverage probability depends on θ, but we don’t know what the value of θ
is. The whole point of the exercise is to estimate θ. If we knew what θ was, we
wouldn’t care about a confidence interval.

There are three solutions to this problem.

• Sometimes, by everything working out nicely, the coverage probability
(9.16) does not actually depend on θ, so the issue goes away.

• Often, we can’t calculate (9.16) exactly anyway and are using the central
limit theorem or other asymptotic approximation to approximate the cov-
erage probability. If the asymptotic approximation doesn’t depend on θ,
the issue goes away.

• Rarely, we can get a lower bound on the coverage probability, say

Pθ

{
θ̂L(X) < θ < θ̂R(X)

} ≥ p, θ ∈ Θ

then we are entitled to call p expressed as a percentage the confidence level
of the interval. This procedure is conservative but honest. It understates
the actual coverage, but guarantees a certain minimum coverage.
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9.4.1 Exact Confidence Intervals for Means

Theorem 9.6. If X1, . . ., Xn are i. i. d. N (µ, σ2) where σ is known, then

Xn ± zα/2
σ√
n

(9.17)

is a 100(1 − α)% confidence interval for µ, where zα/2 is the 1 − α/2 quantile
of the standard normal distribution.

The notation in (9.17) means that the confidence interval is

Xn − zα/2
σ√
n

< µ < Xn + zα/2
σ√
n

(9.18)

Typically, confidence levels of 90%, 95%, or 99% are used. The following little
table gives the corresponding zα/2 values.

confidence z critical
level value
90% 1.645
95% 1.960
99% 2.576

As the heading of the second column says, the zα/2 values are often called “z
critical values” for a reason that will become apparent when we get to tests of
significance.

The proof of the theorem is trivial. Equation (9.18) holds if and only if∣∣∣∣Xn − µ

σ/
√

n

∣∣∣∣ < zα/2

The fraction in the absolute value signs is a standard normal random variable
by Theorem 7.12. Hence the confidence level is

P (|Z| < zα/2) = 1 − 2P (Z > zα/2) = 1 − α

by the symmetry of the normal distribution and the definition of zα/2.
This theorem is not much use in practical problems because σ is almost

never known. Hence the following.

Theorem 9.7. If X1, . . ., Xn are i. i. d. N (µ, σ2), then

Xn ± tα/2
Sn√

n
(9.19)

is a 100(1−α)% confidence interval for µ, where tα/2 is the 1−α/2 quantile of
the t(n − 1) distribution.
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The proof is again trivial, and follows exactly the same pattern as the previ-
ous theorem. Now, however, we can’t use our little table of z critical values. We
must use a big table of t critical values. The columns labeled 95, 97.5, and 99.5
in Table IIIb in the Appendix of Lindgren give the critical values tα/2 for 90%,
95%, and 99% confidence intervals respectively. (Why? Figure it out.) The
bottom row of the table, labeled ∞ degrees of freedom gives the corresponding
z critical values, so if you forget which column you need to use but can remem-
ber what the z critical value would be, that will tell you the right column. Also
keep in mind that the degrees of freedom are n − 1, not n.

9.4.2 Pivotal Quantities

The random variables
Xn − µ

σ/
√

n
∼ N (0, 1) (9.20a)

used in the proof of Theorem 9.6 and

Xn − µ

Sn/
√

n
∼ t(n − 1) (9.20b)

used in the proof of Theorem 9.7 are called “pivotal quantities.”
More generally, a random variable is called a pivotal quantity or pivot if its

distribution does not depend on the true distribution of the data so long as
that distribution remains in the statistical model under consideration. For a
parametric model, this means the distribution of the the pivot does not depend
on the parameters of the model. For a nonparametric model, we need the more
general definition.

Any pivotal quantity that involves only one parameter can always be used
to make confidence intervals for that parameter if its sampling distribution is
known. If g(X, θ) is a pivotal quantity with known sampling distribution, then
we can find numbers a and b such that

P{a < g(X, θ) < b}
is our desired confidence level. Then

{ θ ∈ Θ : a < g(X, θ) < b } (9.21)

is the desired confidence interval, or perhaps to be precise we should say “con-
fidence set” because the set (9.21) is not necessarily an interval, though it is in
cases of practical interest.

Both theorems of the preceding section are examples of intervals derived by
the method of pivotal quantities. Another interesting example is Example 8.8b
in Lindgren which gives a confidence interval for the parameter of the Exp(1/θ)
distribution (that is, θ is the mean) using an i. i. d. sample. The pivotal quantity
is

2
θ

n∑
i=1

Xi =
2nXn

θ
∼ chi2(2n)
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That this random variable has the asserted distribution comes from Lemma 7.10.
The exact assertion we need is given in the unnumbered displayed equation
below (7.19) in the example following the lemma (recalling that 1/θ = λ).

Generally it is not clear how to choose a and b in (9.21) unless the sampling
distribution of the pivot is symmetric, as it is for the confidence intervals in the
preceding section. Lindgren in Example 8.8b chooses a so-called equal-tailed
interval with a and b satisfying

P{g(X, θ) < a} = P{b < g(X, θ)}

but the only reason for doing this is the limitations of the chi-square table used
to find a and b. With better tables or a computer, we find that if instead of the
5th and 95th percentiles of the chi2(20) used by Lindgren, we use the 0.086 and
0.986 quantiles we get the interval

2
∑

i Xi

36.35
< θ <

2
∑

i Xi

12.06

which is about 8% shorter than the equal-tailed interval. In fact, this is the
shortest possible 90% confidence interval based on this pivot.

9.4.3 Approximate Confidence Intervals for Means

If no pivotal quantity is known, there still may be an asymptotically pivotal
quantity, a function gn(X1, . . . , Xn, θ) satisfying

gn(X1, . . . , Xn, θ) D−→ N (0, 1) (9.22)

regardless of the true distribution of the data so long as that distribution remains
in the statistical model under consideration. Then

{ θ ∈ Θ : |gn(X1, . . . , Xn, θ)| < zα/2 } (9.23)

is an asymptotic 100(1 − α)% confidence interval for θ, meaning the coverage
probability converges to 1 − α as n → ∞, and where, as before, zα/2 is the
1 − α/2 quantile of the standard normal distribution.

Theorem 9.8. If X1, . . ., Xn are i. i. d. from a distribution having mean µ
and finite variance σ2 and Sn is any consistent estimator of σ, then

Xn ± zα/2
Sn√

n
(9.24)

is an asymptotic 100(1−α)% confidence interval for µ, where zα/2 is the 1−α/2
quantile of the standard normal distribution.

This is Theorem 9.2 restated in confidence interval jargon.
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Example 9.4.1 (I. I. D. Exponential).
In his Example 8.8b Lindgren gave the following exact equal-tailed 90% confi-
dence interval for the mean θ of an exponential model

2
∑

i Xi

31.4
< θ <

2
∑

i Xi

10.9
(9.25)

Here we compare this with the asymptotic confidence interval. Since the
variance of the exponential is σ2 = 1

λ2 = θ2, Xn is a consistent estimator of
both θ and σ. Hence by the theorem

Xn ± 1.645
Xn√

n

is an asymptotic 90% confidence interval for θ. In Lindgren’s example n = 10
so the asymptotic interval works out to be

0.48Xn < θ < 1.52Xn (9.26)

For comparison with the exact interval (9.25), we rewrite this as

2
∑

i Xi

30.4
< θ <

2
∑

i Xi

9.60

Since 2
∑

i Xi/θ has a chi2(20) distribution (see Example 8.8b in Lindgren), the
exact confidence level of this interval is

P (9.60 < χ2
20 < 30.4) = 0.911

Not perfect, but not too shabby, especially since n = 10 is not a very large
sample size. We don’t usually expect agreement this good.

A useful bit of terminology for discussing asymptotic confidence intervals is
the following. In the example, the approximate confidence interval (9.26) has
a nominal confidence level of 90%, meaning only that we are calling it a 90%
interval (“nominal” meaning having a certain name). The actual confidence
level turns out to be 91.1%. In most applications we have no idea what the
actual confidence level of an asymptotic interval really is. The CLT assures us
that the actual level is close to the nominal if the sample size is large enough.
But we rarely know how large is large enough.

There is in general no reason to expect that the actual level will be greater
than the nominal level. It just happened to turn out that way in this example.
In another application, actual might be less than nominal.

Most people would find the performance of the asymptotic interval satisfac-
tory in this example and would not bother with figuring out the exact interval.
In fact, with the single exception of intervals based on the t distribution, very
few exact intervals are widely known or used. None (except t) are mentioned in
most introductory statistics courses.
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9.4.4 Paired Comparisons

In this section and in the next several sections we cover what is probably
the single most useful application of statistics: comparison of the means of two
populations. These can be divided into two kinds: paired comparisons and
comparisons using independent samples.

In this section we deal with paired comparisons, leaving the other to follow-
ing sections. The message of this section is that paired comparison problems
naturally transform to the one-sample problems already studied. Hence they
involve no new theory, just a new application of old theory.

In a paired comparisons problem we observe i. i. d. bivariate data (Xi, Yi),
i = 1, . . ., n. The parameter of interest is

µX − µY = E(Xi) − E(Yi) (9.27)

The standard solution to this problem is to reduce the data to the random
variables

Zi = Xi − Yi, i = 1, . . . , n,

which are i. i. d. and have mean

µZ = µX − µY ,

which is the parameter of interest. Hence standard one-sample procedures ap-
plied to the Zi provide point estimates and confidence intervals in this case.

It is an important point that Xi and Yi do not have to be independent. In
fact it is sometimes better, in the sense of getting more accurate estimates of
the parameter of interest, if they are dependent. The typical paired comparison
situation has Xi and Yi being different measurements on the same individual,
say arm strength of left and right arms or MCAT scores before and after taking
a cram course. When Xi and Yi are measurements on the same individual, they
are usually correlated.

The procedure recommended here that reduces the original data to the differ-
ences Zi and then uses one-sample procedures is the only widely used method-
ology for analyzing paired comparisons. We will study other procedures for
paired comparisons when we come to nonparametrics (Chapter 13 in Lindgren),
but those procedures also use the same trick of reducing the data to the differ-
ences Zi and then applying one-sample procedures to the Zi. The only difference
between the nonparametric procedures and those described here is that the non-
parametric one-sample procedures are not based on the normal or t distributions
and do not require normality of the population distribution.

9.4.5 Independent Samples

A more complicated situation where the paired difference trick is not ap-
propriate arises when we have X1, . . ., Xm i. i. d. from one population and Y1,
. . ., Yn i. i. d. from another population. We assume the samples are indepen-
dent, that is, X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are independent random
vectors. The parameter of interest is still (9.27).
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Now there is no obvious way to do pairing if m 6= n. Even if m = n,
the pairing is arbitrary and unnatural when Xi and Yi are measurements on
independent randomly chosen individuals.

Asymptotic Confidence Intervals

The obvious estimate of µX − µY is Xm − Y n, which has variance

σ2
X

m
+

σ2
Y

n
(9.28)

An obvious estimator of (9.28) is

S2
X,m

m
+

S2
Y,n

n

where SX,m and SY,n are any consistent estimators of σX and σY , such as the
usual sample standard deviations. We can use this to construct asymptotic
confidence intervals for the parameter of interest as follows.

Theorem 9.9. Suppose X1, X2, . . . are i. i. d. with mean µX and variance σ2
X

and Y1, Y2, . . . are i. i. d. with mean µY and variance σ2
Y and (X1, . . . , Xm)

and (Y1, . . . , Yn) are independent random vectors for each m and n and

SX,m
P−→ σX , as m → ∞ (9.29a)

SY,n
P−→ σY , as n → ∞ (9.29b)

Then

(Xm − Y n) − (µX − µY )√
S2

X,m

m +
S2

Y,n

n

D−→ N (0, 1), as m → ∞ and n → ∞.

Partial Proof. We will prove the assertion of the theorem under the additional
condition that m and n go to infinity in a certain special way, that they are
given by sequences mk and nk such that

σ2
X

mk

σ2
X

mk
+ σ2

Y

nk

→ α (9.30)

where α is some constant, necessarily satisfying 0 ≤ α ≤ 1, since the left hand
side of (9.30) is always between zero and one.

Then the CLT says

Xmk
− µX

σX/
√

mk

D−→ N (0, 1)

Y nk
− µY

σY /
√

nk

D−→ N (0, 1)
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If we let αk denote the left hand side of (9.30), then by Corollary 8.11 and
Slutsky’s theorem

(Xmk
− Y nk

) − (µX − µY )√
σ2

X

mk
+ σ2

Y

nk

=
√

αk
Xmk

− µX

σX/
√

mk
+

√
1 − αk

Y nk
− µY

σY /
√

nk

D−→ √
αZ1 +

√
1 − αZ2,

where Z1 and Z2 are independent standard normal random variables. The
limit is a linear combination of independent normal random variables, hence is
normal. It has mean zero by linearity of expectation and variance α+(1−α) = 1.
Hence it is standard normal. Thus we have established

(Xmk
− Y nk

) − (µX − µY )√
σ2

X

mk
+ σ2

Y

nk

D−→ N (0, 1) (9.31)

Similarly
S2

X,mk

mk
+

S2
Y,nk

nk

σ2
X

mk
+ σ2

Y

nk

= αk

S2
X,mk

σ2
X

+ (1 − αk)
S2

Y,nk

σ2
Y

P−→ 1 (9.32)

Combining (9.31) and (9.32) and using Slutsky’s theorem gives the assertion of
the theorem in the presence of our additional assumption (9.30).

The fact that the limit does not depend on α actually implies the theorem
as stated (without the additional assumption) but this involves a fair amount
of advanced calculus (no more probability) that is beyond the prerequisites for
this course, so we will punt on the rest of the proof.

Corollary 9.10.

Xm − Y n ± zα/2

√
S2

X,m

m
+

S2
Y,n

n

is an asymptotic 100(1 − α)% confidence interval for µX − µY , where zα/2 is
the 1 − α/2 quantile of the standard normal distribution.

Exact Confidence Intervals

Exact confidence intervals are more problematic. If we assume both popu-
lations are normal, then

(m − 1)S2
X,m

σ2
X

∼ chi2(m − 1) and
(n − 1)S2

Y,n

σ2
Y

∼ chi2(n − 1) (9.33)

and are independent. Hence the sum

(m − 1)S2
X,m

σ2
X

+
(n − 1)S2

Y,n

σ2
Y

(9.34)
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is chi2(m+n− 2). But this doesn’t help much. Since it involves the population
variances, which are unknown parameters, we can’t use (9.34) to make a t
distributed pivotal quantity that contains only the parameter of interest. Hence
we can’t use it to make an exact confidence interval.

In order to make progress, we need to add an additional assumption σX =
σY = σ. Then the variance of the point estimator Xm − Y n (9.28) becomes

σ2

(
1
m

+
1
n

)
(9.35)

and (9.34) becomes
(m − 1)S2

X,m + (n − 1)S2
Y,n

σ2
(9.36)

This gives us a useful pivot. Dividing the standard normal random variable

(Xm − Y n) − (µX − µY )

σ
√

1
m + 1

n

by the square root of (9.36) divided by its degrees of freedom gives

(Xm − Y n) − (µX − µY )

Sp,m,n

√
1
m + 1

n

∼ t(m + n − 2) (9.37)

where

S2
p,m,n =

(m − 1)S2
X,m + (n − 1)S2

Y,n

m + n − 2

It is clear from the fact that (9.36) is chi2(m+n−2) that S2
p,m,n is an unbiased

estimator of σ2, but that is not the reason we use it. Rather we use it because
of the way the t distribution is defined. S2

p,m,n is called the “pooled” estimator
of variance (hence the subscript p).

Thus under the assumptions that

• both samples are i. i. d.

• the samples are independent of each other

• both populations are exactly normal

• both populations have exactly the same variance

an exact 100(1 − α)% confidence interval for µX − µY is given by

Xm − Y n ± tα/2Sp,m,n

√
1
m

+
1
n

where tα/2 is the 1 − α/2 quantile of the t(m + n − 2) distribution.
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The sad truth about this procedure is that, although it is taught in many
introductory statistics textbooks, it has (or should have) little practical appli-
cation. The assumption σX = σY is the archetype of an assumption made for
“reasons of mathematical convenience” rather than practical or scientific rea-
sons. If we make the assumption, then we get an exact confidence interval. If
we do not make the assumption, then we don’t. But the assumption is almost
never justified. If you don’t know the true population means, how are you to
know the population variances are the same?

Welch’s Approximation

A better procedure was proposed by Welch in 1937. Unlike the the procedure
of the preceding section, there is no set of assumptions that make it “exact.”
But it is correct for large m and n under any assumptions (like the asymptotic
interval) and is a good approximation for small m and n. Welch’s procedure
uses the same asymptotically pivotal quantity

T =
(Xm − Y n) − (µX − µY )√

S2
X,m

m +
S2

Y,n

n

(9.38)

as the one used to make the asymptotic confidence interval. It just uses a bet-
ter approximation to its sampling distribution than the N (0, 1) approximation
appropriate for large m and n.

The key idea goes as follows. The numerator of (9.38) is normal. When
standardized, it becomes

Z =
(Xm − Y n) − (µX − µY )√

σ2
X

m + σ2
Y

n

(9.39)

Recall that a random variable has a t distribution if it is a standard normal
divided by the square root of a chi-square divided by its degrees of freedom.
The quantity (9.38) can be rewritten T = Z/

√
W , where Z is given by (9.39)

and

W =
S2

X,m

m + S2
Y,n

n
σ2

X

m + σ2
Y

n

(9.40)

Unfortunately, W is not a chi-square divided by its degrees of freedom, so (9.38)
is not exactly t distributed. Welch’s idea is that although W does not have
exactly the desired distribution it will typically have approximately this distri-
bution, so if we figure out the degrees of freedom ν for which a chi2(ν) random
variable divided by ν best approximates W , then the distribution of T will be
approximately t(ν).

There could be several definitions of “best approximates.” Welch’s choice
was to match moments. Rewrite W as

W = λ
U

m − 1
+ (1 − λ)

V

n − 1
(9.41)
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where

U =
(m − 1)S2

X,m

σ2
X

V =
(n − 1)S2

Y,n

σ2
Y

and

λ =
σ2

X

m
σ2

X

m + σ2
Y

n

Since U ∼ chi2(m − 1) and V ∼ chi2(n − 1) and λ is a constant, we can easily
calculate moments.

E(W ) = λ
m − 1
m − 1

+ (1 − λ)
n − 1
n − 1

= 1

which is the right expectation for a chi-square divided by its degrees of freedom,
and

var(W ) =
(

λ

m − 1

)2

2(m − 1) +
(

1 − λ

n − 1

)2

2(n − 1)

= 2
[

λ2

m − 1
+

(1 − λ)2

n − 1

]
Since if Y ∼ chi2(ν), then

var
(

Y

ν

)
=

1
ν2

var(Y ) =
2
ν

the Y/ν that gives the best approximation to W in the sense of having the right
mean and variance is the one with

1
ν

=
λ2

m − 1
+

(1 − λ)2

n − 1
(9.42)

Thus we arrive at Welch’s approximation. The distribution of (9.38) is approx-
imated by a t(ν) distribution where ν is defined by (9.42).

There are two problems with this approximation. First, we have no t tables
for noninteger degrees of freedom and must use computers to look up probabil-
ities. Second, we don’t know know ν and must estimate it, using

ν̂ =

(
S2

X,m

m + S2
Y,n

n

)2

1
m−1

(
S2

X,m

m

)2

+ 1
n−1

(
S2

Y,n

n

)2 (9.43)
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Thus (finally) we arrive at the approximate confidence interval based on
Welch’s approximation. An approximate 100(1 − α)% confidence interval for
µX − µY is given by

Xm − Y n ± tα/2

√
S2

X,m

m
+

S2
Y,n

n

where tα/2 is the 1 − α/2 quantile of the t(ν̂) distribution, ν̂ being given by
(9.43).

Example 9.4.2.
We make a confidence interval for the difference of means using the data in
Example 9.7b in Lindgren. The statistics are (p. 327 in Lindgren)

n X S2

Soil A 6 24 18.000
Soil B 8 29 23.714

Our estimate of the degrees of freedom is

ν̂ =

(
18.000

6 + 23.714
8

)2

1
5

(
18.000

6

)2 + 1
7

(
23.714

8

)2 = 11.643

To get the critical value for this noninteger degrees of freedom we must inter-
polate in Table IIIb in the Appendix of Lindgren. The critical values for a 95%
confidence interval are 2.20 for 11 d. f. and 2.18 for 12 d. f. Interpolating gives
2.19 for 11.6 d. f. R gives

> qt(0.975, 11.643)
[1] 2.186245

but 2.19 is good enough for all practical purposes.
The 95% confidence interval is thus

24 − 29 ± 2.1862

√
18.000

6
+

23.714
8

which is (−10.34, 0.34).
For comparison, the procedure of the preceding section gives an interval

24 − 29 ± 2.18

√
5 · 18.000 + 7 · 23.714

12

(
1
6

+
1
8

)
which is (−10.435, 0.435).

The two confidence intervals are very similar. Why bother with the more
complicated procedure? Because the “exact” procedure makes an assumption
which is almost certainly false and is hence indefensible. If we had only done the
exact procedure we would have no idea how wrong it was. It is only after we have
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also used Welch’s procedure that we see that in this particular case the simpler
procedure worked fairly well. In other cases, when the variances or sample sizes
are more uneven, there will be an unacceptably large difference between the two
answers. For this reason, many statistical computing packages now use Welch’s
approximation as the primary method of analysis of data like this or at least
provide it as an option. Several introductory statistics texts (including the one
I use for Statistics 3011) now explain Welch’s approximation and recommend
its use, although this is still a minority view in textbooks. Textbooks are slow
to catch on, and it’s only been 60 years.

Example 9.4.3 (Worse Examples).
This analyzes two artificial examples where the standard deviations and sample
sizes vary by a factor of 3. First consider

n S
10 1
30 3

Then

standard
error d. f.

pooled 0.9733 38
Welch 0.6325 37.96

here “standard error” is the estimated standard deviation of the point estimate,
the thing you multiply by the critical value to get the “plus or minus” of the
confidence interval. The degrees of freedom, hence the critical values are almost
the same, but the standard error using the “pooled” estimator of variance is
way too big. Thus the interval is way too wide, needlessly wide, because the
only reason it is so wide is that is based on an assumption σX = σY that is
obviously false.

Now consider

n S
10 3
30 1

Then

standard
error d. f.

pooled 0.6213 38
Welch 0.9661 9.67

Here the “exact” procedure is more dangerous. It gives confidence intervals
that are too narrow, not only wrong but wrong in the wrong direction, having
far less than their nominal coverage probability.

For example, consider a difference of sample means of 2.0. Then the “ex-
act” procedure gives a 95% confidence interval 2 ± 2.0244 · 0.6213 which is
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(0.742, 3.258), whereas Welch’s procedure gives a a 95% confidence interval
2 ± 2.2383 · 0.96609 which is (−0.162, 4.162). Using Welch’s approximation to
calculate probabilities, the coverage probability of the “exact” interval is about
77.7%. Of course, its coverage probability would be the nominal level 95% if
the assumption of equal population variances were true, but here it is obvi-
ously false. Welch’s approximation isn’t exact, so we don’t know what the true
coverage probability actually is, but it is surely far below nominal.

9.4.6 Confidence Intervals for Variances

Sometimes confidence intervals for variances are wanted. As usual, these
come in two kinds, asymptotic and exact.

Asymptotic Intervals

An asymptotic interval for σ2 can be derived from asymptotic distribution
for Vn given by Theorem 7.16 and the “plug-in” theorem (Theorem 9.2).

Theorem 9.11. If X1, . . ., Xn are i. i. d. from a distribution having finite
fourth moments, Vn is given by (7.16) and M4,n is any consistent estimator of
µ4, for example, the fourth sample central moment

M4,n =
1
n

n∑
i=1

(Xi − Xn)4

then

Vn ± zα/2

√
M4,n − V 2

n

n
(9.44)

is an asymptotic 100(1−α)% confidence interval for σ2, where zα/2 is the 1−α/2
quantile of the standard normal distribution.

Example 9.4.4.
Suppose we have i. i. d. data, the sample size is n = 200, the sample second
central moment is Vn = 1.7314, and the sample fourth central moment is M4,n =
14.2728.

Plugging this into (9.44), we get

1.96

√
14.2728 − 1.73142

200
= 0.46537

for the half-width of the asymptotic 95% confidence interval, that is, the interval
is 1.73 ± 0.47 or (1.27, 2.20).

Exact Intervals

If the data are assumed to be exactly normally distributed, then by Theo-
rem 7.24

nVn

σ2
=

(n − 1)S2
n

σ2
∼ chi2(n − 1)
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and this is a pivotal quantity that can be used to make an exact confidence
interval for σ2 or σ. The calculations are almost exactly like those for the mean
of the exponential distribution discussed in Section 9.4.2 that also involved a
chi-square distributed pivotal quantity.

Theorem 9.12. If X1, . . ., Xn are i. i. d. N (µ, σ2) random variables, Vn is
given by (7.16), and 0 < β < α < 1, then

nVn

χ2
1−α+β

< σ2 <
nVn

χ2
β

(9.45)

is an exact 100(1−α)% confidence interval for σ2, where χ2
β is the β-th quantile

of the chi-square distribution with n − 1 degrees of freedom.

Of course, one can replace nVn by (n−1)S2
n both places it appears in (9.45),

if one pleases. Usually, one uses β = α/2 in (9.45), giving a so-called “equal-
tailed” interval (equal chance of missing high or low), but other choices of β
also give valid confidence intervals, and such intervals may be shorter than the
equal-tailed interval.

Example 9.4.5.
Consider the data in Example 8.9a in Lindgren for which n = 14 and S2

n =
85.912. Suppose we want a 95% confidence interval for σ2. To get an equal-tailed
interval, we look up the 0.025 and 0.975 quantiles of the chi2(13) distribution in
Table Vb of Lindgren. They are 5.01 and 24.7. Hence an exact 95% confidence
interval is given by

(n − 1)S2
n

24.7
< σ2 <

(n − 1)S2
n

5.01

which after plugging the values of n and S2
n becomes

45.15 < σ2 < 222.98.

Taking square roots gives us a 95% confidence interval for σ

6.72 < σ < 14.93.

As always, we can find a shorter interval if we give up on the equal-tailed idea
and use a computer search to find the β that gives the shortest interval for
the desired confidence level. The β will depend on whether we are getting an
interval for σ2 or for σ. For σ2, the optimal β is 0.0465 and the corresponding
95% confidence interval

36.12 < σ2 < 192.90.

For σ, the optimal β is 0.0414 and the corresponding 95% confidence interval is

6.30 < σ < 14.08.
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The Ratio of Variances (Two Samples)

We now go back to the situation of two independent samples from two pop-
ulations studied in Section 9.4.5. The samples are X1, . . ., Xm and Y1, . . .,
Yn and the sample variances are denoted S2

X,m and S2
Y,n, respectively. Then

(9.33) gives the sampling distributions of these sample variances. If we divide
the chi-square random variables by their degrees of freedom and form the ratio,
we get an F random variable

S2
X,m

S2
Y,n

· σ2
Y

σ2
X

∼ F (m − 1, n − 1).

Hence if a and b are numbers such that P (a < X < b) = 1 − α when X ∼
F (m − 1, n − 1), then

a
S2

Y,n

S2
X,m

<
σ2

Y

σ2
X

< b
S2

Y,n

S2
X,m

is a 100(1 − α)% confidence interval for the ratio of variances. Taking square
roots gives a confidence interval for the ratio of standard deviations.

Of course, there are asymptotic confidence intervals for ratios of variances
(or differences of variances) that do not require normal data (Problem 9-19).

9.4.7 The Role of Asymptotics

Why do asymptotics as the sample size goes to infinity matter? Real data
have a sample size that is not going anywhere. It just is what it is. Why should
anyone draw comfort from the fact that if the sample size were very large,
perhaps billions of times larger than the actual sample size, the asymptotics
would give a good approximation to the correct sampling distribution of the
estimator?

The answer is, of course, that no one does draw comfort from that. What
they draw comfort from is that asymptotics actually seem to work, to provide
good approximations, at relatively small sample sizes, at least in simple well-
behaved situations. Hence the rules of thumb promulgated in introductory
statistics books that n > 30 is enough to apply “large sample theory” in i. i. d.
sampling, except for the binomial distribution and contingency tables,2 where
the rule is the expected value in each cell of the table should be at least five.
These rules are known to be simplistic. For skewed distributions n must be
larger than 30 for good approximation, much larger if the distribution is highly
skewed. Similarly, there are cases where the contingency table rule holds but
the distribution of the chi-square statistic is not well approximated by the chi-
square distribution. But the rules of thumb are good enough so that textbook
authors do not feel negligent in teaching them.

2The chi-square test for contingency tables gets us ahead of ourselves. This is the subject
of much of Chapter 10 in Lindgren, which we will get to eventually. But as long as we are
discussing rules of thumb, we might as well mention all of them, and this is all there are.
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If one is worried about the validity of asymptotics, the standard cure is to
look at computer simulations. Sometimes simulations show that asymptotic
approximations are bad, but asymptotics look good in simulations often enough
that people keep on using asymptotics.

So people don’t use asymptotics because of the theorems. They use asymp-
totics because most of the time they actually work in practice. That they work
is not something explained by asymptotic theory, because theory only says they
work for sufficiently large n. There is no guarantee for the actual n in an actual
application.

Asymptotic theory is only a heuristic. It is a device for producing
approximations that may or may not be any good.

Whether they are any good in an actual application, is something on which the
theory is silent.

If you are worried the validity of asymptotics, you do simulations.
Theory is no help.

Example 9.4.6 (A Simulation Study).
In Example 9.3.9 and Problem 9-11 we derived the asymptotic distributions
of the method of moments estimators of the two parameters of the gamma
distribution. What if we are curious whether the asymptotics are good for
sample size n = 25? Whether the asymptotics are valid also will depend on
the shape of the distribution. Skewed distributions require larger sample sizes.
Hence it will depend on the shape parameter α, but not on the scale parameter
λ. Let’s check the case α = 3.5. Which a plot shows is moderately skewed.

> alpha <- 3.5
> lambda <- 1 # irrelevant, choose something
> curve(dgamma(x, alpha, 1 / lambda), from=0, to=10)
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Now what we want to do is simulate lots of random samples of size n and see
what the distribution of one of these statistics is. The following code does the
job.

> alpha <- 3.5
> lambda <- 1 # irrelevant, choose something
> n <- 25 # sample size
> nsim <- 1000 # number of simulations to do
> alpha.hat <- double(nsim)
> for (i in 1:nsim) {
+ x <- rgamma(n, alpha, 1 / lambda)
+ xbar <- mean(x)
+ v <- var(x)
+ alpha.hat[i] <- xbar^2 / v
+ }

This only takes a few seconds of computer time. Now we look at a histogram
of the data and compare it to the normal density of the asymptotic distribution.
Actually, a histogram of all the alpha.hat values (not shown) when I did this
simulation (of course, you would get different results because the results are
random) was clearly nonnormal because it contained two “outliers” very far
from the rest of the data. Below is a histogram of all but those two outliers
produced by the following R statements

> hist(alpha.hat, probability=TRUE, xlim=c(1,9),
+ breaks=seq(0,20,.5))
> curve(dnorm(x, alpha, sqrt(2 * alpha * (1 + alpha) / n)),
+ from=1, to=9, add=TRUE)

where in the last line the standard deviations comes from (9.15).
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As can be clearly seen from the histogram, the middle of the distribution of
α̂n is clearly skewed and so not very normal (because the normal distribution
is symmetric, not skewed). The outliers in the distribution of α̂n are not a
big problem. We are not usually interested in the distribution far out in the
tails. The skewness is a big problem. Because of it we should have asymmetric
confidence intervals (not α̂n plus or minus the same thing), and asymptotics
doesn’t do that. (At least the kind of asymptotics we’ve studied doesn’t do
that. So-called “higher order” asymptotics, does correct for skewness, but that
subject is beyond the scope of this course.)

Hence the simulation study shows that asymptotics doesn’t work, at least
for n = 25 and α = 3.5. For large enough n, it will work, regardless of the value
of α. For larger α it will work better for the same n, because the distribution
of the Xi will be less skewed. For example, another simulation study (not
shown), which I did to check my algebra in deriving the asymptotics, showed
that the asymptotics worked fine for n = 100 and α = 2.3 (there was only a
little skewness visible in the histogram, the fit was pretty good).

9.4.8 Robustness

“Robustness” is a word with a lot of meanings in statistics. All of the
meanings have something to do with a procedure being insensitive to violation
of its assumptions. The differences have to do with what kind of violations are
envisaged and what effects are considered important.

Asymptotic Robustness

A confidence interval is asymptotically robust or asymptotically distribution
free for a specified statistical model if it is based on an asymptotically pivotal
quantity (the property of being asymptotically pivotal depending, of course, on
the model).

Example 9.4.7 (One-Sample t Intervals).
The “exact” confidence interval for the population mean given by Theorem 9.7,
which uses the t distribution and assumes normal data, is asymptotically robust
(more precisely asymptotically distribution free within the class of all distribu-
tions with finite variance) because it is based on the same pivotal quantity as
the “large sample” interval given by Theorem 9.8, which needs no assumption
about the data except finite variance. Thus we say these one-sample t confidence
intervals are robust against departures from the normality assumptions.

Of course asymptotic robustness is inherently a “large sample” result. It
may not say much about small sample sizes. Hence the analysis above does not
really justify use of the t distribution for small sample sizes when we are worried
that the population may be nonnormal. However, one can make the following
argument. While it is true that the t confidence intervals are no longer exact if we
do not assume exact normality, it is clear that we should make some adjustment
of the critical value for small sample sizes. Just using the asymptotic interval
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based on the z critical value is obviously wrong. While the t critical value may
not be exactly right, at least it will be a lot closer to the right thing than using
the z critical value. If we are really worried we could do some simulations, which
would show us that so long as the population distribution is symmetric or close
to symmetric the distribution of

√
n(Xn − µ)/Sn is very well approximated by

the t(n−1) distribution even when the population distribution has much heavier
tails than normal. When the population is highly skewed, then the distribution
of

√
n(Xn − µ)/Sn is also skewed when n is small and hence cannot be well

approximated by a t distribution, which, of course, is symmetric.

Example 9.4.8 (Two-Sample t Intervals).
The “exact” confidence interval for the difference of population means using the
pooled estimator of variance is not asymptotically robust within the class of all
distributions with finite variances, because the asymptotic distribution of the
pivotal quantity (9.37) depends on the ratio of variances σ2

X/σ2
Y . Welch’s ap-

proximate confidence interval is asymptotically robust within this class because
it uses the same pivotal quantity as the asymptotic interval.

Both intervals are robust against departures from normality, but the “exact”
interval is not robust against departures from its extra assumption σ2

X = σ2
Y .

If we wanted to be pedantic we could say that the “exact” two-sample inter-
val is asymptotically robust within the class of all distributions with finite vari-
ances and satisfying the additional assumption σ2

X = σ2
Y , but this would only

satisfy a pedant. It only emphasizes that the critical assumption of equality
of population variances cannot be violated without destroying any nice prop-
erties the procedure is supposed to have. Calling that “robust” is perverse,
although it does satisfy the technical condition. Robustness is defined relative
to a statistical model. You can always make up a statistical model that makes
a procedure robust with respect to that model. The question is whether that
model is interesting.

Example 9.4.9 (Variances).
The “exact” confidence interval for the variance using the chi-square distribution
is not asymptotically robust with the class of all distributions with finite fourth
moments. This is clear because it is not based on the same pivotal quantity as
the asymptotic confidence interval given by Theorem 9.11. Hence the “exact”
interval is not robust against departures for normality. It critically depends on
the property µ4 = 3σ4 of the normal distribution.

Consider the data from Example 9.4.4 which were computer simulated from a
Laplace (double exponential) distribution. The reason for using this distribution
as an example is that it has heavier tails than the normal distribution, but not
too heavy (the distribution still has moments of all orders, for example). The
so-called exact 95% confidence interval for the variance using Theorem 9.12 is

1.44 < σ2 < 2.14

but here this interval is inappropriate because the normality assumption is in-
correct.
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In Example 9.4.4 we calculated the correct asymptotic interval using the
sample fourth central moment to be

1.27 < σ2 < 2.20.

Comparing the two, we see that the correct interval is longer than the so-called
exact interval based on what is in this case an incorrect assumption (of normality
of the population distribution). Hence the so-called exact but in fact incorrect
interval will have insufficient coverage. How bad this interval will be, whether
it will have 90% coverage or 80% coverage or what instead of its nominal 95%
coverage only a simulation study can tell. But we are sure it won’t have its
nominal coverage, because its assumptions do not hold.

Although we haven’t worked out the correct asymptotic interval for the ratio
of variances, we can easily believe the “exact” interval for the ratio of variances
is also not robust and depends critically on the normality assumption.

These robustness considerations are important. You can find in various
textbooks strong recommendations that the “exact” procedures that we have
just found to be nonrobust should never be used. Simulations show that they
are so critically dependent on their assumptions that even small violations lead
to large errors. The robustness analysis shows us why.

Breakdown Point

This section takes up a quite different notion of robustness. The breakdown
point of a point estimator is the limiting fraction of the data that can be dragged
off to infinity without taking the estimator to infinity. More precisely if for each
n we have an estimator Tn(x1, . . . , xn) which is a function of the n data values
and kn is the largest integer such that kn of the xi can be taken to infinity
(with the other n − kn remaining fixed) and Tn(x1, . . . , xn) remain bounded,
then limn→∞ kn/n is the breakdown point of the sequence of estimators Tn.3

The idea behind this technical concept is how resistant the estimator is
to junk data. Roughly speaking, the breakdown point is the fraction of junk
the estimator can tolerate. Here “junk” is generally considered to consist of
gross errors, copying mistakes and the like, where recorded data has nothing
whatsoever to do with the actual properties supposedly measured. It can also
model rare disturbances of the measurement process or individuals that wind
up in a sample though they weren’t supposed to be and similar situations.

Example 9.4.10 (The Mean).
The sample mean has breakdown point zero, because

x1 + · · · + xn

n
→ ∞, as xi → ∞

3Some authorities would call this the asymptotic breakdown point, since they only use
“breakdown point” to describe finite sample properties, that is, they say kn/n is the breakdown
point of Tn. But that needlessly complicates discussions of estimators since kn is typically a
complicated function of n, but the limit is simple.
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with xj , i 6= j fixed. Hence kn = 0 for all n.
Thus the sample mean tolerates zero junk and should only be used with

perfect data.

Example 9.4.11 (The Median).
The sample median has breakdown point one-half. If n is odd, say n = 2m + 1,
then we can drag off to infinity m data points and the sample median will remain
bounded (in fact it will be one of the other m + 1 data points left fixed). Thus
kn = bn/2c when n is odd. When n is even, say n = 2m, then we can drag off
to infinity m−1 data points and the sample median will remain bounded, since
we are leaving fixed m + 1 points and two of them will be the two points we
average to calculate the sample median. Thus kn = n/2− 1 when n is even. In
either case kn is nearly n/2 and clearly kn/n → 1/2 as n → ∞.

This example shows why the finite-sample notion of breakdown points is not
so interesting.

Thus we see that the while the mean tolerates only perfect data, the median
happily accepts any old junk and still gets decent answers. This is not to say
that junk doesn’t affect the median at all, only that any amount of junk up
to 50% doesn’t make the median completely useless. That wouldn’t seem like
a very strong recommendation until we remember that the mean is completely
useless when there is any junk at all no matter how little.

9.5 Tests of Significance

In one sense we are now done with this chapter. This section is just a rehash
of what has gone before, looking at the same stuff from a different angle. In
another sense we are only half done. Tests of significance (also called hypothesis
tests) are as important as confidence intervals, if not more important. So we
have to redo everything, this time learning how it all relates to tests of signif-
icance. Fortunately, the redo won’t take as much time and effort as the first
time through, because all of the sampling theory is the same.

The simple story on tests of significance is that they are essentially the same
thing as confidence intervals looked from a slightly different angle.

Example 9.5.1 (Difference of Population Proportions).
Suppose two public opinion polls are taken, one four weeks before an election
and the other two weeks before. Both polls have sample size 1000. The results
in percents were

1st poll 2nd poll
Jones 36.1 39.9
Smith 30.1 33.0
Miller 22.9 17.4
Undecided 10.9 9.7

The typical reporter looks at something like this and says something like “Jones
and Smith both gained ground since the last poll two weeks ago, Jones picking
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up 4 percent and Smith 3 percent, while Miller lost ground, losing 5 percentage
points.” This is followed by “news analysis” which reports that Jones is picking
up support among college educated voters or whatever. Somewhere down toward
the end of the article there may be some mention of sampling variability, a
statement like “the polls have a margin of error of 3 percentage points,” but
it’s not clear what anyone is supposed to make of this. Certainly the reporter
ignored it in his analysis.

A skeptic might ask the question: has anything really changed in two weeks?
We know the poll results are random. They are not the true population propor-
tions but only estimates of them (the sample is not the population). Maybe the
population proportions haven’t changed at all and the apparent change is just
chance variation. We don’t yet know how to analyze the question of whether
anything at all has changed in two weeks—we will get to this in Section 10.5
in Lindgren—but we do know how to analyze whether anything has changed in
regard to one candidate, say Jones. The number of people in the samples who
expressed a preference for Jones, 361 two weeks ago and 399 now, are binomial
random variables with success probabilities p and q (the population propor-
tions). These are estimated by the sample proportions p̂ = 0.361 and q̂ = 0.399.
An asymptotic confidence interval for q − p is (9.66). Plugging in the numbers
gives the 95% confidence interval

0.399 − 0.361 ± 1.960

√
0.361 × 0.639

1000
+

0.399 × 0.601
1000

or 0.038 ± 0.0425, which is (−0.0045, 0.0805). Multiplying by 100 gives the
interval expressed in percent (−0.45, 8.05).

Since the confidence interval contains zero, it is not clear that there has been
any increase in voter preference for Jones. No change in preference corresponds
to q−p = 0, which is a point in the confidence interval, hence is a parameter value
included in the interval estimate. It is true that the confidence interval includes
a much wider range of positive values than negative values, so the confidence
interval includes big increases but only small decreases, but decreases or no
change are not ruled out.

Thus it is a bit premature for reporters to be bleating about an increase in
the support for Jones. Maybe there wasn’t any and the apparent increase is
just chance variation in poll results.

The argument carried out in the example is called a test of significance or a
statistical hypothesis test. The hypothesis being tested is that there is no real
change in the population proportions, in symbols p = q. Alternatively, we could
say we are testing the complementary hypothesis p 6= q, because if we decide
that p = q is true this is equivalent to deciding that p 6= q is false and vice versa.
We need general names for these two hypotheses, and the rather colorless names
that are generally used in the statistical literature are the null hypothesis and the
alternative hypothesis. Lindgren denotes them H0 and HA, respectively. These
are always two complementary hypotheses, each the negation of the other, so we
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could do with just one, but we usually wind up mentioning both in discussions,
hence the names are handy.

Summarizing what was just said, there are two possible decisions a test of
significance can make. It can decide in favor of the null or the alternative.
Since exactly one of the two hypotheses is true, deciding that one is true is
tantamount to deciding that the other is false. Hence one possible decision is
that the null hypothesis is true and the alternative hypothesis is false, which is
described as accepting the null hypothesis or rejecting the alternative hypothesis.
The other possible decision, that the alternative hypothesis is true and the
null hypothesis is false, is described as described as accepting the alternative
hypothesis or rejecting the null hypothesis.

In the opinion poll example, the null hypothesis is p = q and the alternative
hypothesis is p 6= q. We accept the null hypothesis if the confidence interval
covers the parameter value q − p = 0 hypothesized by the null hypothesis.
Otherwise we reject the null and accept the alternative. Since the confidence
interval (−0.45, 8.05) covers the hypothesized value, we accept the null. We
conclude that the hypothesis may well be true, there being no strong evidence
against it. In less technical language we conclude that the apparent change in
the poll results may be just chance variation. Hence there is no real evidence
that Jones is gaining, and hence there is no point in any news analysis of the
reasons the gain has occurred.

Of course, the result of the test depends on which confidence interval we
use, in particular, on the confidence level. A 90% confidence interval for q − p
expressed in percent is (0.23, 7.37). Since this interval does not contain zero, we
now reject the null hypothesis and accept the alternative. Thus we come to the
opposite conclusion, Jones really is gaining support.

Thus it isn’t enough to simply state whether the null hypothesis is accepted
or rejected. We must also give the confidence level. For reasons of tradition we
actually give something a little bit different. If the test involves a 100(1 − α)%
confidence interval, we say we did a test with significance level α. People who
think it is cool to talk in jargon rather than plain words often call the significance
level the “α level,” making α a frozen letter in this context and thus violating the
principle of “mathematics is invariant under changes of notation.” “Significance
level” is a much better name.

The significance level is the probability that the confidence interval fails
to cover. When the null hypothesis is true and the confidence interval fails to
cover, we reject the null hypothesis erroneously. Thus another way of describing
the significance level that does not mention confidence intervals is that it is the
probability of erroneously rejecting the null hypothesis.

You may now be wondering what tests of significance are worth if one can
always make a test come out either way by simply choosing to use a higher
or lower significance level. The answer is they are worthless if you only pay
attention to the decisions (“accept” or “reject”) and ignore the significance
levels, but when the decision and the significance level are considered together
a test does provide useful information. A test using the 0.05 level of significance
will erroneously reject the null hypothesis 5% of the time. A test using the 0.10
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level of significance will erroneously reject the null hypothesis 10% of the time.
That is a weaker evidentiary standard. The 0.10 level test rejects the null, and
it may be right in doing so, but it may also be wrong, and the probability of its
being wrong is twice that of the 0.05 level test.

That is the basic story on tests of significance. We now begin a systematic
development of the theory.

9.5.1 Interest and Nuisance Parameters Revisited

Recall that in Section 9.2.4 we divided parameters into parameters of interest
and nuisance parameters. The parameter or parameters of interest are the ones
we want to know something about, the parameter the confidence interval is for,
or the parameters involved in the null and alternative hypotheses of a test of
significance.

In Example 9.5.1 there are two parameters p and q. Neither is the parameter
of interest. The parameter of interest is q − p. Thus we see that sometimes we
have to reparameterize the model in order to make the parameter of interest one
of the parameters of the model. For example, we could choose new parameters
α and δ defined by

α = p + q

δ = q − p

Then δ is the parameter of interest, and α is a nuisance parameter.
In general, we write θ = (ϕ,ψ), where ϕ is the parameter of interest and ψ

is the nuisance parameter. Either or both can be vectors, so

θ = (θ1, . . . , θk+m) = (ϕ1, . . . , ϕk, ψ1, . . . , ψm)

if there are k parameters of interest and m nuisance parameters.
In dealing with confidence intervals there is always exactly one parameter

of interest. The confidence interval is an interval estimate of that parameter.
There may be many nuisance parameters. When we are estimating a difference
of means from independent samples (Section 9.4.5) the parameter of interest is
µX − µY . Everything else is a nuisance parameter. As in Example 9.5.1, the
parameter of interest is not one of the original parameters. The reparameteri-
zation

α = µX + µY

δ = µX − µY

makes δ the parameter of interest and α, σ2
X and σ2

Y the nuisance parameters.

9.5.2 Statistical Hypotheses

In general, a statistical hypothesis can be any statement at all about the
parameters of interest. In actual practice, almost all tests involve two kinds of
hypotheses.
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• The null hypothesis specifies a value of the parameter of interest. Thus it
can be written ϕ = ϕ0, where ϕ0 is a fixed known value.

• There is a single parameter of interest ϕ and the null hypothesis is of the
form ϕ ≤ ϕ0 or ϕ ≥ ϕ0, where ϕ0 is a fixed known value.

When there is a single parameter of interest these have widely used names. A
test of

H0 : ϕ ≤ ϕ0

HA : ϕ > ϕ0

(9.46a)

is called a one-tailed test and HA is called a one-sided alternative (and the same
names are used if both inequalities are reversed). A test of

H0 : ϕ = ϕ0

HA : ϕ 6= ϕ0

(9.46b)

is called a two-tailed test and HA is called a two-sided alternative.
When there are several parameters of interest only (9.46b) makes sense so

there is usually no need of distinguishing terminology, but in order to discuss the
cases of one or several parameters of interest together we will call null hypotheses
form in (9.46b) equality-constrained null hypotheses.

We also will need notation for the sets of parameter values corresponding to
the hypotheses

Θ0 = { (ϕ,ψ) ∈ Θ : ϕ ≤ ϕ0 }
ΘA = { (ϕ,ψ) ∈ Θ : ϕ > ϕ0 }

(9.47a)

in the case of a one-sided alternative and
Θ0 = { (ϕ,ψ) ∈ Θ : ϕ = ϕ0 }
ΘA = { (ϕ,ψ) ∈ Θ : ϕ 6= ϕ0 }

(9.47b)

in the case of an equality-constrained null.
As we said above, one can in principle test any hypothesis, but hypotheses

other than the two types just described lead to complexities far beyond the
scope of this course (in fact beyond the scope of PhD level theoretical statistics
courses). So these two kinds of tests are all we will cover. For now we will
concentrate on tests of equality-constrained null hypotheses and leave one-tailed
tests for a later section (they require only minor changes in the theory).

9.5.3 Tests of Equality-Constrained Null Hypotheses

Most tests of significance (all tests we will consider) are determined by a
test statistic T (X). The null hypothesis is rejected for large values of the test
statistic and accepted for small values. More precisely, there is a number c
called the critical value for the test such that the decision rule for the test is
the following

T (X) ≥ c reject H0

T (X) < c accept H0
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Exact Tests

The significance level of the test is the probability of rejecting H0 when H0

is in fact true, when this probability does not depend on the parameter so long
as the parameter remains in Θ0, that is,

α = Pθ(reject H0) = Pθ

(
T (X) ≥ c

)
, θ ∈ Θ0. (9.48)

Note that, since the null hypothesis fixes the value of the parameter of interest
(for tests we are considering in this section), this means

Pθ(reject H0) = P(ϕ0,ψ)(reject H0)

does not depend on the value of the nuisance parameter ψ.
How can we arrange for this probability to not depend on the nuisance

parameter? We use a pivotal quantity g(X, ϕ) that only contains the parameter
of interest. By definition, its distribution does not depend on the parameter.
More precisely, the c. d. f. of the pivotal quantity

F (x) = P(ϕ,ψ)

(
g(X, ϕ) ≤ x

)
, (ϕ,ψ) ∈ Θ. (9.49)

does not depend on the parameter when the parameter value that is the argu-
ment of the pivotal quantity and the true parameter value (i. e., both ϕ’s on
the right hand side of the equation) are the same. Of course, g(X, ϕ) is not a
statistic, since it depends on a parameter, but we are only interested right now
in parameter values in Θ0, which means ϕ = ϕ0. Plugging in the hypothesised
value ϕ0 for ϕ does give us a statistic g(X, ϕ0), and from (9.49) we see that its
distribution does not depend on θ for θ ∈ Θ0, which is what is required. Since
any function of a statistic is a statistic, any function of g(X, ϕ0) can be used as
a test statistic.

Example 9.5.2 (t Tests).
Suppose X1, . . ., Xn are i. i. d. N (µ, σ2) and we wish to test

H0 : µ = 0
HA : µ 6= 0

(µ is the parameter of interest and σ2 is a nuisance parameter.) We know that

Xn − µ

Sn/
√

n
∼ t(n − 1)

is a pivotal quantity. Plugging in µ0 for µ gives a statistic

T =
Xn − µ0

Sn/
√

n

the distribution of which is t(n− 1) when the null hypothesis it true (and µ0 is
the true value of the parameter of interest). Which function of T do we use as
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our test statistic? The analogy with confidence intervals and the symmetry of
the t distribution suggest the absolute value |T |. Thus we determine the critical
value by solving

P
(|T | > c

)
= α

or what is equivalent
P

(
T > c

)
= α/2. (9.50)

We denote the solution of (9.50) c = tα/2. It is, as we defined it throughout
Section 9.4, the 1 − α/2 quantile of the t(n − 1) distribution.

Why would we ever want to test whether µ is zero? Remember paired
comparisons, where the test for no difference of population means reduces to a
one sample test of µ = 0 after the data are reduced to the differences of the pair
values.

Asymptotic Tests

Asymptotic tests work much the same way as exact tests. We just substitute
an asymptotically pivotal quantity for an exactly pivotal quantity and substitute
asymptotic approximations for exact probabilities.

Sometimes there is a choice of pivotal quantity, as the following examples
show.

Example 9.5.3 (Binomial, One Sample).
Suppose X is Bin(n, p) and we wish to test

H0 : p = p0

HA : p 6= p0

where p0 is a particular number between zero and one. There are two asymptot-
ically pivotal quantities we used to make confidence intervals in this situation

g1,n(X, p) =
p̂n − p√

p(1 − p)/n

and

g2,n(X, p) =
p̂n − p√

p̂n(1 − p̂n)/n

where, as usual, p̂n = X/n. Both are asymptotically standard normal. Both
can be used to make confidence intervals, although the latter is much easier
to use for confidence intervals. When it comes to tests, both are easy to use.
Plugging in the hypothesized value of the parameter gives test statistics

Z1 =
p̂n − p0√

p0(1 − p0)/n
(9.51a)
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and

Z2 =
p̂n − p0√

p̂n(1 − p̂n)/n
(9.51b)

The two-tailed test with significance level α rejects H0 when |Zi| ≥ zα/2 where,
as usual, zα/2 is the 1 − α/2 quantile of the standard normal distribution.

For large n the two test statistics will be very close to each other and the
two tests agree with very high probability. Asymptotics gives no reason to
choose one over the other. The vast majority of statistics textbooks, however,
recommend the test using Z1. There is a sense in which Z1 is closer to the
standard normal than Z2. The variance of Z1 is exactly one, whereas Z2 does
not even have a variance because the denominator is zero when X = 0 or X = n.
Still, neither test is exact, and when n is large enough so that the asymptotics
are working well both tests give similar answers. So there is no real reason other
than convention for using one or the other. But convention is a good enough
reason. Why get into fights with people whose introductory statistics course
insisted that the test using Z1 was the only right way to do it?

Example 9.5.4 (Binomial, Two Sample).
Suppose X ∼ Bin(m, p) and Y ∼ Bin(n, q) and we wish to test

H0 : p = q

HA : p 6= q

The asymptotically pivotal quantity we used to make confidence intervals in
this situation was

g1,n(X,Y, p − q) =
(p̂m − q̂n) − (p − q)√
p̂m(1−p̂m)

m + q̂n(1−q̂n)
n

where, as usual, p̂m = X/m and q̂n = Y/n. Plugging in the hypothesized value
under the null hypothesis (p − q = 0) gives the test statistic

Z1 =
p̂m − q̂n√

p̂m(1−p̂m)
m + q̂n(1−q̂n)

n

(9.52)

A different quantity that is pivotal under the null hypothesis uses a “pooled”
estimator of p similar to the pooled estimator of variance used in the two-sample
t confidence interval based on the assumption of equality of variances. Here there
is nothing controversial or nonrobust about the assumption p = q. The theory
of tests of significance requires a probability calculation assuming H0, so that’s
what we do. Under the null hypothesis X + Y ∼ Bin(m + n, p), hence

r̂m,n =
X + Y

m + n
=

mp̂m + nq̂n

m + n
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is the sensible estimator of p (and q). Also, still assuming p = q, the variance
of the numerator of Zq is

var(p̂m − q̂n) = p(1 − p)
(

1
m

+
1
n

)
Hence under H0

Z2 =
p̂m − q̂n√

r̂m,n(1 − r̂m,n)
(

1
m + 1

n

) (9.53)

is also asymptotically standard normal. Thus we again have two test statistics.
Either is asymptotically correct. Both will agree with very high probability when
m and n are large. Neither is exact. Convention (meaning the vast majority of
introductory statistics courses) recommends the test based on Z2.

9.5.4 P -values

Tests of significance are often done when they do not decide a course of
action. This is almost always the case when the issue is a scientific inference.
Data are collected, a test of significance is done, a paper is written, and readers
are left to judge what it all means. Even the readers make no decisions in the
statistical sense, accepting or rejecting some hypothesis solely on the basis of
the data reported in the paper.

In such situations it is absurd to simply report that the test of significance
rejected H0 at a particular level of significance chosen by the authors (or ac-
cepted H0 if that is what happened). What if a reader wants a different level
of significance?

When the test is based on a test statistic, there is a much more sensible
procedure. Suppose our test statistic is T (X) and the value for the actual data
being analyzed is T (x). This is the usual “big X” for random vectors and “little
x” for possible values (in this case the actual observed value). The significance
level of the test corresponding to the critical value c is

α(c) = Pθ

(
T (X) ≥ c

)
,

which we assume is the same for all θ ∈ Θ0. Note that as c increases the event
{X : T (X) ≥ c } decreases, and hence α(c) is a decreasing function of c by
monotonicity of probability. Since the test rejects H0 if T (x) ≥ c and otherwise
accepts H0, the null hypothesis is rejected for all critical values c such that
c ≤ T (x) and hence for all significance levels α greater than or equal to

α
(
T (x)

)
= Pθ

{
T (X) ≥ T (x)

}
.

Definition 9.5.1 (P -value).
The P -value of a test based on a test statistic T (X) is

Pθ

{
T (X) ≥ T (x)

}
provided this does not depend on θ for θ ∈ Θ0. (This definition will later be
generalized in Definition 9.5.3).
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Summarizing the argument preceding the definition, the relationship be-
tween P -values (P ), significance levels (α), and decisions is

P ≤ α reject H0

P > α accept H0
(9.54)

The P -value (according to textbooks also called “observed level of signifi-
cance,” but I have never seen that outside of textbooks) is the answer to the
quandary about different readers wanting different levels of significance. If the
scientists report the P -value, then every reader can choose his or her own indi-
vidual α and apply the rule (9.54) to determine the appropriate decision.

Example 9.5.5 (Example 9.5.1 Continued).
The hypothesis test in Example 9.5.1 is a two-tailed test based on the test
statistic |Z1| where Z1 is given by (9.52), which has the observed value

0.399 − 0.361√
0.361×0.639

1000 + 0.399×0.601
1000

= 1.752

Under the null hypothesis, Z1 is asymptotically standard normal. Hence the
P -value is

P (|Z1| > z) ≈ 1 − 2Φ(z) = 2Φ(−z)

where z = 1.752 is the observed value of the test statistic, and Φ is, as usual,
the standard normal c. d. f. Thus the P -value is 2 × 0.0399 = 0.0798.

Interpretation of P -values

P -values have two different interpretations, one trivial and the other contro-
versial. Both interpretations support the following slogan.

The lower the P -value, the stronger the evidence against H0.

What is controversial is what “strength of evidence” is supposed to mean.
The trivial sense in which the slogan is true is that, if we consider a group

of readers with a range of individual significance levels, a lower P -value will
convince more readers. So there is no question that a lower P -value is more
evidence against H0. What is controversial is the question: “How much more?”

The controversial interpretation of P -values is the following. When we reject
H0 there are two possibilities

• H0 actually is false.

• H0 actually is true, in which case the P -value measures the probability
of an actual event T (X) ≥ T (x), which can be stated in words as the
probability of seeing data at least as extreme as the data actually observed,
where “extreme” is defined by largeness of T (X).
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Thus smallness of the P -value is a measure of the improbability of the second
possibility.

This “controversial” argument is perfectly correct and strongly disliked by
many statisticians, who claim that most people cannot or will not understand
it and will confuse the P -value with a quite different notion: the probability
of H0. So let us be very clear about this. Since in frequentist statistics the
parameter is not considered a random quantity, H0 is not an event and P (H0)
is a meaningless expression. Thus not only is the P -value not the “probability
of the null hypothesis” neither is anything else.

Bayesians do consider parameters to be random quantities and hence do con-
sider P (H0) to be meaningful. Dogmatic Bayesians consider all non-Bayesian
statistics to be bogus, hence they particularly dislike P -values (though they
like tests as decision procedures). They write papers4 with titles like “the ir-
reconcilability of P -values and evidence” by which they mean irreconcilability
with Bayesian notions of evidence. This paper shows that a P -value always
overstates the evidence against H0 as compared to standard Bayesian notions
of evidence.

Bayesian versus frequentist arguments aside, there is nothing controversial
about P -values, as the “trivial” argument above makes clear. Lindgren in Sec-
tion 9.3 gives a long discussion of tests as evidence raising a number of trou-
bling issues, but only the very last paragraph, which mentions the Bayesian
view involves P -values per se. The rest are troubling issues involving all tests
of significance, whether or not P -values are used. We will return to our own
discussion of interpretation of tests of significance after we discuss one-tailed
tests, themselves one of the most controversial issues.

9.5.5 One-Tailed Tests

Theory

One-tailed tests require changes of the definitions of significance level and
P -value. For one-tailed tests, we can no longer arrange for (9.48) to hold.
Since the null hypothesis no longer fixes the value of the parameter of interest
(only asserts an inequality), the probability we previously used to define the
significance level will now depend on the parameter. This leads to the following
definition

Definition 9.5.2 (Significance Level).
The significance level of a test of significance based on a test statistic T (X) is

α = sup
θ∈Θ0

Pθ(reject H0) = sup
θ∈Θ0

Pθ

(
T (X) ≥ c

)
. (9.55)

In words, the significance level is the maximum probability of erroneously
rejecting the null hypothesis. Note that (9.55) reduces to our former definition
(9.48) in the special case where Pθ(reject H0) is actually the same for all θ ∈ Θ0.

4Berger and Sellke, “Testing a point null hypothesis: The irreconcilability of P values and
evidence” (with discussion), Journal of the American Statistical Association, 82:112-122, 1987
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When we carry this new definition through the argument about P -values we
obtain the promised generalization of Definition 9.5.1

Definition 9.5.3 (P -value).
The P -value of a test based on a test statistic T (X) is

sup
θ∈Θ0

Pθ

{
T (X) ≥ T (x)

}
Suppose the two-tailed test of the hypotheses (9.46b) is based on a pivotal

quantity

g(X, ϕ) =
a(X) − ϕ

b(X)
(9.56)

having a symmetric distribution that does not depend on the true parameter
value. The primary examples are the one-sample z and t tests based on the
pivotal quantities (9.20a) and (9.20b) and the two-sample test with the pooled
estimate of variance based on the pivotal quantity (9.37). Other examples are
the sign test and the two Wilcoxon tests that we will meet when we get to
nonparametrics (Chapter 13 in Lindgren).

If we follow what we did with two-tailed tests and plug in ϕ0 for ϕ in (9.56),
we obtain

T (X) =
a(X) − ϕ0

b(X)
(9.57)

The idea of a one-tailed test is to use T (X) itself as the test statistic, rather
than |T (X)|, which is what we used for two-tailed z and t tests.

Lemma 9.13. For the test with test statistic (9.57) based on the pivotal quantity
(9.56), the significance level corresponding to the critical value c is

α = Pϕ0

{
T (X) ≥ c

}
,

and the P -value is
Pϕ0

{
T (X) ≥ T (x)

}
.

Proof. What we must show is that

Pϕ0

{
T (X) ≥ c

}
= sup

θ∈Θ0

Pθ

{
T (X) ≥ c

}
. (9.58)

The assumption that (9.56) is a pivotal quantity means

Pθ

{
g(X, ϕ) ≥ c

}
= Pθ

{
a(X) − ϕ

b(X)
≥ c

}
= P(ϕ,ψ)

{
a(X) − cb(X) ≥ ϕ

} (9.59a)

does not depend on ϕ and ψ. Now

Pθ

{
T (X) ≥ c

}
= P(ϕ,ψ)

{
a(X) − cb(X) ≥ ϕ0

}
(9.59b)
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does depend on ϕ and ψ, but for parameter values in the null hypothesis ϕ ≤ ϕ0

monotonicity of probability implies that (9.59b) is less than or equal to (9.59a),
that is,

Pϕ0

{
T (X) ≥ c

}
= P(ϕ0,ψ)

{
a(X) − cb(X) ≥ ϕ0

}
= P(ϕ,ψ)

{
a(X) − cb(X) ≥ ϕ

}
≥ P(ϕ,ψ)

{
a(X) − cb(X) ≥ ϕ0

}
= Pϕ

{
T (X) ≥ c

}
whenever ϕ ≤ ϕ0. And this implies (9.58).

There is an entirely analogous lemma for asymptotic tests, which we won’t
bother to prove, since the proof is so similar.

Lemma 9.14. Suppose

gn(X, ϕ) =
an(X) − ϕ

bn(X)/
√

n

is an asymptotically pivotal quantity converging to a standard normal distribu-
tion as n → ∞, and let

Tn(X) = gn(X, ϕ0).

Then a one-tailed test of (9.46a) rejects H0 when Tn ≥ zα, where zα is the 1−α
quantile of the standard normal distribution. The P -value is

P
{
Z > Tn(x)

}
,

where Z is standard normal and Tn(x) is the observed value of the test statistic.

Practice

The theory in the preceding section is complicated but in practice one-tailed
tests are simple as falling off a log. We will just give an example.

Example 9.5.6 (t Tests).
The following data appeared in “Student’s” original paper on the t distribution

X Y Z
0.7 1.9 1.2

−1.6 0.8 2.4
−0.2 1.1 1.3
−1.2 0.1 1.3
−0.1 −0.1 0.0

3.4 4.4 1.0
3.7 5.5 1.8
0.8 1.6 0.8
0.0 4.6 4.6
2.0 3.4 1.4

mean 0.75 2.33 1.58
s. d. 1.23
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In each row, X and Y are the additional hours of sleep gained by one patient
while using two different soporific drugs (there are 10 patients in the study).
The third column is Z = Y − X, our usual trick of reducing data for paired
comparison to differences. We want to test whether there is a significant differ-
ence between the two drugs. The null hypothesis is µZ = 0 for a two-tailed test
or µZ ≤ 0 for a one-tailed test. The test statistic is

t =
1.58

1.23/
√

10
= 4.062

For a one-tailed test, the P -value is

P (T > 4.062) = 0.0014.

For a two-tailed test, the P -value is

P (|T | > 4.062) = 0.0028.

(All we could get from Table IIIa in Lindgren is that the one-tailed P -value is
between 0.001 and 0.002 and hence the two-tailed P -value between 0.002 and
0.004. I used a computer to get exact P -values.)

Note that by the symmetry of the t distribution

P (T > t) = 2P (|T | > t)

so long as t > 0. Hence

A two-tailed P -value is twice the one-tailed P -value

so long as the one-tailed P -value is less than one-half. This has nothing to do
with the t distribution in particular. It holds whenever the sampling distribution
of the test statistic under H0 is symmetric. By symmetry, two tails have twice
the probability of one.

9.5.6 The Duality of Tests and Confidence Intervals

With all this theory we have somewhat lost track of the simple notion we
started out with, that tests are just confidence intervals viewed from another
angle. This section ties up the loose ends of that notion.

For this section only, forget P -values. Think of a test as a decision procedure
that either accepts or rejects H0 and has a specified significance level. That is
the notion of tests that has a simple relationship to confidence intervals.

The word “duality” in the section heading is a fancy mathematical word
for the relation between two concepts that are basically two sides of the same
coin. Either can be used to define the other. Tests of equality-constrained null
hypotheses have exactly that relation to confidence intervals.
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For any 100(1 − α)% confidence interval for a parameter θ, the
test that rejects H0 : θ = θ0 if and only if the confidence interval
does not contain θ0 has significance level α.

Conversely, for any test with significance level α, the set of pa-
rameter values θ0 such that H0 : θ = θ0 is accepted is a 100(1−α)%
confidence interval for θ.

Example 9.5.7 (t Tests Yet Again).

Xn − tα/2
Sn√

n
< µ < Xn + tα/2

Sn√
n

is a 100(1−α)% confidence interval for µ assuming normal data. This confidence
interval contains µ0 if and only if∣∣∣∣Xn − µ0

Sn/
√

n

∣∣∣∣ < tα/2

which is the criterion for accepting H0 in the usual two-tailed t test of H0 : µ =
µ0. And it works both ways. If we start with the test and work backwards we
get the confidence interval.

The duality is not exact if we use different asymptotic approximations for
the test and the confidence interval. For example, the standard way to do a
confidence interval for the binomial distribution involves the pivotal quantity Z2

given by (9.51b) but the standard way to do a test involves the pivotal quantity
Z1 given by (9.51a). Z1 and Z2 are very close when n is large, but they are
not identical. Thus the test and confidence interval will not have exact duality
(they would if both were based on the same asymptotically pivotal quantity).
However, we can say they have “approximate duality.”

One-tailed tests do not seem at first sight to have such a simple duality
relationship, but they do. In order to see it we have to change our view of one-
tailed tests. All of the one-tailed tests we have considered can also be considered
as equality-constrained tests. A test having a test statistic of the form (9.57)
can be considered either a test of the hypotheses

H0 : θ ≤ θ0

HA : θ > θ0

(which is the way we usually consider it) or a test of the hypotheses

H0 : θ = θ0

HA : θ > θ0

The latter way of thinking about the test changes the statistical model. Since
H0 and HA partition the parameter space, the parameter space for the first test
is Θ = R and the parameter space for the second test is Θ = { θ ∈ R : θ ≥ 0 }.
But this is the only difference between the two procedures. They have the same
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test statistic, the same P -value for the same data, and the same decision for the
same significance level and same data.

Now we can apply duality of tests and confidence intervals. Consider the t
test yet again. The one-tailed t test accepts H0 : µ = µ0 at significance level α
when

Xn − µ0

Sn/
√

n
< tα

The set of µ0 values for which H0 is accepted, the µ0 such that

Xn − tα
Sn√

n
< µ0 < +∞,

is thus a 100(1 − α)% confidence interval for the true parameter value µ.
Thus we get “one-tailed” confidence intervals dual to one-tailed tests. Such

intervals are not widely used, but there is nothing wrong with them. They
are perfectly valid confidence intervals. Occasionally they are wanted in real
applications.

9.5.7 Sample Size Calculations

All of the problems in this section and the preceding section (tests and
confidence intervals), at least those that involve numbers, emulate the most
common kind of data analysis, that which is done after the data have been
collected. In this section we discuss the other kind, done before data have been
collected.

We’re not talking about some sort of magic. What we’re talking about is
part of most grant proposals and other preliminary work done before any large
expensive scientific experiment is done. Of course you can’t really analyze data
that haven’t been collected yet. But you can do some calculations that at least
give some idea how they will come out.

The main issue of interest is whether the proposed sample size is large
enough. We know that statistical precision varies as the square root of the
sample size (the so-called square root law). So we can always get as precise
a result as we please if only we expend enough time, money, and effort. The
trouble is that the square root law means that twice the precision costs four
times as much, ten times the precision costs a hundred times as much, and so
forth. So generally, you must settle for less precision than you would like.

So suppose you are asking for several hundred thousand dollars to do an
experiment with sample size 200. Before the funding agency gives you the
money, one issue (among many others) that they will want to carefully consider
is whether the precision you will get with n = 200 is worth the money. After all,
if an experiment with n = 200 is unlikely to answer any questions of scientific
interest because of lack of precision, they should fund some other projects with
more promise.

These calculations before the data are collected look very different for tests
and confidence intervals, so we will look at them separately. We’ll do the simpler
of the two first.
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Confidence Intervals

A large sample confidence interval for the population mean is

Xn ± zα/2
Sn√

n

which is just (9.24) repeated. Before we collect data we will know neither Xn

nor Sn. We will know the n we propose to use.
Not knowing Xn is not a problem here. It will be close to the true population

mean µ if n is large, but we don’t know µ. In fact the whole point of the
experiment (if this sort of confidence interval is of interest) is to estimate µ. So
in a way it’s a good thing we don’t know µ. It gives us something to do.

The question we want to answer, or at least get some idea about, is how
wide our confidence interval will be. If we expect it to be too wide to be of
any scientific value, then we need a larger sample size or a completely different
sort of experiment. So what we need to do is get some idea of the likely size of
the plus-or-minus (also called “half-width” because it is half the width of the
confidence interval).

Now the half-width depends on three things

• The confidence level (through α), which we know.

• The sample size n, which we know.

• The sample standard deviation Sn, which we do not know.

So in order to make progress we need a guess about the likely size of Sn. We
might have some data from a similar experiment that will give us the likely size.
Or we might have to just guess. Depending on who does the guessing and how
much they know, we might call the guess anything from “expert opinion” to a
“wild guess.” But no matter where it comes from, we need some number to
plug in for Sn.

Questions like this are often phrased backwards. Rather than what half-
width will we likely get for a specified confidence level and sample size, one asks
what sample size is necessary to get a specified half-width.

Example 9.5.8.
Suppose we are going to do an experiment to measure the expected life time of
a new type of light bulb. The old light bulbs had a mean life of 700 hours with
a standard deviation of 500 hours. The new light bulbs are supposed to last a
lot longer, about 1000 hours, but let’s use the same standard deviation in our
sample size calculation. With no data yet on the new light bulbs you can call
s = 500 a guess (we’re guessing the s. d. of the new will be the same as the old)
or you can call it an estimate based on preliminary data even though the data
isn’t about the exact same process.

So what sample size do we need to get a half-width of 100 hours for a 95%
confidence interval? That’s saying we want

100 = 1.96
500√

n
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Solving for n gives

n =
(

1.96 × 500
100

)2

= 96.04

Of course, a sample size must be a round number. Typically, one rounds up to
be conservative, giving n = 97 as the answer.

This looks a lot more precise than it really is. Don’t forget that we plugged
in a guess for Sn. The actual experiment won’t produce a confidence interval
with a half-width of exactly 100 hours, because Sn won’t come out to be exactly
500. We have, however, done the best we could with what we had to work with.
Certainly, n = 97 is a lot better than complete cluelessness.

The Power of a Hypothesis Test

We will do a similar sort of calculation for a hypothesis test presently, but
before we can even discuss such a calculation we need to learn a new term. This
new term is called the power of a test. It is closely related to the significance
level of a test, but not exactly the same thing.

First we explain the concepts in words to make the similarities and differences
clear.

• The significance level of a test is the probability of rejecting the null
hypothesis when it is in fact true.

• The power of a test is the probability of rejecting the null hypothesis when
it is in fact false, that is when the alternative hypothesis is true.

Thus both level and power are probabilities of the same event “reject H0” but
probabilities under different assumed parameter values.

In symbols the significance level is

α = Pθ(reject H0), θ ∈ Θ0 (9.60a)

This is our simpler definition of significance level given by (9.48), which assumes
that the probability in (9.60a) does not actually depend on θ for θ in the null
hypothesis. Our more general definition (Definition 9.5.2) is more complicated,
but we won’t worry about that here.

π(θ) = Pθ(reject H0), θ ∈ ΘA (9.60b)

Note that the left hand side in (9.60b) is a function of θ, which we call the
power function of the test. That’s one important difference between level and
power. Ideally, the level does not depend on the parameter, that’s what the
notation in (9.60a) indicates (as the following comment says, if it did depend
on the parameter we would have to use a more complicated definition). And
this is the case in simple situations.

Why don’t we arrange for power to be constant too? Well that would defeat
the whole purpose of the test. We want
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• Low significance level, the lower α the better.

• High power, the higher π(θ) the better.

Why is that? Both level and power refer to the same event “reject H0” but under
different conditions. The level is the probability of a bad thing, erroneously
rejecting the null hypothesis when it is true. The power is the probability of a
good thing, correctly rejecting the null hypothesis when it is false. So we want
low probability of the bad thing (level) and high probability of the good thing
(power).

But as probabilities level and power are special cases of the same thing
Pθ(reject H0). So the only way power could be constant is if it were the same
as the level, which is no good at all. That’s not the way to get low level and
high power.

What do power functions look like? Lindgren Section 9.10 gives some ex-
amples. Power functions are not all alike. It is not the case “seen one, you’ve
seen them all.” But fortunately, it is the case “seen two, you’ve seen them all.”
Power functions of upper-tailed tests look like Figure 9-10 in Lindgren and those
of lower-tailed tests look like mirror images of that figure. Power functions of
two-tailed tests look like Figure 9-11 in Lindgren.

Tests of Significance

We now return to sample size calculations. These too are usually phrased as
“backwards” questions. What sample size n do we need to achieve a specified
power for a specified level test?

Example 9.5.9.
Suppose in the situation explained in Example 9.5.8 we want to do a one-tailed
test of whether the new light bulbs are better than the old in the sense of having
longer life. We assume the mean life, 700 hours, of the old light bulbs is a known
constant (it isn’t really, but it is based on much more data than we intend to
collect about the new light bulbs, so this isn’t too bad an approximation to the
right thing, which would be a two-sample test). We will also assume Sn = 500,
as in Example 9.5.8 even this is only a guess (we need that here too as will be
seen presently).

So what sample size is needed for α = 0.05 and power 0.99 at the alternative
hypothesis of interest, which is 1000 hours mean life for the new bulbs? Just to
be perfectly clear, the hypotheses being tested are

H0 : µ = 700 hours
HA : µ > 700 hours

and the alternative at which we want to calculate the power is µ = 1000 hours.
The event “reject H0” is in other notation Xn > c, where c is the critical

value for the test. So the first thing we must do is determine c. The test is
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based on the asymptotically standard normal quantity

Z =
Xn − µ

Sn/
√

n
(9.61)

In power calculations we must be very, very careful with this object. The
random variable (9.61) is asymptotically standard normal when µ is the true
population mean and this differs when calculating level and power! Calculation
of the level of a test is done assuming the null hypothesis. So in the level
calculation we use µ = 700. But calculation of the power is done assuming the
alternative hypothesis. In particular, our power calculation here will be based
on the particular alternative of interest µ = 1000.

As usual, to get a one-tailed “z test” with level α = 0.05 we use the critical
value on the z scale 1.645. That is we reject H0 when

Z =
Xn − 700
500/

√
n

> 1.645

Solving for Xn, this is the same as

Xn > 700 + 1.645
500√

n
= c (9.62)

So that finishes our calculation about level. All subsequent calculation assumes
µ = 1000. Notice that the critical value c depends on n. We don’t get a number.
We get a formula.

Now we need to calculate the power at µ = 1000. What is P (Xn > c)
when µ = 1000. This is just like any other normal probability calculation. The
main difficulty is not to get anything confused with the previous calculation. It
only requires care and attention to detail. To calculate this probability using a
normal table, we need to standardize the number being looked up, which is c.

P (Xn > c) ≈ 1 − Φ
(

c − µ

Sn/
√

n

)
where, as usual, Φ is the standard normal c. d. f.We want this to be 0.99, hence
we want the Φ term itself to be 0.01, and from the bottom row of Table IIIb in
Lindgren (or from R or Mathematica) we see that we need the argument of Φ
to be −2.33 to achieve that. Thus we get another equation

c − µ

Sn/
√

n
=

c − 1000
500/

√
n

= −2.33 (9.63)

(Note again, and this is the last time I’ll say it, we are using µ = 1000 here).
Plugging (9.62) in here gives

700 + 1.645500√
n
− 1000

500/
√

n
= −2.33
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or
700 + 1.645

500√
n
− 1000 = −2.33

500√
n

or
3.975

500√
n

= 300

which comes to n = 43.89 or (rounded up) n = 44.
I concede that a messy calculation like this leaves me in doubt. Let’s check

that we actually got the right level and size with this critical value

> n <- 44
> crit <- 700 + 1.645 * 500 / sqrt(n)
> 1 - pnorm(crit, 700, 500 / sqrt(n))
[1] 0.04998491
> 1 - pnorm(crit, 1000, 500 / sqrt(n))
[1] 0.990227

The definition of crit is taken from (9.62). We must call it something
other than c, because c is an R function name. The last two lines calculate
P (X > crit) under the null and the alternative. In both cases Xn is normal
with standard deviation σ/

√
n, which is approximately Sn/

√
n. The difference

between the two is the mean (oh, excuse me, I said I wasn’t going to repeat this
again, but here I go again), which is assumed to be µ = 700 under the null and
µ = 1000 under the alternative.

If we were going to do a lot of these, we could clean up this calculation a bit
and make a theorem out of it. It is clear from the way the calculation simplified
at the end that some clean up is possible. But that wouldn’t help us much.
It would only apply to power calculation for tests involving means. Often one
does power calculations for chi-square tests or F tests, which are much more
complicated. We won’t go into the details. We will let this subject go with
these examples, which do illustrate the basic idea.

9.5.8 Multiple Tests and Confidence Intervals

All of Section 9.5 so far deals with the situation in which exactly one test is
done on a data set. What if we want to do more than one test? Is the theory
still valid?

No! If you take any complicated data set and keep doing different tests
until one of them rejects the null hypothesis, this will eventually happen, but
it proves absolutely nothing because this will always happen. If you keep going
until you manage to think up a test that happens to reject H0, then you will
always eventually get a test to reject H0.

What about situations between the ideal of just doing one test and doing a
potentially infinite sequence of tests? What if you have several tests you want
to do and will do no more even if none of them rejects H0? Is there a valid way
to do that?
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Yes. In fact, many different ways have been proposed in the statistical
literature.5 Most only work with a specific kind of test. However, there is one
procedure that is always applicable. It is the only one we will study.

Every known procedure for valid multiple testing conceptually combines the
multiple tests into one big test. So you really do only one test. The null
hypothesis for the combined test is that all the null hypotheses for the separate
tests are true. The decision rule for the combined test is to reject the combined
null hypothesis if any of the separate tests rejects its null hypothesis.

Suppose we have k tests with null hypotheses H1, . . ., Hk (we can’t call them
all H0). The null hypothesis for the combined test is

H0 = H1 andH2 and · · · andHk.

In terms of parameter sets, the logical “and” operation corresponds to set in-
tersection. So if Θi is the set of parameter values corresponding to the null
hypothesis Hi for the i-th separate test, then the parameter values correspond-
ing to H0 are

Θ0 = Θ1 ∩ Θ2 ∩ · · · ∩ Θk.

The significance level is

P (reject H0) = P (reject H1 or reject H2 or . . . or reject Hk)

assuming this does not depend on the parameter value (otherwise we would have
to “sup” over Θ0). Let Ei denote the event that the i-th test rejects its null
hypothesis. If the i-th test is determined by a test statistic Ti(X) and critical
value ci, then

Ei = {X : Ti(X) ≥ ci }
but the exact form of Ei doesn’t matter, it is just the set of data values for
which the i-th test rejects its null. Since the logical “or” operation corresponds
to set union,

P (reject H0) = P (E1 ∪ E2 ∪ · · · ∪ Ek). (9.64)

But now we are stuck. In general we have no way to calculate (9.64). It is the
correct significance level for the combined test. If we are to do the test properly,
we must calculate it. But in general, especially when we have done a lot of tests
with no simple pattern, there is no way to do this calculation.

The right hand side of (9.64) should be familiar. It appears in the addition
rule for probability, which is (10) of Theorem 2 of Chapter 2 in Lindgren. But
that rule has a condition, the Ei must be mutually exclusive, which never holds
in multiple testing situations. So the addition rule is no help. However there is
a rule with no conditions, subadditivity of probability

P (E1 ∪ E2 ∪ · · · ∪ Ek) ≤ P (E1) + P (E2) + · · · + P (Ek)
5There are whole books focused on this subject. A good one is Simultaneous Statistical

Inference by Rupert G. Miller, Jr. (2nd ed., McGraw-Hill, 1981).
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that holds for any events E1, . . ., Ek. This is (b) of Problem 2-22 in Lindgren.
We can always apply this rule. Thus we get

α = P (reject H0) ≤
k∑

i=1

P (test i rejects Hi).

This at least provides an upper bound on the significance level. If we use the
right hand side instead of α we at least get a conservative procedure. The true
error rate, the probability of erroneously rejecting H0 will be less that our upper
bound.

If we adjust the separate tests so they all have the same individual signifi-
cance level we get the following rules.

To do a combined test with significance level at most α, choose level
α/k for the k separate tests.

When we consider this in terms of P -values, the rule becomes

When you do k tests, multiply all P -values by k.

This procedure is usually referred to as a Bonferroni correction, because a closely
related inequality to subadditivity of probability is sometimes called Bonfer-
roni’s inequality.

Using the duality of tests and confidence intervals we immediately get the
analogous procedure for multiple confidence intervals. There are two views we
can take of multiple confidence intervals. If we have several confidence intervals,
all with the same confidence level, for specificity say 95%, that does not mean
there is 95% probability that they will all simultaneously cover. In fact if there
are many intervals, there may be an extremely small probability of simultaneous
coverage. Simultaneous confidence intervals is the dual concept of multiple tests.
Bonferroni correction applied to confidence intervals says

To get simultaneous 100(1−α)% coverage for k confidence intervals
choose confidence level 100(1 − α/k)% for the separate intervals.

Stargazing

Many scientific papers avoid P -values. They only indicate whether certain
results are “statistically significant” or not at the 0.05 level and perhaps also at
the 0.01 level. Such papers are full of tables like this one

1.13 −1.12 −1.30 1.16 −0.19
−1.18 0.12 0.02 −1.11 0.35
−0.49 −0.11 −0.45 −0.17 −1.66

2.70∗∗ 0.03 0.14 −1.64 0.61
−0.35 1.80∗ 2.65∗∗ −0.73 −1.32

∗ P < 0.05, ∗∗ P < 0.01
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Although the asterisks are just footnote symbols, tables like this are so common
that no one familiar with the literature needs to look at the footnote. One star
means “significant” (statistically significant at the 0.05 level), and two stars
means “highly significant” (statistically significant at the 0.01 level). The stars
are supposed to indicate the interesting results. The unstarred numbers are
garbage (uninteresting random noise).

Most such tables are completely bogus because no correction was done for
multiple testing. If a Bonferroni correction (or some other correction for multiple
testing) were done, there would be a lot fewer stars. And this would mean a lot
fewer so-called significant results for scientists to woof about. Doing the tests
honestly, with correction for multiple testing would take all the fun out of the
game.

This practice has been disparagingly called “stargazing” by a sociologist (L.
Guttman). It should have no place in real science. Yet it is widespread. In
many scientific disciplines a paper is unusual if it doesn’t have tables like this.
Scientists being sheep, just like other people, they feel pressure to conform and
use the stars. In many disciplines, tables like this are a form of what I call
“honest cheating.” The tests are bogus, but this is clearly admitted in the
paper, so no one should be fooled. Actually, scientists never say anything so
harsh as calling the procedure “bogus.” That would offend their peers. The
emit some academic weasel wording like “no correction was done for multiple
testing.” If you are statistically astute, you catch the implication of bogosity. Of
course the naive reader completely misses the point, but the scientific literature
isn’t written to be readable by nonexperts.

To give the “honest cheaters” fair credit, they do have an argument for their
failure to correct for multiple testing. If they did a Bonferroni correction, that
would not be the exactly right thing to do, rather it would be the conservative
thing to do. No correction is too liberal, Bonferroni is too conservative. The
right thing would be somewhere in between, but we usually do not know how to
do it. The “honest cheaters” admit they are making a mistake, but they assert
that Bonferroni would also be a mistake (in the other direction). The trouble
with this argument is that the right thing is a lot closer to Bonferroni correction
than no correction. Doing many tests with no correction is always bogus.

Of course, tables full of stars are fine if Bonferroni or some other correction
for multiple testing was done. Since this is so rare, all authors who do proper
correction for multiple testing make it very clear that they did so. They don’t
want readers to assume they are as clueless and their results as meaningless as
in the typical paper in their discipline.

Problems

9-1. The Laplace distribution defined in (9.1) does not have mean zero and
variance one. Hence is not the standard Laplace distribution. What is the
mean and variance of (9.1), and what would be the standard Laplace density
(the one with mean zero and variance one)? If we use the standard Laplace
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density as the reference density of the Laplace location-scale family so that the
parameters µ and σ would be the mean and standard deviation, what form
would the densities have instead of (9.2)?

9-2. Show that the family of Gam(α, λ) distributions with α fixed and λ varying,
taking on all values with λ > 0 is a scale family.

9-3. Suppose S2
n is the sample variance calculated from an i. i. d. normal random

sample of size n.

(a) Calculate the bias of Sn as an estimator of the population variance σ.

(b) Find the constant k such that kSn has the smallest mean square error as
an estimator of σ.

9-4. Suppose U and V are statistics that are stochastically independent and are
both unbiased estimators of a parameter θ. Write var(U) = σ2

U and var(V ) =
σ2

V , and define another statistic T = aU + (1− a)V where a is an arbitrary but
known constant.

(a) Show that T is an unbiased estimator of θ.

(b) Find the a that gives T the smallest mean square error.

9-5. The notes don’t give any examples of estimators that are not consistent.
Give an example of an inconsistent estimator of the population mean.

9-6. If X ∼ Bin(n, p), show that p̂n = X/n is a consistent and asymptotically
normal estimator of p, and give the asymptotic distribution of p̂n.

9-7. If X1, X2, . . . are i. i. d. from a distribution having a variance σ2, show
that both Vn and S2

n are consistent estimators of σ2.

9-8. Suppose X1, X2, . . . are i. i. d. Geo(p). Find a method of moments esti-
mator for p.

9-9. Suppose X1, X2, . . . are i. i. d. Beta(α, 2).

(a) Find a method of moments estimator for α.

(b) Find the asymptotic normal distribution of your estimator.

9-10. Let X1, X2, . . ., Xn be an i. i. d. sample from a Beta(θ, θ) model, where
θ is an unknown parameter. Find a method of moments estimator of θ.

9-11. Suppose X1, X2, . . . are i. i. d. Gam(α, λ). Find the asymptotic normal
distribution of the method of moments estimator λ̂n defined in (9.6b).

9-12. Calculate the ARE of Xn versus X̃n as an estimator of the center of
symmetry for
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(a) The double exponential location-scale family having density given in Prob-
lem 7-6(b) of these notes. (Note that σ in in the formula for the densities
given in that problem is not the standard deviation.)

(b) The t(ν) location-scale family, with densities given by

fν,µ,σ(x) =
1
σ

fν

(
x − µ

σ

)
where fν is the t(ν) density given by (7.32). (Be careful to say things
that make sense even considering that the t(ν) distribution does not have
moments of all orders. Again σ is not the standard deviation.)

(c) The family of distributions called Tri(µ, λ) (for triangle) with densities

fµ,λ(x) =
1
λ

(
1 − |x − µ|

λ

)
, |x − µ| < λ

shown below

©©©©©©©©©©©

HHHHHHHHHHH

µµ − λ µ + λ

0

1/λ

The parameter µ can be any real number, λ must be positive.

9-13. Let X1, X2, . . ., Xn be an i. i. d. sample from a N (µ, σ2) model, where µ
and σ2 are unknown parameters, and let S2

n denote the sample variance (defined
as usual with n − 1 in the denominator). Suppose n = 5 and S2

n = 53.3. Give
an exact (not asymptotic) 95% confidence interval for σ2.

9-14. In an experimental weight loss program five subjects were weighed before
and after the 15 week treatment. The weights in pounds were as follows

Subject
A B C D E

Before 225 216 215 225 186
After 193 206 171 223 156

If you want to use R on this problem, the data are in the file

http://www.stat.umn.edu/geyer/5102/prob9-14.dat

(a) Calculate a 95% confidence interval for the expected weight loss under the
program.
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(b) Describe the assumptions required to make this a valid confidence interval.

9-15. Suppose we have a sample with replacement of size n from a population
and we are interested in the fraction p of the population having a certain prop-
erty. For concreteness, say the property is that they intend to vote for Jones
in an upcoming election. Let p̂n denote the fraction of the sample having the
property (intending to vote for Jones in the example).

(a) Show that
p̂n − p√

p(1 − p)/n

D−→ N (0, 1). (9.65a)

(b) Show that p̂n(1 − p̂n) is a consistent estimator of p(1 − p).

(c) Show that
p̂n − p√

p̂n(1 − p̂n)/n

D−→ N (0, 1). (9.65b)

(d) Show that

p̂n ± zα/2

√
p̂n(1 − p̂n)

n

is an asymptotic 100(1 − α)% confidence interval for p, where zα/2 is the
1 − α/2 quantile of the standard normal distribution.

(e) Find another asymptotic confidence interval for p based on the pivotal
quantity in (9.65a) rather than the pivotal quantity in (9.65b).

9-16. Suppose we have two independent samples of size m and n from two dif-
ferent populations. We are interested in the fractions p and q of the populations
that have a certain property (note: we are not using the q = 1 − p convention
here, p is the proportion of the first population having the property, and q is
the proportion of the second population). We estimate these proportions by the
sample proportions p̂m and q̂n which are the fractions of the first and second
samples having the property. Show that

p̂m − q̂n ± zα/2

√
p̂m(1 − p̂m)

m
+

q̂n(1 − q̂n)
n

(9.66)

is an asymptotic 100(1 − α)% confidence interval for p − q, where zα/2 is the
1 − α/2 quantile of the standard normal distribution.

9-17. A physics lab is divided into 20 teams. Each team performs a measure-
ment of the speed of light. Ten teams use one method and the other ten use
another method. The average and standard deviation for the teams using each
method was given in the following table (units are meters per second times 108).

standard
mean deviation

Method 1 3.00013 0.00395
Method 2 2.99019 0.00853
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If you want to use R on this problem, the data are in the file

http://www.stat.umn.edu/geyer/5102/prob9-17.dat

(a) Assuming that the measurements within each group of ten teams are inde-
pendent and identically distributed around some unknown mean value (the
speed of light as measured by that method), calculate a 95% confidence
interval for the difference in the mean values for the two methods using
Welch’s approximation.

(b) Redo part (a) using the “pooled variance” t confidence interval that as-
sumes both measurement methods have the same variance.

9-18. Suppose a sample of size 100 is assumed to be i. i. d. from a Gam(α, λ)
model and the method of moments estimators of the parameters are α̂n = 5.23
and λ̂n = 21.3. Find an asymptotic 95% confidence interval for α.

9-19. Suppose VX,m and VY,n are sample variances and M4,X,m and M4,Y,n are
the sample fourth central moments of independent samples from two popula-
tions having variances σ2

X and σ2
Y , respectively. Find an asymptotic confidence

interval for σ2
X − σ2

Y .

9-20. Show that the “exact” confidence interval for the variance based on the
chi-square distribution is asymptotically robust within the class of all distribu-
tions having fourth moments and satisfying µ4 = 3σ4. That is, show that the
assumption

nVn

σ2
∼ chi2(n − 1)

implies a certain asymptotic limit for Vn and that this limit matches the correct
asymptotic limit given by Theorem 7.17 only if µ4 = 3σ4.

9-21. A trimmed mean is a point estimator of the form

X(k+1) + · · · + X(n−k)

n − 2k
(9.67)

that is, the average of the data after the k lowest and k highest order statistics
have been thrown away. If 0 ≤ α < 1/2 we say that (9.67) is a 100α% trimmed
mean if k = bnαc. We say that the median is a 50% trimmed mean.

For 0 < α < 1/2, find the breakdown point of the 100α% trimmed mean.

9-22. Given data X1, . . ., Xn, the Walsh averages consist of the n data items
Xi and the

(
n
2

)
averages (Xi + Xj)/2 for distinct pairs of indices i and j. The

Hodges-Lehmann estimator of the center of symmetry of a symmetric distri-
bution is the empirical median of the vector of Walsh averages.6 Find the
breakdown point of this estimator.

6Actually, there are lots of different Hodges-Lehmann estimators. This is the one associated
with the Wilcoxon signed rank test.
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9-23. Calculate the breakdown point of the MAD (median absolute deviation
from the median) defined in Problem 7-1.

9-24. Assume X1, . . ., Xn are i. i. d. N (µ, σ2). The observed value of Xn is
23.6, the observed value of S2

n is 103.2, and the sample size is n = 20. Perform
a one-tailed test of the hypotheses H0 : µ = 20 versus HA : µ > 20, finding the
P -value.

9-25. Two groups in physics lab have been measuring the density of aluminum
at room temperature (20◦ C). They got the following summary statistics

n Xn Sn

Group I 10 2.792 0.241
Group II 8 2.538 0.313

(Units are grams per cubic centimeter.) Assume the measurements for group I
are i. i. d. N (µ1, σ

2
1) and the measurements for group II are i. i. d. N (µ2, σ

2
2).

We want to perform a test of H0 : µ1 = µ2 versus HA : µ1 6= µ2. Perform
Welch’s approximate test, come as close as you can to the P -value.

If you want to use R on this problem, the data are in the file

http://www.stat.umn.edu/geyer/5102/prob9-25.dat

9-26. Suppose I have taken a random sample of size 100 of ears of corn from a
field. My sample has mean ear length of 6.13 inches and standard deviation 1.44
inches. This gives me a 95% confidence interval for the true mean ear length all
the corn in the field of 6.13 ± 0.28 inches.

Suppose I want a more accurate 95% confidence interval with a half-width
(plus-or-minus) of 0.10 inches. What sample size do I need to get that?

9-27. Suppose I intend to collect data about the effect of coaching on SAT
scores. The data will be SAT scores for individuals before and after taking a
cram course. Suppose the test-retest variability without coaching is known to
be about 50 points. How large a sample size do I need to have a power of 0.95
of detecting a true mean difference due to coaching as small as 10 points (the
null hypothesis being no difference) at the 0.05 significance level? The test will
be an upper-tailed test, since we expect that coaching cannot hurt.

9-28. For the data in Example 9.5.1 compute four confidence intervals, one for
difference in each of the four rows of the table, so that your four intervals have
95% probability of simultaneous coverage.

Note: This problem can be done in R using the prop.test function, but
getting the right confidence level is tricky. Be careful.

9-29. A problem on “stargazing.” Suppose the twenty-five numbers in the
table on p. 294 are all z-scores for different one-tailed, upper-tailed tests. The
stars in the table do not reflect any correction for multiple testing. That is a
z-score is declared “significant” (gets a star) if z ≥ 1.645 and is declared “highly
significant” (gets two stars) if z ≥ 2.326. Here 1.645 and 2.326 are the one tailed
0.05 and 0.01 z critical values.
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(a) What critical values should replace 1.645 and 2.326 in order to apply a
Bonferroni correction to this multiple testing situation?

(b) What would the result of the Bonferroni correction be in terms of stars?
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Chapter 10

Likelihood Inference

10.1 Likelihood

“Likelihood” is used as a technical term in statistics. It is not just a vague
synonym for probability, as it is in everyday language. It is, however, closely
related to probability.

Recall that we use density as a term that covers two of Lindgren’s terms: p. f.
(probability function) and p. d. f. (probability density function). In this chapter
we will see one of the main reasons for our usage. The density will be used in
exactly the same way, regardless of whether the data are discrete (so Lindgren
would call it a p. f.) or continuous (so Lindgren would call it a p. d. f.). Also
recall that a statistical model can be described by giving a parametric family of
densities { fθ : θ ∈ Θ }. This means that for each fixed parameter value θ in the
parameter space Θ, there is a function fθ(x) defined on the sample space that
is nonnegative and sums or integrates to one, depending on whether the model
is discrete or continuous.

A likelihood for the statistical model is defined by the same formula as the
density, but the roles of x and θ are interchanged

Lx(θ) = fθ(x). (10.1)

Thus the likelihood is a different function of the parameter θ for each fixed value
of the data x, whereas the density is a different function of x for each fixed value
of θ. Likelihood is actually a slightly more general concept, we also call

Lx(θ) = h(x)fθ(x) (10.2)

a likelihood for the model when h(x) is any nonzero function of x that does not
contain the parameter θ. The reason for this extension of the notion is that all
of the uses we make of the likelihood function will not be affected in any way by
the presence or absence of h(x). The way we make use of the extended definition
is to simply drop terms in the density that do not contain the parameter.

303



304 Stat 5101 (Geyer) Course Notes

Example 10.1.1 (Binomial Likelihood).
If X ∼ Bin(n, p), then

fp(x) =
(

n

x

)
px(1 − p)n−x

This is also a likelihood Lx(p). However, we are also free to drop the binomial
coefficient, which does not contain the parameter p, writing

Lx(p) = px(1 − p)n−x. (10.3)

When the data are an i. i. d. sample from a distribution with density fθ(x),
the joint density is

fθ(x) =
n∏

i=1

fθ(xi)

Hence this, thought of as a function of the parameter θ rather than the data x,
is also a likelihood. As usual we are allowed to drop multiplicative terms not
containing the parameter.

When there are several parameters, the likelihood is a function of several
variables (the parameters). Or, if we prefer, we can think of the likelihood as a
function of a vector variable (the vector of parameters).

Example 10.1.2 (Normal Likelihood).
Suppose X1, . . ., Xn are i. i. d. N (µ, σ2), then the joint density of the data is

fµ,σ(x) =
n∏

i=1

1√
2πσ

e−(xi−µ)2/2σ2

We can drop the
√

2π terms. This gives

Lx(µ, σ) =
n∏

i=1

1
σ

exp
(
− (xi − µ)2

2σ2

)

=
1
σn

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)

=
1
σn

exp
(
−nvn + n(x̄n − µ)2

2σ2

)
(10.4)

where x̄n is the empirical mean and vn is the empirical variance, the last step
using the empirical parallel axis theorem. Of course, we are free to use whichever
form seems most convenient.

Example 10.1.3 (Normal Likelihood, Known Variance).
This is the same as the preceding example except now we assume σ2 is a known
constant, so µ is the only parameter. Now we are free to drop multiplicative
terms not containing µ. Hence we can drop the σn term. We can also write

exp
(
−nvn + n(x̄n − µ)2

2σ2

)
= exp

(
−nvn

2σ2

)
exp

(
−n(x̄n − µ)2

2σ2

)
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and the first term on the right does not contain µ, hence

Lx(µ) = exp
(
−n(x̄n − µ)2

2σ2

)
(10.5)

is a likelihood for this model. Note that this is a different statistical model
from preceding problem because the parameter space is different. Hence it has
a different likelihood function.

For the next several sections, we will only look at models with one parameter.
We will return to multiparameter models in Section 10.4.

10.2 Maximum Likelihood

So far the only general method we have seen for constructing estimators
is the method of moments. Now we are going to learn another method, even
more general than the method of moments. It has a number of very desirable
properties that will be developed as we go along. It is called the method of max-
imum likelihood. Roughly, the maximum likelihood estimator is the parameter
value that maximizes the likelihood. For observed data x and likelihood Lx

the maximum likelihood estimator (MLE) is defined to be the parameter value
that maximizes the function Lx if the global maximum exists and is unique. If
the global maximum does not exist or is not unique, then we have a problem
defining the MLE. Mostly we will just deal with situations where there is a
unique global maximizer. The MLE is denoted θ̂(x) or sometimes just θ̂ when
we want to leave the dependence on the data out of the notation. When we
discuss asymptotics, we will often write it θ̂n(x) or θ̂n in order to indicate the
dependence on the sample size n.

The log likelihood is the (natural) logarithm of the likelihood. It is denoted

lx(θ) = log Lx(θ).

We define log(0) = −∞. This makes sense because log(x) → −∞ as x ↓ 0.
Because the logarithm function is strictly increasing, a point maximizes the

likelihood if and only if it maximizes the log likelihood. It is often simpler to
maximize the log likelihood rather than the likelihood.

Example 10.2.1 (Binomial Model).
The log likelihood for the binomial distribution is found by taking logs in (10.3)
giving

lx(p) = x log p + (n − x) log(1 − p). (10.6a)
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Calculating derivatives at interior points p of the parameter space gives

l′x(p) =
x

p
− n − x

1 − p

=
x − np

p(1 − p)
(10.6b)

l′′x(p) = − x

p2
− n − x

(1 − p)2
. (10.6c)

The last equation shows that the log likelihood is a strictly concave function
(Definition G.2.1 in Appendix G).

In the general case 0 < x < n, the first derivative is zero at p̂ = x/n. By
strict concavity, p̂ is the unique global maximum. In the special cases x = 0 and
x = n, there is no zero of the derivative, but the endpoints of the parameter
space (0 ≤ p ≤ 1), are local maxima. When x = 0

l′x(p) = − n

1 − p

so l′x(0) = −n which satisfies (G.2a). Similarly, when x = n we have l′x(1) = n
which satisfies the sufficient condition for p = 1 to be a local maximum. Thus
in all three cases p̂ = x/n is a local maximum of the log likelihood, hence the
unique global maximum by strict concavity.

In this case, the MLE is the obvious estimator. By definition X is the sum of
i. i. d. Bernoulli random variables, and p̂ is the sample mean of these variables.
It is also a method of moments estimator and an unbiased estimator, since
E(p̂) = p.

Example 10.2.2 (Normal Model, Known Variance).
The likelihood for this model is given by (10.5), hence the log likelihood is

ln(µ) = −n(x̄n − µ)2

2σ2
(10.7)

which is clearly maximized at
µ̂n = x̄n

(since the log likelihood is zero there and negative elsewhere), so that is the
MLE.

Example 10.2.3 (Cauchy Location Model).
The Cauchy location model has densities

fθ(x) =
1
π
· 1
1 + (x − θ)2

Hence the log likelihood for an i. i. d. sample of size n is

ln(θ) = −
n∑

i=1

log
(
1 + (xi − θ)2

)
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(we can drop the constant terms 1/π). We can differentiate this

l′n(θ) =
n∑

i=1

2(xi − θ)
1 + (xi − θ)2

(10.8)

but the result is horrible. We won’t get anywhere by setting that equal to zero
and trying to solve for θ.

Fortunately, computers can help. They can’t give us a formula expressing
the MLE as a function of θ. There isn’t any such formula in terms of well-
known elementary functions. But for any particular data set, the computer can
maximize the likelihood and find the MLE. That’s good enough in most appli-
cations. R, for example, has a function nlm that does nonlinear minimization
of a function of several variables. We can use that to find the MLE (minimizing
−f maximizes f). First we make up some data

Rweb:> n <- 40
Rweb:> theta0 <- 0
Rweb:> x <- theta0 + rcauchy(n) # make up data
Rweb:> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.9590 -0.4615 0.1203 10.0100 1.1990 172.0000

In a real problem, of course, we would read in data obtained from the data
collectors (though, to be honest, the Cauchy has such heavy tails that it’s not
used for real data). We have also run the summary command that gives the
estimators we already know about, the sample mean and median, as well as
some other interesting statistics. We know the sample mean is not a consistent
estimator of θ because the expectation of the Cauchy distribution does not
exist. We know the sample median is consistent and asymptotically normal
[Problem 7-6(a)].

Then the following code finds the MLE. First it defines an R function l
that evaluates minus the log likelihood. Then it hands that function to nlm to
minimize. The nlm function uses an iterative algorithm and needs a starting
point, which we supply as median(x), the best estimator we know that we have
a simple expression for (ignore the third argument to nlm, it’s helpful but not
necessary).

Rweb:> l <- function(theta) sum(log(1 + (x - theta)^2))
Rweb:> out <- nlm(l, median(x), fscale=n)
Rweb:> out$estimate
[1] 0.00276767

The result is the MLE. Notice that it is a lot closer to the true parameter
value (which we know to be zero because we made up the data) than the median.
This is no accident. We will eventually see that the MLE is a much better
estimator here than the sample median.
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10.3 Sampling Theory

10.3.1 Derivatives of the Log Likelihood

When we write lX(θ) rather than lx(θ), considering the subscript a random
vector “big X” rather than a fixed value “little x” the log likelihood becomes
a random function, and everything about it, including its derivatives, is also
random. Specifically, lX and its derivatives, l′X, l′′X, and so forth, are random
functions. The values of these functions at a specified point θ, that is, lX(θ),
l′X(θ), l′′X(θ), and so forth, are random variables. Note that each different value
of θ gives a different random variable. Like every other random variable, they
have probability distributions. As usual, when we are talking about random-
ness arising from or mimicking random sampling, we call these the sampling
distributions of the random variables, in this case, of the log likelihood and its
derivatives.

We are now going to change notation, suppressing the dependence of the log
likelihood on the data X and emphasizing the dependence on the sample size n.
As always, this is useful when we discuss asymptotics, and all of the distribution
theory in likelihood inference is asymptotic theory. Thus we will write ln, l′n,
and so forth rather than lX, l′X, and so forth.

The Score

The first derivative of the log likelihood

l′n(θ) =
d

dθ
ln(θ)

is often called the score function or just the score. When we consider the score
function to be random, l′n(θ) is a random variable, a different random variable
for each different value of θ.

The score function is important in maximum likelihood. We usually find the
MLE by solving the equation l′n(θ) = 0. Of course, this doesn’t work when the
MLE is on the boundary of the parameter space or when the MLE doesn’t exist,
but it does work in the usual case and we have l′n(θ̂n) = 0. Note that this does
not imply that l′n(θ) = 0 when θ is the true parameter value. Just the opposite!
“The sample is not the population” implies that θ̂n is not θ. In fact, l′n(θ) is a
random variable and hence doesn’t have any constant value.

Expected Fisher Information

The Fisher information for a statistical model is the variance of the score
l′n(θ)

In(θ) = varθ{l′n(θ)}. (10.9)

It is named after R. A. Fisher, who invented maximum likelihood and discovered
many of the properties of maximum likelihood estimators and first called this
concept “information.” Lindgren calls this concept just “information” instead
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of “Fisher information,” but the latter is standard terminology because more
than one notion of “information” has been used in statistics (although Fisher
information is by far the most important and the only one we will consider in
this course).

Lindgren uses the notation IX(θ) rather than In(θ) but admits this “could
be misleading” because the Fisher information does not depend on the data X
but rather on the model, that is on which variables we consider “data” rather
than on the values of those variables. Note that the Fisher information is not a
random quantity (because no unconditional expectation is a random quantity),
another reason why the notation IX(θ) is very misleading. Since Lindgren’s
notation is misleading, we will not use it.

Differentiating Under the Integral Sign

Any probability density satisfies∫
fθ(x) dx = 1 (10.10)

(or the analogous equation with summation replacing integration if the data are
discrete). Usually, although not always,1 it is possible to take derivatives inside
the integral sign, that is,

∂k

∂θk

∫
fθ(x) dx =

∫
∂k

∂θk
fθ(x) dx. (10.11)

Looking back at the right hand side of (10.10), we see that because the derivative
of a constant is zero, that all of the derivatives in (10.11) are zero, that is,∫

∂k

∂θk
fθ(x) dx = 0 (10.12)

provided that differentiation under the integral sign is valid, that is, provided
(10.11) holds.

The partial derivative notation will become unwieldy in the following proof,
so we are going to introduce the following shorthand for (10.12)∫

f ′ = 0

and ∫
f ′′ = 0

using primes to indicate partial derivatives with respect to θ (in likelihood theory
we always differentiate with respect to parameters, never with respect to data)

1We will not worry about the precise technical conditions under which this operation is
permitted. They can be found in advanced calculus books. The only condition we will mention
is that the limits of integration in (10.11) must not contain the variable of differentiation θ.
This will hold in all of the examples we consider.
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and also suppressing the variable x entirely (although the integration is still
with respect to the data x).

Now we write the log likelihood l = log f , and using the chain rule we obtain

l′ =
f ′

f
(10.13a)

l′′ =
f ′′

f
−

(
f ′

f

)2

(10.13b)

Now note that for any random variable g(X)

E{g(X)} =
∫

g(x)f(x) dx

or in the shorthand we are using in this section E(g) =
∫

gf . What this says is
that in order to change an expectation to an integral we need an extra f in the
integrand. Thus taking expectations of (10.13a) and (10.13b) gives

E(l′) =
∫

f ′

E(l′′) =
∫

f ′′ − E

{(
f ′

f

)2
}

and we know from our previous discussion that (still assuming differentiability
under the integral sign is valid) that the integrals here are zero, thus

E(l′) = 0 (10.13c)

E(l′′) = −E

{(
f ′

f

)2
}

(10.13d)

Finally we note that we can use (10.13a) and (10.13c) to simplify (10.13d).
l′ = f ′/f is a random variable. It has mean zero by (10.13c). For any random
variable having mean zero ordinary and central moments are the same, hence
the variance is also the ordinary second moment. Thus the second term on the
right hand side of (10.13d) is var(l′). Thus we can rewrite (10.13d) as

E(l′′) = − var(l′) (10.13e)

Now we want to get rid of the shorthand, and restate our conclusions as a
theorem using ordinary mathematical notation.

Theorem 10.1. Provided (10.10) can be differentiated twice with respect to θ
under the integral sign, that is (10.12) holds for k = 1 and k = 2,

Eθ{l′n(θ)} = 0 (10.14a)

and
Eθ{l′′n(θ)} = − varθ{l′n(θ)} (10.14b)

for all values of θ for which the differentiation under the integral sign is permit-
ted.
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This is just what we proved in the preceding discussion.
Note that the variance on the right hand side of (10.14b) is Fisher infor-

mation. This says that we can calculate Fisher information in two different
ways, either the variance of the first derivative of the log likelihood or minus
the expectation of the second derivative. You may use whichever seems simpler,
your choice. First derivatives are sometimes simpler than second derivatives and
sometimes not. Expectations are usually simpler than variances. My experi-
ence is that a majority of problems the second derivative calculation is simpler.
But in a sizable minority of problems the first derivative calculation is simpler.
Don’t entirely ignore the first derivative method.

Example 10.3.1 (Binomial Model).
In Example 10.2.1 we found the second derivative of the log likelihood to be

l′′X(p) = −X

p2
− n − X

(1 − p)2
.

This is (10.6c) with “little x” changed to “big X” because we are now considering
it a random quantity. Taking expectations using E(X) = np gives

In(p) = −E{l′′X(p)}
=

np

p2
+

n − np

(1 − p)2

=
n

p(1 − p)

Example 10.3.2 (Normal Model, Known Variance).
In Example 10.2.2 we found the log likelihood (10.7) for this model Differenti-
ating, we find

l′′n(µ) = − n

σ2

Since this happens not to depend on the data, it is nonrandom, hence is its own
expectation. Thus it is minus the Fisher information, that is

In(µ) =
n

σ2

The subscripts θ on the expectation and variance operators in (10.14a) and
(10.14b) are important. If omitted, it would be possible to give these equations
a reading that is false. The point is that there are two θ’s involved. When they
are different, the statement is simply false.

Eθ1{l′n(θ2)} 6= 0

when θ1 6= θ2. If (10.14a) is written with no subscript on the expectation
operator

E{l′n(θ)} = 0,

then it is not clear what parameter value is meant and under the wrong assump-
tion about what parameter is meant the equation is simply false.
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The CLT for the Score

The log likelihood and its derivatives for an i. i. d. sample are sums of i. i. d.
terms.

ln(θ) =
n∑

i=1

log fθ(Xi) (10.15a)

l′n(θ) =
n∑

i=1

∂

∂θ
log fθ(Xi) (10.15b)

l′′n(θ) =
n∑

i=1

∂2

∂θ2
log fθ(Xi) (10.15c)

and so forth. The middle equation (10.15b) is the score. Also note that each
term on the right hand side of (10.15a) is the log likelihood for a model having
only Xi as data, that is, a log likelihood for sample size one.

Theorem 10.2.
In(θ) = nI1(θ)

Proof. Because the Xi are assumed independent, the terms on the right hand
side of (10.15b) are independent. Hence the variance of the sum is the sum of
the variances. By the preceding comment, each term on the right hand side is
a score for a sample of size one.

In words, the theorem says the Fisher information for a sample of size n is
equal to the Fisher information for a sample of size 1 multiplied by n.

Example 10.3.3 (Cauchy Location Model).
In Example 10.2.3 we found the first derivative of the log likelihood (the score)
for this model in (10.8). The second derivative is

l′′n(θ) =
n∑

i=1

(
− 2

1 + (xi − θ)2
+

4(xi − θ)2

[1 + (xi − θ)2]2

)
(10.16)

We called the first derivative “horrible.” This is even more of a mess, but we are
only trying to integrate this, and there is a nice analytical (though fairly messy)
indefinite integral. Note by Theorem 10.2 that to find the Fisher information,
we only need to do the integral for sample size one. Mathematica has no trouble

In[1]:= <<Statistics‘ContinuousDistributions‘

In[2]:= dist = CauchyDistribution[theta, 1]

Out[2]= CauchyDistribution[theta, 1]

In[3]:= f[x_, theta_] = PDF[dist, x]
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1
Out[3]= ----------------------

2
Pi (1 + (-theta + x) )

In[4]:= Integrate[ D[ Log[f[x, theta]], {theta, 2} ] f[x, theta],
{x, -Infinity, Infinity} ]

1
Out[4]= -(-)

2

We don’t even need to do the differentiation ourselves. Let Mathematica do
both differentiation and integration. The Fisher information is minus this

I1(θ) =
1
2

(10.17)

And of course, by Theorem 10.2 the Fisher information for sample size n is just
n times this.

In the proof of Theorem 10.2 we established that the right hand side of
(10.15b) is the sum of i. i. d. terms, each of which is the score for a sample of
size one and hence has mean zero by (10.14a) and variance I1(θ) by (10.9), the
definition of Fisher information.

Thus l′n(θ)/n is the average of i. i. d. terms and the central limit theorem
applies. Being precise, it says

1√
n

l′n(θ) D−→ N (
0, I1(θ)

)
. (10.18)

The 1/
√

n arises because we divide l′n(θ) by n to get an average then we multiply
by

√
n as usual in the CLT. There is no mean subtracted off on the left hand

side because the score has mean zero. The sloppy “double squiggle” version says

l′n(θ) ≈ N (
0, In(θ)

)
.

Here we wrote In(θ) rather than nI1(θ) for the variance (they are, of course,
equivalent by Theorem 10.2). Note that the asymptotic mean and variance
are no surprise, since by (10.14a) and the definition of Fisher information (10.9)
these are the exact mean and variance of l′n(θ). The only surprise (and it should
be no surprise by now) is that the large sample distribution is normal (by the
CLT).

Observed Fisher Information

The observed Fisher information is

Jn(θ) = −l′′n(θ). (10.19)
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For contrast In(θ) is sometimes called expected Fisher information to distinguish
it from Jn(θ), although, strictly speaking, the “expected” is redundant.

Note that Jn(θ) is a random quantity, even though the notation does not
explicitly indicate this. In contrast, expected Fisher information, like any other
expected value is constant (nonrandom). The connection between observed and
expected Fisher information is given by (10.14b), which says, using the notation
(10.19) for observed Fisher information

E{Jn(θ)} = In(θ). (10.20)

Example 10.3.4 (Cauchy Location Model).
In Example 10.3.3 we found the second derivative of the log likelihood for this
model in (10.16). The observed Fisher information is just minus this.

Jn(θ) =
n∑

i=1

(
2

1 + (xi − θ)2
− 4(xi − θ)2

[1 + (xi − θ)2]2

)
(10.21)

The LLN for Observed Fisher Information

Equation 10.20 gives us the expectation of the observed Fisher information.
Generally, we do not know anything about its variance or any higher moments.
Not knowing the variance, the CLT is of no use. But the LLN is still informative.

The analysis is just like the analysis of the sampling distribution of l′n(θ)
two sections back (but simpler because the LLN is simpler than the CLT). The
right hand side of (10.15c) is the sum of i. i. d. terms, each of which is the
second derivative of the log likelihood for a sample of size one and hence has
mean I1(θ) by (10.20).

Thus Jn(θ)/n is the average of i. i. d. terms and the law of large numbers
applies. Being precise, it says

1
n

Jn(θ) P−→ I1(θ). (10.22)

The sloppy “double squiggle” version would be

Jn(θ) ≈ In(θ)

Note that this doesn’t describe an asymptotic distribution for Jn(θ) because the
right hand side is constant (as always the LLN gives less information than the
CLT).

10.3.2 The Sampling Distribution of the MLE

If we expand l′n using a Taylor series with remainder about the true param-
eter value θ0, we get

l′n(θ) = l′n(θ0) + l′′n(θ0)(θ − θ0) + 1
2 l′′′n (θ∗)(θ − θ0)2,

where θ∗ in the remainder term is some point between θ and θ0.
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Using l′′n(θ) = −Jn(θ), we get

l′n(θ) = l′n(θ0) − Jn(θ0)(θ − θ0) + 1
2 l′′′n (θ∗)(θ − θ0)2. (10.23)

Now we assume that the MLE is in the interior of the parameter space, so
it satisfies the “likelihood equation” l′n(θ̂n) = 0. Then if we plug in θ̂n for θ in
(10.23), the left hand side is zero, and we get

0 = l′n(θ0) − Jn(θ0)(θ̂n − θ0) + 1
2 l′′′n (θ∗n)(θ̂n − θ0)2, (10.24)

where now θ∗n is some point between θ0 and θ̂n.
Now we want to multiply (10.24) by the appropriate constant so that the

various terms converge to a nontrivial distribution. Looking at the CLT for
l′n(θ), equation (10.18) we see that the right constant is 1/

√
n (“constant” here

means nonrandom, this is, of course, a function of n). That gives

0 =
1√
n

l′n(θ0) − 1
n

Jn(θ0) ·
√

n(θ̂n − θ0) +
1

2
√

n
l′′′n (θ∗n)(θ̂n − θ0)2. (10.25)

In the middle term we wrote 1/
√

n =
√

n/n and put each piece with a different
factor. We know the behavior of Jn(θ)/n. It’s given by (10.22). And we expect
from our general experience with asymptotics so far that

√
n(θ̂n − θ0) will have

a nontrivial asymptotic distribution.
The last term in (10.25) is a mess unlike anything we have ever seen. In

order to make progress, we need to make an assumption that gets rid of that
messy term. The appropriate assumption is the following.

1
n

l′′′n (θ∗n)(θ̂n − θ) P−→ 0 (10.26)

Then rearranging (10.25) gives

√
n(θ̂n − θ)

[
1 −

1
2n l′′′n (θ∗n)(θ̂n − θ)

1
nJn(θ0)

]
=

1√
n
l′n(θ0)

1
nJn(θ0)

.

Combining our assumption (10.26) with (10.22) and Slutsky’s theorem, the
messy second term in the square brackets converges in probability to zero (leav-
ing only the unit term). Thus by another use of Slutsky’s theorem

√
n(θ̂n − θ)

has the same asymptotic behavior as the right hand side, that is

√
n
(
θ̂n − θ0

) ≈
1√
n
l′n(θ0)

1
nJn(θ0)

.

Using (10.18) and (10.22) and Slutsky’s theorem yet again, the right hand side
converges in distribution to Z/I1(θ) where Z ∼ N (

0, I1(θ)
)
. Since a linear

transformation of a normal is normal, Z/I1(θ) is normal with mean

E

{
Z

I1(θ)

}
=

E(Z)
I1(θ)

= 0
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and variance

var
{

Z

I1(θ)

}
=

var(Z)
I1(θ)2

=
1

I1(θ)

Thus √
n
(
θ̂n − θ0

) D−→ N (
0, I1(θ0)−1

)
(10.27)

This completes a proof of the asymptotic normality of the MLE.

Theorem 10.3. Suppose the true parameter value θ0 is in the interior of the
parameter space, and suppose the assumptions about differentiability under the
integral sign in Theorem 10.1 hold. Suppose we have i. i. d. sampling. And
finally suppose that assumption (10.26) holds. Then (10.27) holds.

Example 10.3.5 (Cauchy Location Model).
In Example 10.3.3 we found the expected Fisher information for this model
(10.17). Inserting that into (10.27) we get

√
n
(
θ̂n − θ0

) D−→ N (
0, 2

)
I hope you are suitably impressed at the magic of theoretical statistics here.

The other examples we have done in this chapter don’t need to use the theory.
When the MLE turns out to be Xn, we already know its asymptotic distribution.
In fact, whenever the MLE turns out to be a simple function of any sample
moments we could use the delta method to find its asymptotic distribution
(though calculating Fisher information is usually easier than applying the delta
method). Here we do not have an analytic expression for the MLE as a function
of the data. Thus we cannot use the delta method or any other method we have
covered (or for that matter any method we haven’t covered). Fisher information
gives us the asymptotic distribution of a random variable we can’t even describe
(except for the implicit description that it maximizes the likelihood).

Real-life applications of the method of maximum likelihood are more like
this Cauchy example than any of the other examples or homework problems.
For complicated data (and it seems that real scientific data sets get ever more
complicated every year) often the only thing you can write down for the model is
the likelihood function. You can’t calculate anything else analytically. However,
the computer can calculate the MLE and the observed Fisher information (See
Example 10.3.6 for more on this), and you’re in business. Nothing else from
theoretical statistics works, just likelihood theory.

The difficulty with applying Theorem 10.3 is that it is rather hard to verify
the conditions. Why should (10.26) hold? The truth is that for some models
it does, and for some models it doesn’t. The assumption is not as weird as it
looks. If the MLE is consistent, then θ̂n − θ

P−→ 0. Also 1
n l′′′n (θ0) converges

in probability to some constant (its expectation) by the law of large numbers
(assuming the expectation exists), because it too is the sum of i. i. d. terms.
Then by Slutsky’s theorem 1

n l′′′n (θ0)(θ̂n−θ) converges in probability to zero. Our
assumption (10.26) differs only in having θ∗n in place of θ0 as the argument of l′′′n .
If θ̂n converges to θ0, then so does θ∗n. Hence we might expect 1

n l′′′n (θ∗n)(θ̂n − θ)
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to also converge in probability to zero, which would imply (10.26). Thus the
assumption is plausible. But actually showing it holds for any particular model
is difficult mathematics, beyond the scope of this course.

What we are left with a rather annoying situation. The “standard asymp-
totics” of the MLE given by (10.27) usually holds. It holds for “nice” models.
But we don’t have any definition of “nice” that we can understand intuitively.
In fact a half century of research by a lot of smart people has not found any
simple definition of “nice” that will do the job here. So though the usual asymp-
totics usually hold, they don’t always, so we are always beset with vague anxiety
when using this stuff, or at least we should be anxious in order to be proper
statisticians. The Alfred E. Newman philosophy “What, me worry?” just isn’t
appropriate, though to be honest, it does about as much good as the official
philosophy that you can’t use (10.27) until you have somehow verified the con-
ditions of the theorem (using a lot of math far beyond the scope of this course)
or had someone else (a good theoretical statistician) do it for you. Very few
users of applied statistics actually do that. Recalling our slogan that asymp-
totics only produce heuristics and that if you are worried you simulate, one can
see why. Even if you managed to verify the conditions of the theorem it still
wouldn’t tell you how large n would have to be to use the theorem on real data.
You would still be in the position of having to simulate if worried.

10.3.3 Asymptotic Relative Efficiency

The MLE usually has the best possible asymptotic variance of any estimator,
but a precise statement of this result is tricky, requiring a new concept. We say
an estimator θ̂n, whether or not it is the MLE, is asymptotically efficient if it
satisfies (10.27). If it does better than that, if its asymptotic variance is less
than I1(θ0)−1, we say it is superefficient. Since the true parameter value θ0 is
unknown, we also insist that it be efficient (at least) at every θ.

Using this new terminology, proving the MLE to be the best possible esti-
mator is the same thing as proving that superefficient estimators do not exist.
The trouble with that is that they do exist, although they are quite crazy. Here
is an example of a superefficient estimator.

Suppose X1, X2, are i. i. d. normal with known variance σ2. In Exam-
ple 10.2.2 we found that the MLE of the mean µ is Xn. Consider the estimator

X∗
n =

{
Xn, |Xn| > n−1/4

0, otherwise

If the true µ is not exactly zero, then Xn
P−→ µ by the LLN, and P (Xn ≤

n−1/4) converges to zero. Thus by Slutsky’s theorem X∗
n and Xn have the same

asymptotics.
But if the true µ is exactly zero, then the CLT says

Xn ≈ n−1/2Z

σ
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where Z is standard normal. Thus P (Xn ≤ n−1/4) converges to one because
n−1/2 is much smaller than n−1/4 for large n. Thus in this case P (X∗

n = 0)
converges in probability to one. Thus we have two cases, our estimator obeys
the usual asymptotics at almost all points

√
n (X∗

n − µ) D−→ N (0, σ2)

but at just one point µ = 0 it has superefficient asymptotics
√

n (X∗
n − µ) D−→ 0.

Please don’t complain about this example. It may seem to be a stupid theoreti-
cian trick, but that’s the point. All superefficient estimators are stupid in this
fashion.

Suppose we have an estimator θ∗n of some parameter θ that is consistent and
asymptotically normal, that is,

√
n (θ∗n − θ) D−→ N (

0, τ2(θ)
)
,

where we have written the asymptotic variance as τ2(θ) to indicate that, in
general, it is a function of the true parameter value θ. If τ2(θ) is a continuous
function of θ, the estimator cannot be superefficient. We must have

τ2(θ) ≥ I1(θ)−1, for all θ

Superefficiency can only occur discontinuously, as in the example. Thus super-
efficient estimators are a pathological phenomenon. They are no use in real
applications, because you can never know whether such an estimator is super-
efficient at the true parameter value.

Ignoring superefficient estimators, the theorem says that it is not possible
asymptotically to do better than the MLE. Of course you can do better for finite
sample size n, but at least if n is moderately large you can’t do much better.
This fact creates a strong argument for using maximum likelihood estimators.

Example 10.3.6 (Cauchy Location Model).
In Example 10.3.5 we asymptotic distribution for the MLE in the Cauchy Lo-
cation Model. The only other sensible estimator we know about is the sam-
ple median, whose asymptotic distribution was found in Problem 7-6(a). The
asymptotic variance of the MLE is 2. The asymptotic variance of the sample
median is π2/4. The ARE is 0.81 or 1.23 depending on which way you write it.
The MLE is more efficient (the MLE is always more efficient).

Example 10.3.7 (Normal Location Model).
In Example 10.2.2 we found that the sample mean is the MLE for the normal
location model (normal, known variance). In Example 7.4.1 we found that the
sample median was asymptotically less efficient than the sample mean for this
model (asymptotic variance σ2 for the mean and πσ2/2 for the median). Now
we find out why. The sample mean, being the MLE is better than any other
estimator (barring weird superefficient estimators).
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Example 10.3.8 (Laplace Location Model).
The Laplace (double exponential) location model has densities

fµ(x) =
1
2
e−|x−µ|

hence log likelihood

ln(µ) = −
n∑

i=1

|xi − µ| (10.28)

Now this is a problem for which the tools we usually apply are no help. We can’t
take derivatives, because the absolute value function is nondifferentiable (having
a kink at zero). However, we can use Corollary 7.7 (the characterization of the
empirical median), which says, phrased in terms of the current context, that
the maximizer of (10.28) is the sample median. Thus the sample median is the
MLE. In Problem 7-6(b) we found the asymptotic variance of the sample median
(now discovered also to be the MLE) to be one (in this parameterization). In
problem 9-1 we found the variance of X to be two (in this parameterization).
Hence the ARE of the mean to the median is either 1/2 or 2, depending on how
you write it. Now we find out that it is no surprise the sample median is better.
It’s the MLE so it’s better that any other estimator (not just better than the
mean).

As an aside, note that we can’t use Fisher information to calculate the
asymptotic variance because it isn’t defined, the log likelihood not being differ-
entiable. The theorem that the MLE is more efficient, still holds though. So
when we find out that the sample median is the MLE, we can use the theorem
about the asymptotics of the sample median (Corollary 7.28) to calculate the
asymptotic variance.

We summarize the results of the preceding three examples in a little table
of asymptotic variances.

MLE median mean
Cauchy 2 2.47 ∞
Normal 1 1.57 1
Laplace 1 1 2

In the first line, all three estimators are different. The sample mean is useless,
not even consistent (the LLN doesn’t hold because the expectation of the Cauchy
distribution doesn’t exist). In the other two lines, the MLE is the same as one
of the other estimators. In all three cases the MLE is best (by the theorem, the
MLE is best in every case, not just these).

10.3.4 Estimating the Variance

One remaining problem with Theorem 10.3 is that the asymptotic variance
I1(θ0)−1 is unknown because the true parameter value θ0 is unknown. (If we
knew θ0, we wouldn’t be bothered with estimating it!) But this is a minor
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problem. We just estimate the asymptotic variance using the “plug-in” principle
by I1(θ̂n). If I1 is a continuous function of θ, then

I1(θ̂n) P−→ I1(θ0), as n → ∞
by the continuous mapping theorem. So we can use the left hand side as an
approximation to the right hand side. Being a bit sloppy, we can write

θ̂n ≈ N
(

θ0,
1

nI1(θ̂n)

)
.

Caution: There is a natural tendency, exhibited by many students, to get
confused about whether one uses I1(θ) or In(θ). They get either too many or
too few n’s or root n’s in their standard errors. The error variance is

1

nI1(θ̂n)
=

1

In(θ̂n)

In words, this can be called “inverse Fisher information” if (big if) one re-
members which Fisher information is meant. It is the inverse of the Fisher
information for the actual problem at hand (sample size n). Another way to
remember which is the correct standard error is that the standard error must
obey the “square root law,” that is, it must decrease like 1/

√
n. If one gets

confused about the standard error, one gets ridiculous confidence intervals, too
wide or too narrow by a factor of n or

√
n.

A second problem with the theorem is that the Fisher information I1(θ)
is defined by an expectation, which may be difficult or impossible to derive in
closed form. In that case, we can use the observed Fisher information, substitut-
ing Jn(θ̂n) for In(θ̂n). These will typically be close to each other. Assumptions
similar to those of Theorem 10.3 (ignoring the same sort of remainder term)
imply

1
n

Jn(θ̂n) P−→ I1(θ0), as n → ∞.

Since Jn(θ) involves no expectations, only derivatives, it can be calculated when-
ever the likelihood itself can be calculated, and hence can almost always be used
in calculating standard errors. Of course, one can use observed Fisher informa-
tion even when the expected Fisher information can also be calculated. One
can use whichever seems more convenient.

10.3.5 Tests and Confidence Intervals

These variance estimates are combined using the “plug-in” theorem to con-
struct asymptotically pivotal quantities for tests and confidence intervals. If zα

is the 1 − α quantile of the standard normal distribution, then

θ̂n ± zα/2
1√

In(θ̂n)
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or
θ̂n ± zα/2

1√
Jn(θ̂n)

is an asymptotic 100(1 − α)% confidence interval for θ. We can use whichever
is convenient. If we are doing a hypothesis test, then

Tn =
(
θ̂n − θ0

) √
In(θ̂n) (10.29a)

or

Tn =
(
θ̂n − θ0

)√
Jn(θ̂n) (10.29b)

is an asymptotically pivotal quantity (either is asymptotically standard normal)
that can be used to construct a test. A two-tailed test of

H0 : θ = θ0

HA : θ 6= θ0

rejects H0 when |Tn| ≥ zα/2, a one-tailed test of

H0 : θ ≤ θ0

HA : θ > θ0

rejects H0 when Tn ≥ zα, and a one-tailed test of

H0 : θ ≥ θ0

HA : θ < θ0

rejects H0 when Tn ≤ −zα.
This should all seem very familiar. It is just like all other asymptotic confi-

dence intervals and tests. The only novelty is using observed or expected Fisher
information to calculate the asymptotic standard error.

Example 10.3.9 (A Problem in Genetics).
In his influential monograph Statistical Methods for Research Workers, first
published in 1925, R. A. Fisher described the following problem in genetics.
The data are counts of seedling plants classified according to their values of two
traits, green or which leaf color and starchy or sugary carbohydrate content

green white
starchy 1997 904
sugary 906 32

The probability model for data such as this is the multinomial distribution
(Section 5.4 in these notes). Data are assumed to be observations on an i. i. d.
sample of individuals classified into k categories (here k = 4, the number of
cells in the table). Because of the assumption the individuals are identically
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distributed, each has the same probability of falling in the i-th cell of the table,
denote it pi. Because probabilities sum to one, we must have

p1 + · · · + pk = 1 (10.30)

If the entries in the table (the category counts are denoted Xi), then the joint
density of these random variables is given by equation (3) on p. 187 in Lindgren

fp(x) =
(

n

x1, . . . , xk

) k∏
i=1

pxi
i (10.31)

As the boldface type in the notation on the left hand side indicates, this describes
the distribution of the random vector X = (X1, . . . , Xk) which depends on
the vector parameter p = (p1, . . . , pk). This is the multivariate analog of the
binomial distribution.

The components Xi of this random vector are dependent. In fact, if n is the
sample size, they must add to n because each individual falls in some cell of the
table

X1 + · · · + Xk = n (10.32)

Thus there are “really” only n− 1 random variables, because one can be elimi-
nated using (10.32), and only n− 1 parameters, because one can be eliminated
using (10.30). But doing this elimination of variables and parameters spoils the
symmetry of (10.31). It does not simplify the formulas but complicates them.
The log likelihood for the multinomial model is

ln(p) =
k∑

i=1

xi log(pi)

(we can drop the multinomial coefficient because it does not contain parame-
ters).

Returning to the genetics, Fisher was actually interested in a one-parameter
submodel of the multinomial model, having cell probabilities specified by a single
parameter θ, given by

green white

starchy 1
4 (2 + θ) 1

4 (1 − θ)

sugary 1
4 (1 − θ) 1

4θ

In order for this to make sense as a submodel of the multinomial model, the cell
probabilities must add to one (10.30), which is easily checked. They must also all
be greater than zero, which requires 0 ≤ θ ≤ 1. The parameter θ has a scientific
interpretation. Under a specific genetic model

√
θ is the recombination fraction,

which is a measure of the distance along the chromosome between the two genes
controlling these two traits (assuming they are on the same chromosome, if not
then θ = 1/4).
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Numbering the cells of the table from one to four, going across rows starting
at the upper left corner, the log likelihood becomes

ln(θ) = x1 log(2 + θ) + (x2 + x3) log(1 − θ) + x4 log(θ) (10.33)

(where we dropped some more terms involving log(1
4 ) but not containing the

parameter). And the score is

l′n(θ) =
x1

2 + θ
− x2 + x3

1 − θ
+

x4

θ
(10.34)

In order to find the maximum likelihood estimate, we need to solve the equation
l′n(θ) = 0. Multiplying through by the product of the denominators gives

x1(1 − θ)θ − (x2 + x3)(2 + θ)θ + x4(2 + θ)(1 − θ) = 0

or simplifying a bit

2x4 + (x1 − 2x2 − 2x3 − x4)θ − (x1 + x2 + x3 + x4)θ2 = 0

or using (10.32)

nθ2 − (x1 − 2x2 − 2x3 − x4)θ − 2x4 = 0.

This is a quadratic equation with solutions

θ̂n =
x1 − 2x2 − 2x3 − x4 ±

√
(x1 − 2x2 − 2x3 − x4)2 + 8nx4

2n

Since the square root is larger than the first term of the numerator, choosing the
minus sign always gives a negative solution, which is not in the set of allowed
parameter values. Hence the only “solution of the likelihood equation” is

θ̂n =
x1 − 2x2 − 2x3 − x4 +

√
(x1 − 2x2 − 2x3 − x4)2 + 8nx4

2n
(10.35)

In order to check whether this is a local or global maximum we need to look
at the second derivative of the log likelihood, which also be needed to calculate
Fisher information,

l′′n(θ) = − x1

(2 + θ)2
− x2 + x3

(1 − θ)2
− x4

θ2
(10.36)

Since this is negative for all θ in the interior of the parameter space (0 < θ < 1),
the log likelihood is strictly concave and (10.35) is the unique global maximum
of the log likelihood.

Plugging in the actual data from the table

x1 − 2x2 − 2x3 − x4 = 1997 − 2(904 + 906) − 32 = −1655

and
n = 1997 + 904 + 906 + 32 = 3839
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θ̂n =
−1655 +

√
(−1655)2 + 8 · 3839 · 32

2 · 3839

=
−1655 +

√
16552 + 982784
7678

= 0.0357123

To make a confidence interval we need the Fisher information, either ob-
served or expected (we’ll do both to show how it’s done, but in a real application
you would choose one or the other). Finding the variance of the score (10.34) is
a bit tricky because the xi are correlated. Thus in this example the calculation
of expected Fisher information using the second derivative is a good deal easier
than the calculation using the first derivative. The observed Fisher information
is just minus (10.36)

Jn(θ) =
x1

(2 + θ)2
+

x2 + x3

(1 − θ)2
+

x4

θ2

and the expected Fisher information is its expectation. Since the marginal
distribution of Xi is Bin(n, pi) (Section 5.4.5 of these notes) E(Xi) = npi and

In(θ) =
np1

(2 + θ)2
+

n(p2 + p3)
(1 − θ)2

+
np4

θ2

= n

( 1
4 (2 + θ)
(2 + θ)2

+
1
2 (1 − θ)
(1 − θ)2

+
1
4θ

θ2

)
=

n

4

(
1

2 + θ
+

2
1 − θ

+
1
θ

)
Plugging the data into these formulas gives

Jn(θ̂n) =
1997

(2 + 0.0357123)2
+

904 + 906
(1 − 0.0357123)2

+
32

0.03571232

= 27519.2

and

In(θ̂n) =
3839

4

(
1

2 + 0.0357123
+

2
1 − 0.0357123

+
1

0.0357123

)
= 29336.5

We may use either to construct confidence intervals. If we use the observed
Fisher information, we get

θ̂n ± 1.96√
Jn(θ̂n)

as a 95% confidence interval for the unknown true θ. The “plus or minus” is
1.96/

√
27519.2 = 0.011815, so our 95% confidence interval is 0.036±0.012. If we
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use expected Fisher information instead the “plus or minus” would be 0.011443,
almost the same.

To illustrate a hypothesis test, the natural null hypothesis to test is that the
genes are unlinked (not on the same chromosome), in which case θ = 1/4. Thus
we test

H0 : θ = 1/4
HA : θ 6= 1/4

Under certain genetic models a one-tailed test would be appropriate, but Fisher
doesn’t give us enough information about the data to know which tail to test,
we will do a two-tailed test. The test statistic is either (10.29a) or (10.29b) with
θ0 = 1/4, depending on whether we want to use observed or expected Fisher
information. These give(

θ̂n − θ0

)√
In(θ̂n) = (0.0357123 − 0.25)

√
27519.2 = −35.548(

θ̂n − θ0

) √
Jn(θ̂n) = (0.0357123 − 0.25)

√
29336.5 = −36.703

In either case the test statistics are so large that we get zero for the P -value
(not exactly zero, R gives 4 × 10−277 for one and 3 × 10−295 for the other, but
the normal approximation has no validity whatsoever this far out in the tail, so
P ≈ 0 is a more sensible answer). What this says, is that there is clear evidence
of linkage (genes on the same chromosome). Here the evidence is so strong that
there’s almost no doubt remaining.

One moral of the story is that you can use either observed or expected Fisher
information, whichever you prefer, whichever seems easier. They won’t always
give exactly the same confidence interval or P -value. But they both give valid
asymptotic approximations (neither is exactly right but both are approximately
right for large n and neither is preferred over the other).

Another moral of the story is a lesson about what hypothesis tests say. The
test above says there is no question that θ 6= 1/4, and hence the genes are linked.
It does not say anything else. It does not tell you anything about the value of
θ other than that it is not the value hypothesized under the null hypothesis. If
you want to know more, you must look at a confidence interval.

10.4 Multiparameter Models

All of the preceding theory goes through to the multiparameter case. It just
becomes more complicated. In particular, the MLE θ̂n is a vector (obviously
we need a vector estimator of a vector parameter). Hence Fisher information,
to describe the variance of a vector, must become a matrix. Basically, that’s
the whole story. We just need to fill in the details.
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10.4.1 Maximum Likelihood

Example 10.4.1 (Two-Parameter Normal Model).
The log likelihood for the two-parameter normal model is found by taking logs
in (10.4) giving

ln(µ, σ) = −n log(σ) − 1
2σ2

n∑
i=1

(xi − µ)2 (10.37)

Actually, the variance σ2 is a more sensible parameter to estimate than the
standard deviation σ. So define ϕ = σ2, which means σ = ϕ1/2. Plugging this
into (10.37) gives

ln(µ, ϕ) = −n

2
log(ϕ) − 1

2ϕ

n∑
i=1

(xi − µ)2 (10.38)

Differentiating gives

∂ln(µ, ϕ)
∂µ

=
1
ϕ

n∑
i=1

(xi − µ)

=
n(x̄n − µ)

ϕ
(10.39a)

∂ln(µ, ϕ)
∂ϕ

= − n

2ϕ
+

1
2ϕ2

n∑
i=1

(xi − µ)2 (10.39b)

We have two partial derivatives. They are the two components of the score
vector. We find a point where the first derivative vector is zero by setting them
both to zero and solving the simultaneous equations. In general, this is hard.
Here it is actually easy, because it is clear that (10.39a) is zero when and only
when µ = x̄n. So that is the MLE of µ (just as we found when we assumed the
variance was known). Plugging that solution into (10.39b) gives

− n

2ϕ
+

1
2ϕ2

n∑
i=1

(xi − x̄n)2 = − n

2ϕ
+

nvn

2ϕ2

where vn is the usual variance of the empirical distribution (note not s2
n). And

this is clearly zero when ϕ = vn. So that is the MLE of the variance ϕ.
Since we have two parameters, it is tempting to say “the MLE’s are . . .,”

but we can also think of the parameter as a vector θ = (µ, ϕ) and the MLE of
this vector parameter is

θ̂n =
(

µ̂n

ϕ̂n

)
=

(
x̄n

vn

)
(10.40)

Actually, we are being a bit overconfident here. What we have found is a
zero of the first derivative, in fact, the only zero. But we haven’t shown yet that
this is even a local maximum, much less a global maximum.
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So we look at the second derivative matrix. This has components

∂2ln(µ, ϕ)
∂µ2

= −n

ϕ
(10.41a)

∂2ln(µ, ϕ)
∂µ∂ϕ

= −n(x̄n − µ)
ϕ2

(10.41b)

∂2ln(µ, ϕ)
∂ϕ2

=
n

2ϕ2
− 1

ϕ3

n∑
i=1

(xi − µ)2 (10.41c)

or, more precisely, the second derivative is a 2 × 2 matrix having (10.41a) and
(10.41c) as diagonal elements and off-diagonal elements (10.41b) (both the same
because a second derivative matrix is symmetric). Unfortunately, this is not a
negative definite matrix for all values of parameters and data, because (10.41c)
is not always negative. Thus the log likelihood is not strictly concave, and
the theory developed in Appendix G does not guarantee (10.40) is a global
maximum.2

If we evaluate the second derivative matrix at the MLE, we get considerable
simplification. When we plug in µ = x̄n (10.41b) is zero. Thus we get a diagonal
matrix

∇2ln(θ̂n) =

− n
ϕ̂n

0

0 − n
2ϕ̂2

n

 (10.42)

the 1,1 component being (10.41a) with the MLE plugged in for the parameter,
and the 2,2 component being (10.41c) simplified by using the fact that the sum
in (10.41c) is nvn = nϕ̂n when the MLE is plugged in for the parameter. Now
(10.42) is negative definite (a diagonal matrix is negative definite if and only if
each element on the diagonal is negative). So the theory we know does establish
that (10.40) is a local maximum of the log likelihood.

Problems that work out so simply are quite rare. Usually there are no
obvious solutions of the “likelihood equations” (first partial derivatives set equal
to zero). In most problems the only way to find MLE’s is ask a competent
computer.

Example 10.4.2 (Cauchy Location-Scale Model).
The Cauchy Location-Scale model has densities

fµ,σ(x) =
1
π
· σ

σ2 + (x − µ)2

(p. 191 in Lindgren). Here µ is the location parameter and σ is the scale param-
eter (of course we could use any other Greek letters for these parameters). We
know that the Cauchy distribution is symmetric and hence µ is the population
median. We used the sample median as an estimator of µ in Problem 7-6(a).

2It actually is a global maximum, but we won’t develop the theory needed to show that.
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The log likelihood for an i. i. d. sample of size n is

ln(µ, σ) = n log(σ) −
n∑

i=1

log
(
σ2 + (xi − µ)2

)
There’s no point in differentiating. If we had to use the computer for the one-
parameter Cauchy model, the two-parameter model certainly isn’t going to be
simple enough to do by hand. We proceed just as in the one-parameter problem
(Example 10.2.3).

Define an R function that evaluates minus the log likelihood (minus because
the nlm function minimizes rather than maximizes)

> l <- function(theta) {
+ mu <- theta[1]
+ sigma <- theta[2]
+ return(- n * log(sigma) + sum(log(sigma^2 + (x - mu)^2)))
+ }

Then we hand this to the nlm function as the function to be minimized. But
first we have to figure out what to use as a starting point. The better starting
point we have, the better chance that we find the right local minimum if more
than one exists. We know a good estimator of µ, the sample median. What
might be a good estimator of scale? Variance is no good. The Cauchy distri-
bution doesn’t even have a mean, much less a variance. The only other general
estimator of scale that has even been mentioned is IQR (p. 202 in Lindgren)
and we’ve never used it in any examples, nor do we know anything about its
properties. However, it’s the only idea we have, so let’s try it. The reason that
IQR works as a scale estimator is that the IQR of a general Cauchy distribu-
tion is just σ times the IQR of a standard Cauchy distribution (obvious from a
picture of the density). The IQR of the standard Cauchy happens to be simple

> qcauchy(0.75) - qcauchy(0.25)
[1] 2

Thus half the IQR of the data is a sensible estimate of scale, and a good
starting point for the optimization algorithm.

In real life, we would use real data. Here we just make up the data.

> n <- 80
> mu <- 0
> sigma <- 1
> x <- mu + sigma * rcauchy(n) # make up data
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-38.2900 -0.6647 0.1869 0.6895 1.0630 54.1200

and then hand the data to the optimizer

out <- nlm(l, c(median(x), IQR(x) / 2), fscale=n, hessian=TRUE)
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The result returned by the optimizer, saved in the variable out, which is a
list with several components, only the interesting ones of which we show below

> out
$minimum
[1] 123.7644

$estimate
[1] 0.2162629 0.9229725

$gradient
[1] -6.470202e-05 5.941558e-05

$hessian
[,1] [,2]

[1,] 50.320659 2.273821
[2,] 2.273821 43.575535

•estimate is the optimum parameter value, that is

θ̂n =
(

µ̂n

σ̂n

)
=

(
0.2162629
0.9229725

)
•minimum is the optimal value of the objective function, that is

ln(θ̂n) = −123.7644

(recall that the objective function handed to nlm is minus the log likeli-
hood).

•gradient is −∇ln(θ̂n) the first derivative vector of the objective function
at the MLE. It should be zero to convergence tolerance of the optimization
algorithm (and it is).

•hessian is −∇2ln(θ̂n), the second derivative matrix of the objective func-
tion at the MLE.

If we want to check that this is a local maximum of the log likelihood (hence a
local minimum of the objective function passed to nlm) we check whether the
hessian component is positive definite

> eigen(out$hessian)
$values
[1] 51.01558 42.88061

$vectors
[,1] [,2]

[1,] -0.9563346 0.2922741
[2,] -0.2922741 -0.9563346
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Since both eigenvalues are positive, the Hessian is positive definite and the
solution is a local maximum of the log likelihood.

Whether done by hand or done by computer, the process is much the same.
Find a zero of the first derivative, and the second derivative tells you whether
it is a local maximum or not (since the Hessian returned by the computer is
the Hessian at the reported optimal value, it is of no use in checking whether
you have a global maximum). As we will see in the next section, the Hessian
is also observed Fisher information, and hence tells us important things about
the asymptotic sampling distribution of the MLE.

10.4.2 Sampling Theory

We now have to repeat all of Section 10.3 giving the multiparameter analogs
of everything in there. We will omit details that are basically the same as in
the uniparameter case and concentrate on the differences.

In the multiparameter case the score is a vector ∇ln(θ). The Fisher infor-
mation is, as in the uniparameter case, its variance

In(θ) = varθ{∇ln(θ)}, (10.43)

but now, since the variance of a random vector is a (nonrandom) matrix, the
Fisher information is a matrix. Like any variance matrix, it is symmetric square
and positive semi-definite. If ∇ln(θ) is not concentrated on a hyperplane (see
Section 5.1.9 in these notes), then the Fisher information is actually positive
definite.

As in the uniparameter case we sometimes call In(θ) the “expected” Fisher
information for contrast with “observed” Fisher information, but, strictly speak-
ing the “expected” is redundant. “Fisher information” with no qualifying ad-
jective always means In(θ).

We still have the multiparameter analogs of the two important theorems
about the score and Fisher information (Theorems 10.1 and 10.2).

Theorem 10.4. Provided first and second order partial derivatives of (10.10)
with respect to components of θ can be taken under the integral sign,

Eθ{∇ln(θ)} = 0 (10.44a)

and
Eθ{∇2ln(θ)} = − varθ{∇ln(θ)} (10.44b)

for all values of θ for which the differentiation under the integral sign is per-
mitted.

Theorem 10.5.
In(θ) = nI1(θ)
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The proofs of these two theorems are exactly the same as in the uniparameter
case. One only has to use partial derivatives instead of ordinary derivatives to
prove Theorem 10.4. Theorem 10.5 follows just as in the uniparameter case
from the fact that the variance of a sum is the sum of the variance when the
terms are independent, the multivariate version of which is (5.10) in Chapter 5
of these notes.

As in the uniparameter case, (10.44b) tells us we can calculate Fisher infor-
mation in two quite different ways, either (10.43) or

In(θ) = −Eθ{∇2ln(θ)}. (10.45)

It’s your choice. Use whichever seems easier.
Also as in the uniparameter case, Theorem 10.5 tells us we can calculate

Fisher information using sample size one (which won’t have any summations)
and multiply by n.

Example 10.4.3 (Two-Parameter Normal Model).
The log likelihood and derivatives for this model were figured out in Exam-
ple 10.4.1. The components of the (expected) Fisher information are the nega-
tive expectations of (10.41a), (10.41b), and (10.41c), that is,

−E

(
∂2ln(µ, ϕ)

∂µ2

)
=

n

ϕ

−E

(
∂2ln(µ, ϕ)

∂µ∂ϕ

)
=

n[E(Xn) − µ]
ϕ2

= 0

−E

(
∂2ln(µ, ϕ)

∂ϕ2

)
= − n

2ϕ2
+

1
ϕ3

n∑
i=1

E{(xi − µ)2}

= − n

2ϕ2
+

nϕ

ϕ3

=
n

2ϕ2

Thus the Fisher information is the diagonal matrix

In(θ) =

(
n
ϕ 0

0 n
2ϕ2

)
(10.46)

Observed Fisher information is also defined in the same way as in the uni-
parameter case, as minus the second derivative of the log likelihood

Jn(θ) = −∇2ln(θ). (10.47)

Note that the second derivative is a matrix here, which is a good thing, because
the expected Fisher information is also a matrix.
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The CLT and the LLN apply in exactly the same way to the score and
observed Fisher information. The analog of (10.18) is

1√
n
∇ln(θ) D−→ N (

0, I1(θ)
)

(10.48)

(just the same, except for some boldface type). Of course, this is a multivariate
CLT because ∇ln(θ) is a random vector rather than a random scalar. The
sloppy “double squiggle” version is

∇ln(θ) ≈ N (
0, In(θ)

)
.

The analog of (10.22) is
1
n
Jn(θ) P−→ I1(θ). (10.49)

(again, just the same, except for some boldface type). It is, of course, a mul-
tivariate convergence in probability statement. The sloppy “double squiggle”
version would be

Jn(θ) ≈ In(θ)

Still proceeding as in the univariate case, expanding ∇ln using a Taylor
series with remainder about the true parameter value θ0, we get

∇ln(θ) = ∇ln(θ0) + ∇2ln(θ0)(θ − θ0) + remainder

This is a bit harder to interpret than the uniparameter analog. First, it is a
vector equation, each term having k components if there are k parameters. As
in the uniparameter case, we can use ∇2ln(θ) = −Jn(θ) to rewrite this as

∇ln(θ) = ∇ln(θ0) − Jn(θ0)(θ − θ0) + remainder, (10.50)

but that still doesn’t make it obvious what k-dimensional vector the middle
term on the right hand side is supposed to be. Since Jn(θ0) is a k × k matrix
and θ − θ0 is a k vector, this must be a matrix multiplication, which does
indeed produce a k vector. We won’t bother to write out the “remainder” term
in detail.

Now we apply the same sort of argument we used in the uniparameter case.
If the MLE is in the interior of the parameter space, the first derivative of the
log likelihood will be zero at the MLE. So if we plug in the MLE for θ, the left
hand side of (10.50) is zero, and we get

∇ln(θ0) ≈ Jn(θ0)(θ̂n − θ0) (10.51)

(we dropped the remainder term, assuming as in the uniparameter case that it is
asymptotically negligible, and replaced the equals sign with a “double squiggle”
to indicate this is not an exact inequality). Again we divide through by

√
n to

make both sides the right size to converge in distribution to a nontrivial random
variable

1√
n
∇ln(θ0) ≈ 1

n
Jn(θ0) ·

√
n(θ̂n − θ0) (10.52)
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This is almost, but not quite, what we need. We need
√

n(θ̂n − θ0) by itself on
one side. The way to do that is multiply through by the inverse of the matrix
multiplying it.

√
n(θ̂n − θ0) ≈

(
1
n
Jn(θ0)

)−1 1√
n
∇ln(θ0) (10.53)

Because matrix inversion is a continuous operation, the continuous mapping
theorem and (10.49) imply that the first factor on the right hand side converges
in probability to I1(θ0)−1. The convergence in distribution for second factor on
the right hand side is given by (10.48). By Slutsky’s theorem, the right hand
side converges to the product, that is(

1
n
Jn(θ0)

)−1 1√
n
∇ln(θ0)

D−→ I1(θ0)−1Y

where
Y ∼ N (0, I1(θ0)−1).

Since a linear transformation of a multivariate normal is multivariate normal
(Theorem 12 of Chapter 12 in Lindgren), I1(θ0)−1Y is multivariate normal with
mean vector

E
{
I1(θ0)−1Y

}
= I1(θ0)−1E(Y) = 0

and variance matrix

var
{
I1(θ0)−1Y

}
= I1(θ0)−1 var(Y)I1(θ0)−1

= I1(θ0)−1I1(θ0)I1(θ0)−1

= I1(θ0)−1

the middle equality being the formula for the variance of a (multivariate) linear
transformation, (5.18b) in Chapter 5 of these notes.

Thus we have arrived at the multiparameter version of the “usual asymp-
totics” of maximum likelihood.

Theorem 10.6. If the true parameter value θ0 is in the interior of the param-
eter space, first and second order partial derivatives of (10.10) with respect to
components of θ can be taken under the integral sign, and the difference of the
two sides of (10.52) converges in probability to zero, then

√
n
(
θ̂n − θ0

) D−→ N (
0, I1(θ0)−1

)
(10.54)

This looks just like the uniparameter version (10.27), except for some bold-
face type.

As in the uniparameter case, the conditions of the theorem are hard to verify.
We often use it without any attempt to verify the conditions. As we remarked
in regard to the uniparameter case, even if you have verified the conditions,
that still doesn’t prove that the normal approximation given by the theorem is
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good at the actual n in which you are interested (the sample size of the data
in some real application). Hence our slogan about asymptotics only providing
a heuristic applies. If you are worried about the validity of the asymptotics,
check it with computer simulations.

One final point, just like in the uniparameter case, Theorem 10.6 must be
combined with the plug-in theorem to get a useful result. Since we don’t know
the true parameter value θ0, we don’t know the asymptotic variance I1(θ0)−1

and must estimate it. Plugging either observed or expected Fisher information
evaluated at the MLE gives

θ̂n ≈ N (
θ0, In(θ̂n)−1

)
or

θ̂n ≈ N (
θ0,Jn(θ̂n)−1

)
.

Example 10.4.4 (Two-Parameter Normal Model).
The MLE for this model is given by (10.40) in Example 10.4.1. The observed
Fisher information evaluated at θ̂n is given by minus (10.42) in the same ex-
ample. The expected Fisher information is given by (10.46) in Example 10.4.3.
When evaluated at the MLE, observed and expected Fisher information are the
same

In(θ̂n) = Jn(θ̂n) =

 n
ϕ̂n

0

0 n
2ϕ̂2

n


Inverting a diagonal matrix is easy. Just invert each term on the diagonal.

In(θ̂n)−1 = Jn(θ̂n)−1 =

(
ϕ̂n

n 0

0 2ϕ̂2
n

n

)
That’s our estimate of the asymptotic variance of the MLE (vector).

This example doesn’t tell us anything we didn’t already know. It says the
MLE’s of µ and of ϕ = σ2 are asymptotically independent, because the co-
variance is zero and uncorrelated jointly multivariate normal random variables
are independent (Theorem 4 of Chapter 12 in Lindgren). This is no surprise,
because we know that the MLE’s Xn and Vn are actually independent (not just
asymptotically) by the corollary to Theorem 10 of Chapter 7 in Lindgren. Since
they are independent, their joint distribution is uninteresting (just the product
of the marginals), and what this says about the marginals we also have long
known

µ̂n = Xn ≈ N
(

µ,
Vn

n

)
(which is just the CLT plus the plug-in theorem) and

ϕ̂n = Vn ≈ N
(

σ2,
2V 2

n

n

)
This may not ring a bell right away. It is the asymptotic distribution of Vn

worked out in Example 7.3.6 in these notes plus the plug-in theorem.
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Example 10.4.5 (Cauchy Location-Scale Model).
The MLE and observed Fisher information for this model were found in Exam-
ple 10.4.5. Of course they were not found by hand calculation, just by numerical
optimization using the computer. To repeat the relevant bits of the computer
output,

$estimate
[1] 0.2162629 0.9229725

is the MLE θ̂n, and

$hessian
[,1] [,2]

[1,] 50.320659 2.273821
[2,] 2.273821 43.575535

is the observed Fisher information evaluated at the MLE Jn(θ̂n).
Now to make confidence intervals for the parameters we need to calculate

inverse Fisher information, because that is the asymptotic variance of the MLE.
The R function that inverts matrices has the totally unintuitive name solve
(because it also solves linear equations). Hence the inverse Fisher information
Jn(θ̂n)−1 is given by

> solve(out$hessian)
[,1] [,2]

[1,] 0.019919520 -0.001039426
[2,] -0.001039426 0.023002887

The numbers on the diagonal are the asymptotic variances of the first com-
ponent of the MLE (µ̂n) and of the second component (σ̂n). So

> avar <- solve(out$hessian)
> out$estimate[1] + c(-1,1) * qnorm(0.975) * sqrt(avar[1,1])
[1] -0.0603596 0.4928854
> out$estimate[2] + c(-1,1) * qnorm(0.975) * sqrt(avar[2,2])
[1] 0.6257106 1.2202344

give asymptotic 95% confidence intervals for µ and σ, respectively. Note
these are not simultaneous confidence intervals, because we did not do Bonfer-
roni correction.

There are two important points illustrated by the last example.

• If you can write down the log likelihood for a model, you can do likelihood
inference, without doing any derivatives or expectations. (In this example,
the computer found the MLE and calculated the second derivative matrix
by finite differences. We didn’t do any differentiation. And because we
used observed rather than expected Fisher information, we didn’t need to
do any integrals either.)
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• In order to calculate asymptotic variances, you do need to invert the Fisher
information matrix, but the computer easily does that too.

Honesty compels me to admit that this example is not as convincing as
it might be, because Mathematica easily calculates the expected Fisher infor-
mation and it is diagonal and so trivially invertible. In fact, all location-scale
models with symmetric densities have diagonal Fisher information. You will just
have to take my word for it that there are many interesting complicated models
that arise in applied statistics (too complicated to discuss here) for which you
can’t do anything but write down the log likelihood and hand it to the computer
to do the rest, just like in this example.

10.4.3 Likelihood Ratio Tests

One last subject before we are done with sampling theory: In this section we
learn about a completely different kind of hypothesis test. All of the tests we
studied in the last chapter (and in this chapter up to here) had null hypotheses
that fixed the value of one parameter (the so-called parameter of interest) and
said nothing about any other parameters (the so-called nuisance parameters).
Now we are going to learn about tests with multiple parameters of interest.

A likelihood ratio test compares two models, which we will call the little
model and the big model. The little model is a submodel of the big model.
Another term commonly used to describe this situation is nested models (one
is a submodel of the other).

Roughly speaking, the little and big models correspond to the null and al-
ternative hypotheses for the test. To be precise, let Θ be the whole parameter
space of the problem, which is the parameter space of the big model, and let Θ0

be the parameter space of the little model. These are nested models if Θ0 ⊂ Θ.
The null hypothesis corresponds to the little model,

H0 : θ ∈ Θ0, (10.55)

but the alternative hypothesis is not supposed to include the null and hence
must correspond to the part of the big model that is not in the little model

H0 : θ ∈ ΘA, (10.56)

where ΘA = Θ \ Θ0 (the operation indicated here is called “set difference” and
says that ΘA consists of points in Θ that are not in Θ0, that is, are in the big
model but not in the little model).

This is almost enough in the way of preliminary discussion to describe the
likelihood ratio test, but not quite. What we need is for the little model to be
a smooth submodel of the big model. The simplest way to describe that is as
follows. Suppose that the big model has m parameters, which we can also think
of as a single vector parameter θ = (θ1, . . . , θm), so θ is a point in m-dimensional
Euclidean space Rm, and Θ is a subset of Rm. We need the little model to be a
smooth k-dimensional surface in Θ. The simplest way to describe such a surface
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is by a differentiable map g from a subset Φ of k-dimensional Euclidean space
Rk into Θ. We let Θ0 be the range of the function g, that is,

Θ0 = g(Φ) = {g(ϕ) : ϕ ∈ Φ }
This gives us two ways to think of the little model. When we think of it as a
submodel of the big model, it has parameter θ ∈ Θ0, which is an m-dimensional
parameter, just like the parameter of the big model. In fact, since the models are
nested, each parameter value θ in the little model is also a possible parameter
value of the big model. But this parameter cannot be varied freely. In order to
do maximum likelihood, we must use the parameterization ϕ. We say the big
model has m free parameters, but the little model only has k free parameters.

To do the likelihood ratio test, we first find the MLE’s for the two models.
We denote the MLE in the big model θ̂n, and we denote the MLE in the little
model by θ∗

n = g(ϕ̂n). (We can’t call them both “theta hat.” We wouldn’t be
able to tell them apart.)

The likelihood ratio test statistic for comparing these two models, that is, for
testing the hypotheses (10.55) and (10.56) is

2[ln(θ̂n) − ln(θ∗
n)]. (10.57)

It is twice the log of the maximized likelihood ratios for the two models

2 log
(

maxθ∈ΘA
Ln(θ)

maxθ∈Θ0 Ln(θ)

)
, (10.58)

where we are using the convention that big L is the likelihood and little l the
log likelihood: ln(θ) = log Ln(θ). To see why these are the same, the parameter
value at which the maximum in the numerator is achieved is by definition θ̂n,
and the parameter value at which the maximum in the denominator is achieved
is by definition θ∗

n, so (10.58) is equal to

2 log

(
Ln(θ̂n)
Ln(θ∗

n)

)

and by rule for the the log of a ratio, this is the same as (10.57).
Why this is interesting is the following, which for once we do not state as a

formal theorem. If we assume

(i) the null hypothesis is correct, that is, the true parameter value has the
form θ0 = g(ϕ0) for some point ϕ0 in Φ, and

(ii) ϕ0 is an interior point of Φ, and θ0 is an interior point of Θ,

then under all of the conditions required for the usual asymptotics of maximum
likelihood (Theorem 10.6) plus a little bit more (we for once omit the gory
details) the asymptotic distribution of (10.57) or (10.58) is chi2(m − k).

This is quite a remarkable property of maximum likelihood. When doing
a likelihood ratio test, one using (10.57) or (10.58) as the test statistic, the
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asymptotic distribution of the test statistic does not depend on any details of
the model. You simply calculate the MLE’s in the big and little model, calculate
the difference in log likelihoods, multiply by two, and compare to the chi-square
distribution with the appropriate number of degrees of freedom.

Example 10.4.6 (Equality of Poisson Means).
Consider the following data, which are counts in regions of equal area in what is
assumed to be a Poisson process, which makes the counts independent Poisson
random variables.

26 37 31 30 26 42

The question we want to examine is whether the Poisson process is homogeneous
or inhomogeneous. If homogeneous, the counts have mean µ = λA, and since
the area A is assumed to be the same for each, the counts all have the same
mean, and since the mean is the parameter of the Poisson distribution, that
means they all have the same distribution. This is our null hypothesis. The
counts Xi are i. i. d. Poi(µ). This is the little model. The big model allows
unequal means µi = λiA. So in this model the Xi are independent but not
identically distributed Xi ∼ Poi(µi). The little model has one free parameter
(dimension k = 1, and the big model has m parameters if there are m counts in
the data, here m = 6).

The MLE for the little model, data i. i. d. Poi(µ) has already been found
in Problem 7-42(c) in Lindgren. It is the sample mean, which here we write
µ̂ = x̄m. (This is the ϕ̂ parameter estimate in the general discussion.) The
corresponding parameter in the big model is m-dimensional with all components
equal

µ∗ =

x̄m

...
x̄m


(This is the θ∗ parameter estimate in the general discussion).

The MLE in the big model also seems obvious. The only data relevant to
the mean µi is the count xi, so we “really” have m separate problems, and the
MLE is given by the special case m = 1 of the solution for the little model, that
is, µ̂i = xi and the vector MLE is just the data vector

µ̂ =

 µ̂1

...
µ̂m

 =

x1

...
xm


Plausible though this may be, it is not completely convincing. We should

wade through the gory details to be sure this is really the MLE in the big model.
The density for xi is

fµi
(xi) =

µxi
i

xi!
e−µi
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The joint density is the product (because the xi are independent)

fµ(x) =
m∏

i=1

µxi
i

xi!
e−µi

The xi! terms do not contain parameters and can be dropped from the likelihood

L(µ) =
m∏

i=1

µxi
i e−µi

So the log likelihood is

l(µ) =
m∑

i=1

(
xi log(µi) − µi

)
(10.59)

The derivatives are

∂l(µ)
∂µi

=
xi

µi
− 1

∂2l(µ)
∂µ2

i

= − xi

µ2
i

∂2l(µ)
∂µi∂µj

= 0, i 6= j

Since the second derivative is diagonal with negative diagonal elements, it is
negative definite and the log likelihood is a strictly convex function. So the
MLE is found by setting the first derivatives equal to zero and solving, which
does indeed give µ̂i = xi.

The likelihood ratio test statistic is found by plugging µ̂ and µ∗ into the log
likelihood (10.59), subtracting, and multiplying by two. Here’s how to do it in
R

> x <- c(26, 37, 31, 30, 26, 42)
> m <- length(x)
> mu.star <- mean(x)
> mu.hat <- x
> l <- function(mu, x) sum(x * log(mu) - mu)
> lrt <- 2 * (l(mu.hat, x) - l(mu.star, x))
> 1 - pchisq(lrt, m - 1)
[1] 0.2918324

There are m − 1 degrees of freedom in the chi-square distribution because
the little model has one parameter and the big model has m = 6 parameters.
The P -value P = 0.29 obviously is not close to statistical significance by any
reasonable criterion. Thus we “accept” the little model, and conclude that the
data may well be from a homogeneous Poisson process.
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There are a couple issues about this example that may be bother you. First,
what happened to n? How can we do a “large n” analysis, when there is no
n? If m is supposed to be n, it certainly isn’t large. This has to do with a
special property of the Poisson distribution which we saw in getting a normal
approximation. As it says in Appendix F,

Poi(µ) ≈ N (µ, µ)

if µ is large. There doesn’t have to be any n for the CLT to apply. So asymp-
totics work here not because m is large, but because the means of the Xi are
large.

As usual though, we have our dictum that asymptotics only provides a
heuristic. If you are worried about the validity of the asymptotics, you simulate.
This your author did, and the asymptotics provide a very good approximation
here (details not shown, you’ll have to take my word for it).

A test of this sort in which the whole point is to accept the little model
is often called a goodness of fit test. When the little model is accepted, we
say it seems to fit the data well. At least the test gives no evidence that the
big model fits any better. Thus the principle of parsimony (other things being
equal, simpler is better) says to choose the little model.

There is no difference between goodness of fit tests and any other kind of
tests except which hypothesis you are rooting for. When you like the simpler
model, you call the test a goodness of fit test and are happy when the null
hypothesis is accepted, and you conclude that the little model fits just as well
as the bigger, more complicated model to which it was compared. When you like
the more complicated model, there is no special term for that situation, because
that describes most tests. But then you are happy when the null hypothesis is
rejected, and you conclude that the complexity of the big model is necessary to
fit the data well.

Example 10.4.7 (A Problem in Genetics).
This revisits Example 10.3.9. Here we want to do a goodness of fit test. The
little model is the model fit in Example 10.3.9. The big model to which we
compare it is the general multinomial model. The log likelihood for the big
model is given by the unnumbered displayed equation on p. 10.3.9

ln(p) =
k∑

i=1

xi log(pi)

because of the constraint (10.30) there are actually only k − 1 free parameters
in the big model, and in order to fit the model by maximum likelihood we must
eliminate on of the parameters by writing it in terms of the others

pk = 1 − p1 + · · · + pk=1 (10.60)
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Then we get

∂ln(p)
∂pi

=
xi

pi
+

xk

pk
· ∂pk

∂pi

=
xi

pi
− xk

pk

∂2ln(p)
∂p2

i

= −xi

p2
i

− xk

p2
k

∂2ln(p)
∂pi∂pj

= −xk

p2
k

, i 6= j

The second derivative matrix is rather messy. It is in fact negative definite,
but we won’t go through the details of showing this. Hence the log likelihood
is strictly concave and the unique global maximum is found by setting the first
derivative equal to zero and solving for the parameter vector p. This gives us
k − 1 equations

xi

pi
=

xk

pk
=

xk

1 − p1 + · · · + pk−1

in the k − 1 unknowns p1, . . ., pk−1. It turns out that the expression on the
right hand side here is not helpful. Rewriting the left hand equality gives

pi =
xipk

xk
, i = 1, . . . , k − 1. (10.61)

Now use the fact that probabilities sum to one and the xi sum to n (10.30) and
(10.32)

1 =
k∑

i=1

pi

= pk +
k−1∑
i=1

xipk

xk

= pk +
pk

xk

k−1∑
i=1

xi

= pk +
pk

xk
(n − xk)

=
npk

xk

Solving for pk gives
pk =

xk

n

and plugging this back into (10.61) gives

pi =
xi

n
, i = 1, . . . , k − 1.
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Putting both together gives p̂i = xi/n for all i, so that is the MLE in the big
model.

Now we are ready to do the likelihood ratio test,

> x <- c(1997, 904, 906, 32)
> p.hat <- x / sum(x)
> theta <- 0.0357123
> p.star <- c((2 + theta) / 4, (1 - theta) / 4,
+ (1 - theta) / 4, theta / 4)
> l <- function(p) sum(x * log(p))
> lrt <- 2 * (l(p.hat) - l(p.star))
> 1 - pchisq(lrt, 2)
[1] 0.3644519

The MLE in the little model (θ̂ = 0.0357123) was found in Example 10.3.9.
The P -value for P = 0.36 shows no significant lack of fit of the small model (that
is, we accept H0 which is the small model, and this is tantamount to saying it
fits the data well).

10.5 Change of Parameters

This section is more careful than the proceeding ones. It is so formal that
it may be hard to see the forest for the trees. Hence before starting we present
the “cartoon guide,” which consists of two simple ideas

• a change of parameters does not affect likelihood inference, except that

• in calculating Fisher information some extra terms arise from the chain
rule.

10.5.1 Invariance of Likelihood

What happens to the likelihood and log likelihood under a change of param-
eters? The answer to this question seems so obvious, that we have done the
right thing in one of the preceding examples without making a point of it: in
Example 10.4.1 we changed parameters from the standard deviation σ to the
variance ϕ = σ2. Here is an even simpler example.

Example 10.5.1 (Exponential Model).
Suppose X1, X2, . . . are i. i. d. exponential. If we take the parameter to be
the usual parameter λ, the likelihood was figured out in Problem 7-38(b) in
Lindgren

Ln(λ) = λn exp

(
−λ

n∑
i=1

xi

)
= λne−λnx̄n
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So the log likelihood is
ln(λ) = n log(λ) − λnx̄n (10.62)

Now suppose that we are not interested in the parameter λ but in the mean
µ = 1/λ. Then what is the log likelihood? The answer is that we do the obvious:
plug λ = 1/µ into (10.62). Giving

l̃n(µ) = −n log(µ) − nx̄n

µ
(10.63)

for the log likelihood in this parameterization.

Because we are being very careful in this section, we have used different
notation for the log likelihood. Recognizing that (10.62) and (10.63) define
different functions, we denote one ln and the other l̃n. Formally, if we have
two parameterizations related by an invertible transformation ϕ = g(θ) and
θ = g−1(ϕ), then the two log likelihoods are related by invariance

l̃n(ϕ) = ln(θ), when ϕ = g(θ). (10.64)

The log likelihood has the same values at parameters representing the same
probability distribution. In order to clearly show the effect of the change of
parameter, we need to plug the condition in (10.64) into the invariance relation
giving

l̃n[g(θ)] = ln(θ) (10.65)

This clearly shows that l̃n and ln are not the same function. Note that if we
write h = g−1 then an equivalent way to write (10.65) is

l̃n(ϕ) = ln[h(ϕ)]. (10.66)

Also note that exactly the same formulas would hold in the multiparameter
case, except that we would use some boldface type.

10.5.2 Invariance of the MLE

What happens to maximum likelihood estimates under a change of param-
eters?

Theorem 10.7 (Invariance of MLE’s). Suppose that ϕ = g(θ) is an invert-
ible change of parameter. If θ̂ is the MLE for θ, then ϕ̂ = g(θ̂) is the MLE for
ϕ.

This is obvious from (10.65). If θ̂n maximizes ln, then ϕ̂n = g(θ̂n) maximizes
l̃n. And vice versa: if ϕ̂n maximizes l̃n, then θ̂n = g−1(ϕ̂n) maximizes ln.

This theorem on invariance of maximum likelihood estimates seems obvious,
and it is, but it shouldn’t be ignored on that account. Other estimates do not
possess such an invariance property. Method of moments estimates don’t (at
least not necessarily), and, as we shall see when we get to them, Bayes estimates
don’t either.
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Example 10.5.2 (Exponential Model).
In Problem 7-42(b) in Lindgren we found λ̂n = 1/x̄n as the MLE for the i. i. d.
Exp(λ) model. By the theorem, 1/λ̂n = x̄n is the MLE of the parameter
µ = 1/λ. We don’t have to maximize (10.63) to find the MLE. We can get it
from the theorem.

Example 10.5.3 (Normal Location-Scale Model).
In Example 10.4.1 we found ϕ̂n = vn for the MLE of the variance ϕ = σ2. By the
invariance theorem, the MLE of the standard deviation σ =

√
ϕ is σ̂n =

√
vn.

We also make the same remark here as in the preceding section, that exactly
the same phenomenon holds in the multiparameter case. The formulas would
even be exactly the same, except for some boldface type.

10.5.3 Invariance of Likelihood Ratio Tests

Theorem 10.8 (Invariance of the Likelihood Ratio Test). The likelihood
ratio test statistic (10.57) or (10.58) is unchanged by an invertible change of
parameter.

If g is an invertible change of parameter and θ̂n and θ∗
n are the MLE’s in

the big model and the little model, respectively, then by Theorem 10.7 ϕ̂n =
g(θ̂n) and ϕ∗

n = g(θ∗
n) are the MLE’s in the transformed coordinates, and

Theorem 10.8 asserts

2[ln(θ̂n) − ln(θ∗
n)] = 2[ln(ϕ̂n) − ln(ϕ∗

n)].

This is clear from the invariance of likelihood (10.64).
Again this seems obvious, and it is, but it is an important property not shared

by other forms of inference. The value of the likelihood ratio test statistic, and
hence the P -value for the test, does not depend on the parameterization.

10.5.4 Covariance of Fisher Information

What happens to observed and expected Fisher information under a change
of parameters is a bit more complicated.

Theorem 10.9. Suppose that ϕ = g(θ) is an invertible change of parameter
with differentiable inverse θ = h(ϕ), and write

H(ϕ) = ∇h(ϕ).

Then In(θ), the expected Fisher information for θ, and Ĩn(ϕ), the expected
Fisher information for ϕ, are related by

Ĩn(ϕ) = H(ϕ) · In[h(ϕ)] · H(ϕ)′. (10.67)

If θ̂n = h(ϕ̂n) is an interior point of the parameter space, then Jn(θ̂n),
the observed Fisher information for θ evaluated at the MLE, and J̃n(ϕ̂n), the
observed Fisher information for ϕ evaluated at the MLE, are related by

J̃n(ϕ̂n) = H(ϕ̂n) · Jn(θ̂n) · H(ϕ̂n)′. (10.68)
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Each of the terms in (10.67) and (10.68) is an m × m matrix if there are m
parameters. Hence this theorem is not so easy to use, and we won’t give any
examples.

The uniparameter case is much simpler, and we record as in explicit corollary.

Corollary 10.10. Suppose that ϕ = g(θ) is an invertible change of parameter
with differentiable inverse θ = h(ϕ). Then In(θ), the expected Fisher informa-
tion for θ, and Ĩn(ϕ), the expected Fisher information for ϕ, are related by

Ĩn(ϕ) = In[h(ϕ)] · [h′(ϕ)]2 (10.69)

If θ̂n = h(ϕ̂n) is an interior point of the parameter space, then of the pa-
rameter space, then Jn(θ̂n), the observed Fisher information for θ evaluated at
the MLE, and J̃n(ϕ̂n), the observed Fisher information for ϕ evaluated at the
MLE, are related by

J̃n(ϕ̂n) = Jn(θ̂n) · [h′(ϕ̂n)]2 (10.70)

Note the difference between (10.67) and (10.68). The transformation rule for
expected Fisher information holds for all parameter values. The transformation
rule for observed Fisher information holds only when it is evaluated at the MLE
and the MLE is in the interior of the parameter space, not on the boundary.

Example 10.5.4 (Exponential Model).
Consider again the Exp(λ) model we looked at in Examples 10.5.1 and 10.5.2.
In those examples we found the MLE’s of λ and µ = 1/λ to be µ̂n = x̄n and
λ̂n = 1/x̄n.

We also found in Problem 10-1(a) that the Fisher information for λ is

In(λ) =
n

λ2

Let us apply the corollary to find the Fisher information for µ.
The inverse transformation is

λ = h(µ) =
1
µ

and the derivative is
h′(µ) = − 1

µ2

Thus (10.69) gives

Ĩn(µ) = In[h(µ)] · [h′(µ)]2

= In(1/µ) ·
(
− 1

µ2

)2

=
1

(1/µ)2
· 1
µ4

=
1
µ2
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Thus we get for the asymptotic distribution

µ̂n ≈ N
(

µ,
µ2

n

)
Of course, we didn’t need to do this calculation to find the asymptotic dis-

tribution. Since m̂un = x̄n the CLT gives its asymptotic distribution directly

Xn ≈ N
(

µ,
σ2

n

)
.

We see that these are indeed the same because we know that for the exponential
distribution µ = 1/λ and σ2 = 1/λ2 so σ2 = µ2.

Problems

10-1. Suppose X1, X2, . . . are i. i. d. Exp(λ). We found in Problem 7-42(b) in
Lindgren that the MLE is λ̂n = 1/x̄n.

(a) Find the asymptotic distribution of λ̂n using expected Fisher information,
and check that this gives the same answer as the delta method (which was
done in Example 8.2.1 in these notes).

(b) Find an asymptotic 95% confidence interval for λ, again using Fisher in-
formation (either observed or expected, your choice).

10-2. Suppose (Xi, Yi), i = 1, . . ., n are i. i. d. with joint density

f(x, y) = e−θx−y/θ, x > 0, y > 0.

(a) Find the MLE of θ.

(b) Find the observed and expected Fisher information (both) and asymptotic
standard errors for the MLE based on each. Are they the same?

10-3. Let X1, X2, . . ., Xn be an i. i. d. sample from a model having densities

fθ(x) = (θ − 1)x−θ, 1 < x < ∞,

where θ > 1 is an unknown parameter.

(a) Find the MLE of θ and prove that it is the global maximizer of the likeli-
hood.

(b) Find the expected Fisher information for θ.

(c) Give an asymptotic 95% confidence interval for θ.

(d) Show that

θ̂n =
2Xn − 1
Xn − 1

is a method of moments estimator of θ.
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(e) Use the delta method to calculate the asymptotic distribution of this
method of moments estimator.

(f) Calculate the ARE for the two estimators.

10-4. Show that for data that are i. i. d. U(0, θ) the MLE is θ̂n = X(n), the
maximum data value, the asymptotic distribution of which was found in Prob-
lem 7-7. (Hint: Careful! The solution involves the boundary of the sample
space. Also Example 8.6a in Lindgren is similar and may give you some ideas.)

This shows that Theorem 10.3 doesn’t always hold. The asymptotics

n
(
θ − X(n)

) D−→ Exp(1/θ)

found in Problem 7-7 don’t even remotely resemble the “usual asymptotics” of
maximum likelihood.

10-5. Suppose x1, . . ., xn are known numbers (not random), and we observe
random variables Y1, . . ., Yn that are independent but not identically distributed
random variables having distributions

Yi ∼ N (α + βxi, σ
2),

where α, β, and σ2 are unknown parameters.

(a) Write down the log likelihood for the parameters α, β, and ϕ = σ2.

(b) Find the maximum likelihood estimates of these parameters.

(c) Find the expected Fisher information matrix for these parameters.

(Caution: In taking expectations remember only the Yi are random. The
xi are known constants.)

10-6. Find the maximum likelihood estimates for the two-parameter gamma
model with densities

fα,λ(x) =
λα

Γ(α)
xα−1e−λx

This cannot be done in closed form, you will have to use R. Use the method
of moments estimates derived in (9.6a) and (9.6b) in these notes the starting
point supplied to the nlm function in R.

One way to write an R function that evaluates minus the log likelihood for
this model, assuming the data are a vector x is

l <- function(theta) {
alpha <- theta[1]
lambda <- theta[2]
return(- sum(log(dgamma(x, alpha, 1 / lambda))))

}

Data for the problem are at the URL
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http://www.stat.umn.edu/geyer/5102/prob10-6.dat

It helps the nlm function to add the optional argument fscale=length(x)
to give it an idea of the approximate size of the log likelihood.

(a) Find the MLE (vector) for the data at this URL.

(b) Find the observed Fisher information at the MLE and show that it is a
positive definite matrix.

(c) Find asymptotic 95% confidence intervals for the parameters α and λ.
(They do not need to have simultaneous coverage, that is, you need not
use Bonferroni correction).

10-7. Prove Corollary 10.10 directly. (It is just the one-parameter case of
Theorem 10.9, so the corollary follows trivially from the theorem, but we didn’t
prove the theorem. So prove the corollary without using the theorem.)

Hint: Start with (10.66) and use the chain rule.

10-8. Suppose X1, . . ., Xn are i. i. d. Poi(µ). The probability that Xi is zero
is p = e−µ. Note that the transformation p = g(µ) = e−µ is one-to-one because
the exponential function is monotone. Hence we can also consider p a parameter
of this distribution. It’s just not the usual one.

(a) Find the MLE for µ and for p.

(b) Find the (expected) Fisher information for µ.

(c) Find the (expected) Fisher information for p. Corollary 10.10 may be
helpful.

(d) Suppose we observe data Xn = 5.7 and n = 30. Find a 95% confidence
interval for the parameter p.



Chapter 11

Bayesian Inference

A Bayesian is a person who treats parameters as random variables, and a
“frequentist” is a person who doesn’t. The “frequentist” slogan that expresses
this is “parameters are unknown constants, not random variables.” This is sup-
posed to explain why Bayesian inference is wrong. But it is a cheap rhetorical
trick. Bayesians think that probability theory is a way to express lack of knowl-
edge, so they agree that “parameters are unknown constants” and continue with
“hence we describe our uncertainty about them with a probability model.”

Slogans can be tossed back and forth forever with no change in positions.
To see what the argument is about, we have to learn Bayesian inference.

11.1 Parametric Models and Conditional Prob-
ability

The Bayesian notion gives us another view of conditional probability.

Conditional probability distributions are no different from parametric
families of distributions.

For each fixed value of y, the conditional density f(x | y), considered as a
function of x alone, is a probability density. So long as the two properties

f(x | y) ≥ 0, for all x (11.1a)

and ∫
f(x | y) dx = 1 (11.1b)

(with the integral replaced by a sum in the discrete case) hold for all y, then
this defines a conditional probability model. There is no other requirement. We
also made this point when we considered conditional probability in Chapter 3
of these notes. In fact, (11.1a) and (11.1b) just repeat (3.5a) and (3.5b) from
that chapter.

349
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Last semester most of our time spent studying conditional probability in-
volved deriving conditional densities from joint densities. When you are doing
that, there is another requirement conditional densities must satisfy: “joint
equals marginal times conditional”

f(x, y) = f(x | y)fY (y).

But that’s a very different issue. If we are only interested in whether a formula
defines a conditional density and have no interest in whether or not this con-
ditional density is the one associated with a particular joint density, then the
only requirements are that (11.1a) and (11.1b) hold for every possible value of
y. These are, of course, the same requirements that apply to any probability
density, conditional or unconditional, that it is nonnegative and integrate or
sum, as the case may be, to one.

The point of the slogan about there being no difference between conditional
probability and parametric families is that parametric families must satisfy the
same two properties with y replaced by θ

f(x | θ) ≥ 0, for all x (11.2a)

and ∫
f(x | θ) dx = 1 (11.2b)

A frequentist may write a probability density fθ(x) to emphasize that θ is
not a random variable, but just an adjustable constant. We used this notation
ourselves in the chapters on frequentist inference (9 and 10). A Bayesian always
writes f(x | θ) to emphasize that θ is a random variable (a Bayesian is a person
who treats parameters as random variables), and the density is being considered
the conditional density of the random variable X given the random variable θ.

The multivariable or multiparameter case is no different except for some
boldface type (and perhaps sums and integrals become multiple too). We still
say that conditional probability and parametric models are different ways of
looking at the same thing, and that the only requirement for a function to be
a conditional density is that it be nonnegative and integrate (or sum) to one,
integrating (or summing) with respect to the variable “in front of the bar.”

11.2 Prior and Posterior Distributions

11.2.1 Prior Distributions

Bayesians use the same statistical models as frequentists. If X1, X2, . . ., Xn

are i. i. d. with density f(x | θ), then the joint distribution of the data is

f(x | θ) =
n∏

i=1

f(xi | θ).
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When this is thought of as a function of the parameter rather than the data, it
becomes the likelihood

Lx(θ) = f(x | θ) (11.3)

or, more generally,
fX(x | θ) = c(x)Lx(θ) (11.4)

where c(x) is any nonzero function of x alone, not a function of θ. These are just
(10.1) and (10.2) repeated, the same definition of likelihood as in the preceding
chapter. The only difference is that we are using the Bayesian notation f(x | θ)
rather than the frequentist notation fθ(x) for densities. The point is that the
Bayesian thinks of both X and θ as random variables and thinks of the density
f(x | θ) as a conditional density of x given θ.

So far Bayesians and non-Bayesians agree, except for notation. They part
company when the Bayesian goes on to put a probability distribution on the
parameter θ. In order to specify a joint distribution for X and θ, we need
the marginal for θ. For reasons to be explained later, this is called the prior
distribution of θ. Since we have already used the letter f for the density of x
given θ, we (following Lindgren) will use g for the prior density.

We should take a brief time-out for a reminder that mathematics is invariant
under changes of notation. Up to this point random variables have always been
Roman letters, never Greek letters. You may have unconsciously made this a
rule. If so, you will now have to unlearn it. For Bayesians, the parameters
(usually Greek letters) are also random variables.

Example 11.2.1 (Exponential Data, Gamma Prior).
Suppose the data are one observation X ∼ Exp(λ) so the conditional density of
the data given the parameter is

f(x | λ) = λe−λx, (11.5a)

and suppose the prior distribution for λ is Gam(a, b). We call a and b hyper-
parameters of the prior. We can’t use the usual notation α and λ for gamma
distribution parameters for the hyperparameters, at least we can’t use λ, be-
cause we are already using λ for something else, the parameter of the data
distribution. Although a and b are parameters (of the prior), it would be too
confusing to simply call them “parameters” as in “parameters of the distribution
of the parameter.” Hence the term “hyperparameter” which indicates parame-
ters “one level up” (in the prior rather than the data distribution). Bayesians
treat parameters (here λ) as random variables, but not hyperparameters (here
a and b). The hyperparameters are constants chosen to give a particular prior
distribution.

What is the prior density of λ? We usually write the gamma density as

f(x | α, λ) =
λα

Γ(α)
xα−1e−λx (11.5b)

but as we already noticed we can’t use α and λ as the hyperparameters because
we are already using λ for the parameter. The problem says we are to use a
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and b for those parameters. This means that (11.5b) becomes

f(x | a, b) =
ba

Γ(a)
xa−1e−bx (11.5c)

That is what the notation Gam(a, b) means. We also have to make another
change. It is not X but λ that has this distribution. This means that (11.5c)
becomes

f(λ | a, b) =
ba

Γ(a)
λa−1e−bλ (11.5d)

That is the prior density for λ. While we are making changes using “mathe-
matics is invariant under changes of notation” we might as well make one more,
changing the name of the function from f to g because we are already using f
for the function in (11.5a). This means that (11.5d) becomes

g(λ | a, b) =
ba

Γ(a)
λa−1e−bλ (11.5e)

These sorts of changes of notation, changing α and λ to a and b to get
(11.5c), then changing x to λ to get (11.5d), then changing f to g to get (11.5e)
should be easy. If they throw you, practice until they become easy. The past
experience with this course is that some students never understand these trivial
manipulations. Hence they can’t even get started right on any Bayesian prob-
lem, and hence completely botch all of them. So a word to the wise: if you
haven’t understood “mathematics is invariant under changes of notation” yet,
get it now.

A Sanity Check: The prior density for θ is a function of θ, not
some other variable (like x).

Making this simple sanity check will save you from the worst errors: using
(11.5b) or (11.5c) for the prior. Not that there are no other ways to screw up.
If you decide to change x to λ first, paying no attention to the fact that there
already is a λ in (11.5b), you get

f(λ | α, λ) =
λα

Γ(α)
λα−1e−λ2

(11.5f)

and the problem is now irretrievably botched. There is no way to get from (11.5f)
to the right formula (11.5e) except recognizing you’ve goofed and starting over.

11.2.2 Posterior Distributions

The joint distribution of data and parameters, that is, of the pair (X, θ),
is the conditional times the marginal f(x | θ)g(θ). The next step in Bayesian
inference is to produce the conditional distribution of the parameter given the
data. For this Lindgren uses yet a third letter h. We know how to find a
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conditional given a joint distribution: conditional = joint/marginal or written
out in symbols

h(θ | x) =
f(x | θ)g(θ)

p(x)
(11.6)

where p(x) is the marginal of X, that is,

p(x) =
∫

f(x | θ)g(θ) dθ (11.7)

if θ is a continuous random variable. Of course, if θ is discrete we use the same
formula except that the integral is replaced by a sum, but applications with
discrete parameter spaces are very rare. We won’t consider any in this course.

The conditional distribution h(θ | x) of the parameter given the data is called
the posterior distribution of the parameter. The idea behind the terminology
is that the prior represents knowledge (or conversely uncertainty) about the
parameter before the data are observed and the posterior represents knowledge
about the parameter after the data are observed. That agrees with our usual
notion of conditional probability: f(x | y) is what you use for the distribution of
X after you observe Y . The only novelty is applying this notation to parameters
(Greek letters) rather than to data (Roman letters). To a Bayesian these are
both random variables, so there is no novelty. Bayesian inference is just an
application of conditional probability. The only novelty is the notion of treating
parameters as random variables in the first place.

If we use (11.4) to replace the conditional density f(x | θ) by a constant times
the likelihood, we see that this does not affect the calculation of the posterior,
because (11.7) becomes

p(x) = c(x)
∫

Lx(θ)g(θ) dθ (11.8)

so plugging both (11.4) and (11.8) into (11.6) gives

h(θ | x) =
Lx(θ)g(θ)∫
Lx(θ)g(θ) dθ

(11.9)

the factor c(x) that appears in both the numerator and denominator cancels.
Either of the formulas (11.6) or (11.9) is commonly called Bayes’ rule or Bayes’
theorem. Calling it a “theorem” seems a bit much, since it is a trivial rearrange-
ment of the definition of conditional probability density. In fact, exactly this
formula was introduced in the chapter on conditional probability of these notes
(Section 3.4.5) last semester. The only difference is that we used Roman letters
for the variables behind the bar, and now we are going to use Greek letters.
Same mathematical idea, just different notation.

In the same chapter we also introduced the notion of unnormalized proba-
bility densities (Section 3.4.2) and calculation of conditional probabilities as a
renormalization process (Sections 3.4.3 and 3.4.4). If you weren’t in my section
first semester (or if you have forgotten this material), you should review it.
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A function is called an unnormalized density if it is nonnegative and has a
finite nonzero integral, which is called the normalizing constant of the function.
Using this notion, a simple way to express (11.9) is to say that Lx(θ)g(θ),
thought of as a function of θ for fixed x, is an unnormalized posterior density.
The denominator in (11.9) is its normalizing constant. Another way to say it is
the pseudo-mathematical expression

posterior ∝ likelihood × prior. (11.10)

The symbol ∝, read “proportional to,” expresses the notion that the right hand
side is an unnormalized density.

Similarly, it does no harm if the prior density is unnormalized. Suppose we
specify the prior by an unnormalized density gu(θ). The normalized prior is
then g(θ) = cgu(θ), where c is a nonzero constant. Plugging this into (11.9)
gives

h(θ | x) =
Lx(θ)gu(θ)∫
Lx(θ)gu(θ) dθ

.

The factor c appears in both the numerator and denominator and cancels. This
is exactly the same as (11.9) except that g is replaced by gu. Thus it makes no
difference whether or not the prior is normalized. So we could re-express our
slogan (11.10) as

posterior ∝ likelihood × possibly unnormalized prior,

but that seems too verbose. We’ll just use (11.10) with the tacit understanding
that the prior density need not be normalized.

Example 11.2.2 (Example 11.2.1 Continued).
Since the hyperparameters a and b are constants, the first factor in the (correct!)
prior density (11.5e) is constant and we can drop it, giving the unnormalized
prior

gu(λ | a, b) = λa−1e−bλ. (11.11)

Multiplying by the data distribution gives the unnormalized posterior

hu(λ | x) = λe−λxλa−1e−bλ = λae−(b+x)λ. (11.12)

Keep in mind that the random variable here is λ, the data x is fixed (because
we are conditioning on it) and so are the hyperparameters a and b.

To normalize this density, we use our favorite trick of recognizing the un-
normalized density of a brand name distribution. Clearly (11.12) has the same
form as (11.11). The only difference is that a has been replaced by a + 1 and
b has been replaced by b + x. Thus the posterior distribution of λ given x is
Gam(a + 1, b + x).

That constitutes a satisfactory answer to the problem. We don’t even have
to write down the density to specify the posterior distribution. If for some
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reason we do actually need the density, we can find it from the formula for the
gamma density

h(λ | x) =
(b + x)a+1

Γ(a + 1)
λae−(b+x)λ. (11.13)

What if we hadn’t thought of the trick? Plodding on using (11.9), we would
see that in order to find the denominator we would have to evaluate the integral∫ ∞

0

λae−(b+x)λ dλ

(Note well! The variable of integration is λ not x. The variable in a Bayesian
problem is the parameter. If you proceed by reflexes rather than thinking during
an exam, you are liable to write dx. If you remember this warning, you won’t
make that mistake.) This integral is rather hard to do unless we recognize its
relationship to the gamma function or just find in a book. It is equation (4) on
p. 173 in Lindgren. Evaluating the integral and plugging into (11.9) gives us
(11.13) again.

Doing the calculation of the integral just rederives the normalizing constant
of the gamma distribution, redoing the work on p. 173 in Lindgren. The trick
saves you this extra work.

Example 11.2.3 (Binomial Data, Uniform Prior).
This example is the first Bayesian analysis ever done. It was discovered by
Thomas Bayes and published posthumously in 1764 and gives Bayesian inference
its name. Suppose the data are X ∼ Bin(n, p) and our prior distribution for p
is U(0, 1).

Then the prior is g(p) = 1 for 0 < p < 1, and the likelihood is (10.3). Since
the prior is identically equal to one, the likelihood is also the unnormalized
posterior

h(p | x) ∝ px(1 − p)n−x (11.14)

To normalize this density, we again use our favorite trick of recognizing the
unnormalized density of a brand name distribution. In this case the factors p
and (1− p) should recall the beta distribution,1 which has densities of the form

f(x | s, t) =
Γ(s + t)
Γ(s)Γ(t)

xs−1(1 − x)t−1 (11.15)

(p. 175 in Lindgren). Comparing (11.15) with x changed to p with (11.14), we
see that they are the same except for constants if s = x + 1 and t = n − x + 1.

1Why not the binomial distribution? That’s the one that has p and 1 − p in the formula!
The beta distribution has x and 1 − x. If that’s what you are thinking, you have again run
afoul of “mathematics is invariant under changes of notation.” The letters don’t matter. A
binomial distribution is a binomial distribution no matter whether you call the parameter p
or x, and a beta distribution is a beta distribution no matter whether you call the random
variable p or x. What matters is not which letter you use, but the role it plays. Here p is the
random variable, the letter in front of the bar in the conditional density h(p | x), hence we
want to find a distribution having a density with factors p and 1 − p where p is the random
variable. The beta distribution is the only one we know with that property.
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Thus the posterior distribution of p given x is Beta(x + 1, n − x + 1). No
integration is necessary if we see the trick.

If you don’t see the trick, you must integrate the right hand side of (11.14) to
find the normalizing constant of the posterior. Again this integral is rather hard
unless you recognize it as a beta integral, equation (14) on p. 175 in Lindgren. As
in the preceding example, this just redoes the work of deriving the normalizing
constant of a brand name distribution. The trick is easier.

Example 11.2.4 (Normal Data, Normal Prior on the Mean).
Assume X1, . . ., Xn are i. i. d. with unknown mean µ and known variance σ2,
and assume a normal prior distribution for the unknown parameter µ. This
example is not very practical, because we rarely know σ2, but it makes a good
example. Inference for the case where both µ and σ2 are unknown will be
covered in Section 11.4.3.

Let us denote the prior distribution for µ by N (µ0, σ
2
0). As in Example 11.2.1

we can’t use µ and σ for the hyperparameters, because we are already using
these letters for parameters of the data distribution. Then an unnormalized
prior density is

g(µ) = exp
(
− (µ − µ0)2

2σ2
0

)
(we can drop the constant

√
2πσ0). Combining this with the likelihood (10.5)

gives the unnormalized posterior

hu(µ | x) = Lx(µ)g(µ)

= exp
(
−n(x̄n − µ)2

2σ2

)
exp

(
− (µ − µ0)2

2σ2
0

)
= exp

(
−n(x̄n − µ)2

2σ2
− (µ − µ0)2

2σ2
0

)
It will considerably simplify notation in the rest of the problem if we introduce
λ = 1/σ2 and λ0 = 1/σ2

0 . The technical term for reciprocal variance is precision,
so λ is the precision of the data, and λ0 is the precision hyperparameter. Then
the unnormalized posterior becomes

hu(µ | x) = exp
(
−nλ

2
(x̄n − µ)2 − λ0

2
(µ − µ0)2

)
(11.16)

Since the exponent is quadratic in µ, the posterior must be some normal
distribution (this is the “e to a quadratic theorem, Theorem 5.10 of Chapter 5
of last semester’s notes). To see which normal distribution, we could apply
the theorem, but we will just do the calculation from first principles since the
theorem is multivariate and we are only interested in the univariate case here
(and, to be honest, I don’t want to rewrite this, which was written last year
before I wrote the theorem this year). To do the calculation we compare the
exponent in (11.16) with the exponent of a normal density with mean a and
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precision b, which is −b(µ − a)2/2. Matching coefficients of µ and µ2 gives the
posterior mean a and posterior precision b. That is, we must have

bµ2 − 2abµ + a constant

= (nλ + λ0)µ2 − 2(nλx̄n + λ0µ0)µ + some other constant

Hence

b = nλ + λ0 (11.17a)
ab = nλx̄n + λ0µ0

so

a =
nλx̄n + λ0µ0

nλ + λ0
(11.17b)

and the posterior distribution of µ is normal with mean (11.17b) and precision
(11.17a).

11.3 The Subjective Bayes Philosophy

That’s more or less the story on the mechanics of Bayesian inference. There
are some bells and whistles that we will add later, but this is the basic story.
It’s just conditional probability coupled with the notion of treating parameters
as random variables. For the most part the calculations are no different from
those we did when we studied conditional probability last semester. If you can
get used to Greek letters as random variables, the rest is straightforward.

Here we take a time out from learning mechanics to learn enough of the
Bayesian philosophy to understand this chapter. The Bayesian philosophy holds
that all uncertainty can be described by means of probability distributions. This
has far reaching implications. For one thing, it means that, since everyone is
uncertain about many things, everyone has probability distributions inside their
heads. These are the prior distributions that appear in Bayesian problems. A
subjective Bayesian believes that everyone has a different prior distribution for
any particular problem. An objective Bayesian believes there are ways in which
different people can agree on a common prior distribution (by convention if no
other way). We will only explain the subjective Bayesian view.

So in any particular problem, once the probability model for the data (and
hence the likelihood) is decided, one then gets a prior by “eliciting” the prior
distribution that represents the knowledge (or uncertainty, depending on how
you look at it) of some expert. Then you apply Bayes rule, and you’re done.

Once agreement is reached about being Bayesian and on the likelihood
and prior, Bayesian inference is straightforward.

Frequentist inference involves many technical difficulties, choice of point estima-
tors, test statistics, and so forth. Bayesian inference involves no such difficulties.
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Every inference is a straightforward conditional probability calculation, which
if not doable with pencil and paper is usually doable by computer.

Getting the agreement mentioned in the slogan may be difficult. Bayesian
inference is controversial. For a century roughly from 1860 to 1960, it was con-
sidered absurd, obviously completely wrong (and many other pejorative terms
were applied). Now the pendulum of fashion has swung the other way, and
Bayesian inference, if not the most popular, is at least very trendy in certain
circles. But it takes some people a long time to get the word. Textbooks are
often decades behind research. Opinions are passed from scientist to scientist
without influence by statisticians and statistics courses. So there are still a lot
of people out there who think Bayesian inference is a no-no.

Agreement to be Bayesian does not end philosophical arguments. There
can be arguments about the appropriateness of the probability model for the
data, but exactly the same arguments would arise if one wanted to use the same
model for frequentist inference, so those arguments are not peculiar to Bayesian
inference. And there can be arguments about the prior. Whose prior (what
expert’s opinion) is used? How it is elicited? Was it elicited correctly? The
elicitation problem is made more difficult (or perhaps simpler, I’m not sure)
by the fact that it does not really involve getting a probability distribution
from inside someone’s head down on paper. All psychological study of people’s
behavior involving probability and statistics has revealed no evidence for, and
a good deal of evidence against, the notion that real people think in accord the
rules of Bayesian inference.

What do we mean by “think in accord with the rules of Bayesian inference”?
We will explain that, the so-called Bayesian model of learning, and that will end
our discussion of philosophy.

Suppose data X1, X2, . . . are assumed to have a probability model with
likelihood

Lx1,...,xn
(θ) =

n∏
i=1

f(xi | θ).

(Note that we have gone back to our original notation of indicating the data by
a subscript. The reason for it will become apparent presently.) And suppose we
start with a prior g(θ) that represents our knowledge (or, looked at the other
way, uncertainty) about the parameter θ before any data are observed.

Suppose the data arrive over the course of time, and intermediate analyses
are done as the data arrive. For simplicity, we only consider two analyses, but
it will be clear that everything said here extends to multiple analyses. For
concreteness, say the analyses are done after observing m and n data values Xi,
respectively, with m < n. In the first analysis, we derive a posterior distribution

h(θ | x1, . . . , xm) ∝ Lx1,...,xm
(θ)g(θ) (11.18)

that represents our knowledge (or, looked at the other way, uncertainty) about
the parameter θ at this time and reflects both the information from the prior
and from the data x1, . . ., xm.
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Now we take a time out for more philosophy. The distribution (11.18) can
be thought of as both a prior and a posterior. It is a posterior, when we consider
that it describes our knowledge after x1, . . ., xm have been observed. It is a
prior, when we consider that it describes our knowledge before xm+1, . . ., xn are
observed. So it should serve as our prior for the subsequent analysis of those
data.

The likelihood for those data is

Lxm+1,...,xn
(θ) =

n∏
i=m+1

f(xi | θ).

and the posterior after observing those data is

h(θ | x1, . . . , xn) ∝ Lxm+1,...,xn
(θ)h(θ | x1, . . . , xm) (11.19)

Great! So what’s the point? The point is that there is another way of
thinking about this problem. If we ignore the fact that the data arrived in two
clumps, we would analyze the whole data set at once, using the likelihood for
all the data and the original prior g(θ). This would give a formula just like
(11.18) except with m replaced by n. Now there is no philosophical reason why
these two procedures (two-stage analysis and one-stage analysis) should give the
same answers, but it is a remarkable fact that they do. No matter how you do
a Bayesian analysis, so long as you correctly apply Bayes rule, you get the same
answer (starting from the same prior).

Note that frequentist inference does not have this property. There is no way
to use the results of a frequentist analysis of part of the data in subsequent
analyses. In fact, the very fact of having done an analysis on part of the data
changes the answer of the analysis of the complete data, because it gives rise to
a need for correction for multiple testing. What we learned here is that Bayesian
inference has (and needs) no analog of frequentist correction for multiple testing.
So long as you apply Bayes rule correctly, you get the correct answer.

This same issue means that Bayesian inference can serve as a model of learn-
ing, but frequentist inference can’t. The Bayesian notion of learning is just the
transformation from prior to posterior via Bayes rule. The prior describes your
knowledge before the data are observed, the posterior your knowledge after the
data are observed, the difference is what you learned from the data.

11.4 More on Prior and Posterior Distributions

11.4.1 Improper Priors

We saw in the preceding section that it does no harm to use an unnormalized
prior. We can go even further and drop the requirement that the prior be
integrable. If g(θ) is a nonnegative function such that∫

g(θ) dθ = ∞
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but the normalizing constant ∫
Lx(θ)g(θ) dθ

is still finite, then (11.9) still defines a probability density.
Then we say we are using an improper prior and sometimes we say we are

using the formal Bayes rule. It isn’t really Bayes’ rule, because neither the
prior nor the joint distribution of parameter and data are proper probability
distributions. But we use the same equation (11.9) and so the method has the
same form (“formal” here doesn’t mean “dressed for a prom,” it means “having
the same form”).

Thus what we are doing here is philosophically bogus from the subjective
point of view. An improper prior cannot represent “prior opinion” because it is
not a probability distribution. That’s why Lindgren, for example, makes a point
of deriving the results with improper priors as limits of procedures using proper
priors (Problem 7-83, for example). But not all results involving improper priors
can be derived as such limits, so the limiting argument really contributes nothing
to our understanding of improper priors. Hence our approach will be “just do
it” with no worries about consequent philosophical difficulties.

Example 11.4.1 (Normal Data, Improper Prior).
Suppose X1, X2, . . ., Xn are i. i. d. N (µ, σ2) where µ is a known number (not
a parameter) and σ is an unknown parameter. We need a prior distribution
for the unknown parameter σ, which we take to be the improper prior2 with
density g(σ) = 1 for all σ. This is improper because∫ ∞

0

dσ = ∞.

The likelihood is

L(σ) =
1
σn

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

. (11.20)

Since we are using a flat prior (11.20) is also the unnormalized posterior.
We now want to use our trick of recognizing the density of a known model,

but (11.20) isn’t proportional to any of the densities in Chapter 6 in Lindgren.
It turns out, however, that a change of variable gives us a known family. Define
a new parameter λ = 1/σ2 (precision again). Then the likelihood becomes

L(λ) = λn/2 exp

{
−λ

2

n∑
i=1

(xi − µ)2
}

. (11.21)

2The reader should perhaps be warned that aficionados of improper priors consider this
the wrong improper prior. The “natural” improper prior is g(σ) = 1/σ. The reasons why,
however, are too complicated to explain here, and do not generalize to other problems. So we
will use this one.
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There is no use of the change-of-variable theorem (Theorem 8 of Chapter 3
in Lindgren) because λ is not a random variable in the data model or in the
likelihood. There the Xi are the random variables.

We do, however, need to apply the change-of-variable theorem to the prior.
The inverse transformation is

σ = h(λ) = λ−1/2,

and the change-of-variable theorem says the prior for λ is

gΛ(λ) = g[h(λ)]|h′(λ)|

where

|h′(λ)| =
∣∣∣∣−1

2
λ−3/2

∣∣∣∣ = 1
2λ−3/2 (11.22)

Since g, the prior for σ, is identically equal to 1, the prior for λ is

gΛ(λ) = 1
2λ−3/2

The unnormalized posterior for λ is likelihood (11.21) times prior (11.22)

h(λ | x) ∝ λn/2−3/2 exp

{
−λ

2

n∑
i=1

(xi − µ)2
}

.

Considered as a function of λ (not the xi) the right hand side must be an
unnormalized density. Using the trick of recognizing an unnormalized brand
name density, we see that the posterior distribution of λ is Gam(a, b) with

a =
n − 1

2

b =
1
2

n∑
i=1

(xi − µ)2

Since the parameters a and b of the gamma distribution must be strictly
positive, we need n > 1 in order to have a proper posterior (b > 0 is satisfied
automatically). This check whether the posterior is integrable is always neces-
sary when using an improper prior (and never necessary when using a proper
prior). An improper posterior (one that doesn’t integrate) is nonsense.

11.4.2 Conjugate Priors

The definition of conjugate prior family of distributions given on p. 247 in
Lindgren, is fairly cryptic. A family F of probability distributions is conjugate
to a probability model if the posterior is in F whenever the prior is in F .
How does one find such a family? One trivial example is the (nonparametric)
family of all probability distributions on the parameter space. (The posterior



362 Stat 5101 (Geyer) Course Notes

is a probability distribution, hence is trivially in the family of all probability
distributions.)

If that were all there was to the notion of conjugate families, it would be
useless concept. The idea is to find a parametric conjugate family, one we
recognize. Here is a recipe for such families, so-called natural conjugate families.
If we have independent sampling, the likelihood satisfies

Lx1,...,xm+n
(θ) ∝ Lx1,...,xm

(θ)Lxm+1,...,xm+n
(θ).

Thus we see that we can take a likelihood with some “made up” data as the
prior and the unnormalized posterior will be the likelihood for the combination
of real and “made up” data. In short, likelihoods form a conjugate family, so
long as we include all sample sizes and all possible data values.

Usually we take a slightly larger family. If the likelihood is a well-defined
positive function for noninteger values of the sample size, then we allow non-
integer values. Similarly if the data are discrete, we also allow arbitrary data
values so long as the resulting function is still well-defined and positive. It is
clear that the result is a conjugate family so long as our possible “made up”
data includes all possible actual data values.

Example 11.4.2 (Example 11.2.4 Continued).
In Example 11.2.4, we found a normal prior for µ resulted in a normal posterior.
Thus family of normal distributions for the parameter µ is a conjugate prior
family for a normal data model when the variance is known and µ is the only
parameter.

11.4.3 The Two-Parameter Normal Distribution

The two-parameter normal model has data X1, X2, . . . i. i. d. N (µ, σ2) with
both µ and σ considered parameters. The likelihood is given by (10.4). As in
Examples 11.2.4 and 11.4.1, the analysis becomes simpler if we use precision
λ = 1/σ2 as one of the parameters, giving

Lx(µ, λ) = λn/2 exp
{−n

2 λ[vn + (x̄n − µ)2]
}

= λn/2 exp
{−n

2 λ[vn + x̄2
n − 2x̄nµ + µ2]

} (11.23)

This has three bits of “made up data” to adjust: n, vn, and x̄n. Replacing
them with Greek letters α, β, and γ gives a conjugate family of priors with
unnormalized densities

g(µ, λ | α, β, γ) = λα/2 exp
{−1

2αλ(β − 2γµ + µ2)
}

. (11.24)

Here α, β, and γ are hyperparameters of the prior, known constants, not random
variables. Choosing the hyperparameters chooses a particular prior from the
conjugate family to represent prior opinion about the parameters µ and λ.

The next task is to figure out the properties of the conjugate family we just
discovered. With a little work we will be able to “factor” these distributions as
joint = conditional × marginal and recognize the marginals and conditionals.
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The conditional of µ given λ is clearly a normal distribution, because it
is “e to a quadratic” (as a function of µ for fixed λ). To figure out which
normal, we have to match up coefficients of powers of µ in the exponential. If
µ | λ ∼ N (a, b), then we must have

(µ − a)2/b = a2/b − 2aµ/b + µ2/b

= αλ(β − 2γµ + µ2) + a constant

hence we can determine a and b by matching the coefficients of µ and µ2 giving

a = γ (11.25a)

b =
1

αλ
(11.25b)

To figure out the marginal of λ we have to do the “factorization” into con-
ditional and marginal. The conditional N (a, b) with a and b given by (11.25a)
and (11.25b) has density proportional to

b−1/2 exp
{
− 1

2b
(µ − a)2

}
= α1/2λ1/2 exp

{
−1

2
αλ

(
γ2 − 2γµ + µ2

)}
(11.26)

Thus the marginal of λ must have density proportional to (11.24) divided by
(11.26), that is,

λ(α−1)/2 exp
{−1

2αλ(β − γ2)
}

.

This is clearly proportional to a Gam(c, d) density with

c = (α + 1)/2 (11.27a)

d = α
(
β − γ2

)
/2 (11.27b)

Thus we have discovered that our conjugate family can be “factored” as a prod-
uct of normal and gamma distributions. The connection between the shape
parameter (α + 1)/2 of the gamma and the precision αλ of the normal seems
arbitrary. Thus one usually allows the two to be varied independently, which
gives a family with four hyperparameters.

Definition 11.4.1 (The Normal-Gamma Family of Distributions).
If a random variable X has a Gam(α, β) distribution, and the conditional dis-
tribution of another random variable Y given X = x is a N (γ, δ−1x−1) distri-
bution, then we say the joint distribution of X and Y is normal-gamma with
parameters α, β, γ, and δ. The parameter γ can be any real number, the rest
must be strictly positive.

Following the usual practice of making random variables Roman letters near
the end of the alphabet, we have changed (λ, µ) to (X,Y ) for this definition
only. As we continue the Bayesian analysis we will go back to having the ran-
dom variables being λ and µ. We have also redefined α, β, and γ and will no
longer use the parameterization (11.24) for the normal-gamma family. The new
parameterization given in the definition is standard.
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Theorem 11.1. If X1, X2, . . ., Xn are i. i. d. N (µ, λ−1), then the normal-
gamma family is a conjugate family of prior distributions for (λ, µ). If the prior
distribution is

λ ∼ Gam(α0, β0)

µ | λ ∼ N (γ0, δ
−1
0 λ−1)

then the posterior distribution is

λ ∼ Gam(α1, β1)

µ | λ ∼ N (γ1, δ
−1
1 λ−1)

where

α1 = α0 +
n

2
(11.28a)

β1 = β0 +
n

2

(
vn +

δ0(x̄n − γ0)2

δ0 + n

)
(11.28b)

γ1 =
γ0δ0 + nx̄n

δ0 + n
(11.28c)

δ1 = δ0 + n (11.28d)

where x̄n is the empirical mean and vn is the empirical variance.

Proof. If (λ, µ) is normal-gamma with parameters α, β, γ, and δ, the unnor-
malized density is

λα−1 exp{−βλ} · λ1/2 exp
{−1

2δλ(µ − γ)2
}

. (11.29)

Putting subscripts of zero on the hyperparameters in (11.29) and multiplying
by the likelihood (11.23) gives the unnormalized posterior

λα0+n/2−1/2 exp
{−β0λ − 1

2δ0λ(µ − γ0)2 − n
2 λ(vn + x̄2

n − 2x̄nµ + µ2)
}

(11.30)
To prove the theorem we have to show that this is equal to (11.29) with sub-
scripts of one on the hyperparameters and that the relationship between the
hyperparameters of prior and posterior is the one stated.

Comparing the exponent of λ in (11.29) and (11.30) gives (11.28a). The
other three relationships between hyperparameters are found by equating the
coefficients of λ, of λµ, and of λµ2 in the exponential terms, which gives

−β1 − 1
2δ1γ

2
1 = −β0 − 1

2δ0γ
2
0 − n

2 (vn + x̄2
n) (11.31a)

γ1δ1 = γ0δ0 + nx̄n (11.31b)

− 1
2δ1 = − 1

2δ0 − n
2 (11.31c)

Equation (11.31c) immediately implies (11.28d). Plugging (11.28d) into (11.31b)
gives (11.28c). Plugging (11.28c) and (11.28d) into (11.31a) gives

β1 = β0 + 1
2δ0γ

2
0 + n

2 (vn + x̄2
n) − 1

2

(γ0δ0 + nx̄n)2

δ0 + n

which with a bit of formula manipulation is (11.28b).
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We also want to learn about the other “factorization” of the normal-gamma
family into the marginal of µ times the conditional of λ given µ. This involves
Student’s t-distribution with noninteger degrees of freedom (Definition 7.3.2 in
these notes).

Theorem 11.2. If

λ ∼ Gam(α, β)

µ | λ ∼ N (γ, δ−1λ−1)

then

(µ − γ)/d ∼ t(ν)
λ | µ ∼ Gam(a, b)

where

a = α + 1
2

b = β + 1
2δ(µ − γ)2

ν = 2α

d =

√
β

αδ

Proof. The unnormalized joint density for µ and λ is given by (11.29). The
conditional distribution of λ given µ is clearly the Gam(a, b) asserted by the
theorem. This has density

ba

Γ(a)
λa−1e−bλ. (11.32)

We may ignore the factor Γ(a), which is a constant, but we must keep ba, which
contains µ. The unnormalized marginal for µ is thus (11.29) divided by (11.32),
which is b−a or

h(µ) =
1

[β + 1
2δ(µ − γ)2]α+1/2

(11.33)

Hence we see that some linear function of µ has a t distribution with ν = 2α
degrees of freedom. To determine the linear function we must equate coefficients
of powers of µ in

β + 1
2δ(µ − γ)2 = k

(
1 +

(µ − c)2

d2ν

)
which is derived by plugging in (µ−c)/d for x in (7.32) and matching the 1+x2/ν
term in the denominator to the term in square brackets in (11.33). In order for
(µ−c)/d to have a t(ν) distribution, these two terms must be proportional, hence
equal when multiplied by k, a yet to be determined constant of proportionality.
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Hence

β +
δγ2

2
= k +

kc2

d2ν

−δγ = −2kc

d2ν
δ

2
=

k

d2ν

Solving for k, c, and d we get c = γ, k = β, and

d2 =
2β

δν
=

β

δα

which finishes the proof of the theorem.

Example 11.4.3 (Improper Prior for the Normal).
Bayesian inference for the two-parameter normal is quite complicated. Choosing
a conjugate prior involves specifying four hyperparameters. The hyperparam-
eters of the posterior are complicated functions of the hyperparameters of the
prior and the data.

Here we analyze a simple case. Choose β = δ = 0 in (11.29). Then the
unnormalized prior is just λα−1/2. This is, of course, an improper prior. The
posterior is normal-gamma with parameters

α1 = α +
n

2
β1 =

nvn

2
γ1 = x̄n

δ1 = n

and is a proper distribution so long as α > −n/2.
The posterior marginal distribution of λ is Gam(α1, β1) and the posterior

marginal distribution of (µ − x̄n)/
√

vn/ν is t(ν), where ν = 2α1 = n + 2α.
Suppose we decide on the value α = − 1

2 for the remaining hyperparameter.
Then ν = n − 1. And since vn/(n − 1) = s2

n/n, we get a marginal posterior
distribution

µ − x̄n

sn/
√

n
∼ t(n − 1)

Thus for this particular improper prior, the marginal posterior distribution of
this quantity agrees with its sampling distribution.

The agreement of Bayesian posterior and frequentist sampling distributions
leads to numerically identical though philosophically different inferences. But
no great message should be read into this. No Bayesian with a proper prior
would get the “same” inference as the frequentist. A Bayesian with a subjective
prior would not get the same inference, because subjective priors representing
prior knowledge about the parameters are supposed to be proper.
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11.5 Bayesian Point Estimates

Most Bayesians are not much interested in point estimates of parameters. To
them a parameter is a random variable, and what is important is its distribution.
A point estimate is a meager bit of information as compared, for example, to a
plot of the posterior density.

Frequentists too are not much interested in point estimates for their own
sake, but frequentists find many uses for point estimates as tools for constructing
tests and confidence intervals. All asymptotic arguments start with calculating
the asymptotic distribution of some point estimate. They may also require a
point estimate of the asymptotic standard deviation for use in the “plug-in”
theorem. Bayesians do not need point estimates for any of these purposes. All
Bayesian inference starts with calculating the posterior distribution. To go from
there to a point estimate is to throw away most of the information contained in
the posterior.

Still, point estimates are easy to calculate (some of them, at least) and easy
to discuss. So they are worth some study. Bayesians use three main kinds of
point estimates: the posterior mean, median, and mode. The first two we have
already met.

Definition 11.5.1 (Mode).
A mode of a random variable having a continuous density is a local maximum
of the density. The variable is unimodal if it has one mode, bimodal if two,
and multimodal if more than one.

When we say the mode (rather than a mode) in reference to a multimodal
distribution, we mean the highest mode (if one is higher than the others).

All of the brand name continuous distributions introduced in Chapter 6 in
Lindgren are unimodal. The normal distribution is unimodal, and the mode
is the mean. In fact this is obviously true (draw a picture) for any symmetric
unimodal distribution.

For a symmetric unimodal distribution, the mean (if it exists), the
median, and the mode are all equal to the center of symmetry.

The gamma distribution, and its special cases the exponential and chi-square,
are not symmetric, but are unimodal. For them the mean, median, and mode
are three different points.

Example 11.5.1 (Mode of the Gamma Distribution).
It does not matter if we use an unnormalized density. Multiplying by a constant
changes only the vertical scale, not the position of the mode. An unnormalized
Gam(α, λ) density is

f(x) = xα−1e−λx.

As in maximum likelihood, it is often easier to maximize the log density, which
must have the same mode. The log density is

g(x) = log f(x) = (α − 1) log(x) − λx
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Differentiating gives

g′(x) =
α − 1

x
− λ (11.34)

g′′(x) = −α − 1
x2

(11.35)

From (11.35) we see that the log density is strictly concave, hence the local
maximum is unique if it exists. Solving g′(x) = 0, we get

x = (α − 1)/λ (11.36)

for the mode when α ≥ 1. When α < 1 (11.36) is negative and hence not in the
sample space. In that case (11.34) is negative for all x, hence g(x) is strictly
decreasing and the only local maximum occurs at x = 0. The mode is a bit
weird because f(x) → ∞ as x → 0 in this case. But we still call it the mode.

Frequentists are not much interested in the mode as a point estimate of
location, because it is very hard to estimate and may be far from the main mass
of the distribution, even when the distribution is unimodal (but not symmetric).
For example, consider the Exp(λ) distribution. The mean is 1/λ, the median is
log(2)/λ = 0.693/λ (Problem 6-47 in Lindgren), and the mode is zero.

Bayesians are interested in the posterior mode because of its analogy to
maximum likelihood. As we saw in the preceding example, it does not matter
if we use an unnormalized objective function in determining the mode, since
normalization only changes the vertical scale and does not change the position
of the mode. An unnormalized posterior is likelihood times prior. Thus we
find the posterior mode by maximizing Lx(θ)g(θ), considered as a function of
θ for fixed x. If we use a flat prior, this is the same as maximum likelihood. If
we do not use a flat prior, then the posterior mode will be different from the
MLE. But in either case the posterior mode can be calculated directly from the
unnormalized posterior Lx(θ)g(θ). There is no need to calculate the normalizing
constant, integral in (11.9), if all we want is the posterior mode.

Example 11.5.2 (Example 11.2.1 and Example 11.2.2 Continued).
In Example 11.2.2 we found a Gam(a + 1, b + x) posterior distribution, where
x was the data and a and b hyperparameters of the prior. The mode of this
distribution, hence the posterior mode is given by (11.36) with a+1 plugged in
for α and b + x plugged in for λ. Hence the posterior mode is

λ∗ =
a

b + x

For comparison the MLE is

λ̂ =
1
x

and this is the posterior mode for a flat prior (rather than the gamma prior
used in Examples 11.2.1 and 11.2.2). The posterior mean is

E(λ | x) =
a + 1
b + x
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The posterior median is hard to calculate. There is no closed form expression
for it as a function of a, b, and x. For any fixed values of a, b, and x, we could
use tables of the incomplete gamma function (not in Lindgren but in reference
books) or a computer statistics package to calculate the posterior median, but
we cannot exhibit a formula like those for the other estimators.

11.6 Highest Posterior Density Regions

This section covers the Bayesian competitor to confidence intervals, which go
under the name “highest posterior density regions.” A highest posterior density
(HPD) region is a level set of the posterior, that is a set of the form

{ θ : h(θ | x) > α }
for some α > 0, that has a specified posterior probability, i. e.,

P{h(θ | X) > α | X = x} = β

Note that, as always when we are being Bayesians, we are conditioning on the
data X, what is random here is the parameter θ. The idea behind the HPD
region is that all of the points included in the region should be more probable
(in the sense of higher posterior density) than those not in the region.

Example 11.6.1 (Examples 11.2.4 and 11.4.2 Continued).
In Example 11.2.4 we saw that if the data are i. i. d. normal with mean µ and
precision λ with λ known and the prior for µ was normal with mean µ0 and
precision λ0, then the posterior is normal with mean (11.17b) and precision
(11.17a). By the symmetry of the normal distribution, the 95% HPD region is
a symmetric interval centered at the posterior mean. The same logic we use to
figure out critical values for confidence intervals tells us the half width of the
interval is 1.96 posterior standard deviations, that is, the 95% HPD region for
µ is

nλx̄n + λ0µ0

nλ + λ0
± 1.96

√
1

nλ + λ0

(recall that nλ + λ0 is the precision not the variance, so the standard deviation
is the square root of its reciprocal).

Comparing this with the frequentist 95% confidence interval, which is

x̄n ± 1.96

√
1

nλ

(recall that σ2 = 1/λ), we see that in general the two may be rather different,
although they do become very close in the limit as λ0 → 0. The case λ0 = 0
does not correspond to any normal prior, but is the what results from using
a flat, improper prior (Problem 7-82 in Lindgren). Thus the frequentist and
the Bayesian produce the same interval, albeit with different philosophical in-
terpretation, when (and only when) the Bayesian uses the flat improper prior.
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Otherwise, they disagree. The disagreement will be slight if the Bayesian’s
prior is very diffuse (this means the prior variance is very large, hence the prior
precision λ0 is very small). If the Bayesian’s prior is fairly precise, the disagree-
ment may be substantial and the 95% HPD region much shorter than the 95%
confidence interval.

Example 11.6.2 (Marginal t Posterior for µ).
When the data are i. i. d. normal with both mean and variance unknown pa-
rameters and we use a conjugate prior, then Theorems 11.1 and 11.2 tell us
that the marginal posterior for µ is a location-scale transform of a t distribution
with noninteger degrees of freedom. More precisely, Theorem 11.2 says that
(µ − γ)/d has a t(ν) distribution, where γ is a hyperparameter of the posterior
and d and ν are defined (in the theorem) in terms of the other hyperparameters
of the posterior α, β, and δ, and Theorem 11.1 gives the relation between the
hyperparameters of the posterior and the hyperparameters of the prior and the
data.

What is new in this example is that we want to figure out the HPD region
for µ. This is easily done by the same logic that gives frequentist confidence
intervals. By the symmetry of the t distribution, the HPD region is the set of
µ values satisfying ∣∣∣∣µ − γ

d

∣∣∣∣ < tα/2

where tα/2 is the 1 − α/2 quantile of the t(ν) distribution. So the HPD region
is γ ± tα/2d.

This resembles the frequentist confidence interval in being

something ± tα/2 × something else,

but the “something” is not Xn, the “something else” is not Sn/
√

n and the
degrees of freedom ν is not n − 1 except for the particular improper prior used
in Example 11.4.3.

Calculating HPD regions is not so easy when the posterior is not symmetric.
Then it is generally necessary to do a computer search to find the endpoints of
the region.

Example 11.6.3.
This continues Example 8.8b in Lindgren, which in class we gave both exact and
asymptotic “frequentist” analyses. The data X1, . . ., Xn are i. i. d. Exp(1/θ).
In order to be Bayesians we need a prior for θ, which we take to be g(θ) = 1/θ,
an improper prior. The likelihood is

L(θ) = θ−n exp

{
−1

θ

n∑
i=1

Xi

}
so the unnormalized posterior is

h(θ) = L(θ)g(θ) = θ−n−1 exp

{
−1

θ

n∑
i=1

Xi

}
(11.37)
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Lindgren would write h(θ | X) but we will temporarily suppress the data in the
notation.

This is not a recognizable distribution, but it looks like λ = 1/θ has a gamma
distribution. Let’s check. Solving for θ the change of variable is θ = 1/λ = w(λ).
The derivative of this transformation is w′(λ) = −1/λ2, hence the unnormalized
posterior for λ is

h[w(λ)] · |w′(λ)| = λn+1 exp

{
−λ

n∑
i=1

Xi

}
· 1
λ2

= λn−1 exp

{
−λ

n∑
i=1

Xi

}
which we recognize as Gam (n,

∑
i Xi). Thus we can use the known distribution

of λ to calculate probabilities about θ.
Finding the HPD region is not so easy. There is no way to calculate the end-

points or look them up in a table. There is a simple method using a computer.
Plot the unnormalized posterior (11.37). For a specific numerical example we
used before

∑
i Xi = 172.0. The unnormalized posterior for θ is the curve

plotted below.

theta
0 20 40 60

Posterior for theta (HPD region shaded)

The shaded area is the probability of the HPD region. The region itself is the
range of θ values covered (8.70, 32.41). The posterior probability of the HPD
region is 95% (this is the Bayesian analog of the “confidence” in a confidence
interval).

The HPD region was determined from the plot as follows. The curve is
actually plotted on a grid of points, spaced .01 apart on the θ axis. The sum
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of the y-values for these points approximates the integral for the normalizing
constant of the unnormalized density h(θ) given by (11.37). The points with the
highest y-values that constitute 95% of the sum are easily found by the computer
and give a good approximation to the HPD region. The actual probability of
the region, calculated using the gamma distribution of λ, is 94.99% (pretty
close), and the heights of the unnormalized density (11.37) at the endpoints are
1.200 × 10−19 and 1.19610−19. So we have come pretty close to a level set of
the posterior.

11.7 Bayes Tests

The Bayesian view of one-tailed tests is fairly straightforward. Strangely,
two-tailed tests, which the frequentist finds to be a minor variant of one-tailed
tests, the Bayesian finds incredibly complicated and somewhat bizarre, so much
so that Lindgren just avoids the subject. He blames the problem, calling it a
“mathematical idealization,” which is a meaningless criticism since so is every-
thing else in statistics and every other mathematical subject.

A Bayesian one-tailed test is simple. The null and alternative hypotheses,
being subsets of the parameter space are events, because the Bayesian considers
parameters to be random variables. Hence they have probabilities (both prior
and posterior). The test is done by calculating the posterior probabilities of the
hypotheses and seeing which is bigger.

Example 9.5a in Lindgren provides an example of this. The data Y ∼
Bin(n, p) with n = 15 and the observed value of the data y = 12. The parameter
p is unknown and given a U(0, 1) prior distribution. The hypotheses are

H0 : p ≤ 1
2

HA : p > 1
2

Lindgren calculates P (H0 | Y = 12) = 0.0106 and hence by the complement
rule P (HA | Y = 12) = 1 − P (H0 | Y = 12) = 0.9894.

For comparison, Lindgren gives the P -value of the frequentist test, which is
P (Y ≥ 12 | p = 1

2 ) = 0.0176. Both the Bayesian and frequentist tests strongly
favor the alternative by conventional standards of evidence, and the P -value and
Bayesian posterior probability of the null hypothesis are fairly similar, though
different in philosophical interpretation. The frequentist says “probability of the
null hypothesis” is a meaningless phrase because parameters are not random.
The Bayesian says this probability exists and is 0.0106. The P -value is quite
a different philosophical animal. It is the probability of seeing data at least
as extreme as the actual observed data under the assumption that the null
hypothesis is true. As we saw with confidence intervals and HPD regions, the
numbers are slightly different, but the philosophical interpretations are wildly
different.

The Bayesian two-tailed test runs into a problem. The null and alternative
hypotheses are still subsets of the parameter space, hence are still events (to
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the Bayesian), and hence still have probabilities. The trouble is that when the
hypotheses are

H0 : p = 1
2

HA : p 6= 1
2

and the prior is continuous, the null hypothesis, being a single point, has prob-
ability zero. Thus if we use the same prior as we used for the one-tailed test,
or any continuous prior, the posterior probability will be zero. But this is only
because the prior probability is zero. As we saw in Problem 7-84 in Lindgren,
whenever the prior probability is zero, the posterior probability will be zero too.
So we haven’t learned anything by doing such a test. Our mind was made up
before we observed any data that H0 was impossible and no data can change
our minds. Might as well not bother to collect data or analyze it.

As Lindgren says on p. 313 a way out of this dilemma is to make the null
hypothesis an interval, say

H0 : 1
2 − ε ≤ p ≤ 1

2 + ε

HA : p < 1
2 − ε or 1

2 + ε < p

for some ε > 0. But this only adds to the problems. True the prior and
posterior probabilities are now no longer zero, but where did ε come from?
This “solution” has raised more questions than it answers. Furthermore, the
posterior probability will still converge to zero if we let ε go to zero (by continuity
of probability, Theorem 4 of Chapter 2 in Lindgren) so our analysis will depend
very strongly on the choice of ε. We’ve only added to our troubles in finding a
sensible Bayesian analysis.

The choice of ε is so problematic that most Bayesians that bother with two-
tailed tests at all use a different solution to the dilemma. It is also weird, but less
weird. The solution is to choose a prior that is not continuous, and puts some
probability on the point null hypothesis Θ0 = { 1

2}. For example, continuing
the use of a uniform prior as much as possible, consider the prior distribution
defined as follows

P (H0) = α

P (HA) = 1 − α

p | HA ∼ U(0, 1)

This is a mixture of a distribution concentrated at one point (1
2 ) and a uniform

distribution.
Allowing such a prior takes us out of the theory we know. If the prior is

continuous, we calculate expectations, marginals, etc. by integrating. If it is
discrete, by summing. If it is neither discrete nor continuous, we don’t know
what to do. Fortunately we can describe what to do in this very simple case
where the distribution is continuous except for a single atom and avoid the
complexity of the general situation.
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In order to apply Bayes rule, we need to calculate the marginal probability of
the observed data P (Y = y) in the binomial example. We can do the calculation
in two parts, using what Lindgren calls the “law of total probability” (Theorem 3
of Chapter 2), which in this case says

P (Y = y) = P (Y = y and p = 1
2 ) + P (Y = y and p 6= 1

2 ).

First

P (Y = y and p = 1
2 ) = P (Y = y | p = 1

2 )P (p = 1
2 )

= α

(
n

y

) (
1
2

)y (
1
2

)n−y

= α

(
n

y

) (
1
2

)n

Second

P (Y = y and p 6= 1
2 ) = P (Y = y | p 6= 1

2 )P (p 6= 1
2 )

= (1 − α)
(

n

y

) ∫ 1

0

py(1 − p)n−y dp

= (1 − α)
(

n

y

)
B(y + 1, n − y + 1)

=
1 − α

n + 1
Putting these together, the marginal probability is

P (Y = y) = α

(
n

y

) (
1
2

)n

+
1 − α

n + 1

Hence the probability of H0 is

P (p = 1
2 | Y = y) =

P (p = 1
2 andY = y)

P (Y = y)
=

α
(
n
y

) (
1
2

)n

α
(
n
y

) (
1
2

)n + 1−α
n+1

(11.38)

That’s how a Bayesian two-tailed test is done.
Some practical or philosophical (non-mathematical anyway) issues remain.

The probability P (H0) given by (11.38) still depends strongly on the prior prob-
ability of H0 (that is, α). This means that no two Bayesians will produce the
same answer, since each will have a different prior probability (they will agree
on the formula but plug in different numbers for α).

In order to eliminate this source of disagreement, we need a new notion,
which is called the “Bayes factor” for the test. It is the ratio of the posterior to
prior odds. Recall that odds are probabilities expressed as a ratio rather than
a fraction. If the probability of an event is p, then the odds are p/(1− p). Here
the prior odds of H0 are α/(1 − α) and the posterior odds are

P (p = 1
2 | Y = y)

P (p 6= 1
2 | Y = y)

=

(
n
y

) (
1
2

)n

1
n+1

· α

1 − α
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Hence the Bayes factor is the first term on the right hand side. Notice that it
does not depend on α at all, although it still does depend on prior probabilities,
since it depends on the choice of a prior that is uniform on the alternative
hypothesis. The Bayes factor eliminates some, but not all, of the dependence
on the prior.

Now let us plug in a few numbers, to get a concrete example. Continuing
the example above with observed data y = 12, the Bayes factor is(

15
12

)(
1
2

)15

· (15 + 1) = 0.2221

For comparison, the two-tailed P -value is twice the one tailed P = 0.035 (be-
cause the distribution of the test statistic Y is symmetric under H0, the binomial
distribution is only symmetric when p = 1

2 but that’s what H0 asserts).
Notice the big difference between the Bayesian and frequentist analyses.

Frequentists are impressed with the evidence against H0, at least those fre-
quentists who think P < 0.05 implies “statistical significance.” Bayesians are
unimpressed. The data only lower the odds in favor of H0 by a factor between 4
and 5 (1/0.2221 = 4.5). If the prior odds in favor of H0 were even (1 to 1), then
the posterior odds in favor of H0 are now 0.222, and the posterior probability
of H0 is 0.222/(1 + 0.222) = .182, still almost one chance in 5 that H0 is true.

It shouldn’t be any surprise that the frequentist and Bayesian answers turn
out so different. They don’t purport to resemble each other in any way. The only
connection between the two is that they are competitors, different approaches to
the same issue, saying something about whether H0 or HA is correct. The situ-
ation we saw here is typical, the Bayesian is always less impressed by evidence
against H0 and “accepts” H0 less often than the frequentist.3 This gives the
Bayesians a problem with selling Bayes factors. Users of tests generally want
to reject H0. They didn’t collect their data with the idea that there was noth-
ing interesting in it (which is what H0 usually says). Thus they are reluctant
to switch to a procedure that makes rejecting H0 even harder. Of course the
Bayesian argues that frequentist tests are too lenient, but since frequentist tests
are widely accepted and everyone is used to them, this sales job is an uphill
battle.

Now let us go back and redo the calculation above abstractly so we get a
general formula for the Bayes factor. Suppose we are doing a problem with likeli-
hood Lx(θ) and put prior probability α on the point null hypothesis H0 : θ = θ0

and 1−α on the alternative hypothesis HA : θ 6= θ0 distributed according to the
conditional density g(θ). Unlike the situation in most Bayesian inference, we
must have g(θ) a proper probability density (not improper, not unnormalized).

As in the example above, the marginal probability of the data is

P (X = x) = P (X = x andH0) + P (X = x andHA)
= P (X = x | H0)α + P (X = x | HA)(1 − α).

3Berger and Sellke, “Testing a point null hypothesis: The irreconcilability of P values
and evidence” (with discussion), Journal of the American Statistical Association, 82:112-122,
1987.
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The posterior probability of H0 is

P (H0 | X = x) =
P (X = x andH0)

P (X = x)

=
P (X = x | H0)α

P (X = x | H0)α + P (X = x | HA)(1 − α)

and the posterior odds in favor of H0 are

P (X = x | H0)
P (X = x | HA)

· α

1 − α

Thus the Bayes factor is the first term above, the ratio of prior to posterior odds

P (X = x | H0)
P (X = x | HA)

To proceed we need the density of the data, which as always is proportional
to the likelihood, f(x | θ) = c(x)Lx(θ). Then

P (X = x | H0) = c(x)Lx(θ0)

and

P (X = x | HA) = c(x)
∫

Lx(θ)g(θ) dθ

So the Bayes factor in favor of H0 is

Lx(θ0)∫
Lx(θ)g(θ) dθ

Notice several things. First, the factor c(x) appears in both the numerator and
denominator of the Bayes factor and hence cancels, not appearing in the result.
Second, the prior on the alternative g(θ) appears only in the denominator.
That’s why it must be a proper density. If it were unnormalized or improper,
that would introduce an arbitrary constant that would not cancel into the Bayes
factor, rendering it meaningless.

11.8 Bayesian Asymptotics

For large sample sizes, frequentist and Bayesian procedures (most of them
anyway) give approximately the same answers. This is the result of a theorem
that we will not state precisely. Under the same conditions required for the
usual asymptotics of maximum likelihood plus one additional condition (that
usually holds, but we won’t describe since it is fairly technical) the asymptotic
posterior distribution is “the same” as the asymptotic sampling distribution of
the MLE. We put “the same” in quotes because the philosophical interpretation
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is radically different, but the asymptotic distribution is the same in both cases.
Here’s what we mean. The asymptotic sampling distribution of the MLE θ̂n is

θ̂n ≈ N
(

θ,
1

In(θ)

)
where θ is the true parameter value. Of course we don’t know θ (that’s why we
are estimating it) so we don’t know the asymptotic variance 1/In(θ). But we
can consistently estimate it, plugging in θ̂n for θ giving

θ̂n ≈ N
(

θ,
1

In(θ̂n)

)
(11.39)

Equation (11.39) is fairly sloppy notation. Strictly speaking, we should write√
In(θ̂n)

(
θ̂n − θ

) D−→ N (0, 1) (11.40)

but it is clear what is meant. The asymptotic posterior distribution of the
parameter θ is

θ ≈ N
(

θ̂n,
1

In(θ̂n)

)
(11.41)

Comparing with (11.39) we see that they differ only in the interchange of θ

and θ̂n. The frequentist considers θ fixed and θ̂n random and the asymptotic
sampling distribution of θ̂n to be a normal distribution centered at the unknown
true parameter value θ. The Bayesian considers θ̂n fixed (Bayesians condition
on the data) and θ random and the asymptotic posterior distribution of θ to be
a normal distribution centered at the MLE θ̂n.

It is an important point that the asymptotic posterior distribution does not
depend on the prior distribution of the parameter so long as the prior density
is continuous and nonzero at the true parameter value. The catch phrase that
expresses this is that the likelihood “outweighs” the prior for large sample sizes.
Thus for large (perhaps very large) sample sizes all Bayesians agree (priors don’t
matter) and they also agree with the frequentists.

At least they agree about most things. Frequentist asymptotic confidence
intervals will also be Bayesian asymptotic HPD regions. Frequentist asymp-
totic P -values for one-tailed tests will also be Bayesian asymptotic posterior
probabilities of the null hypothesis for the same tests. One thing that will stay
different is two-tailed tests. For them the posterior probabilities do not go away
asymptotically and the frequentist and Bayesian do not get the same results no
matter how large the sample size.

Problems

11-1. Suppose we observe X ∼ Poi(µ) and we want to do a Bayesian analysis
with prior distribution Gam(α, β) for µ, where α and β are known numbers
expressing our prior opinion about probable values of µ.
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(a) Find the posterior distribution of µ.

(b) Find the posterior mean of µ.

11-2. Suppose X is a single observation from a Gam(α, λ) distribution, where
α is a known constant. Suppose our prior distribution for λ is Gam(α0, λ0),
where the hyperparameters α0 and λ0 are also known constants.

(a) Find the posterior distribution for λ given X.

(b) Find the posterior mean E(λ | X).

(c) Find the posterior mode of λ.

11-3. Using the same improper prior as was used in Example 11.4.3, show that
the posterior marginal distribution of (n − 1)S2

nλ is the same as its sampling
distribution. More precisely stated, show that the frequentist sampling distri-
bution of (n − 1)S2

nλ with λ considered a nonrandom constant is the same as
the Bayesian marginal posterior distribution of (n − 1)S2

nλ with λ considered
random and S2

n = s2
n fixed at the observed value.

11-4. Find the posterior mean and variance of µ when the data are i. i. d.
normal and the prior is a general normal-gamma prior. Say for which values of
the hyperparameters the posterior mean and variance of µ exist.

11-5. Suppose X1, . . ., Xn are i. i. d. N (µ, 4), the prior distribution for µ is
N (10, 9), and the sample mean of a sample of size 10 is Xn = 12. Calculate a
90% HPD region for µ (note not 95%).

11-6. Suppose X1, . . ., Xn are i. i. d. N (µ, λ−1), the prior distribution for (µ, λ)
is the conjugate normal-gamma prior with

λ ∼ Gam(3, 3)

µ | λ ∼ N (10, 16λ−1)

the sample mean of a sample of size 15 is Xn = 12 and the sample variance is
S2

n = 50 (note not Vn). Calculate a 95% HPD region for µ.

11-7. Suppose X ∼ Bin(n, p), where p is an unknown parameter. Find a
formula giving the Bayes factor for the two-tailed test of

H0 : p = p0

HA : p 6= p0

when the prior distribution for p given HA is Beta(s, t), where s and t are known
constants. Hint: this is just like the test worked out in Section 11.7 except for
the prior.
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11-8. Suppose X1, . . ., Xn are i. i. d. N (µ, λ−1), where µ is an unknown pa-
rameter and the precision λ is a known constant. Find a formula giving the
Bayes factor for the two-tailed test of

H0 : µ = µ0

HA : µ 6= µ0

when the prior distribution for µ given HA is N (µ0, λ
−1
0 ), where µ0 and λ0 are

known constants.

11-9. Suppose the setup described at the end of Section 11.3. Verify that
the posterior (11.19) from the two-stage analysis described in that section is
the same as the posterior from analyzing all the data at once, which would be
(11.18) with m replaced by n.

11-10. Suppose X1, X2, . . . Xn are i. i. d. from the distribution with density

f(x) = θx−θ−1, x > 1,

where θ > 0 is an unknown parameter. Suppose our prior distribution for the
parameter θ is Exp(λ), where λ is a known number (hyperparameter of the
prior).

(a) Find the posterior density of θ.

(b) Find the posterior mean of θ.

(c) Find the posterior mode of θ.
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Chapter 12

Regression

12.1 The Population Regression Function

12.1.1 Regression and Conditional Expectation

Recall from last semester (Section 3.3.2 of these notes) that “regression func-
tion” is another name for conditional expectation. Recall that a conditional
expectation is not a function of the variable or variables “in front of the bar”
and is a function of the variable or variables “behind the bar.” Thus E(Y | X)
is not a function of Y and is a function of X, so we can write

h(X) = E(Y | X).

This function h is an ordinary function. When we wish to emphasize this and
write it as a function of an ordinary variable, we write

h(x) = E(Y | x),

but the meaning is the same in either case. This function h is called the regres-
sion function of Y on X, the reason for the long name being that

g(Y ) = E(X | Y )

defines a different function, the regression function of X on Y .
When we developed this terminology last semester, we had not begun sys-

tematic study of random vectors. Now we want to generalize this to allow a
vector variable “behind the bar” leaving the variable in “front of the bar” a
scalar. Then the regression function is a scalar function of a vector variable

h(X) = E(Y | X)

which we can also think of as a function of several variables

h(X1, . . . , Xk) = E(Y | X1, . . . , Xk).

381
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12.1.2 Best Prediction

There is a connection between conditional expectation (or the regression
function) and prediction, which is given by the following theorem, which is
Theorem 3.6 in last semester’s notes improved to have a random vector “behind
the bar.” The proof is exactly the same as for Theorem 3.6 except for boldface
type for X, which does not make any essential difference.

Theorem 12.1 (Best Prediction). For predicting a random variable Y given
the value of a random vector X, the predictor function a(X) that minimizes the
expected squared prediction error

E{[Y − a(X)]2}

is the conditional expectation a(X) = E(Y | X).

This theorem is analogous to theorem about the characterization of the mean
(Corollary 7.2 in these notes). Together these two theorems say

• The best estimate of the the value of a random variable Y , where “best”
means minimizing expected squared prediction error, is the mean E(Y ),
when no other information is available.

• The best estimate of the the value of a random variable Y given the value
of a random vector X, where “best” means minimizing expected squared
prediction error, is the conditional mean E(Y | X).

The theorem gives yet another name for E(Y | X). In addition to conditional
expectation and the regression function, we also call it the best predictor (BP).
Sometimes the best predictor is called the best unbiased predictor (BUP) because
it is unbiased in the sense that its expectation is the mean of Y . This is a
consequence of the iterated expectation property (Axiom CE2 for conditional
expectation in Chapter 3 of these notes).

E{E(Y | X)} = E(Y ).

Since the best predictor is always unbiased, it is irrelevant whether or not you
bother to mention that it is unbiased. BP and BUP mean the same thing.

We give no examples because our interest in BP is mostly abstract. If you
know the regression function, then you use it to give the best prediction. But
when we are doing statistics, we don’t know the regression function, because
it depends on the true distribution of the data, and that depends on unknown
parameters. Thus when doing statistics, the regression function isn’t something
we calculate, it’s something we estimate. And often, as we will see in the next
section, we don’t even try to use the regression function (use best prediction),
because it’s too hard.
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12.1.3 Best Linear Prediction

A widely used simplification of the regression problem restricts the allowable
predictions to linear predictions, functions of the form

h(X) = α + β′X = α +
n∑

i=1

βiXi. (12.1)

(where α and β1, . . ., βn are constants). The function of this form that has the
smallest mean square prediction error

E{(Y − α − β′X)2} (12.2)

is called the best linear predictor (BLP).
It should be understood, that using BLP is the Wrong Thing (not BP)

unless the regression function just happens to be linear. The reason for doing
the Wrong Thing is presumably because the Right Thing (using BP) is too hard,
or we are too ignorant, or something of the sort.

Estimating the regression function is hard, but can be done. The main
reason for the widespread use of linear prediction is that it had a 150 year head
start (the development of linear regression theory started around 1800, whereas
the development of nonlinear regression theory didn’t really take off until the
1970’s and is still a very active research area). So people understand linear
regression much better, there is a long history of use in the various sciences,
and so forth. Hence we will study it because of its popularity. (You should
keep in mind though, that it is usually the Wrong Thing, decidedly not “best”
despite the name).

We are now going to do a “stupid math trick” that simplifies notation at the
expense of some mystification. Expression (12.1) is needlessly complicated (says
the mathematician) by having two kinds of coefficients: α and the βi. Only one
kind is actually needed. We can consider (12.1) a special case of

h(X) = β′X =
n∑

i=1

βiXi, (12.3)

because if we make X1 the constant random variable X1 = 1, then (12.3) be-
comes

h(X) = β1 +
n∑

i=2

βiXi,

and this describes the same family of predictor functions as (12.1). Only the
notation has changed (what was α is now β1, what was βi is now βi+1 for i > 1).

Thus we see that, although the simpleminded notion of the relationship
between our two expressions for a linear prediction function is that (12.3) is a
special case of (12.1) obtained by taking α = 0, the really sophisticated notation
is just the reverse, that (12.1) is a special case of (12.3) obtained by taking one of
the Xi = 1. Having seen this, we will just use the mathematically simpler form
(12.3) without any assertion that any of the Xi are constant. Understanding
the general case tells us about the special case.
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Theorem 12.2 (Best Linear Prediction). For predicting a random variable
Y given the value of a random vector X, the linear predictor function (12.3)
that minimizes the expected squared prediction error

E{(Y − β′X)2} (12.4)

is defined by
β = E(XX′)−1E(Y X) (12.5)

assuming the inverse exists.1

Proof. The m. s. p. e. (12.4) is a quadratic function of β1, . . ., βn. Since it
is nonnegative it is a positive semi-definite quadratic function and hence has a
global minimum where the first derivative is zero.

The proof is simpler if we rewrite (12.4) in non-matrix notation as

Q(β) = E


(

Y −
n∑

i=1

βiXi

)Y −
n∑

j=1

βjXj


and further simplify using linearity of expectation

Q(β) = E(Y 2) +
n∑

i=1

n∑
j=1

βiβjE(XiXj) − 2
n∑

i=1

βiE(Y Xi)

The first derivative vector has components

∂Q(β)
∂βk

= 2
n∑

i=1

βiE(XiXk) − 2E(Y Xk) (12.6)

These are n linear equations in n unknowns β1, . . ., βk. They always have a
solution (not necessarily unique), but in general there is no nice expression for
the solution, except that we can always write the solution of any set of linear
equations in terms of a matrix inverse (if the inverse exists, or a generalized
inverse if not). Before we can do that, we need to put (12.6) back in matrix
notation, using the fact that E(XX′) is a matrix with components E(XiXj) so
(12.6) can be rewritten

∇Q(β) = 2E(XX′)β − 2E(Y X) (12.7)

Hence the equations to be solved are (12.7) set to zero, that is

E(XX′)β = E(Y X) (12.8)

Multiplying both sides on the left by E(XX′)−1 gives (12.5).
1If the inverse does not exist, it can be replaced by a so-called “generalized inverse” and the

same formula still produces a best linear predictor, but a generalized inverse is non-unique, so
the β produced by the formula is non-unique. However, every such β gives the same prediction
β′X for the same value of X. The nonuniqueness arises because X is a degenerate random
vector (concentrated on a hyperplane). We will ignore this issue henceforth and assume the
inverse exists.
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For convenience we give the special case in which there is one constant
predictor variable and one non-constant predictor, in which case we write the
linear predictor function as α + βX.

Corollary 12.3. For predicting a random scalar Y given the value of a random
scalar X, the linear predictor function of the form α + βX that minimizes the
expected squared prediction error is defined by

α = µY − βµX (12.9a)

β = ρ
σY

σX
(12.9b)

This looks so different from the form given in the theorem that it is simpler
to just derive it separately, which is done on p. 426 in Lindgren. The reason we
have called it a “corollary” is to remind you that it is, despite appearances, a
special case of the theorem.

As with BP and BUP, sometimes that BLP is BLUP (best linear unbiased
prediction). In general the BLP is not unbiased, but when one of the predictors
is constant (when we are using our “stupid math trick”) it is.

BLP is BLUP when one of the predictors is constant.

In particular, there is no difference between BLP and BLUP in Corollary 12.3.
The proof of this assertion is a direct consequence of (12.8) in the proof of

the theorem. This one vector equation is equivalent to n scalar equations, which
are sometimes called the “normal equations.” If Xk = 1 with probability one,
then the k-th normal equation

E(XkX′)β = E(Y Xk)

becomes
E(Y ) = E(X)′β = β′E(X) = E(β′X)

and this says that the prediction β′X is unbiased for Y .

Example 12.1.1 (A Pretty Bad “Best” Linear Prediction).
In Example 3.5.1 in Chapter 3 of these notes we considered positive scalar
random variables X and Y having joint density

f(x, y) = 1
2 (x + y)e−x−y, x > 0, y > 0.

There we found the best predictor of X given Y is

a(Y ) = E(X | Y ) =
2 + Y

1 + Y
, Y > 0.

This is a fairly nonlinear function so we don’t expect BLP to do very well, and
it doesn’t.
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Direct calculation using gamma integrals gives

E(X) =
1
2

∫ ∞

0

∫ ∞

0

(x2 + xy)e−x−y dx dy

=
1
2

∫ ∞

0

(2 + y)e−y dy

=
3
2

E(X2) =
1
2

∫ ∞

0

∫ ∞

0

(x3 + x2y)e−x−y dx dy

=
1
2

∫ ∞

0

∫ ∞

0

(6 + 2y)e−y dy

= 4

E(XY ) =
1
2

∫ ∞

0

∫ ∞

0

(x2y + xy2)e−x−y dx dy

=
1
2

∫ ∞

0

∫ ∞

0

(2y + y2)e−y dy

= 2

By symmetry E(X) = E(Y ) and E(X2) = E(Y 2). So

var(X) = E(X2) − E(X)2 =
7
4

var(Y ) = var(X)

cov(X,Y ) = E(XY ) − E(X)E(Y ) = −1
4

cor(X,Y ) =
cov(X,Y )√

var(X) var(Y )
= −1

7

So the BLP corollary gives

β = −1
7

α =
12
7

and best linear prediction is

ablp(Y ) =
12 − Y

7
, Y > 0.

Note that for Y > 12 the BLP is negative, whereas the variable X it is
predicting is necessarily positive. So the prediction isn’t very good. The theorem
asserts that this prediction is the best of all linear predictions. The problem is
that no linear prediction is very good, even the best of them.

The BLP isn’t the BP. Sometimes the BLP is a very bad predictor.
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The theorem describes the BLP (or BLUP when one of the predictors is
constant) in the case where you know the “population” distribution, the true
distribution of X and Y . But when we are doing statistics, we don’t know
the true distribution of the data, because it depends on unknown parameters.
Thus when doing statistics, the BLP or BLUP isn’t something we calculate, it’s
something we estimate. It’s the true unknown “population” function that we
are trying to estimate from a sample.

12.2 The Sample Regression Function

Recall the empirical distribution introduced in Section 7.1 of these notes. It
is the distribution that puts probability 1/n at each of n points. There we were
interested in the case where the points were scalars. Here we are interested in
the case where the points are vectors, but there is no real difference except for
boldface. The empirical expectation operator associated with the vector points
x1, . . ., xn is defined by

En{g(X)} =
1
n

n∑
i=1

g(xi). (12.10)

which is just (7.2) with some type changed to boldface.
In regression, we are interested in vectors of a rather special form, consisting

of a scalar “response” variable y and a vector “predictor” variable x. Sup-
pose we have observed a sample of predictor-response pairs (xi, yi), then the
corresponding empirical expectation formula is

En{g(Y,X)} =
1
n

n∑
i=1

g(y,xi). (12.11)

In particular, the empirical mean square prediction error for a linear predictor
of the form described in the theorem is

1
n

n∑
i=1

(yi − β′xi)2 (12.12)

Now the theorem applied to the empirical distribution gives the following. The
empirical BLP is

β̂ = En(XX′)−1En(Y X) (12.13)

where

En(XX′) =
1
n

n∑
i=1

xix′
i (12.14)

En(Y X) =
1
n

n∑
i=1

yixi (12.15)
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However, this is not the usual form in which the empirical analogue of the
theorem is stated. The usual form involves yet another “stupid math trick.”
The formulas above have some explicit sums, those involved in the empirical
expectation, and some implicit sums, those involved in matrix multiplications.
The “stupid math trick” we are now introducing makes all the sums implicit
(matrix multiplications).

To understand the trick, we need a closer look at the predictor variables.
The subscripts on the xi do not denote components, but different vectors in the
sample. Each xi is a vector and has components, say

xi = (xi1, . . . , xip)

(Before we were writing n as the dimension of the vectors. Now we are using n
for the sample size. So the dimension must be a different letter, here p.) Thus
the “predictor” part of the observed data are np variables

xij , i = 1, . . . , n and j = 1, . . ., p.

which if we like, we can think of as an n × p matrix X (we’ve introduced a
new notation here: X with no subscripts will henceforth be an n × p matrix).
This matrix is very important in the theory of linear regression. It is commonly
called the design matrix. The reason for the name is that if the data are from
a designed experiment, then the design matrix incorporates everything about
the design that is involved in linear regression theory. If the data are not
from a designed experiment, then the name is inappropriate, but everyone uses
it anyway. The relationship between the design matrix X and the predictor
vectors x1, . . ., xp is that the predictor vectors are the columns of the design
matrix.

Now write µ as the n-dimensional vector of all the theoretical predictions
(the conditional expectation of Yi given all the x’s), which has components

µi = β′xi =
p∑

j=1

Xijβj

This sum can be written as a matrix multiplication

µ = Xβ. (12.16)

because the dimensions match

µ
n × 1

= X
n × p

β
p × 1

Now we want to also write the sum in (12.12) as a matrix multiplication. The
way we do this is to note that for any vector z = (z1, . . . , zn)

z′z =
n∑

i=1

z2
i .
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Applying this with z = y − Xβ gives

1
n

(y − Xβ)′(y − Xβ) (12.17)

as another expression for the empirical m. s. p. e. (12.12).
Now we also want to rewrite (12.14) and (12.15) using this trick. When we

write these equations out explicitly using all the subscripts, we see that (12.14)
is a matrix with (j, k)-th element

1
n

n∑
i=1

xijxik

which is seen to be the j, k element of X′X/n. Similarly, (12.15) is a vector
with j-th element

1
n

n∑
i=1

yiXij

which is seen to be the j-th element of y′X/n or of X′y/n. Putting these
together we get the following very compact matrix notation for (12.13)

β̂ =
(

1
n
X′X

)−1 1
n
X′y = (X′X)−1X′y.

This is the “usual” way the empirical version of the BLP theorem is written

Corollary 12.4 (Multiple Linear Regression). The β that minimizes (12.17)
is

β̂ = (X′X)−1X′y (12.18)

For completeness, we also record the empirical analog of Corollary 12.3

Corollary 12.5 (Simple Linear Regression). The values α and β that min-
imize the empirical expected squared prediction error

1
n

n∑
i=1

(yi − α − βxi)2

are

α̂ = ȳ − βx̄ (12.19a)

β̂ = r
sy

sx
(12.19b)

Fortunately, we do not have to do the calculations described by these corol-
laries by hand. Many calculators will do the “simple case” of Corollary 12.5.
Any computer statistics package will do the “multiple” case of Corollary 12.4.

Here’s an example using R.



390 Stat 5101 (Geyer) Course Notes

Example 12.2.1 (Multiple Regression).
We use the data in the URL

http://www.stat.umn.edu/geyer/5102/ex12.2.1.dat

The R command that does multiple linear regression is lm (for “linear model”).
This data set has three variables x1, x2, and y. In R each is a vector, and they
all have the same length (in this particular data set n = 100). The response is
y, and the predictor variables are x1 and x2. The specific R commands that do
the regression and print the results are

out <- lm(y ~ x1 + x2)
summary(out)

The first command doesn’t print anything (it just returns the dataset out), the
latter prints the fairly voluminous output

Call:
lm(formula = y ~ x1 + x2)

Residuals:
Min 1Q Median 3Q Max

-121.338 -32.564 5.525 35.309 124.846

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 94.4803 10.9616 8.619 1.27e-13 ***
x1 0.8503 0.5606 1.517 0.133
x2 1.3599 0.5492 2.476 0.015 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.22 on 97 degrees of freedom
Multiple R-Squared: 0.5875, Adjusted R-squared: 0.579
F-statistic: 69.08 on 2 and 97 degrees of freedom, p-value: 0

most of which we won’t explain now (and a fair amount of which we won’t
explain ever).

The first thing we will explain is what model was fit, and where to find the
estimates of the β’s in the printout. R always assumes by default that you want
a constant predictor. Hence the model fit here has three predictors, not just the
two explicitly mentioned. Hence it also has three corresponding parameters.
We can write the model as

h(x) = α + β1x1 + β2x2.

Information about the parameter estimates is found in the section labeled
Coefficients: (α and the βi and their estimates are often called regression
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coefficients because they are the coefficients of the predictor variables in the
definition of the regression function). The estimates are given in the column
labeled Estimate in that section, which we repeat here

Estimate
(Intercept) 94.4803
x1 0.8503
x2 1.3599

The three estimates are α̂, β̂1 and β̂2 respectively. The coefficients of the non-
constant predictors are labeled by the names of the variables they multiply. The
coefficient of the constant predictor is labeled (Intercept) because α is usually
called the “y-intercept” in elementary math.

If you actually wanted to do regression without a constant predictor, you
would need to know the magic incantation that makes R do this. In fact, it has
two2

out <- lm(y ~ x1 + x2 + 0)
out <- lm(y ~ x1 + x2 - 1)

So that covers the mechanics of doing linear regression. Let the computer
do it!

12.3 Sampling Theory

12.3.1 The Regression Model

In order to have sampling theory, we need a probability model. The prob-
ability model usually adopted assumes that we observe pairs (Yi,Xi), i = 1, 2,
. . . . The Yi are scalars, and the Xi are vectors. The Xi may or may not be
random, but if random we condition on them, meaning we treat them as if not
random. Thus we will henceforth write them as lower case xi.

The linear regression model (sometimes just called the linear model) is that
the means of the Yi are linear functions of the xi

E(Yi) = β′xi. (12.20)

Note that this formula assumes the xi are constants. If we didn’t assume that,
we would have to write (12.20) as

E(Yi | Xi) = β′Xi (12.21)

(this is the last time we will note the distinction between the two approaches).
We also usually write

Yi = β′xi + ei, i = 1, . . . , n,
2The reason for two is that the R team like the first, and the second is provided for

backwards compatibility with the S language, which R is more or less a clone of. I find neither
very intuitive.
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which can be written as a single vector equation

Y = Xβ + e (12.22)

where e = (e1, . . . , en).
This equation has no statistical content. We are just defining variables ei to

be the deviations of the Yi from their means. The ei are usually called “errors.”
Despite the lower case letter, they are random variables (“big E” is a frozen
letter, reserved for expectation operators). In order for (12.20) to hold, the
errors must have mean zero.

To further specify the distribution, we can describe the distribution of ei-
ther the Yi or the ei. The latter is simpler. There are two different types of
assumptions that can be made about the errors: strong and weak. The weak
assumption, used in the following section, describes only the first two moments.
The weak assumption says

E(e) = 0

var(e) = σ2I
(12.23)

or in words, the errors

• have mean zero,

• are uncorrelated, and

• have constant variance

(that is, they all have the same variance).3

The strong assumption actually gives the distribution of the errors

e ∼ N (0, σ2I) (12.24)

It is a special case of the weak assumption. It says the errors have the mean and
variance specified by (12.23), and in addition that they are multivariate normal.
Note that by Theorem 5.13 of Chapter 5 in last semester’s notes (uncorrelated
implies independent for jointly multivariate normal random variables), an equiv-
alent way to state the strong assumption is that the ei are i. i. d. N (0, σ2).

Thus the weak assumption only makes the errors uncorrelated (which does
not imply they are independent if they are not multivariate normal), whereas the
strong assumption makes the errors both independent and normally distributed.

Both the weak and strong assumption make the same assumption (12.20)
about the means of the Yi. Another way to describe this part of the model as-
sumptions is by saying that we are assuming that the true population regression
function is linear. It is clear from (12.21) that

h(x) = β′x (12.25)
3The assumption of constant variance is so important that some statistician invented a

big word to describe it: homoscedasticity. Violation of the assumption (different variances) is
called heteroscedasticity. But we’ll just say “constant variance” and “non-constant variance.”
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is assumed to be the regression function of Y on X. We often call this the
population regression function in our usual abuse of terminology that talks about
i. i. d. variables as a “sample” from an infinite “population.” What we mean
is only the assertion (12.20) or (12.21) that this is the true unknown regression
function.

This is the usual statistical set-up. The xi and Yi are observed data; the
βi are unknown parameters. The best we can do is to estimate the unknown
parameters with estimates β̂i that are functions of the data and study the
statistical properties of the estimates (and eventually get confidence intervals,
hypothesis tests, and the rest of the paraphernalia of statistical inference).

The estimators we are going to study are the empirical BLUP estimates
described by Corollaries 12.4 and 12.5. The name “empirical BLUP” we used for
them is nonstandard. They have accumulated a lot of names over the years. One
common name for the β̂i is sample regression coefficients. (And the analogous
term for the βi is population regression coefficients.) Another common name,
in use for 200 years, for the β̂i is least squares estimates because they minimize
the empirical m. s. p. e. (12.12).

When we plug the estimates into (12.25) we get

ĥ(x) = β̂
′
x, (12.26)

which is the sample regression function.4

It is important here, as everywhere else in (frequentist) statistics to keep the
slogan about the sample is not the population firmly in mind. Even assuming
that the population regression function is linear so (12.25) gives best predictions,
the sample regression function (12.26) does not give best predictions because
the sample is not the population. How far off they are is the job of sampling
theory to describe.

12.3.2 The Gauss-Markov Theorem

This section uses only the “weak” distributional assumptions (12.23). Nor-
mality is not used. The content of the Gauss-Markov theorem is simply stated
as the least squares estimates are best linear unbiased estimates (BLUE).

Before we can even state the theorem properly we need to explain what
“best” means in this context. For unbiased estimates mean square error is the
same as variance. So best means smallest variance. The problem is that the
estimate β̂ is a vector, so its variance is a matrix. What does it mean for one
matrix to be “smaller” than another?

In general there is no sensible definition of a “less than” relation for matrices.
Recall, though that variance matrices have the special property of being positive
semi-definite (Corollary 5.5 of Chapter 5 of these notes). There is a natural

4You also hear people say a lot of other pairs: sample regression thingummy and population
regression thingummy for instances of “thingummy” other than function and coefficients, such
as equation, line (thinking of the graph of a linear function being a line in the “simple” case
of one non-constant predictor), and so forth.
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partial order for positive semi-definite matrices. We say A ≤ B if B − A is a
positive semi-definite matrix.

To understand what this means, look at the proof of why covariance matrices
are positive semi-definite. A matrix M is positive semi-definite if

c′Mc ≥ 0, for every vector c.

We also know that for any random vector X having variance matrix M, the
variance of a scalar linear function is given by

var(a + c′X) = c′Mc (12.27)

by (5.19b) from Chapter 5 of these notes. Since variances are nonnegative, this
shows M is positive semi-definite.

Now consider two random vectors X and Y with variance matrices MX and
MY, respectively. We say that MX ≤ MY if and only if MY−MX is a positive
semi-definite matrix (that’s the definition of the partial order). This means

c′(MY − MX)c ≥ 0, for every vector c,

and this is equivalent to

c′MXc ≤ c′MYc, for every vector c,

and by (12.27) this is also equivalent to

var(a + c′X) ≤ var(a + c′Y), for every vector c. (12.28)

This characterization tells us what the partial order means. The variance matri-
ces are ordered var(X) ≤ var(Y) if and only if the variance of every scalar-valued
linear function of X is no greater than the variance of the same function of Y.
That’s a strong condition!

Now that we have got this rather complicated definition of “best” explained,
the theorem itself is very simple.

Theorem 12.6 (Gauss-Markov). Under the assumptions (12.22) and (12.23),
the least squares estimate (12.18) is an unbiased estimate of β. Furthermore it
is the best linear unbiased estimate, where “best” means smallest variance.

In short, the least squares estimate is BLUE.

Proof. The first assertion is that β̂ given by (12.18) is an unbiased for β. This
is trivial

E(β̂) = E
{
(X′X)−1X′Y

}
= (X′X)−1X′E(Y) = (X′X)−1X′Xβ = β

(just linearity of expectation and the definition of matrix inverse).
Consider an unbiased but otherwise completely arbitrary estimate, which

will have the form β∗ = AY for some constant matrix A. (Saying A is constant



12.3. SAMPLING THEORY 395

means A can depend on X but not on Y. Saying β∗ is an estimate means A
cannot depend on the parameters β and σ2.) It simplifies the proof somewhat
if we define

B = A − (X′X)−1X′

so
β∗ =

[
(X′X)−1X′ + B

]
Y = β̂ + BY

The condition that β∗ be unbiased is then

β = E(β∗) = E(β̂) + BE(Y) = β + BXβ

which simplifies to
BXβ = 0

Unbiasedness means this must hold for all possible values of β. Hence BX = 0.
Now we calculate

var(β∗) = var(β̂ + BY) = var(β̂) + var(BY) + 2 cov(β̂,BY) (12.29)

The formula for the variance of a sum here is (5.9) from Chapter 5.
I now claim that the covariance is zero (meaning we haven’t proved that yet,

but we want to look at its consequences to see why it is worth proving), from
which the BLUE assertion follows immediately, because then (12.29) becomes

var(β∗) = var(β̂) + var(BY)

and, since var(BY) like any variance matrix must be positive semi-definite, this
implies that var(β∗) − var(β̂) is positive semi-definite, which according to the
definition of partial order for matrices is the same as var(β̂) ≤ var(β∗), which
is the “β̂ is best” assertion of the theorem.

Thus we have a proof that is complete except for the unproved claim that
the covariance term in (12.29) is zero. So we now prove that claim. Again we
calculate, using

cov(β̂,BY) = E
{

β̂(BY)′
}
− E(β̂)E(BY)′ = E

{
β̂(BY)′

}
because E(BY) = BXβ = 0. And

E
{

β̂(BY)′
}

= E
{
(X′X)−1X′YY′B′}

= (X′X)−1X′E(YY′)B′

Now
E(YY′) = var(Y) + E(Y)E(Y)′ = σ2I + Xββ′X′

so

E
{

β̂(BY)′
}

= (X′X)−1X′(σ2I + Xββ′X′)B′

= σ2(X′X)−1X′B′ + (X′X)−1X′Xββ′X′B′

And both terms contain X′B′ = (BX)′ = 0.
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This is a very famous theorem. All students should know about it. But
for all its supposed theoretical importance, you can’t actually do anything with
it. It’s only good for theoretical woofing. Saying “least squares estimates are
BLUE” intimidates people who haven’t had a course like this.

The BLUE assertion of the theorem isn’t even that important. After all,
it doesn’t claim that the least squares estimates are best. It only claims that
they are best linear unbiased, which means best among linear and unbiased
estimators. Presumably there are nonlinear or biased estimators that are better.
Otherwise we could prove a stronger theorem. You have to read between the
lines. It sounds like a claim that least squares estimates are the best, but when
you decode the qualifications, it actually suggests that they aren’t the best.

Moreover, the whole analysis is based on the assumption that the linear
model is correct, that the true unknown population regression function is linear,
that is, has the form (12.25). If the true unknown population regression function
is not linear, then the least squares estimates are not even unbiased, much less
BLUE.

12.3.3 The Sampling Distribution of the Estimates

The Regression Coefficients

We now turn to a much more straightforward problem: what is the sampling
distribution of β̂. In order to have a sampling distribution, we need to specify
the whole distribution of the data (not just two moments like we used in the
Gauss-Markov theorem). Thus we now switch to the strong linear regression
assumptions (12.24).

The least squares estimates are a linear transformation of the data Y by
(12.18), hence if the data are multivariate normal, so are the estimates. A
multivariate normal distribution is determined by its mean vector and variance
matrix, so we only need to calculate the mean and variance to figure out the
distribution.

Theorem 12.7. Under the assumptions (12.22) and (12.24)

β̂ ∼ N (
β, σ2(X′X)−1

)
. (12.30)

Proof. We already showed that E(β̂) = β under the weak assumptions in the
proof of the Gauss-Markov theorem. Since the strong assumptions are stronger,
this holds here too.

Now

var(β̂) = var
(
(X′X)−1X′Y

)
= (X′X)−1X′ var(Y)

(
(X′X)−1X′)′

= (X′X)−1X′ var(Y)X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1
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because var(Y) = var(e) = σ2I.

Please note the assumptions of the theorem. If we assume

• the true regression function is linear (12.22) and

• the errors are independent, identically distributed, and exactly normally
distributed (12.24),

then (12.30) gives the exact (not asymptotic) sampling distribution of the least
squares estimates. If any of these assumptions are not exactly correct, then it
doesn’t.

The Error Variance

Unfortunately, the theorem by itself is useless for inference because the dis-
tribution contains an unknown parameter σ2. To make progress, we need an
estimate of this parameter and knowledge of its sampling distribution.

If we observed the actual errors ei, the natural estimate of their variance
would be

1
n

n∑
i=1

e2
i

We don’t subtract off their mean, because we know E(ei) = 0.
Unfortunately, we do not observe the errors, and must estimate them. Since

ei = yi − β′xi

the natural estimate is
êi = yi − β̂

′
xi (12.31)

Because the sample is not the population, these are not the right thing. Hence
we should call them not “errors” but “estimated errors.” The usual name,
however, for (12.31) is residuals. We often rewrite (12.31) as a vector equation

ê = y − Xβ̂. (12.32)

Plugging the residuals in for the errors in our “natural estimate” gives

1
n
ê′ê =

1
n

n∑
i=1

ê2
i (12.33)

as a sensible estimate of σ2, and it turns out this is the MLE (p. 491 in Lindgren).
However, this is not the estimator commonly used, because it is biased. The
commonly used estimator is

σ̂2 =
1

n − p

n∑
i=1

ê2
i (12.34)
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where p is the number of predictor variables (and regression coefficients). As
we shall see, this estimate turns out to be unbiased.

The sum in either of these estimators referred to often enough that it needs
a name. It is called the sum of squares of the residuals (SSResid) or the residual
sum of squares

SSResid =
n∑

i=1

ê2
i = ê′ê. (12.35)

Theorem 12.8. Under the assumptions (12.22) and (12.24) SSResid is inde-
pendent of β̂, and

SSResid
σ2

∼ chi2(n − p),

where n is the number of observations and p the number of regression coeffi-
cients.

From (12.34) and (12.35) we see that the theorem is equivalent to

Corollary 12.9. Under the assumptions (12.22) and (12.24) σ̂2 is independent
of β̂, and

(n − p)σ̂2

σ2
∼ chi2(n − p),

where n and p are as in the theorem.

We will have to defer the proof of the theorem for a bit while we develop a
deeper understanding of what linear regression does. First we will look at what
we can do with the theorem.

12.3.4 Tests and Confidence Intervals for Regression Co-
efficients

The main thing we can do with these theorems is make pivotal quantities
having Student’s t distribution. Recall the definition of Student’s t distribution
from Section 7.3.5 of these notes: the ratio of a standard normal and the square
root of an independent chi-square divided by its degrees of freedom. The vector
β̂ of sample regression coefficients is multivariate normal by Theorem 12.7. To
simplify notation define

M = (X′X)−1.

Then the variance of β̂ is σ2M. Hence a particular sample regression coefficient
β̂k has variance σ2mkk (where, as usual, the elements of M are denoted mij).
The mean of β̂k is βk. Thus

Zk =
β̂k − βk

σ
√

mkk
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is standard normal. By Corollary 12.9, σ̂2/σ2 is an independent chi-square
divided by its degrees of freedom, hence

Tk =
β̂k − βk

σ̂
√

mkk
∼ t(n − p). (12.36)

Since the right hand side does not contain unknown parameters, this is a pivotal
quantity. Hence it can be used for exact confidence intervals and tests about
the unknown parameter βk.

The only difficulty in using this pivotal quantity is calculating the denomi-
nator σ̂

√
mkk. Because it involves a matrix inverse, there is no simple formula

for calculating it. You must use a computer. When using R to do the regression,
it always calculates this quantity and prints it out.

Example 12.3.1.
This continues Example 12.2.1. Again we repeat part of the printout from that
example

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 94.4803 10.9616 8.619 1.27e-13 ***
x1 0.8503 0.5606 1.517 0.133
x2 1.3599 0.5492 2.476 0.015 *

Recall from Example 12.2.1 that we explained that the column labeled Estimate
from this table gives the sample regression coefficients β̂k. Now we explain
the rest of the table. The column labeled Std. Error gives the denominators
σ̂
√

mkk of the t pivotal quantities involving the regression coefficients. The label
follows the widespread convention of calling an estimated standard deviation a
“standard error.” The standard deviation of β̂k is σ

√
mkk, which involves an

unknown parameter. Estimating it by plugging in σ̂ for σ gives the standard
error.

The column labeled t value gives the value of the t statistic (12.36) for
testing the null hypothesis βk = 0. This means that it is the value of (12.36)
with zero plugged in for βk. Let’s check this. Looking at the last row, for
example 1.3599/0.5492 = 2.476147, and we see that the third column is indeed
the first column divided by the second.

The column labeled Pr(>|t|) gives the P -value for the two-tailed test of
βk = 0 (that is, the alternative is HA : βk 6= 0). Let’s also check this. The
degrees of freedom of the relevant t distribution are n − p, where n = 100 and
p = 3 (there are three regression coefficients including the intercept). Actually,
we do not even have to do this subtraction. The degrees of freedom are also
given in the R printout in the line

Residual standard error: 54.22 on 97 degrees of freedom

The P -value corresponding to the t statistic 2.476 in the bottom row of the
table is
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> 2 * (1 - pt(2.476, 97))
[1] 0.01501905

and this does indeed agree with the number in the fourth column of the table.
Thus R makes the test with null hypothesis βk = 0 easy. It prints the P -

value for the two-tailed test and, of course, the P -value for a one-tailed test, if
desired, would be half the two-tailed P -value.

The confidence intervals are a bit harder. They have the form

estimate ± critical value × standard error

and all the pieces except the critical value are given in the printout, but that is
easily looked up. The critical value for a 95% confidence interval is

> qt(0.975, 97)
[1] 1.984723

Thus a 95% confidence interval for β2 (using numbers from the bottom row of
the table in the printout) is

> 1.3599 + c(-1,1) * 1.984723 * 0.5492
[1] 0.2698901 2.4499099

One final warning: with three regression coefficients here, you can do three
confidence intervals or three tests. But doing that without correction for mul-
tiple testing (Bonferroni correction, for example) is bogus. In fact, R’s attempt
to be helpful by providing the “stars” necessary for “stargazing” is just the bo-
gosity we warned about in Section 9.5.8. So unless there is a strong tradition
of stargazing in your scientific subdiscipline, so strong that you just have to do
it no matter how bogus, ignore the stars. You can turn off the printing of stars
by inserting the command

> options(show.signif.stars=FALSE)

before the summary(out) command.

12.3.5 The Hat Matrix

Also of interest besides the sample regression coefficients is the estimate of
the regression function itself

ŷ = Xβ̂ = X(X′X)−1X′y.

The matrix that multiplies y on the right hand side

H = X(X′X)−1X′. (12.37)

was dubbed by someone suffering a fit of cuteness the hat matrix because it puts
the “hat” on y, that is, ŷ = Hy (actually, I enjoy terminology like this, I just
don’t care to defend it against stuffed shirts who think scientific terminology
should be very serious and boring).
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Lemma 12.10. The hat matrix (12.37) is the orthogonal projection onto the
subspace spanned by the predictor vectors (the columns of X).

The notion of an orthogonal projection matrix is defined in Section H.1 in
Appendix H. Another name for the subspace mentioned in the theorem is just
the range of the linear transformation represented by the matrix X, which we
write range(X). The theorem asserts that this is also the range of the linear
transformation represented by the hat matrix H, that is, range(X) = range(H).

Proof. That the hat matrix is symmetric is obvious from the formula and the
rule that the transpose of a matrix product is the product of the transposes in
reverse order. That the hat matrix is idempotent is verified by just looking at
the formula for H2.

So the only thing left to verify is that H actually maps onto range(X). We
need to show that an arbitrary element of range(X), which has the form Xβ
for an arbitrary vector β, is equal to Hy for some vector y. It is easily verified
that y = Xβ does the job.

With this lemma we can finally finish the proof of the theorem that gives t
statistics.

Proof of Theorem 12.8. First observe that H and I − H are orthogonal pro-
jections that are orthogonal to each other (see Section H.1 in Appendix H for
definitions). Define Z = e/σ, then Z is a multivariate standard normal random
vector (that is, the components are i. i. d. standard normal). Theorem H.3 in
Appendix H says that HZ and (I − H)Z are independent multivariate normal
random vectors and their squared lengths are chi-square random variables. The
next step is to see what these vectors are in terms of the variables we have been
using.

HZ =
1
σ
He =

1
σ
H(y − Xβ) =

1
σ

(ŷ − µ)

where µ = Xβ, originally defined in (12.16), is the vector of means of the
response variables (the fact that HXβ = Xβ was verified in the preceding
proof). And

(I − H)Z =
1
σ

(I − H)e =
1
σ

(I − H)(y − Xβ) =
1
σ

(y − ŷ)

Thus we see that
ŷ = µ + σHZ

and
SSResid

σ2
= ‖(I − H)Z‖2 (12.38)

As we said above, Theorem H.3 in Appendix H says that these are independent
random variables, and the latter has a chi-square distribution with degrees of
freedom rank(I − H).

That almost finishes the proof. There are two loose ends. We were supposed
to show that SSResid is independent of β̂, but what we showed above is that it
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is independent of ŷ. However, β̂ = (X′X)−1X′ŷ, so independence of ŷ implies
independence of β̂.

The last loose end is that we need to calculate the rank of I−H. Since I−H
is the projection on the subspace orthogonally complementary to range(H), its
rank is n − p, where n is the dimension of the whole space and p = rank(H).
Lemma 12.10 asserts that rank(H) = rank(X), which is number of predictor
variables. So we are done.

12.3.6 Polynomial Regression

The reader may have been lead from what has been said so far to think that
linear regression is only useful for fitting linear regression functions. No! It’s
much more useful than that. Here is a slogan that captures the issue.

It’s called “linear regression” because it’s linear in the β’s, not be-
cause it’s linear in the x’s.

Here’s what the slogan means. Suppose I have a function that is linear in the
β’s but not linear in the x’s, for example

h(x) = β1 sin(x) + β2 log(x) + β3x
2.

We can put this in linear regression form by simply making up new predictor
variables

x1 = sin(x)
x2 = log(x)

x3 =x2

It matters not a bit that these new variables are dependent, all functions of the
original predictor variable x. In terms of these “made up” predictor variables
our regression function is now linear in both the β’s and the x’s

h(x) = β1x1 + β2x2 + β3x3

and is in the form required by the assumptions for linear regression.

You can make up as many predictors as you please.

This section describes one way to “make up predictors.”

Example 12.3.2 (Polynomial Regression).
Look at Figure 12.1 which is a plot of some regression data found in the data
set at the URL

http://www.stat.umn.edu/geyer/5102/ex12.3.2.dat
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Figure 12.1: Some regression data.

A mere glance at the plot shows that y is decidedly not a linear function of x,
not even close. However, the slogan says there is nothing that prevents us from
making up more predictor variables. The data set itself has no other variables in
it, just x and y. So any new predictor variables we make up must be functions
of x. What functions?

Since we are told nothing about the data, we have no guidance as to what
functions to make up. In a real application, there might be some guidance from
scientific theories that describe the data. Or there might not. Users of linear
regression often have no preconceived ideas as to what particular functional
form the regression function may have. The title of this section suggests we try
a polynomial, that is we want to use a regression function of the form

E(Y | X) =
k∑

i=0

βiX
i. (12.39)

This is a linear regression function if we consider that we have k + 1 different
predictor variables X0 = 1, X1 = X, X2, . . ., Xk. What we have done is “made
up” new predictor variables, which are the higher powers of X. Here’s how R
does it.

> out <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6))
> summary(out)

Call:
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lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6))

Residuals:
Min 1Q Median 3Q Max

-0.577040 -0.192875 -0.004183 0.196342 0.734926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.654541 0.192106 -3.407 0.000971 ***
x 7.868747 0.868968 9.055 2.04e-14 ***
I(x^2) -8.408605 1.228159 -6.847 8.00e-10 ***
I(x^3) 3.334579 0.741135 4.499 1.97e-05 ***
I(x^4) -0.554590 0.215506 -2.573 0.011651 *
I(x^5) 0.029160 0.029832 0.977 0.330884
I(x^6) 0.000576 0.001577 0.365 0.715765
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.308 on 93 degrees of freedom
Multiple R-Squared: 0.9122, Adjusted R-squared: 0.9065
F-statistic: 160.9 on 6 and 93 degrees of freedom, p-value: 0

The function I() is used to give arithmetic expressions their literal meaning in
the model formula. If you leave it out, R doesn’t do the right thing.

Why start with a sixth degree polynomial? No particular reason. We’ll
examine this issue later. For now, just accept it.

How do we interpret this mess? The naive way is to pay attention to the
stars (of course, you wouldn’t be that naive now, after all our harping on the
bogosity of stargazing, would you?). They seem to say that the coefficients up
the x4 term are statistically significant, and the coefficients of the two higher
powers are not. So we should try a fourth degree polynomial next.

Stargazing violates the “do one test” dogma. To do the right thing we must
do only one test. The obvious coefficient to test is the one for the highest power
of x. Clearly it is not statistically significant. Thus we can accept the null
hypothesis of that test and set the corresponding regression coefficient equal to
zero. And that is the end of the conclusions we can draw from this regression!

However, that conclusion leaves us with a new model to fit. The part of the
printout about the regression coefficients for that model is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.687409 0.168940 -4.069 9.83e-05 ***
x 8.112834 0.552844 14.675 < 2e-16 ***
I(x^2) -8.808811 0.552153 -15.954 < 2e-16 ***
I(x^3) 3.592480 0.224068 16.033 < 2e-16 ***
I(x^4) -0.631962 0.039391 -16.043 < 2e-16 ***
I(x^5) 0.040017 0.002495 16.039 < 2e-16 ***
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Surprise! The coefficient of x5 wasn’t statistically significant before, but now it
is. In fact, it wasn’t even close to significance before, and now it is extremely
significant. What’s happening?

A long answer could get very complicated. All of the β’s are correlated with
each other, so it is very hard to tell what is going on. A short answer is that
we shouldn’t have been surprised. None of the theory we have developed so far
gives any positive reason why this can’t happen. An even shorter answer is the
following slogan.

If you want to know anything about a model, you must fit that model.
You can’t tell anything about one model by looking at the regression
output for some other model.

Guessing that the coefficient of x5 wouldn’t be significant in this model from
looking at the output of the other model is a mugs game. If that’s not a clear
example of the bogosity of stargazing, I don’t know what is.

Now let us add the sample regression function to the plot. The vector ŷ,
which is the sample regression function evaluated at the predictor values in the
data set is in the component fitted.values of the list returned by lm function
(what we usually store in the variable out). The R commands

> out <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5))
> plot(x, y)
> lines(x, out$fitted.values)

Figure 12.2 shows this plot. The fit isn’t bad, but it isn’t great either. I
think I could draw a better fitting curve by hand. How can that be? Isn’t linear
regression BLUE? How can I do better than the “best?” Linear regression is
BLUE only if the model assumptions are true. In particular, in this case, its
BLUE only if the true unknown regression function is a polynomial of degree
five. Doesn’t appear to be. So much for the optimality of linear regression.
It’s only optimal in toy problems for which the answer is known. For real data
where you don’t know the true population regression function, it isn’t.

Before leaving this section we should ask and answer the following question.

What’s so special about polynomials? Nothing!
Made up predictors can be any functions of the original predictors.

Problem 12-4 explores using sines and cosines instead of polynomials.
We revisit the issue we started with, just to make sure everything is clear:

is this linear regression or not? It was certainly done with a linear regression
computer program, and looked at abstractly enough, it is linear regression. As
we explained at the beginning (12.39) is in the form of a linear population
regression function, if we consider it a function of k + 1 variables, X0, . . ., Xk

instead of just the one variable X. But if we consider it a function of just one
variable X, the graph of which is the line in Figure 12.2, it isn’t linear. Thus we
see that linear regression is more versatile than it appears at first sight. It also
does nonlinear regression by making it a special case of linear regression (quite
a trick, that).
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Figure 12.2: The same regression data plotted in Figure 12.1 with the best
fitting polynomial of degree five added.

12.3.7 The F -Test for Model Comparison

This section deals with the regression analog of the likelihood ratio test.
Suppose we have two nested regression models, and we want do a test comparing
them. The null and alternative hypotheses are exactly as extensively discussed
in Section 10.4.3 (Likelihood Ratio Tests). We could, in fact, just use the
likelihood ratio test exactly as described in that section. It would provide an
asymptotically valid test, approximately correct when the sample size is large.
However, likelihood ratio tests are not traditionally used in regression. What
is used, what we will develop in this section, are exact tests in which the test
statistic has an F distribution. For large sample sizes, these F tests give P -
values very close to the likelihood ratio test. The difference is with small sample
sizes, where the likelihood ratio test is not valid, but the F tests are valid under
the “strong” assumption that the errors are i. i. d. normal. (The F tests are, of
course, not exact when that assumption is violated.)

Before we can state the theorem we need to see what the condition that
models be “nested” means in the regression context. As with many other things
about linear regression, there is a simple notion, useful when you are actually
doing regression, and a mathematically sophisticated notion, useful in proofs.
The simple notion is that the little model is just like the big model except that
some of the regression coefficients in the big model are fixed in the little model,
usually at zero.
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For example, if the models under consideration are the polynomial regression
models considered in the preceding section, then the big model might be all sixth
degree polynomials, having regression functions of the form (12.39) with k = 6
and the little model might be all third degree polynomials having regression
functions of the same form with k = 3. The little model is clearly obtained
from the big model by setting β4 = β5 = β6 = 0. Also clearly, the big model
has three more parameters than the little model.

The mathematically sophisticated notion is that if Xbig is the design matrix
of the big model and Xlittle is the design matrix of the little model, then the
models are nested if range(Xlittle) ⊂ range(Xbig), or, what is equivalent because
we know the range of the design matrix is the same as the range of the hat ma-
trix, range(Hlittle) ⊂ range(Hbig), where Hlittle and Hbig are the corresponding
hat matrices.

While we are at it, we generalize to a sequence of nested models. Suppose
Hi, i = 1, . . ., k are the hat matrices of a sequence of regression models. Then
we say the sequence is nested if

range(Hi) ⊂ range(Hi+1), i = 1, . . . , k − 1 (12.40)

Theorem 12.11. Let SSResidi denote the residual sum of squares for the i-th
model in a sequence of k nested regression models. Assume the smallest model
is true, that is,

E(Y ) = X1β

where X1 is the design matrix for the smallest model, and assume the errors
satisfy (12.24), then SSResidk/σ2 and

SSResidi − SSResidi+1

σ2
, i = 1, . . . , k − 1

are independent random variables, and

SSResidk

σ2
∼ chi2(n − pk) (12.41a)

and
SSResidi − SSResidi+1

σ2
∼ chi2(pi+1 − pi), (12.41b)

where pi is the dimension (number of regression coefficients) of the i-th model.

Proof. Assertion (12.41a) does not have to be proved, since it is just the assertion
of Theorem 12.8 applied to the k-th model. In the proof of Theorem 12.8, in
equation (12.38) we derived a formula giving SSResid in terms of the hat matrix.
If we add subscripts to make it apply to the current situation, it becomes

SSResidi

σ2
= ‖(I − Hi)Z‖2 (12.42)
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where as in the proof of Theorem 12.8, we are defining Z = e/σ. Now note that

‖(Hi+1 − Hi)Z‖2 = Z′(Hi+1 − Hi)2Z

= Z′(H2
i+1 − Hi+1Hi − HiHi+1 + H2

i )Z
= Z′(Hi+1 − Hi)Z
= Z′(I − Hi)Z − Z′(I − Hi+1)Z

=
SSResidi − SSResidi+1

σ2

(12.43)

where in the middle we use the fact that the hat matrices are idempotent and
Hi+1Hi = HiHi+1 = Hi, which comes from Lemma H.1 in Appendix H.

Now we want to apply Theorem H.3 in the same appendix. This will show
both the asserted independence and the chi-square distributions if we can show
the following. The matrices

I − Hk (12.44a)

and
Hi+1 − Hi, i = 1, . . . , k − 1 (12.44b)

are an orthogonal set of orthogonal projections, and

rank(Hi+1 − Hi) = pi+1 − pi. (12.44c)

Note that we can avoid treating (12.44a) as a special case by defining Hk+1 = I.
First we have to show that Hi+1 − Hi is an orthogonal projection. It is

clearly symmetric, and idempotence was already shown in (12.43).
Then we have to show

(Hi+1 − Hi)(Hj+1 − Hj) = 0, i < j.

This also follows directly from Lemma H.1 in Appendix H.

(Hi+1 − Hi)(Hj+1 − Hj) = Hi+1Hj+1 − Hi+1Hj − HiHj+1 + HiHj

= Hi+1 − Hi+1 − Hi + Hi

The only bit remaining to prove is (12.44c). Note that pi = rank(Hi), so
this is the same thing as

rank(Hi+1 − Hi) = rank(Hi+1) − rank(Hi)

By definition rank(Hi+1 − Hi) is the dimension of range(Hi+1 − Hi). We now
claim that this is the orthogonal complement of range(Hi) in range(Hi+1).
Consider an arbitrary vector y in range(Hi+1). Then

(Hi+1 − Hi)y = y − Hiy

which is a vector orthogonal to range(Hi). Since every vector in range(Hi+1 −
Hi) is orthogonal to every vector in range(Hi), this implies that a basis for one
is orthogonal to a basis for the other. Hence the union of the bases is a basis
for range(Hi+1) and the dimensions add, which is what was to be proved.
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Corollary 12.12. If SSResidlittle and SSResidbig are the residual sums of squares
for nested models of dimension plittle and pbig, respectively, and the “strong”
model assumptions (12.22) and (12.24) hold for the little model, then

SSResidlittle − SSResidbig

pbig − plittle
· n − pbig

SSResidbig
∼ F (pbig − plittle, n − pbig).

Proof. The theorem says the two random variables involving residual sums of
squares are independent chi-square random variables. Dividing each by its de-
grees of freedom and forming the ratio makes an F random variable.

Example 12.3.3 (Multivariable Polynomial Regression).
Let us consider whether a quadratic model or higher polynomial would fit the
data of Example 12.2.1 better than the linear model used in that example. The
most general quadratic model has six terms

E(Y | x1, x2) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2

The R command to fit this model is

out <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2))
summary(out)

The part of the output that describes the regression coefficients is shown below.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 91.011781 16.984368 5.359 5.95e-07 ***
x1 0.460700 1.540967 0.299 0.766
x2 1.921907 1.399151 1.374 0.173
I(x1^2) 0.013292 0.052642 0.252 0.801
I(x1 * x2) -0.020873 0.097794 -0.213 0.831
I(x2^2) 0.005785 0.047867 0.121 0.904

It says, if we are naive enough to believe the “stars” (which of course we aren’t),
that none of the regression coefficients except the one for the constant predictor
is interesting. Of course this contradicts Example 12.2.1 where we found that the
coefficient of x2 was “significant” (yet another case illustrating how misleading
stargazing is).

In order to compare this quadratic model with the linear model fit in Exam-
ple 12.2.1 we should do the F -test described in this section. R provides a way
to do this easily. First fit the two models, saving both results.

out.lin <- lm(y ~ x1 + x2)
out.quad <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2))

Then the function anova computes a so-called “analysis of variance” (ANOVA)
table for the model comparison.

anova(out.lin, out.quad)
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The output of the anova function is

Analysis of Variance Table

Model 1: y ~ x1 + x2
Model 2: y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 97 285119
2 94 284370 3 749 0.0825 0.9694

The last three lines of the printout here are a so-called “analysis of variance”
table. Back in the stone age, when people calculated this stuff without comput-
ers, someone decided it was helpful to lay out the arithmetic in calculating the
F statistic this way. Nowadays only the final result F = 0.0825 and the P -value
of the test P = 0.9694 are interesting. But these tables give old timers a warm
fuzzy feeling, so computers still print them out.

Since R calculates everything, there is nothing left for you to do except
interpreting the P -value. Low P -values are evidence in favor of the alternative,
high P -values in favor of the null. This one is certainly high, much higher
than one would expect by chance if the null hypothesis is true. Thus we accept
the null hypothesis (here, the linear model). We say it fits just as well as the
quadratic model. The extra terms in the quadratic model add no predictive or
explanatory value.

Thus we should examine the linear model having only x1, x2, and the con-
stant predictor. But we already did this in Example 12.3.1. The printout for
that example apparently shows that x1 can also be dropped.

12.3.8 Intervals for the Regression Function

Confidence Intervals

An important problem is estimating the regression function itself, either at
some specified x value, or at all x values. As everywhere else the sample is not
the population. What we want to know is

µ = Xβ,

the population mean vector. But as the Greek letters indicate, we don’t know β
hence don’t know Xβ. What we do know is the corresponding sample quantity

ŷ = Xβ̂,

the vector of “predicted values.” What is the relation between the two?
More generally, we can consider the regression function as a function of the

predictor vector x = (x1, . . . , xp)

E(Y | x) =
p∑

i=1

βixi = x′β
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that we can evaluate at arbitrary x values, not just at so-called “design points”
(x values occurring in the data set being analyzed). If we write this function as

h(x) = x′β, (12.45)

it is obvious that the most sensible estimate is

ĥ(x) = x′β̂. (12.46)

Before we become bogged down in details, it is worthwhile to get the big
picture firmly in mind. The sample regression coefficient vector β̂ is multivariate
normal and independent of the error sum of squares SSResid. The regression
function estimate (12.46), being a linear transformation of a multivariate normal
random vector, is a normal random scalar. Hence we can combine it with the
error sum of squares to make t-confidence intervals and t-tests. All we need to
do is work out the details.

We have already said that (12.46) is normal. Clearly its mean is (12.45).
Hence it is an unbiased estimate of the population regression function. By
Corollary 5.4 in Chapter 5 of these notes, the variance of (12.46) is x′ var(β̂)x,
and plugging in the variance of the sample regression coefficient vector from
Theorem 12.7 gives

var(x′β̂) = σ2x′(X′X)−1x. (12.47)

If you are confused about what big X and little x are here, X is the design
matrix for the original data set and x is one possible value of the predictor
vector. If x is a value that occurs in the original data, then it is one row of the
design matrix X, otherwise X and x are unrelated. The vector x can be any
vector of predictor values for any individual, whether one in the original data
set or some other individual.

Of course, we have the usual problem that we don’t know σ2 and have to
plug in the estimate σ̂2 given by (12.34). This gives a t confidence interval

x′β̂ ± tα/2σ̂
√

x′(X′X)−1x

where, as usual, the degrees of freedom for the t distribution used to calculate
the critical value is n − p.

Fortunately, we don’t need to do any of these calculations. R has a function
predict that does them all. Suppose we have a data set with three predictors
x1, x2, and x3, and a response y, then, as usual,

out <- lm(y ~ x1 + x2 + x3)

fits the model. Now

predict(out, data.frame(x1=1, x2=1, x3=1), interval="confidence")

produces a 95% confidence interval for the value of the population regression
function at x = (1, 1, 1). The output is (for data which are not shown)
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fit lwr upr
[1,] 3.623616 2.022624 5.224608

The component labeled fit is the estimated value of the population regression
function x′β̂. The component labeled lwr is the lower endpoint of the 95%
confidence interval and the component labeled upr is the upper endpoint. For
different confidence level use the optional argument level, for example,

predict(out, data.frame(x1=1, x2=1, x3=1), interval="confidence",
level=.90)

Prediction Intervals

Actually, one rarely wants a confidence interval of the kind described in the
preceding section. One usually wants a very closely related interval called a
prediction interval. The idea is this. What is the point of knowing the popu-
lation regression E(Y | x)? It gives BLUP (best linear unbiased predictions)
for the response Y (with the usual proviso, the model must be correct). How-
ever, these predictions, even if they used the true population regression function
would not be exactly correct, because Y is observed “with error.” If we write
µ = E(Y | x), then Y ∼ N (µ, σ2) under the “strong” linear regression assump-
tions. So our “best” estimate will be wrong by about σ (the error standard
deviation), sometimes more, sometimes less, because Y is a random variable.

Of course, we don’t know the population regression function and are forced
to substitute the sample regression function. We can write

Y = x′β + e

for the population regression model, but we can’t use that. Let us rewrite this

Y = x′β̂ + x′(β − β̂) + e.

The first term on the right, is what we use for prediction. The second two terms
are unknown errors (the middle term being unknown because we don’t know
the true population regression coefficient vector β). However we do know the
sampling distribution of the sum of the two terms on the right. Being a linear
transformation of jointly normal random variables, it is normal with mean

E{x′(β − β̂) + e} = 0

and variance

var{x′(β − β̂) + e} = var{x′(β − β̂)} + var(e) = σ2 + σ2x′(X′X)−1x,

where we used (12.47) to get the variance of x′β̂. Here the first equality assumes
that e and β̂ are independent random variables, which will be the case if Y here
refers to a “new” individual, not one in the original data set used to calculate
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the sample regression function. Thus the “prediction” interval is almost exactly
like the “confidence” interval with just a slight change in the formula

x′β̂ ± tα/2σ̂
√

1 + x′(X′X)−1x

The “1+” in the square root is only difference between the two formulas. R also
makes this interval convenient to calculate. Just do the same thing as for the
confidence interval but use interval="prediction" as the argument specifying
the type of interval wanted.

Example 12.3.4.
This continues Example 12.3.2. What we want to do here is add lines indicating
the prediction intervals to Figure 12.2. The following code

out <- lm(y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5))
pout <- predict(out, data.frame(x=x), interval="prediction")
plot(x, y, ylim=range(pout))
lines(x, out$fitted.values)
lines(x, pout[ , "lwr"], lty=2)
lines(x, pout[ , "upr"], lty=2)

(This uses a bit of magic of optional arguments. The ylim=range(pout) ar-
gument to the plot command leaves room for the confidence intervals. The
lty=2 says to use a line type different from the default. Supplying a whole
vector data.frame(x=x) to the predict function, produces all the prediction
intervals in one statement. Using labels as subscripts, as in pout[ , "lwr"] is
another R idiom we won’t try to explain.)

12.4 The Abstract View of Regression

Regression coefficients are meaningless. Only regression functions
and fitted values are meaningful.

The idea of a regression problem is to estimate a regression function. When
there are several predictors, there is no unique way to express the regression
function as a linear function of the predictors.

Any linearly independent set of linear combinations of predictor vari-
ables makes for an equivalent regression problem.

Suppose X is a design matrix for a regression problem. The columns of X
correspond to the predictor variables. Using linear combinations of predictors
is like using a design matrix

X∗ = XA,

where A is an invertible p × p matrix (where, as usual, there are p predictors,
including the constant predictor, if there is one). The requirement that A be
invertible is necessary so that X∗ will have rank p if X does. Then

(X∗′X∗)−1 = [(XA)′(XA)]−1 = [A′X′XA]−1 = A−1(X′X)−1(A′)−1
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Figure 12.3: The same regression data plotted in Figure 12.1 with the best
fitting polynomial of degree five added and pointwise prediction intervals.

because the inverse of a product is the product of the inverses in reverse order.
(We can’t apply this rule to X itself because X is not invertible. Only the
product X′X is invertible).

The regression coefficients for the “starred problem” are different

β̂
∗

= (X∗′X∗)−1X∗′y

= A−1(X′X)−1(A′)−1A′X′y

= A−1(X′X)−1X′y

= A−1β̂

because (A′)−1A′ is the identity and using the definition (12.18) of β̂.
Although the regression coefficients are different, the fitted values are not

different!
ŷ∗ = X∗β̂

∗
= XAA−1β̂ = Xβ̂ = ŷ

This means the hat matrices for the two problems are also the same (as is easily
checked).

Since F tests for model comparison depend only on residual sums of squares,
which depend only on fitted values, no F test is changed by replacing an “un-
starred” problem with a “starred” problem in the manner described above.
Nothing of statistical significance changes. There is no such thing as a test of
whether the “starred” or the “unstarred” model fit the data better. Both always
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fit exactly the same, no better and no worse. They have the same residual sum
of squares. In a sophisticated abstract sense they are two equivalent descriptions
of the same model.

But when you look at the regression coefficients, for example, at the table the
R summary command prints out giving the coefficients, standard errors, t statis-
tics, and P -values, the “starred” and “unstarred” models look very different.
The regression coefficients seem to have nothing to do with each other (though,
of course, they are actually related by the linear relationship β∗ = A−1β, this
is impossible to visualize if A has complicated structure).

So whenever you see someone taking regression coefficients very seriously,
remember that they are actually meaningless. The discussion would be better
phrased in terms of prediction, predicted (fitted) values, and regression func-
tions.

Regression is for prediction, not for explanation.

Of course, what scientists mostly want from regression is explanation not predic-
tion. But what we are saying that what they want and what regression actually
delivers are two different things.

Another related slogan that is a bit off the subject, but worth throwing into
the discussion for the sake of completeness, is

Correlation is not causation, and regression isn’t either.

What is meant by the slogan “correlation is not causation” is that mere cor-
relation doesn’t show a causative relationship between variables. This is clear
from the fact that correlation is a symmetric relation (the correlation of x and
y is the same as the correlation of y and x), but causal relationships are not
symmetric (“x causes y” is not the same as “y causes x”). If we denote causal
relationships by arrows, there are two possible causal relationships involving x
and y

X - Y or X ¾ Y

If we admit other variables into consideration, there are many possible causal
relationships, for example

X

½½=

Z
ZZ~

Y

Here neither “x causes y” nor “y causes x” holds. Both are controlled by a third
variable z. So mere existence of a correlation does not entitle us to say anything
about underlying causal relationships.

Now regression is just correlation looked at from a different angle. This is
clear in the “simple” case (one non-constant predictor) where the slope of the
regression line β̂ is related to the correlation coefficient r by

β̂ = r
sy

sx
.
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In general, the relationship between regression and correlation is less transpar-
ent, but the regression coefficients and fitted values are functions of the sample
first and second moments of the response and predictor variables (including
covariances). This is clear from the formulation of least squares estimates as
functions of “empirical” second moments given (12.13), (12.14), and (12.15).

Regression does not “explain” the relationship between the variables. There
is no way to tell which way the causal arrow goes between the variables, or even
if there is any direct causal relationship. What scientists want is to find causal
relationships. Often, as in many social sciences, there is no way do do controlled
experiments and regression is the only tool available to explore relationships
between variables. Scientists want so hard to find causal relationships that they
often forget the slogans above (or pay lip service to them while ignoring their
content).

There is even a school of regression use called causal modeling that claims to
use regression and similar tools to find causal relationships. But the theorems
of that school are of the “ham and eggs” variety (if we had some ham, we’d
have ham and eggs, if we had some eggs). First they assume there are no
unmeasured variables that have any causal relationships with any measured
variables (predictor or response). That is, they assume there are no variables
like Z in the picture above involving three variables. Then they assume that
there are non-statistical reasons for deciding which way the arrow goes in the
other picture. Then they have a theorem that says causal relationships can be
determined. But in the “simple” case (only two variables X and Y ) this is a
pure tautology

If we assume X causes Y , then we can conclude X causes Y

(well, duh!) When there are more than two variables, so-called causal model-
ing can yield conclusions that are not purely tautological, but they are always
based on exceedingly strong assumptions (no unmeasured variables with causal
connection to measured variables) that are always known to be false without a
doubt. There is no real escape from “correlation is not causation, and regression
isn’t either.”

12.5 Categorical Predictors (ANOVA)

ANOVA is just regression with all predictor variables categorical.

12.5.1 Categorical Predictors and Dummy Variables

When a predictor variable is categorical, there is no sense in which there can
be one regression coefficient that applies to the variable. If x1 is a variable taking
values in the set {Buick,Toyota,Mercedes}, then β1x1 makes no sense because
the values of x1 are not numbers. However, categorical predictor variables are
easily incorporated into the regression framework using the device of so-called
dummy variables.
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If x is a categorical predictor variable taking values in an arbitrary set S,
then the dummy variables associated with x are the indicator random variables
(zero-one valued)

I{s}(x), s ∈ S.

For example, if we have a predictor variable x associated with the predictor
vector

x =


Buick
Buick

Mercedes
Buick
Toyota

Mercedes


then this is associated with three dummy variable vectors that make up three
columns of the design matrix 

1 0 0
1 0 0
0 0 1
1 0 0
0 1 0
0 0 1

 (12.48)

the first column is the indicator of the category Buick, the second column the
indicator of the category Toyota, the third column the indicator of the category
Mercedes.

Suppose we fit a model with this design matrix (no constant predictor). Call
the three predictor vectors, the columns of (12.48), x1, x2, and x3. Then the
regression model is

y = β1x1 + β2x2 + β3x3 + e

Note that exactly one of the three predictor vectors is nonzero, that is, if we
write the scalar equations with one more subscript,

yi = β1xi1 + β2xi2 + β3xi3 + ei,

then this is the same as

yi = βk + ei,

if the i-th individual is in category k. Thus the regression coefficient βk is just
the population mean for category k.

For technical reasons, to be explained presently, we often drop one of the
predictors (it doesn’t matter which) and add a constant predictor. This gives
us a different design matrix. If we drop the Mercedes dummy variable in the
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example, this gives us a design matrix
1 1 0
1 1 0
1 0 0
1 1 0
1 0 1
1 0 0

 (12.49)

Now the first column is the constant predictor, the second column is the Buick
predictor and the third is the Toyota predictor.

Although this seems at first sight to change the model, in the abstract sense
discussed in the preceding section, it does not. The constant predictor is the
sum of the rows of the original design matrix (12.48). Thus (12.48) and (12.49)
are abstractly equivalent design matrices: “starred” and “unstarred” matrices in
the notation of the preceding section. The two models both fit three parameters
which determine estimates of the population means for the three categories. In
the representation using design matrix (12.48) the regression coefficients are
just the sample means for the three categories. In the other representation,
they aren’t, but the fitted value for each individual will be the sample mean for
the individual’s category.

Categorical predictors are so important that R makes it easy to fit models
involving them

x <- c("Buick", "Buick", "Mercedes", "Buick", "Toyota", "Mercedes")
y <- c(0.9, 1.0, 1.9, 1.1, 3.0, 2.1)
xf <- factor(x)
out <- lm(y ~ xf)
summary(out)

The first two statements define the predictor x and the response y. The last
two are the usual R commands for fitting a regression model and printing out
various information about it. The only new wrinkle is the command in the
middle that makes a special “factor” variable xf that will be dealt with in the
right way by the lm command. We don’t have to set up the dummy variables
ourselves. R will do it automagically whenever a “factor” (i. e., categorical)
variable appears in the regression formula. The reason why we have to run
the original predictor variable x through the factor function is because if the
category labels are numeric (instead of text as in this example) there is no way
for R to tell whether we want the variable treated as quantitative or categorical
unless we tell it. The factor function is the way we tell R we want a variable
treated as categorical. We could also have compressed the two lines above
involving the factor and lm functions into one

three <- lm(y ~ factor(x))

Either way, we get the following table of regression coefficients in the output of
the summary command. Only the labels of the regression coefficients differ. All
the numbers are identical.
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.00000 0.06667 15.000 0.000643 ***
xfMercedes 1.00000 0.10541 9.487 0.002483 **
xfToyota 2.00000 0.13333 15.000 0.000643 ***

These regression coefficients are not easy to interpret. Their interpretation
depends on the actual design matrix R uses, which is neither of the design
matrices (12.48) or (12.49) described above. However, we shouldn’t let this
bother us in the slightest. The slogan at the beginning of the preceding section
tells us that regression coefficients are meaningless anyway. They are especially
meaningless here. What is important are the fitted values

> predict(out)
1 2 3 4 5 6
1 1 2 1 3 2

Comparing this with the definition of x. We see that individuals 1, 2, and 4
are in the Buick category. All have predicted value 1. Thus that is the sample
mean for the Buick category. Similarly, the sample means for the Toytota and
Mercedes categories are 3 and 2, respectively.

If we actually wanted to force the regression coefficients to be the sample
means, we could do that.

x1 <- as.numeric(x == "Buick")
x2 <- as.numeric(x == "Toyota")
x3 <- as.numeric(x == "Mercedes")
out.too <- lm(y ~ x1 + x2 + x3 + 0)
summary(out.too)

Gives the output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x1 1.00000 0.06667 15.00 0.000643 ***
x2 3.00000 0.11547 25.98 0.000125 ***
x3 2.00000 0.08165 24.50 0.000149 ***

The design matrix for this regression is (12.48)

> cbind(x1, x2, x3)
x1 x2 x3

[1,] 1 0 0
[2,] 1 0 0
[3,] 0 0 1
[4,] 1 0 0
[5,] 0 1 0
[6,] 0 0 1
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But we don’t need to worry about this because “regression coefficients are mean-
ingless.” Either regression gives the same predicted values. They agree about
every statistically meaningful quantity.

Now we return to the promised explanation of the technical reason why a
design matrix like (12.49) is preferred to one like (12.48). Suppose we have two
categorical predictors, say 

Buick red
Buick yellow

Mercedes red
Buick yellow
Toyota red

Mercedes yellow


Now there are five dummy variables

1 0 0 1 0
1 0 0 0 1
0 0 1 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 1


The first three columns are the same as in (12.48), the fourth column the in-
dicator of the category red, and the fifth column the indicator of the category
yellow. But (and this is a very important “but”) this design matrix does not
have full rank, because the first three columns add to the predictor vector that
is all ones, and so do the last two columns. The rank is only 4, not 5. In order to
have uniquely determined regression coefficients, we must have an n × 4 design
matrix. The simple way to achieve this is to drop one dummy variable from
each set, it doesn’t matter which, and add the constant predictor. This gives
us something like 

1 1 0 1
1 1 0 0
1 0 1 1
1 1 0 0
1 0 0 1
1 0 1 0


here we have the constant, Buick, Toyota, and red dummy variables. We’ve
kept all but one of each set (two cars, one color). R does this automagically, we
don’t have to do anything special. With x and y defined as above

z <- c("red", "yellow", "red", "yellow", "red", "yellow")
out <- lm(y ~ factor(x) + factor(z))
summary(out)

produces the following table of regression coefficients
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.88571 0.04518 19.606 0.00259 **
factor(x)Mercedes 1.02857 0.04949 20.785 0.00231 **
factor(x)Toyota 2.11429 0.06999 30.210 0.00109 **
factor(z)yellow 0.17143 0.04949 3.464 0.07418 .

It always does the right thing, provided you remember to tell it that categorical
variables are “factors.” (Well perhaps we should have said it always does a
rather than the right thing. It didn’t keep the same dummy variables, that we
suggested. But it did keep two cars and one color, which is all that matters.)

No problem arises in mixing quantitative and categorical random variables.
Just do it (remembering to tell R which predictors are categorical)!

Example 12.5.1.
Suppose we have a data set like

http://www.stat.umn.edu/geyer/5102/ex12.5.1.dat

which has one categorical predictor variable sex, one quantitative predictor x
and a response y. Suppose we want to fit parallel regression lines for each of the
categories, as in Figure 12.4. We will see how to make such a plot below, but
first we need to discuss how to fit the regression model. If we let z denote the
dummy variable indicating one of the two category values, the regression model
we want has the form

y = α + βz + γx + e.

Here γ is the slope of both regression lines in the figure, α is the y-intercept of
one of the lines, and α + β is the y-intercept of the other. Now we see that

out <- lm(y ~ factor(sex) + x)
summary(out)

fits this regression model. The part of the printout concerning the regression
coefficients is

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9253 0.2352 20.938 < 2e-16 ***
factor(sex) -2.0633 0.1945 -10.606 < 2e-16 ***
x 1.0688 0.3316 3.223 0.00173 **

Figure 12.4 was made with the following commands.

f <- sex == "female"
plot(x, y, type="n")
points(x[f], y[f], pch="f")
points(x[!f], y[!f], pch="m")
lines(x[f], predict(out)[f])
lines(x[!f], predict(out)[!f])
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Figure 12.4: Scatter plot with parallel regression lines. The letters “f” and “m”
indicate points in the two categories. The upper line is the regression line for
the female category, the lower for the male category.

(If this seems a little magical, never mind. Doing fancy things with R graphics
is complicated and beyond the scope of this course, not theoretical statistics.)

Great! But how about some statistics, say a test or a confidence interval?
One question that is interesting is whether the true population slopes of the
regression lines are the same or different. In order to find out about the “big
model” that allows different slopes, we need to fit that model.

One obvious way to fit it is to divide the data, and fit a regression line
to each category separately. There will be two regression coefficients (slope
and intercept) for each category, making four in all. But this won’t be useful
for doing the test. We need fit a model to all the data that has the same
predicted values (is abstractly the same regression). A little thought about
dummy variables tells us that the following model will do what we want

y = α + βz + γx + δx · z + e.

Here γ is the slope of one regression line and γ + δ is the slope of the other. As
before, α is the y-intercept of one of the lines, and α + β is the y-intercept of
the other. Thus something like

out.too <- lm(y ~ factor(sex) + x + I(factor(sex) * x)) # bogus!

would seem to be what is wanted. But actually, the much simpler
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out.too <- lm(y ~ factor(sex) * x)

works. R assumes we want the so-called “main effects” sex and x whenever
we specify the “interaction” sex * x. Also we do not need to enclose the
multiplication in the I() function, because the * here doesn’t really indicate
multiplication. Rather it is a magic character indicating “interaction” that R
recognizes in model formula and treats specially (just like + is magic). In fact,
the more complicated form doesn’t work. One must use the simple form. The
part of the printout of the summary(out.too) command that is the table of
regression coefficients is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7479 0.3013 15.757 < 2e-16 ***
factor(sex) -1.7464 0.3885 -4.495 1.92e-05 ***
x 1.3822 0.4698 2.942 0.00408 **
factor(sex).x -0.6255 0.6637 -0.943 0.34825

The four regression coefficients are α, β, γ, δ in the discussion above (in that
order). A test of whether the two lines have the same slope or not, is just a
test of δ = 0. Hence we can read the P -value right off the printout: P = 0.348
(two-tailed). There is no statistically significant difference in the slopes of the
two regression lines. Thus we are free to adopt the simpler model fit before with
only three parameters.

If we wished to next ask the question whether a single line would fit the
data (a two-parameter model), we could read the P -value for that test off the
printout of the three-parameter model: P < 2 × 10−16 (two-tailed, though it
doesn’t matter for a P -value this low). Hence there is a highly statistically
significant difference between the intercepts for the two categories.

12.5.2 ANOVA

Often, regression with all predictors categorical is called analysis of variance
(ANOVA). Most textbooks, Lindgren (Sections 14.7 through 14.10) give this
special case very special treatment. We won’t bother, being content with the
slogan that began this section.

We will just redo Example 14.7a in Lindgren to show how to do it in R

analyst <- c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4)
yield <- c(8, 5, -1, 6, 5, 3, 7, 12, 5, 3, 10, 4, -2, 1, 1, 6, 10, 7)
out <- aov(yield ~ factor(analyst))
summary(out)

produces the same table as in Lindgren, the only difference is that R adds the
P -value for the F test.

The aov function “cuts to the chase.” In ANOVA you almost always want to
do F tests for models that include all the dummy variables for a given category or
none. It just goes straight to the analysis of variance table for such comparisons.
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Here where there is just one categorical variable, there is just one test. In so-
called two-way ANOVA (Section 14.9 in Lindgren) there are two tests, one for
each category. If an interaction is added (p. 533 ff. in Lindgren) that adds
another test. And so forth.

12.6 Residual Analysis

An important topic that has been ignored so far is how one checks whether
the model assumptions are plausible. There is, of course, never any way to prove
they are correct, but it is generally accepted that one should make some effort
to show that the model assumptions are not completely ridiculous.

This has not always been the case. Back in the stone age, when computers
didn’t come with video monitors and statistics programs just produced printout,
techniques in this section were not used. People did regression with no useful
checks of model assumptions, hence often when it was completely ridiculous,
although they had no awareness of the ridiculosity.

Nowadays, you can install R (or similar software) on any computer and easily
make diagnostic plots that will reveal some violations of model assumptions.
(And miss some. There is no magic that will reveal all violations.) We can only
scratch the surface of this area. Books on regression have much more.

For a start, we divide the (strong) assumptions into two classes.

• Assumptions about errors.

– independent

– normal

– homoscedastic (same variance)

• The assumption about the regression function.

These two classes of assumptions are treated quite differently. The assump-
tion of a particular form for the regression function is checked using F tests for
model comparison. If a particular model is wrong, a larger model may be right.
Presumably, some large enough model will be right. The only problem is to find
it. So when we said we had been ignoring model checking, that wasn’t quite
right. We haven’t ignored this part (although we will have a bit more to say
about it later.)

To be precise, we should modify the last paragraph to say that F tests
check the assumption about the regression function, if the other assumptions
are correct. If the error assumptions don’t hold, then the F statistic doesn’t
have an F distribution, and there’s no way to interpret it.

Thus logically, the error assumptions come first, but there is a slight problem
with this. We don’t see the errors, so we can’t check them. We do have error
estimates êi, but they depend on the model we fit, which depends on the assumed
regression function.
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Some misguided souls attempt to avoid this dilemma by applying their checks
to the responses yi, but this is entirely misguided. The responses yi are not iden-
tically distributed, either conditionally or unconditionally, so there is no point
in looking at their distribution. Moreover the marginal distribution of the re-
sponses yi is not assumed to be normal in regression theory, only the conditional
distribution given the predictor variables. Hence there is no useful conclusion
about regression that can be derived from checking whether the responses ap-
pear normally distributed. If they appear normal, that doesn’t prove anything.
If they appear non-normal, that doesn’t prove anything either. I stress this be-
cause I often see naive users of regression looking at histograms of the response
variable, and asking what it means. Then I trot out a slogan.

Normality checks must be applied to residuals, not responses.

Thus to return to our dilemma. We can’t check the assumptions about the
regression function until we have checked the error assumptions. But we can’t
check the error assumptions without knowing the correct regression function.
The only way to proceed is to apply checks about error assumptions to resid-
uals from a model that is large enough so that one can reasonably hope it is
correct. So always apply these checks to residuals from the largest model under
consideration, not any smaller model. That doesn’t really avoid the dilemma,
but it’s the best one can do.

So what is the distribution of the residuals? The errors are i. i. d. normal
(at least, that’s the assumption we want check), but the residuals aren’t.

Theorem 12.13. Under the assumptions (12.22) and (12.24)

ê ∼ N (
0, σ2(I − H)

)
,

where H is the “hat” matrix (12.37).

The proof is left as an exercise.
The theorem says the residuals are jointly multivariate normal, but are nei-

ther independent nor identically distributed. Hence they do have the normality
property assumed for the errors, but not the independence or constant variance
properties.

It is a sad fact that there is no sensible test for independence of the errors.
Even if we observed the errors (which we don’t), there would be no test that
could, even in principle tell whether they were independent. The problem is that
there are too many ways that random variables can be dependent, and no test
can rule them all out. If you test for some particular form of dependence, and
the test accepts the null hypothesis, that does not prove independence. Some
other form of dependence may be there. Thus the independence assumption is
usually not checked. We have to proceed on hope here.

In checking the other properties, the lack of identical distribution is a prob-
lem. How can we check if the residuals are normal, if each one has to be checked
against a different normal distribution? The obvious solution is to standardize
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the residuals. The random quantities

êi

σ
√

1 − hii

(12.50)

are not independent because the êi are correlated, but they are (marginally)
identically distributed, in fact, standard normal (under the “strong” regression
assumptions). Hence, plugging in σ̂ for σ gives quantities

ti =
êi

σ̂
√

1 − hii

(12.51)

that are identically t(n − p) distributed. The quantities (12.51) are called in-
ternally studentized residuals and are often used to check whether the residuals
are normal.

We, following R, are going to ignore them and look at a better idea, so-called
externally studentized residuals. But the path to get there is long. It will require
some patience to follow.

12.6.1 Leave One Out

A problem with residuals and internally studentized residuals is that in the
i-th residual

êi = yi − x′
iβ̂

the data yi is used twice because β̂ depends on all the y’s including yi. A better,
more honest, estimate of the error ei, is

ê(i) = yi − x′
iβ̂(i)

where β̂(i) is the regression estimate obtained by dropping the i-th case from the
data. This is called a leave-one-out residual. Note that subscripts in parentheses
do not indicate order statistics (as they did in Chapter 7 of these notes). In this
section the indicate various quantities associated with a leave-one-out regression.

It would seem that leave-one-out residuals would be a big pain. It would
require doing n regressions rather than just one to calculate these residuals. It
is a very interesting fact about regression that this not so. The leave-one-out
residuals can be calculated from the original regression using all the data. We
will now see how to do this. Our analysis will also derive the distribution of the
leave-one-out residuals.

Lemma 12.14. If A is a symmetric matrix, a is a vector, and a′Aa 6= 1, then

(A − aa′)−1 = A−1 +
A−1aa′A−1

1 − a′A−1a
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Proof. We merely need to multiply A − aa′ by the formula the lemma asserts
is its inverse and check that we get the identity.

(A − aa′)
(
A−1 +

A−1aa′A−1

1 − a′A−1a

)
= I − aa′A−1 +

aa′A−1 − aa′A−1aa′A−1

1 − a′A−1a

= I − aa′A−1 +
(1 − a′A−1a)aa′A−1

1 − a′A−1a
= I − aa′A−1 + aa′A−1

= I

The only tricky bit is the second equality, which results from the realization
that the factor a′A−1a in aa′A−1aa′A−1 is a scalar an hence can be factored
out.

Lemma 12.15. For any matrix X, let xi denote the (column) vector corre-
sponding to the i-th row of X and X(i) the matrix obtained by deleting the i-th
row from X, then

X′X = X′
(i)X(i) + xix′

i

Proof. Obvious. Just write out in detail what the formulas mean.

Lemma 12.16. With the notation in the preceding lemma, if

H = X(X′X)−1X′

has elements hij, then
hii = xi(X′X)−1xi

Proof. Obvious. Just write out in detail what the formulas mean.

Corollary 12.17.(
X′

(i)X(i)

)−1

= (X′X)−1 +
(X′X)−1xix′

i(X
′X)−1

1 − hii
(12.52)

Theorem 12.18. Let y have elements yi and let y(i) denote the vector obtained
by deleting the i-th element from y. Define

ŷi = x′
i(X

′X)−1X′y

ŷ(i) = x′
i

(
X′

(i)X(i)

)−1

X′
(i)y(i)

and

êi = yi − ŷi

ẽi = yi − ŷ(i)

Then
ê(i) =

êi

1 − hii
(12.53)
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Proof. Using the corollary, and

X′y = X′
(i)y(i) + yixi (12.54)

which is proved like Lemma 2.39,

ŷ(i) = x′
i

(
(X′X)−1 +

(X′X)−1xix′
i(X

′X)−1

1 − hii

)
(X′y − yixi)

= ŷi − hiiyi +
hiiŷi − h2

iiyi

1 − hii

=
ŷi − hiiyi

1 − hii

And

ê(i) =
yi − ŷi

1 − hii
=

êi

1 − hii

which is the assertion (12.53) of the theorem.

Thus we finally arrive at the definition of the leave-one-out residuals in
terms of the ordinary residuals (12.53). At first sight, this doesn’t seem to do
much because the leave-one-out residuals are just a constant times the ordinary
residuals (a different constant for each residual, but “constant” here means non-
random rather than “same”) hence when standardized are exactly the same
(12.50). However, a bit deeper thought says that the “plug-in” step that follows
is different. Instead of (12.51) we should plug in the standard error for the
leave-one-out regression obtaining

t(i) =
êi

σ̂(i)

√
1 − hii

(12.55)

where σ̂(i) is the estimate of σ obtained by dropping the i-th case from the data.
These residuals (12.55) are called externally studentized residuals.

These residuals are identically t(n− 1− p) distributed, because σ̂(i) is based
on n − 1 data points and p predictors. They are exactly the t statistics for the
test of whether yi is data from the model by whether the prediction interval for
yi based on the other n− 1 data points covers yi. (This is not obvious, since we
didn’t derive them that way.)

We are not quite finished with our theoretical derivation. We still need a
formula for σ̂(i) that doesn’t require a new regression procedure.

Lemma 12.19.

σ̂2
(i) = σ̂2 n − p − t2i

n − p − 1

where the ti are the internally studentized residuals (12.51).
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Proof. By definition

σ̂2 =
ê′ê

n − p

=
y′(I − H)2y

n − p

=
y′(I − H)y

n − p

because ê = (I − H)y and I − H is symmetric and idempotent.
Hence the analogous formula

σ̂2
(i) =

y′
(i)

(
I − H(i)

)
y(i)

n − p − 1

holds for the leave-one-out regression. Now

y′
(i)

(
I − H(i)

)
y(i) = y′

(i)y(i) − y′
(i)H(i)y(i)

and the first term is
y′

(i)y(i) = y′y − y2
i . (12.56)

The second term is more complicated but can be calculated using (12.54) and
(12.52).

y′
(i)H(i)y(i) = y′

(i)X(i)

(
X′

(i)X(i)

)−1

X′
(i)y(i)

= (y′X − yix′
i)

(
(X′X)−1 +

(X′X)−1xix′
i(X

′X)−1

1 − hii

)
(X′y − yixi)

= y′Hy − 2yiŷi + hiiy
2
i +

ŷ2
i − 2hiiyiŷi + h2

iiy
2
i

1 − hii

= y′Hy +
ŷ2

i − 2yiŷi + hiiy
2
i

1 − hii

Subtracting this from (12.56) gives

(n − p − 1)σ̂2
(i) = y′y − y2

i − y′Hy − ŷ2
i − 2yiŷi + hiiy

2
i

1 − hii

= (n − p)σ̂2 − y2
i − ŷ2

i − 2yiŷi + hiiy
2
i

1 − hii

= (n − p)σ̂2 − ŷ2
i − 2yiŷi + y2

i

1 − hii

= (n − p)σ̂2 − ê2
i

1 − hii

= (n − p)σ̂2 − σ̂2t2i

and solving for σ̂2
(i) gives the assertion of the lemma.
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Linear algebra is really remarkable. Or perhaps it is least squares that is
so remarkable. There is something magic, that such a complicated calculation
yields such a simple result. Whatever the reason, we now have two simple
formulas for identically distributed, standardized residual estimates. Different
computer statistical software packages make different choices about which resid-
uals to use. We agree with the R team that the externally studentized residuals
are the ones to use.

12.6.2 Quantile-Quantile Plots

How does one check that externally studentized residuals are t(n − p − 1)
distributed? A widely used method uses a quantile-quantile (Q-Q) plot. Q-Q
plots can be applied to any random quantities, not just residuals. So temporarily
forget residuals.

Let X1, X2, . . ., Xn be data assumed to be i. i. d., and suppose we want
to check whether their distribution has a particular distribution with c. d. f. F .
A Q-Q plot is a plot of the order statistics X(k) of the data5 against quantities
that are reasonable theoretical positions of these order statistics. We can’t be
more precise than that, because there are many different proposals about what
positions should be used. Two are

F−1

(
k − 1

2

n

)
(12.57)

and

F−1

(
k

n + 1

)
(12.58)

Some more proposals will be discussed below.
We know (Theorem 9 of Chapter 3 in Lindgren) that if F is continuous, then

the variables
Ui = F (Xi)

are i. i. d. U(0, 1), hence of course, the order statistics U(k) are order statistics
of a sample of size n from the U(0, 1) distribution, and

X(k) = F−1(U(k)).

The reason why this is important is that we know the distribution of the U(k)

X(k) ∼ Beta(k, n − k + 1) (12.59)

(p. 217 in Lindgren). Hence

E{U(k)} =
k

n + 1
.

5Here the X(k) indicate order statistics as in Chapter 7 of these notes, not the leave-one-
out quantities of the preceding section. In fact, since the Xi here have nothing to do with
regression, the parenthesized subscripts couldn’t possibly indicate leave one out.
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That is the origin of (12.58). Of course, this doesn’t prove that (12.58) is the
Right Thing. Far from it. We know that in general

g
(
E{X}) = E

{
g(X)

}
(12.60)

is generally false. The only condition we know that makes (12.60) hold is that g
be a linear function. Now inverse c. d. f.’s are never linear except for the special
case of the uniform distribution. Hence

E
{
X(k)

}
= E

{
F−1

(
U(k)

)} 6= F−1
(
E

{
U(k)

})
= F−1

(
k

n + 1

)
Thus, although (12.58) has some theoretical woof associated with it, it does
not do exactly the right thing. We can only consider (12.58) a thing to do (as
opposed to the thing to do). Hence the other proposals.

The proposal (12.57) has less theory behind it. It is based on the idea
that n in the denominator rather than n + 1 is more natural (no theoretical
reason for this). Unit spacing between the points also seems natural. Then the
requirement that they be placed symmetrically in the interval (0, 1) determines
the form (k − 1

2 )/n.
Another proposal often seen is so-called normal scores. These are E

{
X(k)

}
when the Xi have a standard normal distribution. The are, however, hard to
compute. Some statistics packages have them, but not all. R doesn’t. Of course,
these are only useful when the distribution of interest is the normal distribution.
The analogous quantities could be defined for any distribution, but software and
tables exist only for the normal.

A proposal that does work for all distributions would be to put the medians
of the beta distributions (12.59) through the inverse c. d. f., that is, if ζk is the
median of the Beta(k, n−k+1) distribution use F−1(ζk) as the plotting points.
This proposal has the virtue of coming from a correct theoretical argument.
The median of X(k) is indeed F−1(ζk), because medians (as opposed to means)
do indeed go through quantile transforms.

In practice all of these proposals produce almost the same picture. So nobody
worries about the differences, and does what seems simplest. The R function
qqnorm does a Q-Q plot against the normal distribution and uses the proposal
(12.57) for the plotting points. Here’s how to do a Q-Q plot against a normal
distribution of an arbitrary data vector x in R.

qqnorm(x)
qqline(x)

The first command does the Q-Q plot. The second puts on a line about which
the points should cluster. Since we don’t know the parameters µ and σ2 of the
population from which x was drawn, we don’t know in advance which line the
points should cluster about (qqnorm plots against the standard normal. If the
data are standard normal, then the points cluster about the line with intercept
zero and slope one. If the data are normal (but not standard normal), then the
points cluster about the line with intercept µ and slope σ. So if the points cluster
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Figure 12.5: A Q-Q Plot.

about any line, we conclude they are approximately normally distributed. R
picks a reasonable line, one that most of the points cluster about.

Here’s how to do a Q-Q plot of the externally studentized residuals in R, as-
suming we have already fit a linear model and put the result of the lm command
in a variable out

qqnorm(rstudent(out))
abline(0, 1)

The second command draws a line with intercept zero and slope one. If the
residuals are approximately standard normal,6 then the points in the plot should
lie near this line.

Example 12.6.1.
This looks at the residuals from the fifth degree polynomial fit to the data of
Example 12.3.2. Figure 12.5 shows the Q-Q plot of the externally studentized
residuals.

It’s not clear what one is supposed to make of a Q-Q plot. The points
never lie exactly on the line because of chance variation (the sample is not the
population). So how far off the line do they have to be before you should question

6Why standard normal when the externally studentized residuals have marginal distribu-
tion t(n − p − 1)? Because they are not independent samples from this distribution. In fact
the random parts of the denominators σ̂(i) are highly correlated. Thus they look much more
like a random sample from a normal than from a t distribution.
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the regression assumptions? One sensible recommendation is to “calibrate”
your eye by looking at several Q-Q plots for data simulated from the correct
distribution (here standard normal).

qqnorm(rnorm(n))
abline(0, 1)

where n is the number of cases in the data. Repeat until you get an idea how
much variation you should expect.

But isn’t there a hypothesis test we should apply? There are hypothesis
tests one can do. The trouble with them is that, when n is large, they tend to
find “statistically significant” departures from normality that are fairly minor
in their effects. Linear regression is somewhat robust against minor departures
from normality of the error distribution. So small departures, “statistically
significant” though they may be, can be ignored. What we are looking for here
is really obvious and serious nonnormality.

12.7 Model Selection

This section discusses the problem of choosing among many models. Al-
though our examples will be regression problems and some of the discussion
and methods will be specific to linear regression, the problem is general. When
many models are under consideration, how does one choose the best? Thus we
also discuss methods that apply outside the regression context.

There are two main issues.

• Non-nested models

• Many models.

The only methods for model comparison we have studied, the F test for com-
parison of linear regression models and the likelihood ratio test for comparison
of general models, are valid only for comparing two nested models. We also
want to test non-nested models, and for that we need new theory. When more
than two models are under consideration, the issue of correction for multiple
testing arises. If there are only a handful of models, Bonferroni correction (or
some similar procedure) may suffice. When there are many models, a conser-
vative correction like Bonferroni is too conservative. Let’s consider how many
models might be under consideration in a model selection problem. Consider a
regression problem with k predictor variables.

• [Almost the worst case] There are 2k possible submodels formed by
choosing a subset of the k predictors to include in the model (because a
set with k elements has 2k subsets).

• [Actually the worst case] That doesn’t consider all the new predictors
that one might “make up” using functions of the old predictors. Thus
there are potentially infinitely many models under consideration.
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Bonferroni correction for infinitely many tests is undefined. Even for 2k tests
with k large, Bonferroni is completely pointless. It would make nothing statis-
tically significant.

12.7.1 Overfitting

Least squares is good for model fitting, but useless for model selec-
tion.

Why? A bigger model always has a smaller residual sum of squares, just because
a minimum taken over a larger set is smaller.7 Thus least squares, taken as a
criterion for model selection says “always choose the biggest model.” But this
is silly. Consider what the principle of choosing the biggest model says about
polynomial regression.

Example 12.7.1 (Overfitting in Polynomial Regression).
Consider regression data shown in Figure 12.6. Couldn’t ask for nicer data
for simple linear regression. The data appear to fit the “simple” model (one
non-constant predictor, which we take to be x itself).

But now consider what happens when we try to be a bit more sophisticated.
How do we know that the “simple” model is o. k.? Perhaps we should consider
some more complicated models. How about trying polynomial regression? But
if we consider all possible polynomial models, that’s an infinite number of models
(polynomials of all orders).

Although an infinite number of models are potentially under consideration,
the fact that the data set is finite limits the number of models that actually
need to be considered to a finite subset. You may recall from algebra that any
set of n points in the plane having n different x values can be interpolated
(fit exactly) by a polynomial of degree n − 1. A polynomial that fits exactly
has residual sum of squares zero (fits perfectly). Can’t do better than that by
the least squares criterion! Thus all polynomials of degree at least n − 1 will
give the same fitted values and zero residual sum of squares. Although they
may give different predicted values for x values that do not occur in the data,
they give the same predicted values at those that do. Hence the polynomials
with degree at least n − 1 cannot be distinguished by least squares. In fact
the polynomials with degree more than n − 1 cannot be fit at all, because they

7If g is any real-valued function and A and B are two subsets of the domain of g with
A ⊂ B then

inf
x∈A

g(x) ≥ inf
y∈B

g(y)

simply because every x that occurs on the left hand side also occurs as a y on the right hand
side because A ⊂ B. Taking g to be the least squares criterion for a regression model, and
A and B the parameter spaces for two nested models gives the result that the larger model
always has the smaller residual sum of squares.

Note this is exactly analogous to what happens with maximum likelihood. The larger model
always has the larger log likelihood. The reasoning is exactly the same except for the inequality
being reversed because of maximizing in maximum likelihood rather than minimizing in least
squares.
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Figure 12.6: Some regression data. With fitted “simple” regression function of
the form y = α̂ + β̂x.

have more parameters than there are equations to determine them. X′X is a
singular matrix and cannot inverted to give unique estimates of the regression
coefficients.

This is a general phenomenon, which occurs in all settings, not just with
linear regression. Models with more parameters than there are data points are
underdetermined. Many different parameter vectors give the same likelihood,
or the same empirical moments for the method of moments, or the same for
whatever criterion is being used for parameter estimation. Thus in general,
even when an infinite number of models are theoretically under consideration,
only n models are practically under consideration, where n is the sample size.

Hence the “biggest model” that the least squares criterion selects is the
polynomial of degree n − 1. What does it look like? Figure 12.7 shows both
the best fitting (perfectly fitting!) polynomial of degree n− 1 = 9 and the least
squares regression line from the other figure.

How well does the biggest model do? It fits the observed data perfectly, but
it’s hard to believe that it would fit new data from the same population as well.
The extreme oscillations near the ends of the range of the data are obviously
nonsensical, but even the smaller oscillations in the middle seem to be tracking
random noise rather than any real features of the population regression function.
Of course, we don’t actually know what the true population regression function
is. It could be either of the two functions graphed in the figure, or it could be
some other function. But it’s hard to believe, when the linear function fits so
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Figure 12.7: Some regression data. With fitted linear regression function
(dashed line) and ninth degree polynomial regression function (solid curve).

well, that something as complicated as the ninth degree polynomial is close to
the true regression function. We say it “overfits” the data, meaning it’s too close
to the data and not close enough to the true population regression function.

12.7.2 Mean Square Error

So what criterion should we use for model selection if residual sum of squares
is no good? One theoretical criterion is mean square error. In the regression
setting, it is unclear what quantities mean square error should apply to. Do
we use the mean square error of the parameter estimates? We haven’t even
defined mean square error for vector quantities. That alone suggests we should
avoid looking at m. s. e. of regression coefficients. There is also our slogan that
regression coefficients are meaningless. Hence we should look at estimates of
the regression function.

But here too, there are still issues that need to be clarified. The regression
function h(x) = E(Y | x) is a scalar function of x. (Hence we don’t need to
worry about m. s. e. of a vector quantity). But it is a function of the predictor
value x.

mse{ĥ(x)} = variance + bias2 = var{ĥ(x)} +
(
E{ĥ(x)} − h(x)

)2

(12.61)

where h(x) is the true population regression function and ĥ(x) is an estimate
(we are thinking of least squares regression estimates, but (12.61) applies to any
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estimate). (“Bias?” did I hear someone say? Aren’t linear regression estimates
unbiased? Yes, the are when the model is correct. Here we are considering cases
when the model is too small to contain the true regression function.)

To make a criterion that we can minimize to find the best model, we need a
single scalar quantity, not a function. There are several things we could do to
make a scalar quantity from (12.61). We could integrate it over some range of
values, obtaining so-called integrated mean squared error. A simpler alternative
is to sum it over the design points, the x values occurring in the data set under
discussion. We’ll discuss only the latter.

As we did before, write µ for the true population means of the responses
given the predictors, defined by µi = h(xi). Let m index models. The m-th
model will have design matrix Xm and hat matrix Hm. The expected value of
the regression predictions ŷ = Hmy under the m-th model is

E(ŷ) = Hmµ.

Hence the bias is
E(y) − E(ŷ) = (I − Hm)µ. (12.62)

Note that if the model is correct, then µ is in the range of Hm and the bias
is zero. Models that are incorrect have nonzero bias. (12.62) is, of course, a
vector. Its i-th element gives the bias of ŷi. What we decided to study was
the sum of the m. s. e.’s at the design points, the “bias” part of which is just
the sum of squares of the elements of (12.62), which is the same thing as the
squared length of this vector

bias2 = ‖(I − Hm)µ‖2 = µ′(I − Hm)2µ = µ′(I − Hm)µ. (12.63)

The variance is

var(ŷ) = E
{∥∥ŷ − E(ŷ)

∥∥2
}

= E
{∥∥ŷ − Hmµ

∥∥2
}

= E
{∥∥Hm(y − µ)

∥∥2
}

= E {Hm(y − µ)′(y − µ)Hm}
= σ2H2

m

= σ2Hm

This is, of course, a matrix. What we want though is just the sum of the diagonal
elements. The i-th diagonal element is the variance of ŷi, and our decision to
focus on the sum of the m. s. e.’s at the design points says we want the sum
of these. The sum of the diagonal elements of a square matrix A is called its
trace, denoted tr(A). Thus the “variance” part of the m. s. e. is

variance = σ2 tr(Hm). (12.64)



438 Stat 5101 (Geyer) Course Notes

And

MSEm =
n∑

i=1

mse(ŷi) = σ2 tr(Hm) + µ′(I − Hm)µ.

12.7.3 The Bias-Variance Trade-Off

Generally, one cannot reduce both bias and variance at the same time. Big-
ger models have less bias but more variance. Smaller models have less variance
but more bias. This is called the “bias-variance trade-off.”

Example 12.7.2.
We again use the data for Example 12.3.2. This example, however, will be
purely theoretical. We will look at various polynomial regression models, using
the x values, but ignoring the y values. Instead we will do a purely theoretical
calculation using the parameter values that were actually used to simulate the
y values in the data

µi = sin(xi) + sin(2xi) (12.65a)
σ = 0.2 (12.65b)

Since the true population regression curve is a trigonometric rather than a poly-
nomial function, no polynomial is unbiased. This is typical of real applications.
No model under consideration is exactly correct.

Table 12.1 shows the results of the theoretical calculations for the data in
this example. We see that the fifth degree polynomial chosen in Example 12.3.2
is not the best. The ninth degree polynomial is the best. Figure 12.8 shows
both the true regression function used to simulate the response values (12.65a)
and the sample ninth-degree polynomial regression function. We see that the
sample regression function does not estimate the true regression function per-
fectly (because the sample is not the population), but we now know from the
theoretical analysis in this example that no polynomial will fit better. A lower
degree polynomial will have less variance. A higher degree will have less bias.
But the bias-variance trade-off will be worse for either.

12.7.4 Model Selection Criteria

The theory discussed in the preceding section gives us a framework for dis-
cussing model selection. We want the model with the smallest m. s. e., the
model which makes the optimal bias-variance trade-off.

Unfortunately, this is useless in practice. Mean square error is a theoretical
quantity. It depends on the unknown true regression function and the unknown
error variance. Furthermore, there is no obvious way to estimate it. Without
knowing which models are good, which is exactly the question we are trying
to resolve, we can’t get a good estimate of the true regression function (and
without that we can’t estimate the error variance well either).
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Table 12.1: Bias and Variance for Different Polynomial Regression Models. The
second column gives the variance (12.64) and the third column gives the “bias2”
(12.63) for polynomial regression models of different degrees. The last column
gives their sum (mean squared error). The model with the smallest m. s. e.
(degree 7) is the best. The calculations are for the situation with true regression
function (12.65a) and true error standard deviation (12.65b).

degree variance bias2 m. s. e.
0 0.04 99.0000 99.0400
1 0.08 33.3847 33.4647
2 0.12 33.3847 33.5047
3 0.16 29.0924 29.2524
4 0.20 29.0924 29.2924
5 0.24 4.8552 5.0952
6 0.28 4.8552 5.1352
7 0.32 0.1633 0.4833
8 0.36 0.1633 0.5233
9 0.40 0.0019 0.4019
10 0.44 0.0019 0.4419
11 0.48 9.8 × 10−6 0.4800
12 0.52 9.8 × 10−6 0.5200
13 0.56 2.6 × 10−8 0.5600
14 0.60 2.6 × 10−8 0.6000
15 0.64 3.9 × 10−11 0.6400
16 0.68 3.9 × 10−11 0.6800
17 0.72 4.9 × 10−14 0.7200
18 0.76 4.9 × 10−14 0.7600
19 0.80 1.2 × 10−14 0.8000
20 0.84 1.4 × 10−14 0.8400
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Figure 12.8: Some regression data with true regression function (solid line) and
sample regression function (dashed line).

There are several quantities that have been proposed in the literature as
estimates of m. s. e. No one is obviously right. We shall not go into the theory
justifying them (it is merely heuristic anyway). One fairly natural quantity is

n∑
i=1

ê2
(i) (12.66)

Unlike SSResid (the sum of the êi), this does not always favor the biggest model.
Models that overfit tend to do a bad job of even their leave-one-out predictions.
(12.66) is called the predicted residual sum of squares (PRESS) or the cross-
validated sum of squares (CVSS), cross-validation being another term used to
describe the leave-one-out idea.

The idea of CVSS or other criteria to be described presently is to pick the
model with the smallest value of the criterion. This will not necessarily be the
model with the smallest m. s. e., but it is a reasonable estimate of it.

Another criterion somewhat easier to calculate is Mallows’ Cp defined by

Cp =
SSResidp

σ̂2
+ 2p − n

=
SSResidp − SSResidk

σ̂2
+ p − (k − p)

= (k − p)(Fk−p,n−k − 1) + p

(12.67)
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where SSResidp is the sum of squares of the residuals for some model with p
predictors (including the constant predictor, if present), σ̂2 = SSResidk/(n− k)
is the estimated error variance for the largest model under consideration, which
has k predictors, and Fp,k is the F statistic for the F test for comparison of
these two models. The F statistic is about one in size if the small model is
correct, in which case Cp ≈ p. This gives us a criterion for finding reasonably
fitting models. When many models are under consideration, many of them may
have Cp ≈ p or smaller. All such models must be considered reasonably good
fits. Any might be the correct model or as close to correct as any model under
consideration. The quantity estimated by Cp is the mean square error of the
model with p predictors, divided by σ2.

An idea somewhat related to Mallows’ Cp, but applicable outside the regres-
sion context is the Akaike information criterion (AIC).

−2 · (log likelihood) + 2p (12.68)

where as in Mallows’ Cp, the number of parameters in the model is p. Although
(12.67) and (12.68) both have the term 2p, they are otherwise different. The
log likelihood for a linear regression model, with the MLE’s plugged in for the
parameters is

−n

2
[1 + log(σ̂2)]

[equation (12) on p. 511 in Lindgren]. Thus for a regression model

AIC = n + n log(σ̂2
p) + 2p

where we have put a subscript p on the estimated error variance to indicate
clearly that it is the estimate from the model with p predictors, not the error
estimate from the largest model (k predictors used in Cp).

Finally, we add one last criterion, almost the same as AIC, called the Bayes
information criterion (BIC)

−2 · (log likelihood) + p log(n) (12.69)

In the regression context, this becomes

BIC = n + n log(σ̂2
p) + p log(n)

Neither AIC nor BIC have a rigorous theoretical justification applicable to a
wide variety of models. Both were derived for special classes of models that
were easy to analyze and both involve some approximations. Neither can be
claimed to be the right thing (nor can anything else). As the “Bayes” in BIC
indicates, the BIC criterion is intended to approximate using Bayes tests instead
of frequentist tests (although its approximation to true Bayes tests is fairly
crude). Note that BIC penalizes models with more parameters more strongly
than AIC (p log n versus 2p). So BIC always selects a smaller model than AIC.

This gives us four criteria for model selection. There are arguments in favor
of each. None of the arguments are completely convincing. All are widely used.
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Table 12.2: Model Selection Criteria. Four model selection criteria, CVSS,
Mallows’ Cp, AIC, and BIC applied to the data of Example 12.3.2.

p CVSS Cp AIC BIC
1 102.44 2327.01 102.40 105.01
2 40.44 832.80 10.45 15.66
3 41.79 834.29 13.42 21.24
4 36.06 706.84 1.44 11.86
5 37.01 707.20 4.28 17.31
6 10.72 125.33 −124.48 −108.85
7 11.36 127.03 −121.56 −103.32
8 4.52 8.22 −202.20 −181.36
9 4.73 9.75 −199.62 −176.17

10 4.91 11.50 −196.79 −170.74
11 5.22 13.50 −193.67 −165.02
12 5.71 15.49 −190.55 −159.29
13 5.10 14.58 −190.64 −156.77
14 5.74 16.06 −188.07 −151.59
15 5.08 14.62 −188.89 −149.82
16 4.89 16.00 −186.44 −144.76

Example 12.7.3.
We use the data for Example 12.3.2 yet again. Now we fit polynomials of
various degrees to the data, and look at our four criteria. The results are shown
in Table 12.2. In this example, all four criteria select the same model, the model
with p = 8 predictors, which is the polynomial of degree 7. This is not the model
with the smallest m. s. e. discovered by the theoretical analysis. The criteria
do something sensible, but as everywhere else in statistics, there are errors (the
sample is not the population).

12.7.5 All Subsets Regression

We know return to the situation in which there are k predictors including the
constant predictor and 2k−1 models under consideration (the constant predictor
is usually included in all models). If k is large and one has no non-statistical
reason (e. g., a practical or scientific reason) that cuts down the number of
models to be considered, then one must fit them all. Fortunately, there are
fast algorithms that allow a huge number of models to be fit or at least quickly
checked to see that they are much worse than other models of the same size.

There is a contributed package to R that contains a function leaps that
does this.

Example 12.7.4 (2k subsets).
The data set in the URL
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http://www.stat.umn.edu/geyer/5102/ex12.7.4.dat

consists of multivariate normal data with one response variable y and 20 predic-
tor variables x1, . . ., x20. The predictors are correlated. The distribution from
which they were simulated has all correlations equal to one-half. The actual
(sample) correlations, of course, are all different because of chance variation.

The true population regression function (the one used to simulate the y
values) was

y = x1 + x2 + x3 + x4 + x5 + e (12.70)

with error variance σ2 = 1.52. If we fit the model

foo <- as.matrix(X)
x <- foo[ , -1]
out <- lm(y ~ x)
summary(out)

the table of information about the regression coefficients is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.07879 0.17449 -0.452 0.65286
xx1 1.11887 0.22303 5.017 3.17e-06 ***
xx2 0.79401 0.26519 2.994 0.00367 **
xx3 0.45118 0.25848 1.746 0.08478 .
xx4 0.59879 0.23037 2.599 0.01115 *
xx5 1.09573 0.24277 4.513 2.20e-05 ***
xx6 0.26067 0.24220 1.076 0.28509
xx7 -0.15959 0.21841 -0.731 0.46712
xx8 -0.50182 0.23352 -2.149 0.03470 *
xx9 0.14047 0.22888 0.614 0.54116
xx10 0.37689 0.22831 1.651 0.10275
xx11 0.39805 0.21722 1.832 0.07065 .
xx12 0.38825 0.22396 1.734 0.08689 .
xx13 -0.07910 0.23553 -0.336 0.73788
xx14 0.26716 0.20737 1.288 0.20138
xx15 -0.12016 0.23073 -0.521 0.60398
xx16 0.08592 0.22372 0.384 0.70195
xx17 0.31296 0.22719 1.378 0.17224
xx18 -0.24605 0.23355 -1.054 0.29531
xx19 0.10221 0.21503 0.475 0.63586
xx20 -0.45956 0.23698 -1.939 0.05604 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We’ve left in the significance codes, bogus though they may be (more on this
later), so you can easily spot the regression coefficients that the least squares fit
indicates may be important. If we go only with the strongest evidence (two or
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three stars) we get as “significant” three of the five truly important regression
coefficients [recall from (12.70) that the true nonzero regression coefficients are
β1 through β5]. The other two are missed.

If we use a less stringent standard, say one or more stars, we do pick up
another truly nonzero regression coefficient, but we also pick up a false one.
Thus we now have both false negatives (we still missed β3) and false positives
(we’ve picked up β8).

With the least stringent standard, all the coefficients marked by any of the
“significance codes” we now have no false negatives (all five of the truly nonzero
regression coefficients are now declared “significant”) but we have four false
positives.

No matter how you slice it, least squares regression doesn’t pick the right
model. Of course, this is no surprise. It’s just “the sample is not the population.”
But it does show that the results of such model selection procedures must be
treated with skepticism.

Actually, we haven’t even started a sensible model selection procedure. Re-
call the slogan that if you want to know how good a model fits, you have to fit
that model. So far we haven’t fit any of the models we’ve discussed. We’re fools
to think we can pick out the good submodels just by looking at printout for the
big model.

There is a function leaps in the leaps contributed package8 that fits a huge
number of models. By default, it finds the 10 best models of each size (number
of regression coefficients) for which there are 10 or more models and finds all
the models of other sizes.

It uses the inequality that a bigger model always has a smaller sum of squares
to eliminate many models. Suppose we have already found 10 models of size p
with SSResid less than 31.2. Suppose there was a model of size p+1 that we fit
and found its SSResid was 38.6. Finally suppose σ̂2 for the big model is 2.05.
Now the Cp for the 10 best models of size p already found is

Cp =
SSResidp

σ̂2
+ 2p − n <

31.2
2.05

+ 2p − n

and the Cp for any submodel of size p of the model with SSResid = 38.6 (i. e.,
models obtained by dropping one predictor from that model) has

Cp ≥ 38.6
2.05

+ 2p − n

This means that no such model can be better than the 10 already found, so they
can be rejected even though we haven’t bothered to fit them. Considerations
of this sort make it possible for leaps to pick the 10 best of each size without
fitting all or even a sizable fraction of the models of each size. Thus it manages
to do in minutes what it couldn’t do in a week if it actually had to fit all 2k

models. The reason why leaps uses Cp as its criterion rather than one of the
8This has to be installed separately. It doesn’t come with the “base” package. Like

everything else about R, it can be found at http://cran.r-project.org.
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Figure 12.9: Cp plot. Plot of Cp versus p. The dots are the Cp for the 10 best
models for each p. The curve is the line Cp = p (curved because of the log scale
for Cp).

others is that it is a simple function of SSResid and hence to these inequalities
that permit its efficient operation.

We run the leaps function as follows, with the design matrix x defined as
above,9

library(leaps)
outs <- leaps(x, y, strictly.compatible=FALSE)
plot(outs$size, outs$Cp, log="y", xlab="p", ylab=expression(C[p]))
lines(outs$size, outs$size)

Figure 12.9 shows the plot made by the two plot commands. Every model with
Cp < p, corresponding to the dots below the line is “good.” There are a huge
number of perfectly acceptable models, because for the larger p there are many
more than 10 good models, which are not shown.

The best model according to the Cp criterion is one with p = 12, so 11 non-
constant predictors, which happen to be x1 through x5 (the truly significant
predictors) plus x8, x10, x11, x12, x14, and x20. We can get its regression
output as follows.

9For some reason, leaps doesn’t take formula expressions like lm does. The reason is
probably historical. The equivalent S-plus function doesn’t either, because it was written
before S had model formulas and hasn’t changed. The strictly.compatible=FALSE tells R
not to be bug-for-bug compatible with S-plus.
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foo <- x[ , outs$which[outs$Cp == min(outs$Cp)]]
out.best <- lm(y ~ foo)
summary(out.best)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.04925 0.15756 -0.313 0.755316
foox1 1.07411 0.19981 5.376 6.20e-07 ***
foox2 0.88230 0.24483 3.604 0.000519 ***
foox2 0.43560 0.22969 1.896 0.061177 .
foox4 0.72393 0.19912 3.636 0.000466 ***
foox5 1.15609 0.22367 5.169 1.46e-06 ***
foox8 -0.35752 0.21251 -1.682 0.096046 .
foox10 0.43501 0.21885 1.988 0.049957 *
foox11 0.34579 0.20295 1.704 0.091940 .
foox12 0.38479 0.19811 1.942 0.055301 .
foox14 0.28910 0.18838 1.535 0.128455
foox20 -0.49878 0.21736 -2.295 0.024124 *

Note that the “stargazing” doesn’t correspond with the notion of the best
model by the Cp criterion. One of these coefficients doesn’t even have a dot (so
for it P > 0.10), and four others only have dots (0.05 < P < 0.10). Considering
them separately, this would lead us to drop them. But that would be the Wrong
Thing (multiple testing without correction). The leaps function does as close
to the Right Thing as can be done. The only defensible improvement would be
to change the criterion, to BIC perhaps, which would choose a smaller “best”
model because it penalizes larger models more. However BIC wouldn’t have the
nice inequalities that make leaps so efficient, which accounts for the use of Cp.

I hope you can see from this analysis that model selection when there are a
huge number of models under consideration and no extra-statistical information
(scientific, practical, etc.) that can be used to cut down the number is a mug’s
game. The best you can do is not very good. The only honest conclusion is that
a huge number of models are about equally good, as good as one would expect
the correct model to be (Cp ≈ p).

Thus it is silly to get excited about exactly which model is chosen as the
“best” by some model selection procedure (any procedure)! When many mod-
els are equally good, the specific features of any one of them can’t be very
important.

All of this is related to our slogan about “regression is for prediction, not
explanation.” All of the models with Cp < p predict about equally well. So
if regression is used for prediction, the model selection problem is not serious.
Just pick any one of the many good models and use it. For prediction it doesn’t
matter which good prediction is used. But if regression is used for explanation,
the model selection problem is insoluble. If you can’t decide which model is
“best” and are honest enough to admit that lots of other models are equally
good, then how can you claim to have found the predictors which “explain”
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the response? Of course, if you really understand “correlation is not causation,
and regression isn’t either,” then you know that such “explanations” are bogus
anyway, even in the “simple” case (one non-constant predictor) where the model
selection problem does not arise.

Problems

12-1. Prove the assertion β̂ = (X′X)−1X′ŷ in the proof of Theorem 12.8.

12-2. For the data in Example 12.2.1 give 90% confidence intervals for α and
β1 (the intercept and coefficient for x1, the coefficient for x2 was done in Ex-
ample 12.3.1

12-3. Fill in the details of the proof of Lemma 12.10.

12-4. For the data in Example 12.3.2 in the URL

http://www.stat.umn.edu/geyer/5102/ex12.3.2.dat

try fitting some Fourier series models. A Fourier series is sum of sines and
cosines of multiples of one fundamental frequency

f(x) = a +
m∑

k=1

bk sin(2πkx/L) +
m∑

k=1

ck cos(2πkx/L)

where L is a known constant (the wavelength of the lowest frequency sine and co-
sine terms) and a, the bk, and the ck are adjustable constants. These adjustable
constants will be the regression coefficients you fit using linear regression. A
Fourier series is always periodic with period L. Since the variable x in this data
set does just happen to take values evenly spaced between zero and 2π, and
inspection of Figure 12.1 suggests the true regression may be periodic with this
period, I recommend using L = 2π, which gives a regression function of the
form

E(Y |X) = α +
m∑

k=1

βk sin(kX) +
m∑

k=1

γk cos(kX)

and we have changed the coefficients to Greek letters to indicate that they are
the population regression coefficients, which are unknown constants that we
have to estimate.

Use linear regression to find a sample regression function that seems to fit
the data better than the polynomial found in Example 12.3.2. (It’s up to you to
figure out how high m should be and whether all the terms up to order m should
be included. You don’t have to find the “best” model, whatever that means,
just a good model.) Hand in a plot of your fitted sample regression function
with the data points also plotted (like Figure 12.2 and the output from the R
summary command showing the regression fit. (The R functions for sine and
cosine are sin and cos. The R for sin(2x) is sin(2 * x), because you need the
* operator for multiplication. You will also need to wrap such terms in the I()
function, like I(sin(2 * x)).)
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12-5. The data set in the URL

http://www.stat.umn.edu/geyer/5102/prob12-5.dat

has three variables x1 and x2 (the predictor variables) and y (the response
variable).

Fit three models to this data set (1) a “linear” model fitting a polynomial
of degree one in the two predictor variables, (2) a “quadratic” model fitting a
polynomial of degree two, and (3) a “cubic” model fitting a polynomial of degree
three. Don’t forget the terms of degree two and three containing products of
powers of the two predictor variables.

Print out the ANOVA table for comparing these three models and interpret
the P -values in the table. Which model would you say is the best fitting, and
why?

12-6. The data set in the URL

http://www.stat.umn.edu/geyer/5102/prob12-6.dat

has two variables x (the predictor variable) and y (the response variable). As a
glance at a scatter plot of the data done in R by

plot(x, y)

shows, the relationship between x and y does not appear to be linear. However,
it does appear that a so-called piecewise linear function with a knot at 11 may
fit the data well. The means a function having the following three properties.

• It is linear on the interval x ≤ 11.

• It is linear on the interval x ≥ 11.

• These two linear functions agree at x = 11.

Figure out how to fit this model using linear regression. (For some choice of
predictor variables, which are functions of x, the regression function of the model
is the piecewise linear function described above. Your job is to figure out what
predictor variables do this.)

(a) Describe your procedure. What predictors are you using? How many
regression coefficients does your procedure have?

(b) Use R to fit the model. Report the parameter estimates (regression coef-
ficients and residual standard error).

The following plot

plot(x, y)
lines(x, out$fitted.values)
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puts a line of predicted values (ŷ in the notation used in the notes and in
Lindgren) on the scatter plot. It may help you see when you have got the right
thing. You do not have to turn in the plot.

Hint: The ifelse function in R defines vectors whose values depend on a
condition, for example

ifelse(x <= 11, 1, 0)

defines the indicator function of the interval x ≤ 11. (This is not one of the
predictor variables you need for this problem. It’s a hint, but not that much of
a hint. The ifelse function may be useful, this particular instance is not.)

12-7. For the data in the URL

http://www.stat.umn.edu/geyer/5102/ex12.3.2.dat

(a) Find the 95% percent prediction interval for an individual with x value 5
using the fifth degree polynomial model fit in Examples 12.3.2 and 12.3.4
(this interval can be read off Figure 12.3, but get the exact numbers from
R).

(b) Find the 95% percent confidence interval for the population regression
function at the same x value for the same model.

12-8. Prove Theorem 12.13. (Use ŷ = Hy, don’t reprove it.)

12-9. The data set

http://www.stat.umn.edu/geyer/5102/prob12-9.dat

contains three variables, x, y, and z. Each is an i. i. d. sample from some
distribution. The three variables are independent of each other (this is not a
regression problem). Make Q-Q plots of the variables. One is normal. Which
one? Describe the features of the other two plots that make you think the
variables plotted are not normal.

It is an interesting comment on the usefulness of Q-Q plots that this problem
is essentially undoable at sample size 50 (no differences are apparent in the
plots). It’s not completely obvious at the sample size 100 used here. Fairly
large sample sizes are necessary for Q-Q plots to be useful.
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12.8 Bernoulli Regression

As we said in Section 12.5

• Categorical predictors are no problem for linear regression. Just use
“dummy variables” and proceed normally.

but

• Categorical responses do present a problem. Linear regression assumes
normally distributed responses. Categorical variables can’t be normally
distributed.

So now we learn how to deal with at least one kind of categorical response, the
simplest, which is Bernoulli.

Suppose the responses are

Yi ∼ Ber(pi) (12.71)

contrast this with the assumptions for linear regression which we write as

Yi ∼ N (µi, σ
2) (12.72)

and
µ = Xβ (12.73)

Equations (12.72) and (12.73) express the same assumptions as (12.22) and
(12.24). We have just rewritten the “strong” regression assumptions in order to
bring out the analogy with what we want to do with Bernoulli regression.

The analogy between (12.71) and (12.72) should be clear. Both assume the
data are independent, but not identically distributed. The responses Yi have
distributions in the same family, but not the same parameter values. So all
we need to finish the specification of a regression-like model for Bernoulli is an
equation that takes the place of (12.73).

12.8.1 A Dumb Idea (Identity Link)

We could use (12.73) with the Bernoulli model, although we have to change
the symbol for the parameter from µ to p

p = Xβ.

This means, for example, in the “simple” linear regression model (with one
constant and one non-constant predictor xi)

pi = α + βxi. (12.74)

Before we further explain this, we caution that this is universally recognized to
be a dumb idea, so don’t get too excited about it.
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Now nothing is normal, so least squares, t and F tests, and so forth make
no sense. But maximum likelihood, the asymptotics of maximum likelihood
estimates, and likelihood ratio tests do make sense.

Hence we write down the log likelihood

l(α, β) =
n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
and its derivatives

∂l(α, β)
∂α

=
n∑

i=1

[
yi

pi
− 1 − yi

1 − pi

]
∂l(α, β)

∂β
=

n∑
i=1

[
yi

pi
− 1 − yi

1 − pi

]
xi

and set equal to zero to solve for the MLE’s. Fortunately, even for this dumb
idea, R knows how to do the problem.

Example 12.8.1 (Bernoulli Regression, Identity Link).
We use the data in

http://www.stat.umn.edu/geyer/5102/ex12.8.1.dat

which has three variables x, y, and z. For now we will just use the first two.
The response y is Bernoulli (zero-one-valued). We will do a Bernoulli regression
using the model assumptions described above, of y on x. The following code

out <- glm(y ~ x, family=quasi(variance="mu(1-mu)"),
start=c(0.5, 0))

summary(out, dispersion=1)

does the regression and prints out a summary. We have to apologize for the
rather esoteric syntax, which results from our choice of introducing Bernoulli
regression via this rather dumb example. The printout is

Call:
glm(formula = y ~ x, family = quasi(variance = "mu(1-mu)"),

start = c(0.5, 0))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5443 -1.0371 -0.6811 1.1221 1.8214

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.34750 0.19320 -1.799 0.072 .
x 0.01585 0.00373 4.250 2.14e-05 ***
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Figure 12.10: Scatter plot and regression line for Example 12.8.1 (Bernoulli
regression with an identity link function).

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 137.19 on 99 degrees of freedom
Residual deviance: 126.96 on 98 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 3

As usual, our main interest is in the table labeled Coefficients:, which says
the estimated regression coefficients (the MLE’s) are α̂ = −0.34750 and β̂ =
0.01585. This table also gives standard errors, test statistics (“z values”) and
P -values for the two-tailed test of whether the true value of the coefficient is
zero.

The scatter plot with regression line for this regression is somewhat unusual
looking. It is produced by the code

plot(x, y)
curve(predict(out, data.frame(x=x)), add=TRUE)

and is shown in Figure 12.10. The response values are, of course, being Bernoulli,
either zero or one, which makes the scatter plot almost impossible to interpret
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(it is clear that there are more ones for high x values than for low, but it’s
impossible to see much else, much less to visualize the correct regression line).

That finishes our discussion of the example. So why is it “dumb”? One
reason is that nothing keeps the parameters in the required range. The pi,
being probabilities must be between zero and one. The right hand side of
(12.74), being a linear function may take any values between −∞ and +∞. For
the data set used in the example, it just happened that the MLE’s wound up in
(0, 1) without constraining them to do so. In general that won’t happen. What
then? R being semi-sensible will just crash (produce error messages rather than
estimates).

There are various ad-hoc ways one could think to patch up this problem.
One could, for example, truncate the linear function at zero and one. But that
makes a nondifferentiable log likelihood and ruins the asymptotic theory. The
only simple solution is to realize that linearity is no longer simple and give up
linearity.

12.8.2 Logistic Regression (Logit Link)

What we need is an assumption about the pi that will always keep them
between zero and one. A great deal of thought by many smart people came
up with the following general solution to the problem. Replace the assumption
(12.73) for linear regression with the following two assumptions

η = Xβ (12.75)

and
pi = h(ηi) (12.76)

where g is a smooth invertible function that maps R into (0, 1) so the pi are
always in the required range. We now stop for some important terminology.

• The vector η in (12.75) is called the linear predictor.

• The function h is called the inverse link function and its inverse g = h−1

is called the link function.

The most widely used (though not the only) link function for Bernoulli
regression is the logit link defined by

g(p) = logit(p) = log
(

p

1 − p

)
(12.77a)

h(η) = g−1(η) =
eη

eη + 1
(12.77b)

The right hand equality in (12.77a) defines the so-called logit function, and, of
course, the right hand inequality in (12.77b) defines the inverse logit function.



454 Stat 5101 (Geyer) Course Notes

For generality, we will not at first use the explicit form of the link function
writing the log likelihood

l(β) =
n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]
where we are implicitly using (12.75) and (12.76) as part of the definition. Then

∂l(β)
∂βj

=
n∑

i=1

[
yi

pi
− 1 − yi

1 − pi

]
∂pi

∂ηi

∂ηi

∂βj

where the two partial derivatives on the right arise from the chain rule and are
explicitly

∂pi

∂ηi
= h′(ηi)

∂ηi

∂βj
= xij

where xij denotes the i, j element of the design matrix X (the value of the j-th
predictor for the i-th individual). Putting everything together

∂l(β)
∂βj

=
n∑

i=1

[
yi

pi
− 1 − yi

1 − pi

]
h′(ηi)xij

These equations also do not have a closed form solution, but are easily solved
numerically by R

Example 12.8.2 (Bernoulli Regression, Logit Link).
We use the same data in Example 12.8.1. The R commands for logistic regression
are

out <- glm(y ~ x, family=binomial)
summary(out)

Note that the syntax is a lot cleaner for this (logit link) than for the “dumb”
way (identity link). The Coefficients: table from the printout (the only part
we really understand) is

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.56633 1.15871 -3.078 0.00208 **
x 0.06607 0.02257 2.927 0.00342 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The regression function for this “logistic regression” is shown in Figure 12.11,
which appears later, after we have done another example.
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12.8.3 Probit Regression (Probit Link)

Another widely used link function for Bernoulli regression is the probit func-
tion, which is just another name for the standard normal inverse c. d. f. That is,
the link function is g(p) = Φ−1(p) and the inverse link function is g−1(η) = Φ(η).
The fact that we do not have closed-form expressions for these functions and
must use table look-up or computer programs to evaluate them is no problem.
We need computers to solve the likelihood equations anyway.

Example 12.8.3 (Bernoulli Regression, Probit Link).
We use the same data in Example 12.8.1. The R commands for probit regression
are

out <- glm(y ~ x, family=binomial(link="probit"))
summary(out)

The Coefficients: table from the printout is

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.20896 0.68646 -3.218 0.00129 **
x 0.04098 0.01340 3.058 0.00223 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that there is a huge difference in the regression coefficients for our three
examples, but this should be no surprise because the coefficients for the three
regressions are not comparable. Because the regressions involve different link
functions, the meaning of the regression coefficients are not the same. Com-
paring them is like comparing apples and oranges, as the saying goes. Thus
Bernoulli regression in particular and generalized linear models in general give
us yet another reason why regression coefficients are meaningless. Note that
Figure 12.11 shows that the estimated regression functions E(Y | X) are almost
identical for the logit and probit regressions despite the regression coefficients
being wildly different. Even the linear regression function used in our first ex-
ample is not so different, at least in the middle of the range of the data, from
the other two.

Regression functions (response predictions) have a direct probabilistic
interpretation E(Y | X).

Regression coefficients don’t.

The regression function E(Y | X) for all three of our Bernoulli regression
examples, including this one, are shown in Figure 12.11, which was made by
the following code, assuming that the results of the glm function for the three
examples were saved in out.quasi, out.logit, and out.probit, respectively,
rather than all three in out.
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Figure 12.11: Scatter plot and regression functions for Examples 12.8.1, 12.8.2,
and 12.8.3. Solid line: regression function for logistic regression (logit link).
Dashed line: regression function for probit regression (probit link). Dotted line:
regression function for no-name regression (identity link).

plot(x, y)
curve(predict(out.logit, data.frame(x=x), type="response"),

add=TRUE, lty=1)
curve(predict(out.probit, data.frame(x=x), type="response"),

add=TRUE, lty=2)
curve(predict(out.quasi, data.frame(x=x)), add=TRUE, lty=3)

The type="response" argument says we want the predicted mean values g(η),
the default being the linear predictor values η. The reason why this argument
is not needed for the last case is because there is no difference with an identity
link.

12.9 Generalized Linear Models

A generalized linear model (GLM) is a rather general (duh!) form of model
that includes ordinary linear regression, logistic and probit regression, and lots
more. We keep the regression-like association (12.75) between the regression
coefficient vector β and the linear predictor vector η that we used in Bernoulli
regression. But now we generalize the probability model greatly. We assume
the responses Yi are independent but not identically distributed with densities
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of the form

f(y | θ, φ) = exp
(

yθ − b(θ)
φ/wi

− c(y, φ)
)

(12.78)

We assume
Yi ∼ f( · | θi, φ),

that is, the canonical parameter θi is different for each case and is determined (in
a way yet to be specified) by the linear predictor ηi but the so-called dispersion
parameter φ is the same for all Yi. The weight wi is a known positive constant,
not a parameter. Also φ > 0 is assumed (φ < 0 would just change the sign of
some equations with only trivial effect). The function b is a smooth function but
otherwise arbitrary. Given b the function c is determined by the requirement
that f integrate to one (like any other probability density).

The log likelihood is thus

l(β) =
n∑

i=1

(
yiθi − b(θi)

φ/wi
− c(yi, φ)

)
(12.79)

Before we proceed to the likelihood equations, let us first look at what the iden-
tities derived from differentiating under the integral sign (10.14a) and (10.14b)
and their multiparameter analogs (10.44a) and (10.44b) tell us about this model.
Note that these identities are exact, not asymptotic, and so can be applied to
sample size one and to any parameterization. So let us differentiate one term of
(12.79) with respect to its θ parameter

l(θ, φ) =
yθ − b(θ)

φ/w
− c(y, φ)

∂l(θ, φ)
∂θ

=
y − b′(θ)

φ/w

∂2l(θ, φ)
∂θ2

= −b′′(θ)
φ/w

Applied to this particular situation, the identities from differentiating under the
integral sign are

Eθ,φ

{
∂l(θ, φ)

∂θ

}
= 0

varθ,φ

{
∂l(θ, φ)

∂θ

}
= −Eθ,φ

{
∂2l(θ, φ)

∂θ2

}
or

Eθ,φ

{
Y − b′(θ)

φ/w

}
= 0

varθ,φ

{
Y − b′(θ)

φ/w

}
=

b′′(θ)
φ/w
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From which we obtain

Eθ,φ(Y ) = b′(θ) (12.80a)

varθ,φ(Y ) = b′′(θ)
φ

w
(12.80b)

From this we derive the following lemma.

Lemma 12.20. The function b in (12.78) has the following properties

(i) b is strictly convex,

(ii) b′ is strictly increasing,

(iii) b′′ is strictly positive,

unless b′′(θ) = 0 for all θ and the distribution of Y is concentrated at one point
for all parameter values.

Proof. Just by ordinary calculus (iii) implies (ii) implies (i), so we need only
prove (iii). Equation (12.80b) and the assumptions φ > 0 and w > 0 imply
b′′(θ) ≥ 0. So the only thing left to prove is that if b′′(θ∗) = 0 for any one θ∗,
then actually b′′(θ) = 0 for all θ. By (12.80b) b′′(θ∗) = 0 implies varθ∗,φ(Y ) = 0,
so the distribution of Y for the parameter values θ∗ and φ is concentrated at
one point. But now we apply a trick using the distribution at θ∗ to calculate
for other θ

f(y | θ, φ) =
f(y | θ, φ)
f(y | θ∗, φ)

f(y | θ∗, φ)

= exp
(

yθ − b(θ)
φ/wi

− yθ∗ − b(θ∗)
φ/wi

)
f(y | θ∗, φ)

The exponential term is strictly positive, so the only way the distribution of Y
can be concentrated at one point and have variance zero for θ = θ∗ is if the
distribution is concentrated at the same point and hence has variance zero for
all other θ. And using (12.80b) again, this would imply b′′(θ) = 0 for all θ.

The “unless” case in the lemma is uninteresting. We never use probability
models for data having distributions concentrated at one point (that is, constant
random variables). Thus (i), (ii), and (iii) of the lemma hold for any GLM we
would actually want to use. The most important of these is (ii) for a reason
that will be explained when we return to the general theory after the following
example.

Example 12.9.1 (Binomial Regression).
We generalize Bernoulli regression just a bit by allowing more than one one
Bernoulli variable to go with each predictor value xi. Adding those Bernoullis
gives a binomial response, that is, we assume

Yi ∼ Bin(mi, pi)
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where mi is the number of Bernoulli variables with predictor vector xi. The
density for Yi is

f(yi | pi) =
(

mi

yi

)
pyi

i (1 − pi)1−yi

we try to match this up with the GLM form. So first we write the density as
an exponential

f(yi | pi) = exp
[
yi log(pi) + (mi − yi) log(1 − pi) + log

(
mi

yi

)]
= exp

[
yi log

(
pi

1 − pi

)
+ mi log(1 − pi) + log

(
mi

yi

)]
= exp

{
mi

[
ȳiθi − b(θi)

]
+ log

(
mi

yi

)}
where we have defined

ȳi = yi/mi

θi = logit(pi)
b(θi) = − log(1 − pi)

So we see that

•The canonical parameter for the binomial model is θ = logit(p). That
explains why the logit link is popular.

•The weight wi in the GLM density turns out to be the number of Bernoullis
mi associated with the i-th predictor value. So we see that the weight
allows for grouped data like this.

•There is nothing like a dispersion parameter here. For the binomial family
the dispersion is known; φ = 1.

Returning to the general GLM model (a doubly redundant redundancy), we
first define yet another parameter, the mean value parameter

µi = Eθi,φ(Yi) = b′(θi).

By (ii) of Lemma 12.20 b′ is a strictly increasing function, hence an invertible
function. Thus the mapping between the canonical parameter θ and the mean
value parameter µ is an invertible change of parameter. Then by definition of
“link function” the relation between the mean value parameter µi and the linear
predictor ηi is given by the link function

ηi = g(µi).

The link function g is required to be a strictly increasing function, hence an
invertible change of parameter.
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If, as in logistic regression we take the linear predictor to be the canonical
parameter, that determines the link function, because ηi = θi implies g−1(θ) =
b′(θ). In general, as is the case in probit regression, the link function g and
the function b′ that connects the canonical and mean value parameters are
unrelated.

It is traditional in GLM theory to make primary use of the mean value
parameter and not use the canonical parameter (unless it happens to be the
same as the linear predictor). For that reason we want to write the variance as
a function of µ rather than θ

varθi,φ(Yi) =
φ

w
V (µi) (12.81)

where
V (µ) = b′′(θ) when µ = b′(θ)

This definition of the function V makes sense because the function b′ is an
invertible mapping between mean value and canonical parameters. The function
V is called the variance function even though it is only proportional to the
variance, the complete variance being φV (µ)/w.

12.9.1 Parameter Estimation

Now we can write out the log likelihood derivatives

∂l(β)
∂βj

=
n∑

i=1

(
yi − b′(θi)

φ/wi

)
∂θi

∂βj

=
n∑

i=1

(
yi − µi

φ/wi

)
∂θi

∂βj

In order to completely eliminate θi we need to calculate the partial derivative.
First note that

∂µi

∂θi
= b′′(θi)

so by the inverse function theorem

∂θi

∂µi
=

1
b′′(θi)

=
1

V (µi)

Now we can write

∂θi

∂βj
=

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj
=

1
V (µi)

h′(ηi)xij (12.82)

where h = g−1 is the inverse link function. And we finally arrive at the likeli-
hood equations expressed in terms of the mean value parameter and the linear
predictor

∂l(β)
∂βj

=
1
φ

n∑
i=1

(
yi − µi

V (µi)

)
wih

′(ηi)xij
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These are the equations the computer sets equal to zero and solves to find
the regression coefficients. Note that the dispersion parameter φ appears only
multiplicatively. So it cancels when the partial derivatives are set equal to
zero. Thus the regression coefficients can be estimated without estimating the
dispersion (just as in linear regression).

Also as in linear regression, the dispersion parameter is not estimated by
maximum likelihood but by the method of moments. By (12.81)

E

{
wi(Yi − µi)2

V (µi)

}
=

wi

V (µi)
var(Yi) = φ

Thus
1
n

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)

would seem to be an approximately unbiased estimate of φ. Actually it is not
because µ̂ is not µ, and

φ̂ =
1

n − p

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)

is closer to unbiased where p is the rank of the design matrix X. We won’t
bother to prove this. The argument is analogous to the reason for n − p in
linear regression.

12.9.2 Fisher Information, Tests and Confidence Intervals

The log likelihood second derivatives are

∂2l(β)
∂βj∂βk

=
n∑

i=1

(
yi − b′(θi)

φ/wi

)
∂2θi

∂βj∂βk
−

n∑
i=1

(
b′′(θi)
φ/wi

)
∂θi

∂βj

∂θi

∂βk

This is rather a mess, but because of (12.80a) the expectation of the first sum
is zero. Thus the j, k term of the expected Fisher information is, using (12.82)
and b′′ = V ,

−E

{
∂2l(β)
∂βj∂βk

}
=

n∑
i=1

(
b′′(θi)
φ/wi

)
∂θi

∂βj

∂θi

∂βk

=
n∑

i=1

(
V (µi)
φ/wi

)
1

V (µi)
h′(ηi)xij

1
V (µi)

h′(ηi)xik

=
1
φ

n∑
i=1

(
wih

′(ηi)2

V (µi)

)
xijxik

We can write this as a matrix equation if we define D to be the diagonal matrix
with i, i element

dii =
1
φ

n∑
i=1

wih
′(ηi)2

V (µi)
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Then
I(β) = X′DX

is the expected Fisher information matrix. From this standard errors for the
parameter estimates, confidence intervals, test statistics, and so forth can be
derived using the usual likelihood theory. Fortunately, we do not have to do all
of this by hand. R knows all the formulas and computes them for us.

12.10 Poisson Regression

The Poisson model is also a GLM. We assume responses

Yi ∼ Poi(µi)

and connection between the linear predictor and regression coefficients, as al-
ways, of the form (12.75). We only need to identify the link and variance
functions to get going. It turns out that the canonical link function is the log
function (Problem 12-13). The Poisson distribution distribution has the relation

var(Y ) = E(Y ) = µ

connecting the mean, variance, and mean value parameter. Thus the variance
function is V (µ) = µ, the dispersion parameter is known (φ = 1), and the weight
is also unity (w = 1).

Example 12.10.1 (Poisson Regression).
The data set

http://www.stat.umn.edu/geyer/5102/ex12.10.1.dat

simulates the hourly counts from a not necessarily homogeneous Poisson pro-
cess. The variables are hour and count, the first counting hours sequentially
throughout a 14-day period (running from 1 to 14 × 24 = 336) and the second
giving the count for that hour.

The idea of the regression is to get a handle on the mean as a function of
time if it is not constant. Many time series have a daily cycle. If we pool the
counts for the same hour of the day over the 14 days of the series, we see a clear
pattern in the histogram (Figure 12.12). In contrast, if we pool the counts for
each day of the week, the histogram is fairly even (not shown). Thus it seems to
make sense to model the mean function as being periodic with period 24 hours,
and the obvious way to do that is to use trigonometric functions. Let us do a
bunch of fits

w <- hour / 24 * 2 * pi
out1 <- glm(count ~ I(sin(w)) + I(cos(w)), family=poisson)
summary(out1)
out2 <- glm(count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w))

+ I(cos(2 * w)), family=poisson)
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Figure 12.12: Histogram of the total count in each hour of the day for the data
for Example 12.10.1.

summary(out2)
out3 <- glm(count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w))

+ I(cos(2 * w)) + I(sin(3 * w)) + I(cos(3 * w)),
family=poisson)

summary(out3)

The Coefficient: tables from the printouts are

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.73272 0.02310 75.02 < 2e-16 ***
I(sin(w)) -0.10067 0.03237 -3.11 0.00187 **
I(cos(w)) -0.21360 0.03251 -6.57 5.02e-11 ***

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.65917 0.02494 66.521 < 2e-16 ***
I(sin(w)) -0.13916 0.03128 -4.448 8.65e-06 ***
I(cos(w)) -0.28510 0.03661 -7.788 6.82e-15 ***
I(sin(2 * w)) -0.42974 0.03385 -12.696 < 2e-16 ***
I(cos(2 * w)) -0.30846 0.03346 -9.219 < 2e-16 ***

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.655430 0.025149 65.826 < 2e-16 ***
I(sin(w)) -0.151196 0.032530 -4.648 3.35e-06 ***
I(cos(w)) -0.301336 0.038244 -7.879 3.29e-15 ***
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I(sin(2 * w)) -0.439789 0.034461 -12.762 < 2e-16 ***
I(cos(2 * w)) -0.312843 0.033919 -9.223 < 2e-16 ***
I(sin(3 * w)) -0.063440 0.033803 -1.877 0.0606 .
I(cos(3 * w)) 0.004311 0.033630 0.128 0.8980

with the usual “Signif. codes”. It seems from the pattern of “stars” that
maybe it is time to stop. A clearer indication is given by the so-called analysis
of deviance table, “deviance” being another name for the likelihood ratio test
statistic (twice the log likelihood difference between big and small models),
which has an asymptotic chi-square distribution by standard likelihood theory.

anova(out1, out2, out3, test="Chisq")

prints out

Analysis of Deviance Table

Model 1: count ~ I(sin(w)) + I(cos(w))
Model 2: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) + I(cos(2 * w))
Model 3: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) + I(cos(2 * w)) +

I(sin(3 * w)) + I(cos(3 * w))
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 333 651.10
2 331 399.58 2 251.52 2.412e-55
3 329 396.03 2 3.55 0.17

The approximate P -value for the likelihood ratio test comparing models 1 and
2 is P ≈ 0, which clearly indicates that model 1 should be rejected. The
approximate P -value for the likelihood ratio test comparing models 2 and 3 is
P = 0.17, which fairly clearly indicates that model 1 should be accepted and
that model 3 is unnecessary. P = 0.17 indicates exceedingly weak evidence
favoring the larger model. Thus we choose model 2.

The following code

hourofday <- (hour - 1) %% 24 + 1
plot(hourofday, count, xlab="hour of the day")
curve(predict(out2, data.frame(w=x/24*2*pi), type="response"),

add=TRUE)

draws the scatter plot and estimated regression function for model 2 (Fig-
ure 12.13).

I hope all readers are impressed by how magically statistics works in this
example. A glance at Figure 12.13 shows

•Poisson regression is obviously doing more or less the right thing,

•there is no way one could put in a sensible regression function without
using theoretical statistics. The situation is just too complicated.
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Figure 12.13: Scatter plot and regression curve for Example 12.10.1 (Poisson
regression with log link function). The regression function is trigonometric on
the scale of the linear predictor with terms up to the frequency 2 per day.

12.11 Overdispersion

So far we have seen only models with unit dispersion parameter (φ = 1). This
section gives an example with φ 6= 1 so we can see the point of the dispersion
parameter.

The reason φ = 1 for binomial regression is that the mean value parameter
p = µ determines the variance mp(1 − p) = mµ(1 − µ). Thus the variance
function is

V (µ) = µ(1 − µ) (12.83)

and the weights are wi = mi, the sample size for each binomial variable (this
was worked out in detail in Example 12.9.1).

But what if the model is wrong? Here is another model. Suppose

Yi | Wi ∼ Bin(mi,Wi)

where the Wi are i. i. d. random variables with mean µ and variance τ2. Then
by the usual rules for conditional probability (Axiom CE2 and Theorem 3.7 in
Chapter 3 of these notes)

E(Yi) = E{E(Yi | Wi)} = E(miWi) = miµ
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and

var(Yi) = E{var(Yi | Wi)} + var{E(Yi | Wi)}
= E{miWi(1 − Wi)} + var{miWi}
= miµ − miE(W 2

i ) + m2
i τ

2

= miµ − mi(τ2 + µ2) + m2
i τ

2

= miµ(1 − µ) + mi(mi − 1)τ2

This is clearly larger than the formula miµ(1−µ) one would have for the binomial
model. Since the variance is always larger than one would have under the
binomial model.

So we know that if our response variables Yi are the sum of a random mixture
of Bernoullis rather than i. i. d. Bernoullis, we will have overdispersion. But
how to model the overdispersion? The GLM model offers a simple solution.
Allow for general φ so we have, defining Y i = Yi/mi

E(Y i) = µi

var(Y i) =
φ

mi
µi(1 − µi)

=
φ

mi
V (µi)

where V is the usual binomial variance function (12.83).

Example 12.11.1 (Overdispersed Binomial Regression).
The data set

http://www.stat.umn.edu/geyer/5102/ex12.11.1.dat

contains some data for an overdispersed binomial model. The commands

y <- cbind(succ, fail)
out.binom <- glm(y ~ x, family=binomial)
summary(out.binom)
out.quasi <- glm(y ~ x, family=quasibinomial)
summary(out.quasi)

fit both the binomial model (logit link and φ = 1) and the “quasi-binomial”
(logit link again but φ is estimated with the method of moments estimator as
explained in the text). Both models have exactly the same maximum likelihood
regression coefficients, but because the dispersions differ, the standard errors,
z-values, and P -values differ.

The relevant part of the binomial output

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.92155 0.35260 -5.450 5.05e-08 ***
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x 0.07436 0.01227 6.062 1.35e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

and the relevant part of the quasi-binomial output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.92155 0.41569 -4.623 2.88e-05 ***
x 0.07436 0.01446 5.141 4.97e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 1.38992)

Your humble author finds this a bit unsatisfactory. If the data are really
overdispersed, then the standard errors and so forth from the latter output are
the right ones to use. But since the dispersion was not estimated by maximum
likelihood, there is no likelihood ratio test for comparing the two models. Nor
could your author find any other test in a brief examination of the literature.
Apparently, if one is worried about overdispersion, one should use the model
that allows for it. And if not, not. But that’s not the way we operate in the
rest of statistics. I suppose I need to find out more about overdispersion.

Problems

12-10. Show that (12.77a) and (12.77b) do indeed define a pair of inverse func-
tions.

12-11. Do calculations similar to Example 12.9.1 for the normal problem

Yi ∼ N (µi, σ
2)

identifying (a) the canonical parameter θ, the dispersion parameter φ, and the
weight wi.

12-12. The data set

http://www.stat.umn.edu/geyer/5102/ex12.8.1.dat

contains another predictor vector z besides the ones we used in Examples 12.8.1,
12.8.2, and 12.8.3. Perform the logistic regression of y on x and z. Perform a
test comparing this new model and the one fit in Example 12.8.2 giving the
P -value for the test and the conclusion as to which model the test accepts.

12-13. Do calculations similar to Example 12.9.1 for the Poisson model, show-
ing that the canonical parameter for the Poisson distribution is θ = log(µ).
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Appendix A

Greek Letters

Table A.1: Table of Greek Letters (Continued on following page.)

capital small
name letter letter pronunciation sound
alpha A α AL-fah short a
beta B β BAY-tah b
gamma Γ γ GAM-ah g
delta ∆ δ DEL-tah d
epsilon E ε EP-si-lon e
zeta Z ζ ZAY-tah z
eta H η AY-tah long a
theta Θ θ or ϑ THAY-thah soft th (as in thin)
iota I ι EYE-oh-tah i
kappa K κ KAP-ah k
lambda Λ λ LAM-dah l
mu M µ MYOO m
nu N ν NOO n
xi Ξ ξ KSEE x (as in box)
omicron O o OH-mi-kron o
pi Π π PIE p
rho R ρ RHOH rh1

sigma Σ σ SIG-mah s
tau T τ TAOW t
upsilon Υ υ UP-si-lon u

1The sound of the Greek letter ρ is not used in English. English words, like rhetoric and
rhinoceros that are descended from Greek words beginning with ρ have English pronunciations
beginning with an “r” sound rather than “rh” (though the spelling reminds us of the Greek
origin).
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Table A.2: Table of Greek Letters (Continued.)

capital small
name letter letter pronunciation sound
phi Φ φ or ϕ FIE f
chi X χ KIE guttural ch2

psi Ψ ψ PSY ps (as in stops)3

omega Ω ω oh-MEG-ah o

2The sound of the Greek letter χ is not used in English. It is heard in the German Buch
or Scottish loch. English words, like chemistry and chorus that are descended from Greek
words beginning with χ have English pronunciations beginning with a “k” sound rather than
“guttural ch” (though the spelling reminds us of the Greek origin).

3English words, like pseudonym and psychology that are descended from Greek words
beginning with ψ have English pronunciations beginning with an “s” sound rather than “ps”
(though the spelling reminds us of the Greek origin).



Appendix B

Summary of Brand-Name
Distributions

B.1 Discrete Distributions

B.1.1 The Discrete Uniform Distribution

The Abbreviation DU(S).

The Sample Space Any finite set S.

The Density

f(x) =
1
n

, x ∈ S,

where n = card(S).

Specialization The case in which the sample space consists of consecutive
integers S = {m,m + 1, . . . , n} is denoted DU(m,n).

Moments If X ∼ DU(1, n), then

E(X) =
n + 1

2

var(X) =
n2 − 1

12

B.1.2 The Binomial Distribution

The Abbreviation Bin(n, p)

The Sample Space The integers 0, . . ., n.
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The Parameter p such that 0 < p < 1.

The Density

f(x) =
(

n

x

)
px(1 − p)n−x, x = 0, . . . , n.

Moments

E(X) = np

var(X) = np(1 − p)

Specialization
Ber(p) = Bin(1, p)

B.1.3 The Geometric Distribution, Type II

Note This section has changed. The roles of p and 1 − p have been reversed,
and the abbreviation Geo(p) is no longer used to refer to this distribution but
the distribution defined in Section B.1.8. All of the changes are to match up
with Chapter 6 in Lindgren.

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.8.

Relation Between the Types If X ∼ Geo(p), then Y = X − 1 has the
distribution defined in this section.

X is the number of trials before the first success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the first success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x, x = 0, 1, . . . .

Moments

E(X) =
1
p
− 1 =

1 − p

p

var(X) =
1 − p

p2
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B.1.4 The Poisson Distribution

The Abbreviation Poi(µ)

The Sample Space The integers 0, 1, . . . .

The Parameter µ such that µ > 0.

The Density

f(x) =
µx

x!
e−µ, x = 0, 1, . . . .

Moments

E(X) = µ

var(X) = µ

B.1.5 The Bernoulli Distribution

The Abbreviation Ber(p)

The Sample Space The integers 0 and 1.

The Parameter p such that 0 < p < 1.

The Density

f(x) =

{
p, x = 1
1 − p x = 0

Moments

E(X) = p

var(X) = p(1 − p)

Generalization
Ber(p) = Bin(1, p)

B.1.6 The Negative Binomial Distribution, Type I

The Abbreviation NegBin(k, p)

The Sample Space The integers k, k + 1, . . . .

The Parameter p such that 0 < p < 1.
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The Density

f(x) =
(

x − 1
k − 1

)
pk(1 − p)x−k, x = k, k + 1, . . . .

Moments

E(X) =
k

p

var(X) =
k(1 − p)

p2

Specialization
Geo(p) = NegBin(1, p)

B.1.7 The Negative Binomial Distribution, Type II

The Abbreviation No abbreviation to avoid confusion with the other type
defined in Section B.1.6.

Relation Between the Types If X ∼ NegBin(k, p), then Y = X − k has
the distribution defined in this section.

X is the number of trials before the k-th success in an i. i. d. sequence of
Ber(p) random variables. Y is the number of failures before the k-th success.

The Sample Space The integers 0, 1, . . . .

The Parameter p such that 0 < p < 1.

The Density

f(y) =
(

y + k − 1
k − 1

)
pk(1 − p)y, y = 0, 1, . . . .

Moments

E(X) =
k

p
− k =

k(1 − p)
p

var(X) =
k(1 − p)

p2

B.1.8 The Geometric Distribution, Type I

The Abbreviation Geo(p)

The Sample Space The integers 1, 2, . . . .
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The Parameter p such that 0 < p < 1.

The Density
f(x) = p(1 − p)x−1, x = 1, 2, . . . .

Moments

E(X) =
1
p

var(X) =
1 − p

p2

Generalization
Geo(p) = NegBin(1, p)

B.2 Continuous Distributions

B.2.1 The Uniform Distribution

The Abbreviation U(S).

The Sample Space Any subset S of Rd.

The Density

f(x) =
1
c
, x ∈ S,

where

c = m(S) =
∫

S

dx

is the measure of S (length in R1, area in R2, volume in R3, and so forth).

Specialization The case having S = (a, b) in R1 and density

f(x) =
1

b − a
, a < x < b

is denoted U(a, b).

Moments If X ∼ U(a, b), then

E(X) =
a + b

2

var(X) =
(b − a)2

12
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B.2.2 The Exponential Distribution

The Abbreviation Exp(λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameter λ such that λ > 0.

The Density
f(x) = λe−λx, x > 0.

Moments

E(X) =
1
λ

var(X) =
1
λ2

Generalization
Exp(λ) = Gam(1, λ)

B.2.3 The Gamma Distribution

The Abbreviation Gam(α, λ).

The Sample Space The interval (0,∞) of the real numbers.

The Parameters α and λ such that α > 0 and λ > 0.

The Density

f(x) =
λα

Γ(α)
xα−1e−λx, x > 0.

where Γ(α) is the gamma function (Section B.3.1 below).

Moments

E(X) =
α

λ

var(X) =
α

λ2

Specialization

Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
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B.2.4 The Beta Distribution

The Abbreviation Beta(s, t).

The Sample Space The interval (0, 1) of the real numbers.

The Parameters s and t such that s > 0 and t > 0.

The Density

f(x) =
1

B(s, t)
xs−1(1 − x)t−1 0 < x < 1.

where B(s, t) is the beta function defined by

B(s, t) =
Γ(s)Γ(t)
Γ(s + t)

(B.1)

Moments

E(X) =
s

s + t

var(X) =
st

(s + t)2(s + t + 1)

B.2.5 The Normal Distribution

The Abbreviation N (µ, σ2).

The Sample Space The real line R.

The Parameters µ and σ2 such that σ2 > 0.

The Density

f(x) =
1√
2πσ

exp
(
− (x − µ)2

2σ2

)
, x ∈ R.

Moments

E(X) = µ

var(X) = σ2

µ4 = 3σ4

B.2.6 The Chi-Square Distribution

The Abbreviation chi2(k).
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The Sample Space The interval (0,∞) of the real numbers.

The Parameter A positive integer k.

The Density

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0.

Moments

E(X) = k

var(X) = 2k

Generalization
chi2(k) = Gam

(
k
2 , 1

2

)
B.2.7 The Cauchy Distribution

The Abbreviation Cauchy(µ, σ).

The Sample Space The real line R.

The Parameters µ and σ such that σ > 0.

The Density

f(x) =
1
π
· σ

σ2 + (x − µ)2
, x ∈ R.

Moments None: E(|X|) = ∞.

B.2.8 Student’s t Distribution

The Abbreviation t(ν).

The Sample Space The real line R.

The Parameters ν such that ν > 0, called the “degrees of freedom” of the
distribution.

The Density

fν(x) =
1√
ν
· 1
B(ν

2 , 1
2 )

· 1(
1 + x2

ν

)(ν+1)/2
, −∞ < x < +∞

where B(s, t) is the beta function defined by (B.1).
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Moments If ν > 1, then
E(X) = 0.

Otherwise the mean does not exist. If ν > 2, then

var(X) =
ν

ν − 2
.

Otherwise the variance does not exist.

Specialization
t(1) = Cauchy(0, 1)

and in a manner of speaking

t(∞) = N (0, 1)

(see Theorem 7.21 of Chapter 7 of these notes).

B.2.9 Snedecor’s F Distribution

The Abbreviation F (µ, ν).

The Sample Space The interval (0,∞) of the real numbers.

The Parameters µ and ν such that µ > 0 and ν > 0, called the “numer-
ator degrees of freedom” of the the “denominator degrees of freedom” of the
distribution, respectively.

The Density Not derived in these notes.

Moments If ν > 2, then
E(X) =

ν

ν − 2
.

Otherwise the mean does not exist.
The variance is not derived in these notes.

Relation to the Beta Distribution

X ∼ F (µ, ν)

if and only if
W ∼ Beta

(µ

2
,
ν

2

)
,

where

W =
µ
ν X

1 + µ
ν X
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B.3 Special Functions

B.3.1 The Gamma Function

The Definition

Γ(α) =
∫ ∞

0

xα−1e−x dx, α > 0 (B.2)

The Recursion Relation

Γ(α + 1) = αΓ(α) (B.3)

Known Values
Γ(1) = 1

and hence using the recursion relation

Γ(n + 1) = n!

for any nonnegative integer n.
Also

Γ( 1
2 ) =

√
π

and hence using the recursion relation

Γ( 3
2 ) = 1

2

√
π

Γ( 5
2 ) = 3

2 · 1
2

√
π

Γ( 7
2 ) = 5

2 · 3
2 · 1

2

√
π

and so forth.

B.3.2 The Beta Function

The function B(s, t) defined by (B.1).

B.4 Discrete Multivariate Distributions

B.4.1 The Multinomial Distribution

The Abbreviation Multik(n,p) or Multi(n,p) if the dimension k is clear
from context.

The Sample Space

S = {y ∈ Nk : y1 + · · · yk = n }

where N denotes the “natural numbers” 0, 1, 2, . . . .
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The Parameter p = (p1, . . . , pk) such that pi ≥ 0 for all i and
∑

i pi = 1.

The Density

f(y) =
(

n

y1, . . . , yk

) k∏
j=1

p
yj

j , y ∈ S

Moments

E(Y) = np

var(Y) = M

where M is the k × k matrix with elements

mij =

{
npi(1 − pi), i = j

−npipj i 6= j

Specialization The special case n = 1 is called the multivariate Bernoulli
distribution

Berk(p) = Bink(1,p)

but for once we will not spell out the details with a special section for the
multivariate Bernoulli. Just take n = 1 in this section.

Marginal Distributions Distributions obtained by collapsing categories are
again multinomial (Section 5.4.5 in these notes).

In particular, if Y ∼ Multik(n,p), then

(Y1, . . . , Yj , Yj+1 + · · · + Yk) ∼ Multij+1(n,q) (B.4)

where

qi = pi, i ≤ j

qj+1 = pj+1 + · · · pk

Because the random vector in (B.4) is degenerate, this equation also gives
implicitly the marginal distribution of Y1, . . ., Yj

f(y1, . . . , yj)

=
(

n

y1, . . . , yj , n − y1 − · · · − yj

)
py1
1 · · · pyj

j (1 − p1 − · · · − pj)n−y1−···−yj

Univariate Marginal Distributions If Y ∼ Multi(n,p), then

Yi ∼ Bin(n, pi).



482 Stat 5101 (Geyer) Course Notes

Conditional Distributions If Y ∼ Multik(n,p), then

(Y1, . . . , Yj) | (Yj+1, . . . , Yk) ∼ Multij(n − Yj+1 − · · · − Yk,q),

where
qi =

pi

p1 + · · · + pj
, i = 1, . . . , j.

B.5 Continuous Multivariate Distributions

B.5.1 The Uniform Distribution

The uniform distribution defined in Section B.2.1 actually made no mention
of dimension. If the set S on which the distribution is defined lies in Rn, then
this is a multivariate distribution.

Conditional Distributions Every conditional distribution of a multivariate
uniform distribution is uniform.

Marginal Distributions No regularity. Depends on the particular distribu-
tion. Marginals of the uniform distribution on a rectangle with sides parallel
to the coordinate axes are uniform. Marginals of the uniform distribution on a
disk or triangle are not uniform.

B.5.2 The Standard Normal Distribution

The distribution of a random vector Z = (Z1, . . . , Zk) with the Zi i. i. d.
standard normal.

Moments

E(Z) = 0
var(Z) = I,

where I denotes the k × k identity matrix.

B.5.3 The Multivariate Normal Distribution

The distribution of a random vector X = a + BZ, where Z is multivariate
standard normal.

Moments

E(X) = µ = a

var(X) = M = BB′
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The Abbreviation N k(µ,M) or N (µ,M) if the dimension k is clear from
context.

The Sample Space If M is positive definite, the sample space is Rk.
Otherwise, X is concentrated on the intersection of hyperplanes determined

by null eigenvectors of M

S = {x ∈ Rk : z′x = z′µ whenever Mz = 0 }

The Parameters The mean vector µ and variance matrix M.

The Density Only exists if the distribution is nondegenerate (M is positive
definite). Then

fX(x) =
1

(2π)n/2 det(M)1/2
exp

(− 1
2 (x − µ)′M−1(x − µ)

)
, x ∈ Rk

Marginal Distributions All are normal. If

X =
(
X1

X2

)
is a partitioned random vector with (partitioned) mean vector

E(X) = µ =
(

µ1

µ2

)
and (partitioned) variance matrix

var(X) = M =
(
M11 M12

M21 M22

)
and X ∼ N (µ,M), then

X1 ∼ N (µ1,M11).

Conditional Distributions All are normal. If X is as in the preceding sec-
tion and X2 is nondegenerate, then the conditional distribution of X1 given X2

is normal with

E(X1 | X2) = µ1 + M12M−1
22 (X2 − µ2)

var(X1 | X2) = M11 − M12M−1
22 M21

If X2 is degenerate so M22 is not invertible, then the conditional distribution
of X1 given X2 is still normal and the same formulas work if M−1

22 is replaced
by a generalized inverse.
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B.5.4 The Bivariate Normal Distribution

The special case k = 2 of the preceeding section.

The Density

f(x, y) =
1

2πσXσY

√
1 − ρ2

×

exp
(
− 1

2(1 − ρ2)

[
(x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )
σXσY

+
(y − µY )2

σ2
Y

])
Marginal Distributions

Y ∼ N (µY , σ2
Y )

Conditional Distributions The conditional distribution of X given Y is
normal with

E(X | Y ) = µX + ρ
σX

σY
(Y − µY )

var(X | Y ) = σ2
X(1 − ρ2)

where ρ = cor(X,Y ).



Appendix C

Addition Rules for
Distributions

“Addition rules” for distributions are rules of the form: if X1, . . ., Xk are
independent with some specified distributions, then X1 + · · · + Xk has some
other specified distribution.

Bernoulli If X1, . . ., Xk are i. i. d. Ber(p), then

X1 + · · · + Xk ∼ Bin(k, p). (C.1)

• All the Bernoulli distributions must have the same success probability p.

Binomial If X1, . . ., Xk are independent with Xi ∼ Bin(ni, p), then

X1 + · · · + Xk ∼ Bin(n1 + · · · + nk, p). (C.2)

• All the binomial distributions must have the same success probability p.

• (C.1) is the special case of (C.2) obtained by setting n1 = · · · = nk = 1.

Geometric If X1, . . ., Xk are i. i. d. Geo(p), then

X1 + · · · + Xk ∼ NegBin(k, p). (C.3)

• All the geometric distributions must have the same success probability p.

Negative Binomial If X1, . . ., Xk are independent with Xi ∼ NegBin(ni, p),
then

X1 + · · · + Xk ∼ NegBin(n1 + · · · + nk, p). (C.4)

• All the negative binomial distributions must have the same success prob-
ability p.

• (C.3) is the special case of (C.4) obtained by setting n1 = · · · = nk = 1.
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Poisson If X1, . . ., Xk are independent with Xi ∼ Poi(µi), then

X1 + · · · + Xk ∼ Poi(µ1 + · · · + µk). (C.5)

Exponential If X1, . . ., Xk are i. i. d. Exp(λ), then

X1 + · · · + Xk ∼ Gam(n, λ). (C.6)

• All the exponential distributions must have the same rate parameter λ.

Gamma If X1, . . ., Xk are independent with Xi ∼ Gam(αi, λ), then

X1 + · · · + Xk ∼ Gam(α1 + · · · + αk, λ). (C.7)

• All the gamma distributions must have the same rate parameter λ.

• (C.6) is the special case of (C.7) obtained by setting α1 = · · · = αk = 1.

Chi-Square If X1, . . ., Xk are independent with Xi ∼ chi2(ni), then

X1 + · · · + Xk ∼ chi2(n1 + · · · + nk). (C.8)

• (C.8) is the special case of (C.7) obtained by setting

αi = ni/2 and λi = 1/2, i = 1, . . . , k.

Normal If X1, . . ., Xk are independent with Xi ∼ N (µi, σ
2
i ), then

X1 + · · · + Xk ∼ N (µ1 + · · · + µk, σ2
1 + · · · + σ2

k). (C.9)

Linear Combination of Normals If X1, . . ., Xk are independent with Xi ∼
N (µi, σ

2
i ) and a1, . . ., ak are constants, then

k∑
i=1

aiXi ∼ N
(

k∑
i=1

aiµi,
k∑

i=1

a2
i σ

2
i

)
. (C.10)

• (C.9) is the special case of (C.10) obtained by setting a1 = · · · = ak = 1.

Cauchy If X1, . . ., Xk are independent with Xi ∼ Cauchy(µ, σ), then

X1 + · · · + Xk ∼ Cauchy(nµ, nσ). (C.11)



Appendix D

Relations Among Brand
Name Distributions

D.1 Special Cases

First there are the special cases, which were also noted in Appendix B.

Ber(p) = Bin(1, p)
Geo(p) = NegBin(1, p)
Exp(λ) = Gam(1, λ)

chi2(k) = Gam
(

k
2 , 1

2

)
The main point of this appendix are the relationships that involve more

theoretical issues.

D.2 Relations Involving Bernoulli Sequences

Suppose X1, X2, . . . are i. i. d. Ber(p) random variables.
If n is a positive integer and

Y = X1 + · · · + Xn

is the number of “successes” in the n Bernoulli trials, then

Y ∼ Bin(n, p).

On the other hand, if y is positive integer and N is the trial at which the
y-th success occurs, that is the random number N such that

X1 + · · · + XN = y

X1 + · · · + Xk < y, k < N,

then
N ∼ NegBin(y, p).
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D.3 Relations Involving Poisson Processes

In a one-dimensional homogeneous Poisson process with rate parameter λ,
the counts are Poisson and the waiting and interarrival times are exponential.
Specifically, the number of points (arrivals) in an interval of length t has the
Poi(λt) distribution, and the waiting times and interarrival times are indepen-
dent and indentically Exp(λ) distributed.

Even more specifically, let X1, X2, . . . be i. i. d. Exp(λ) random variables.
Take these to be the waiting and interarrival times of a Poisson process. This
means the arrival times themselves are

Tk =
k∑

i=1

Xi

Note that
0 < T1 < T2 < · · ·

and
Xi = Ti − Ti−1, i > 1

so these are the interarrival times and X1 = T1 is the waiting time until the
first arrival.

The characteristic property of the Poisson process, that counts have the
Poisson distribution, says the number of points in the interval (0, t), that is, the
number of Ti such that Ti < t, has the Poi(λt) distribution.

D.4 Normal, Chi-Square, t, and F

D.4.1 Definition of Chi-Square

If Z1, Z2, . . . are i. i. d. N (0, 1), then

Z2
1 + . . . + Z2

n ∼ chi2(n).

D.4.2 Definition of t

If Z and Y are independent and

Z ∼ N (0, 1)

Y ∼ chi2(ν)

then
Z√
Y/ν

∼ t(ν)
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D.4.3 Definition of F

If X and Y are independent and

X ∼ chi2(µ)

Y ∼ chi2(ν)

then
X/µ

Y/ν
∼ F (µ, ν)

D.4.4 t as a Special Case of F

If
T ∼ t(ν),

then
T 2 ∼ F (1, ν).
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Appendix E

Eigenvalues and
Eigenvectors

E.1 Orthogonal and Orthonormal Vectors

If x and y are vectors of the same dimension, we say they are orthogonal
if x′y = 0. Since the transpose of a matrix product is the product of the
transposes in reverse order, an equivalent condition is y′x = 0. Orthogonality
is the n-dimensional generalization of perpendicularity. In a sense, it says that
two vectors make a right angle.

The length or norm of a vector x = (x1, . . . , xn) is defined to be

‖x‖ =
√

x′x =

√√√√ n∑
i=1

x2
i .

Squaring both sides gives

‖x‖2 =
n∑

i=1

x2
i ,

which is one version of the Pythagorean theorem, as it appears in analytic
geometry.

Orthogonal vectors give another generalization of the Pythagorean theorem.
We say a set of vectors {x1, . . . ,xk} is orthogonal if

x′
ixj = 0, i 6= j. (E.1)
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Then

‖x1 + · · · + xk‖2 = (x1 + · · · + xk)′(x1 + · · · + xk)

=
k∑

i=1

k∑
j=1

x′
ixj

=
k∑

i=1

x′
ixi

=
k∑

i=1

‖xi‖2

because, by definition of orthogonality, all terms in the second line with i 6= j
are zero.

We say an orthogonal set of vectors is orthonormal if

x′
ixi = 1. (E.2)

That is, a set of vectors {x1, . . . ,xk} is orthonormal if it satisfies both (E.1) and
(E.2).

An orthonormal set is automatically linearly independent because if

k∑
i=1

cixi = 0,

then

0 = x′
j

(
k∑

i=1

cixi

)
= cjx′

jxj = cj

holds for all j. Hence the only linear combination that is zero is the one with
all coefficients zero, which is the definition of linear independence.

Being linearly independent, an orthonormal set is always a basis for whatever
subspace it spans. If we are working in n-dimensional space, and there are n
vectors in the orthonormal set, then they make up a basis for the whole space.
If there are k < n vectors in the set, then they make up a basis for some proper
subspace.

It is always possible to choose an orthogonal basis for any vector space or
subspace. One way to do this is the Gram-Schmidt orthogonalization procedure,
which converts an arbitrary basis y1, . . ., yn to an orthonormal basis x1, . . .,
xn as follows. First let

x1 =
y1

‖y1‖ .

Then define the xi in order. After x1, . . ., xk−1 have been defined, let

zk = yk −
k−1∑
i=1

xix′
iy
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and
xk =

zk

‖zk‖ .

It is easily verified that this does produce an orthonormal set, and it is only
slightly harder to prove that none of the xi are zero because that would imply
linear dependence of the yi.

E.2 Eigenvalues and Eigenvectors

If A is any matrix, we say that λ is a right eigenvalue corresponding to a
right eigenvector x if

Ax = λx

Left eigenvalues and eigenvectors are defined analogously with “left multiplica-
tion” x′A = λx′, which is equivalent to A′x = λx. So the right eigenvalues
and eigenvectors of A′ are the left eigenvalues and eigenvectors of A. When
A is symmetric (A′ = A), the “left” and “right” concepts are the same and
the adjectives “left” and “right” are unnecessary. Fortunately, this is the most
interesting case, and the only one in which we will be interested. From now on
we discuss only eigenvalues and eigenvectors of symmetric matrices.

There are three important facts about eigenvalues and eigenvectors. Two
elementary and one very deep. Here’s the first (one of the elementary facts).

Lemma E.1. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

This means that if
Axi = λixi (E.3)

then
λi 6= λj implies x′

ixj = 0.

Proof. Suppose λi 6= λj , then at least one of the two is not zero, say λj . Then

x′
ixj =

x′
iAxj

λj
=

(Axi)′xj

λj
=

λix′
ixj

λj
=

λi

λj
· x′

ixj

and since λi 6= λj the only way this can happen is if x′
ixj = 0.

Here’s the second important fact (also elementary).

Lemma E.2. Every linear combination of eigenvectors corresponding to the
same eigenvalue is another eigenvector corresponding to that eigenvalue.

This means that if
Axi = λxi

then

A

(
k∑

i=1

cixi

)
= λ

(
k∑

i=1

cixi

)
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Proof. This is just linearity of matrix multiplication.

The second property means that all the eigenvectors corresponding to one
eigenvalue constitute a subspace. If the dimension of that subspace is k, then
it is possible to choose an orthonormal basis of k vectors that span the sub-
space. Since the first property of eigenvalues and eigenvectors says that (E.1)
is also satisfied by eigenvectors corresponding to different eigenvalues, all of the
eigenvectors chosen this way form an orthonormal set.

Thus our orthonormal set of eigenvectors spans a subspace of dimension m
which contains all eigenvectors of the matrix in question. The question then
arises whether this set is complete, that is, whether it is a basis for the whole
space, or in symbols whether m = n, where n is the dimension of the whole
space (A is an n × n matrix and the xi are vectors of dimension n). It turns
out that the set is always complete, and this is the third important fact about
eigenvalues and eigenvectors.

Lemma E.3. Every real symmetric matrix has an orthonormal set of eigenvec-
tors that form a basis for the space.

In contrast to the first two facts, this is deep, and we shall not say anything
about its proof, other than that about half of the typical linear algebra book is
given over to building up to the proof of this one fact.

The “third important fact” says that any vector can be written as a linear
combination of eigenvectors

y =
n∑

i=1

cixi

and this allows a very simple description of the action of the linear operator
described by the matrix

Ay =
n∑

i=1

ciAxi =
n∑

i=1

ciλixi (E.4)

So this says that when we use an orthonormal eigenvector basis, if y has the
representation (c1, . . . , cn), then Ay has the representation (c1λ1, . . . , cnλn).
Let D be the representation in the orthonormal eigenvector basis of the linear
operator represented by A in the standard basis. Then our analysis above says
the i-the element of Dc is ciλi, that is,

n∑
j=1

dijcj = λici.

In order for this to hold for all real numbers ci, it must be that D is diagonal

dii = λi

dij = 0, i 6= j
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In short, using the orthonormal eigenvector basis diagonalizes the linear opera-
tor represented by the matrix in question.

There is another way to describe this same fact without mentioning bases.
Many people find it a simpler description, though its relation to eigenvalues and
eigenvectors is hidden in the notation, no longer immediately apparent. Let O
denote the matrix whose columns are the orthonormal eigenvector basis (x1,
. . ., xn), that is, if oij are the elements of O, then

xi = (o1i, . . . , oni).

Now (E.1) and (E.2) can be combined as one matrix equation

O′O = I (E.5)

(where, as usual, I is the n × n identity matrix). A matrix O satisfying this
property is said to be orthogonal. Another way to read (E.5) is that it says
O′ = O−1 (an orthogonal matrix is one whose inverse is its transpose). The
fact that inverses are two-sided (AA−1 = A−1A = I for any invertible matrix
A) implies that OO′ = I as well.

Furthermore, the eigenvalue-eigenvector equation (E.3) can be written out
with explicit subscripts and summations as

n∑
j=1

aijojk = λkoik = oikdkk =
n∑

j=1

oijdjk

(where D is the the diagonal matrix with eigenvalues on the diagonal defined
above). Going back to matrix notation gives

AO = OD (E.6)

The two equations (E.3) and (E.6) may not look much alike, but as we have
just seen, they say exactly the same thing in different notation. Using the
orthogonality property (O′ = O−1) we can rewrite (E.6) in two different ways.

Theorem E.4 (Spectral Decomposition). Any real symmetric matrix A
can be written

A = ODO′ (E.7)

where D is diagonal and O is orthogonal.
Conversely, for any real symmetric matrix A there exists an orthogonal ma-

trix O such that
D = O′AO

is diagonal.

(The reason for the name of the theorem is that the set of eigenvalues is
sometimes called the spectrum of A). The spectral decomposition theorem says
nothing about eigenvalues and eigenvectors, but we know from the discussion
above that the diagonal elements of D are the eigenvalues of A, and the columns
of O are the corresponding eigenvectors.
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E.3 Positive Definite Matrices

Using the spectral theorem, we can prove several interesting things about
positive definite matrices.

Corollary E.5. A real symmetric matrix A is positive semi-definite if and only
if its spectrum is nonnegative. A real symmetric matrix A is positive definite if
and only if its spectrum is strictly positive.

Proof. First suppose that A is positive semi-definite with spectral decomposi-
tion (E.7). Let ei denote the vector having elements that are all zero except the
i-th, which is one, and define w = Oei, so

0 ≤ w′Aw = e′iO
′ODO′Oei = e′iDei = dii (E.8)

using O′O = I. Hence the spectrum is nonnegative.
Conversely, suppose the dii are nonnegative. Then for any vector w define

z = O′w, so
w′Aw = w′ODO′w = z′Dz =

∑
i
diiz

2
i ≥ 0

Hence A is positive semi-definite.
The assertions about positive definiteness are proved in almost the same

way. Suppose that A is positive definite. Since ei is nonzero, w in (E.8) is also
nonzero because ei = O′w would be zero (and it isn’t) if w were zero. Thus the
inequality in (E.8) is actually strict. Hence the spectrum of is strictly positive.

Conversely, suppose the dii are strictly positive. Then for any nonzero vector
w define z = O′w as before, and again note that z is nonzero because w = Oz
and w is nonzero. Thus w′Aw = z′Dz > 0, and hence A is positive definite.

Corollary E.6. A positive semi-definite matrix is invertible if and only if it is
positive definite.

Proof. It is easily verified that the product of diagonal matrices is diagonal and
the diagonal elements of the product are the products of the diagonal elements
of the multiplicands. Thus a diagonal matrix D is invertible if and only if all its
diagonal elements dii are nonzero, in which case D−1 is diagonal with diagonal
elements 1/dii.

Since O and O′ in the spectral decomposition (E.7) are invertible, A is
invertible if and only if D is, hence if and only if its spectrum is nonzero, in
which case

A−1 = OD−1O′.

By the preceding corollary the spectrum of a positive semi-definite matrix is
nonnegative, hence nonzero if and only if strictly positive, which (again by the
preceding corollary) occurs if and only if the matrix is positive definite.

Corollary E.7. Every real symmetric positive semi-definite matrix A has a
symmetric square root

A1/2 = OD1/2O′ (E.9)
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where (E.7) is the spectral decomposition of A and where D1/2 is defined to be
the diagonal matrix whose diagonal elements are

√
dii, where dii are the diagonal

elements of D.
Moreover, A1/2 is positive definite if and only if A is positive definite.

Note that by Corollary E.5 all of the diagonal elements of D are nonnegative
and hence have real square roots.

Proof.

A1/2A1/2 = OD1/2O′OD1/2O′ = OD1/2D1/2O′ = ODO′ = A

because O′O = I and D1/2D1/2 = D.
From Corollary E.5 we know that A is positive definite if and only if all the

dii are strictly positive. Since (E.9) is the spectral decomposition of A1/2, we
see that A1/2 is positive definite if and only if all the

√
dii are strictly positive.

Clearly dii > 0 if and only if
√

dii > 0.
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Appendix F

Normal Approximations for
Distributions

F.1 Binomial Distribution

The Bin(n, p) distribution is approximately normal with mean np and vari-
ance np(1 − p) if n is large.

F.2 Negative Binomial Distribution

The NegBin(n, p) distribution is approximately normal with mean n/p and
variance n(1 − p)/p2 if n is large.

F.3 Poisson Distribution

The Poi(µ) distribution is approximately normal with mean µ and variance
µ if µ is large.

F.4 Gamma Distribution

The Gam(α, λ) distribution is approximately normal with mean α/λ and
variance α/λ2 if α is large.

F.5 Chi-Square Distribution

The chi2(n) distribution is approximately normal with mean n and variance
2n if n is large.
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Appendix G

Maximization of Functions

This appendix contains no statistics. It just reviews some facts from calculus
about maximization of functions.

First we distinguish between local and global maxima.1 A point x is a global
maximum of a function f if

f(x) ≥ f(y), for all y in the domain of f.

In words, f(x) is greater than or equal to f(y) for all other y.
Unfortunately, calculus isn’t much help in finding global maxima, hence the

following definition, which defines something calculus is much more helpful in
finding. A point x is a local maximum of the function f if

f(x) ≥ f(y), for all y in some neighborhood of x.

The point is that saying x is a local maximum doesn’t say anything at all about
whether a global maximum exists or whether x is also a global maximum.

Every global maximum is a local maximum, but not all local maxima
are global maxima.

G.1 Functions of One Variable

The connection between calculus and local maxima is quite simple.

Theorem G.1. Suppose f is a real-valued function of one real variable and
is twice differentiable at the point x. A sufficient condition that x be a local
maximum of f is

f ′(x) = 0 and f ′′(x) < 0. (G.1)

1An irregular plural following the Latin rather than the English pattern. Singular: maxi-
mum. Plural: maxima.
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In words, to find a local maximum, find a point x where the derivative is
zero. Then check the second derivative. If f ′′(x) is negative, then x is a local
maximum. If f ′′(x) is positive, then x is definitely not a local maximum (in fact
it’s a local minimum). If f ′′(x) is zero, you are not sure. Consider f(x) = x3

and g(x) = −x4. Both have second derivative zero at x = 0, but f is strictly
increasing (draw a graph) and hence does not have a maximum (local or global),
whereas g does have a local maximum at x = 0.

That takes care of local maxima that occur at interior points of the domain
of the function being maximized. What about local maxima that occur at
boundary points? Here the situation becomes more complicated.

Our first problem is that ordinary derivatives don’t exist, but there still
may be one-sided derivatives. In the following discussion all the derivatives are
one-sided.

Theorem G.2. Suppose f is a twice differentiable real-valued function defined
on a closed interval of the real line. A sufficient condition that a lower boundary
point x of the interval be a local maximum of f is

f ′(x) < 0. (G.2a)

Another sufficient condition is

f ′(x) = 0 and f ′′(x) < 0. (G.2b)

If x is an upper boundary point, the conditions are the same except the inequality
in (G.2a) is reversed: f ′(x) > 0.

This theorem is so complicated that you’re excused if you want to ignore it
and just draw a graph of the function. The main point of the theorem is that a
local maximum can occur at a boundary point when the derivative is not zero.
Consider the function f(x) = −x defined on the interval 0 ≤ x < +∞. Since
f is strictly decreasing, the only global (and local) maximum occurs at x = 0
where f ′(x) = −1. This satisfies the condition (G.2a) of the theorem, but notice
the derivative is not zero.

Thus it is not enough to just look for points where the first derivative is
zero. You also have to check the boundary points, where the more complicated
test applies.

Are we done with maximization theory? Not if we are interested in global
maxima. Even if you find all the local maxima, it is not necessarily true that
a global maximum exists. Consider the function f(x) = x3 − x graphed in
Figure G.1. The first derivative is

f ′(x) = 3x2 − 1,

which has zeros at ±1/
√

3. From the graph it is clear that −1/
√

3 is a local
maximum and +1/

√
3 is a local minimum. But there is no global maximum

since f(x) → +∞ as x → +∞.
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Figure G.1: Graph of f(x) = x3 − x.

If a global maximum exists, then it is also a local maximum. So if you find
all local maxima, they must include any global maxima. But the example shows
that local maxima can exist when there is no global maximum. Thus calculus
can help you find local maxima, but it is no help in telling you which of them
are global maxima or whether any of them are global maxima.

G.2 Concave Functions of One Variable

There is one situation in which maximization is much simpler.

Definition G.2.1 (Strictly Concave Functions).
A continuous real-valued function f defined on an interval of the real line and
twice differentiable at interior points of the interval is strictly concave if the
inequality f ′′(x) < 0 holds at every interior point x of the interval.

There is a more general definition of “concave function” that does not require
differentiability, but we will not use it.2

The concavity property f ′′(x) < 0 is easily recognized from a graph. It says
the function curves downward at every point. Figure G.2 is an example.

Strictly concave functions are very special. For them, there is no difference
between local and global maxima.

2Functions that are twice differentiable are concave but not strictly concave if f ′′(x) ≤ 0 at
all interior points and f ′′(x) = 0 at some points. But we won’t have any use for this concept.
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x

f(x)

Figure G.2: A Concave Function.

Theorem G.3. A continuous real-valued strictly concave function f defined
on an interval of the real line and twice differentiable at interior points of the
interval has at most one local maximum. If it has a local maximum, then that
point is also the global maximum.

Also, f ′ has at most one zero. If it has a zero, this is the global maximum.

The theorem says the the situation for strictly concave functions is very
simple. If you find a local maximum or a zero of the first derivative, then you
have found the unique global maximum.

To summarize, there is a very important distinction between general func-
tions and strictly concave ones. The derivative tests are almost the same, but
there is a subtle difference. If

f ′(x) = 0 and f ′′(x) < 0

then you know x is a local maximum of f , but you don’t know that x is a global
maximum or whether there is any global maximum. But if

f ′(x) = 0 and f ′′(y) < 0 for all y

then you know that f is strictly concave and hence that x is the unique global
maximum. The only difference is whether you just check the sign of the second
derivative only at the point x or at all points y in the domain of f .

G.3 Functions of Several Variables

In Chapter 5 (p. 22 of the notes) we learned about the first derivative of
a vector-valued function of a vector variable. This derivative was used in the
multivariable delta method.

To develop the multivariable analog of the theory of the preceeding sections,
we need to develop first and second derivatives of a scalar-valued function of a
vector variable. (Fortunately, we don’t need second derivatives of vector -valued
functions of a vector variable. They’re a mess.)
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According to the theory developed in Chapter 5, if g is a function that maps
vectors of dimension n to vectors of dimension m, then its derivative at the
point x is the m × n matrix ∇g(x) having elements

gij =
∂gi(x)
∂xj

Here we are interested in the case m = 1 (a scalar -valued function) so the
derivative is a 1 × n matrix (a row vector).

Thus if f is a real-valued (“scalar-valued” means the same thing) function
of a vector variable of dimension n, its first derivative is the row vector ∇f(x)
having elements

∂f(x)
∂xi

, i = 1, . . . , n.

It is pronounced “del f”.
So what might the second derivative be? It is clear from the pattern that it

should involve partial derivatives, in this case second derivatives. There are a
lot of them. If f is a real-valued function of a vector variable of dimension n,
its second derivative is the n × n matrix ∇2f(x) having elements

∂f(x)
∂xi∂xj

, i = 1, . . ., n and j = 1, . . ., n.

It is pronounced “del squared f”. Note that by the properties of partial deriva-
tives

∂f(x)
∂xi∂xj

=
∂f(x)
∂xj∂xi

the second derivative matrix is a symmetric matrix.
Before we can state the multivariate analogue of Theorem G.2, we need to

develop one more concept. Recall from Section 5.1.8 of last semester’s notes (or
look at Section 12.5 in Lindgren) that a symmetric square matrix A is positive
semidefinite (Lindgren says nonnegative definite) if

c′Ac ≥ 0, for all vectors c, (G.3a)

and A is positive definite if the inequality is strict

c′Ac > 0, for all nonzero vectors c. (G.3b)

As a shorthand we write A ≥ 0 to indicate (G.3a) and A > 0 to indicate (G.3b).
No confusion should arise, because these can’t have any other meaning (matrices
aren’t naturally ordered). We also write A ≤ 0 and A < 0 to mean that −A is
positive semidefinite or positive definite, respectively. When A ≤ 0 we say that
it is negative semidefinite, and when A < 0 we say that it is negative definite.

The place where positive (semi)definiteness arose last semester was that
fact that every variance matrix is positive semidefinite (Corollary 5.5 in these
notes, Theorem 9 of Chapter 12 in Lindgren) and actually positive definite if the
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random variable in question is not concentrated on a hyperplane (Corollary 5.6
in last semester’s notes).

With these concepts we can now state the multivariate analogue of Theo-
rem G.2.

Theorem G.4. Suppose f is a real-valued function of a vector variable and
is twice differentiable at the point x. A sufficient condition that x be a local
maximum of f is

∇f(x) = 0 and ∇2f(x) < 0, (G.4)

Recall from the discussion just before the theorem that the last part of the
condition means ∇2f(x) is a negative definite matrix.

Unfortunately, the condition that a matrix is negative definite is impossible
to check by hand except in a few special cases. However, it is fairly easy to check
by computer. Compute the eigenvalues of the matrix (either R or Mathematica
can do this) if all the eigenvalues are positive (resp. nonnegative), then the ma-
trix is positive definite (resp. positive semidefinite), and if all the eigenvalues are
negative (resp. nonpositive), then the matrix is negative definite (resp. negative
semidefinite).

In fact, the first condition of the theorem isn’t very easy to handle either
except in very special cases. It’s hard to find an x such that ∇f(x) holds.
Recall this is a vector equation so what we are really talking about is solving n
equations in n unknowns. Since these are generally nonlinear equations, there
is no general method of finding a solution. In fact, it is much easier if you
don’t use first derivative information alone. The way to find the maximum of a
function is to have the computer go uphill until it can’t make any more progress.

Fortunately R has a function that minimizes functions of several variables
(and maximizing f is equivalent to minimizing −f). So that can be used to
solve all such problems.

Example G.3.1.
Consider minimizing the function3

f(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2

Here’s how we minimize f using R

> f <- function(x) 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2
> out <- nlm(f, c(0,0), hessian=TRUE)

The first line defines an R function f of one variable x which is in this case
a vector with two components x[1] and x[2]. The nlm function minimizes
the function f using the second argument c(0,0) as the starting point for
its iterative procedure. The starting point also specifies the dimension of the
problem. The x that nlm will pass to f will have the same length as this starting
point (in this case length 2). The argument hessian=TRUE tells nlm that we

3This function has no relevance to either probability or statistics. It’s just a commonly
used test case books about optimization. It’s called Rosenbrock’s function.
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want the second derivative matrix too (Hessian matrix is another name for
second derivative matrix)4

The result out returned by the minimization procedure is a list of compo-
nents, only the first four of which are interesting (we omit the rest).

> out
$minimum
[1] 4.023726e-12

$estimate
[1] 0.999998 0.999996

$gradient
[1] -7.328278e-07 3.605688e-07

$hessian
[,1] [,2]

[1,] 802.2368 -400.0192
[2,] -400.0192 200.0000

The component estimate is the point x at which the function is minimized
(or at least at which nlm claims it is minimized), and the component minimum
is the value f(x) of the function at that point. The component gradient is
the first derivative (“gradient” is another name for a derivative vector). Notice
that it is as close to zero as computer arithmetic allows. And the component
hessian is, as we said above, the second derivative matrix. To check whether
the second derivative matrix is positive definite, calculate eigenvalues

> eigen(out$hessian)
$values
[1] 1001.8055799 0.4312236

$vectors
[,1] [,2]

[1,] -0.8948213 -0.4464245
[2,] 0.4464245 -0.8948213

Since both eigenvalues (the elements of the values) component of the result
list returned by the eigen function are positive this is a positive definite matrix,
from which we conclude that the point found is a local minimum.

Positive definite? Doesn’t the theorem say the second derivative should
be negative definite? It does. This is the difference between maximization

4Unlike Mathematica, R doesn’t know any calculus, so it calculates derivatives by finite
differences

df(x)

dx
≈ f(x + h) − f(x)

h
for small h, and similarly for partial derivatives. For second derivatives, apply this idea twice.
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and minimization. Since maximizing f is equivalent to minimizing −f and
∇2f(x) = −∇2(−f(x)), the condition is

negative definite Hessian at a local maximum,
positive definite Hessian at a local minimum.

Unfortunately, in statistics we are often interested in maximization, but most
optimization theory and optimization software uses minimization, so we’re al-
ways having to convert between the two.

G.4 Concave Functions of Several Variables

Definition G.4.1 (Convex Sets).
A subset of Rn is convex if for any two points in the set the line segment between
them lies entirely in the set.

Definition G.4.2 (Strictly Concave Functions).
A continuous real-valued function f defined on a convex subset of Rn with a
nonempty interior and twice differentiable at interior points of the subset is
strictly concave if the inequality ∇2f(x) < 0 holds at every interior point x.

As in the single-variable case, strictly concave functions are very special.

Theorem G.5. A continuous real-valued strictly concave function f defined
on a convex subset of Rn with a nonempty interior and twice differentiable at
interior points of the interval has at most one local maximum. If it has a local
maximum, then that point is also the global maximum.

Also, ∇f has at most one zero. If it has a zero, this is the global maximum.

The theorem says the the situation for strictly concave functions is very
simple. If you find a local maximum or a zero of the first derivative, then you
have found the unique global maximum.

To summarize, there is a very important distinction between general func-
tions and strictly concave ones. The derivative tests are almost the same, but
there is a subtle difference. If

∇f(x) = 0 and ∇2f(x) < 0

then you know x is a local maximum of f , but you don’t know that x is a global
maximum or whether there is any global maximum. But if

∇f(x) = 0 and ∇2f(y) < 0 for all y

then you know that f is strictly concave and hence that x is the unique global
maximum. The only difference is whether you just check negative definiteness
the second derivative only at the point x or at all points y in the domain of f .



Appendix H

Projections and
Chi-Squares

H.1 Orthogonal Projections

A matrix A is said to be an orthogonal projection if it is symmetric (A′ = A)
and idempotent (A2 = A). The linear transformation represented by the matrix
maps onto the subspace range(A). We say that A is the orthogonal projection
onto range(A). The rank of A, denoted rank(A) is the dimension of its range.

A typical element of range(A) has the form y = Az for an arbitrary vector
z. The idempotence property implies

Ay = y, y ∈ range(A),

that is, the linear transformation represented by A behaves like the identity
mapping on range(A). Any idempotent matrix (symmetric or not) has this
property, and all such matrices are called projections.

The reason why the symmetric projections A are called orthogonal projec-
tions is because the vector from y to its projection Ay is orthogonal to the
subspace range(A), which means

(y−Ay)′(Az) = y′(I−A)′Az = y′(I−A)Az = 0, for all vectors y and z,

which is equivalent to
(I − A)A = 0. (H.1)

But this is just the same thing as the idempotence property.
Since an orthogonal projection is symmetric, it has a spectral decomposition

(E.7). Combining the spectral decomposition with the idempotence property
gives

A = ODO′ = A2 = ODO′ODO′ = OD2O′

(because O′O = I). Multiplying this by O on the right and O′ on the left gives
D = D2 (again using O′O = OO′ = I). Since D is diagonal, so is D2, and
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the diagonal elements of D2 are just the squares of the corresponding diagonal
elements of D. Thus the diagonal elements of D must be idempotent numbers,
satisfying x2 = x, and the only such numbers are zero and one.

Hence we have another characterization of orthogonal projections

An orthogonal projection is a symmetric matrix having all eigenval-
ues either zero or one. Its rank is the number of nonzero eigenvalues.

(The comment about the rank follows from the fact that D clearly has this rank,
since it maps an arbitrary vector to one having this many nonzero components,
and the fact that an orthogonal matrix, being invertible maps one subspace to
another of the same dimension.)

We say that a pair of orthogonal projections A and B are orthogonal to each
other if AB = 0. Using the fact that the transpose of a product is the product
of the transposes in reverse order, we see that for any symmetric matrices A
and B (projections or not)

(AB)′ = B′A′ = BA (H.2)

Thus for orthogonal projections AB = 0 implies BA = 0 and vice versa.
The terminology here may be a bit confusing, because we are using “orthog-

onal” to mean two slightly different but closely related things. When applied
to one matrix, it means symmetric and idempotent. When applied to two ma-
trices, it means the product is zero. The relationship between the two usages is
as follows. If A is an orthogonal projection, then so is I − A, because

(I − A)2 = I2 − 2IA + A2 = I − 2A + A = I − A.

Then (H.1) says these two orthogonal projections (in the first usage) are orthog-
onal to each other (in the second usage).

We say a set {Ai : i = 1, . . . , k } of orthogonal projections is orthogonal
(that is, it is an orthogonal set of orthogonal projections) if AiAj = 0, when
i 6= j.

Another useful fact about orthogonal projections is the following.

Lemma H.1. If orthogonal projections A and B satisfy

range(A) ⊂ range(B), (H.3)

then

A = AB = BA. (H.4)

Proof. A = BA follows from the fact that B behaves like the identity map on
range(B) which includes range(A). But this implies that BA is a symmetric
matrix, hence (H.2) implies the other equality in (H.4).
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H.2 Chi-Squares

Theorem H.2. Suppose X = (X1, . . . , Xn) is a multivariate normal random
vector with mean vector zero and variance matrix M that is an orthogonal pro-
jection having rank k, then

X′X =
n∑

i=1

X2
i ∼ chi2(k).

Proof. Being an orthogonal projection, the variance matrix has a spectral de-
composition M = ODO′ in which the diagonal elements of D are k ones and
n − k zeros. By reordering the indices, we can arrange the first k to be ones.

Define Y = O′X. Then

var(Y ) = O′MO = D.

Thus the components of Y are uncorrelated (because D is diagonal) and hence
independent (Y being a linear transformation of a multivariate normal is multi-
variate normal, and uncorrelated implies independent for multivariate normal).
The first k components are standard normal, and the last n−k are concentrated
at zero (because their variance is zero). Thus

Y′Y =
k∑

i=1

Yi ∼ chi2(k).

But
Y′Y = (O′X)′(O′X) = X′OO′X = X′X

So X′X also has this distribution, which is what the theorem asserts.

Note that by the definition of the length (norm) of a vector

‖X‖2 = X′X

so we sometimes call the random variable described by the theorem ‖X‖2.

Theorem H.3. Suppose Z = (Z1, . . . , Zn) is a multivariate standard normal
random vector (that is, the Zi are i. i. d. standard normal) and {Ai : i =
1, . . . , k } is an orthogonal set of orthogonal projections, then

Yi = AiZ, i = 1, . . . , k,

are independent random variables, and

Y′
iYi ∼ chi2(rank(Ai)).

Proof. First note that the Yi are jointly multivariate normal (because they are
linear transformations of the same multivariate normal random vector Z). Thus
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by the corollary to Theorem 13 of Chapter 12 in Lindgren they are independent
if uncorrelated. Hence we calculate their covariance matrices

cov(Yi,Yj) = cov(AiZ,AjZ)
= E{AiZ(AjZ)′}
= E{AiZZ′Aj}
= AiE(ZZ′)Aj

= Ai var(Z)Aj

= AiAj

and this is zero when i 6= j by assumption. That proves the independence
assertion.

The chi-square assertion follows from Theorem H.2, because

var(Yi) = cov(Yi,Yi) = AiAi = Ai

because Ai is idempotent.
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