
MEASURE THEORY COURSE NOTES

LANCE MILLER

Abstract. This is a copy of the course notes for Dr. Stu Sidney’s Math 303

Measure and Integration course offered in Spring 2005 at the University of
Connecticut Included are homework assignments and solutions, as well as the
exams. In addition I have referenced Dr. Richard Bass’s course notes from
the same course, and provided the preparation material used for the Measure

theory Qualifying exam a the University of Connecticut including solutions to
many old exam problems. Many of the solutions came from group discussions
of the graduate students preparing, as well as the wonderful compilation of
solutions to old qualifying exams
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1These notes are severely unedited. Anyone whom would like to take on the project of cleaning

these notes up is more than welcome
2The collaboration of solutions to old exams was carried out primarily by Dr. Molli Jones, and

these notes are truly a revision of hers
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1. A quick review of Riemann Integration

The Riemann integral has the following equivalent definitions:

Definition 1.1. Let f be a real valued function on [a, b]. Then we define for each
partition P = {a = x0, x1, . . . , xn = b}, the numbers

Mk = sup
x∈[xk−1,xk]

f(x) mk = inf
x∈[xk−1,xk]

f(x)

Now we define L(f, P ) =
∑n
k=1mk4xk and U(f, P ) =

∑n
k=1Mk4xk. Then we

have that L
∫ b
a
f(x)dx = supP L(f, P ) and U

∫ b
a
f(x)dx = infP U(f, P ) where the

sup and inf are taken over all partitions P . If for a given function L
∫ b
a
f(x) =

dx = U
∫ b
a
f(x)dx then we say that f is Riemann integral, and

∫ b
a
f(x)dx is the

common value

Definition 1.2. A function f on [a, b] provided ∀λ > 0, µ > 0 we have that there
is a partition P such that

∑
{k|Mk−mk>λ}4xk < µ.

Though the Riemann integral enjoys some very satisfactory properties such lin-
earity and being closed under uniform limits it has many shortcommings, most
notably is that it is not closed under pointwise convergence.

Example 1.3. Consider the sequence

fm(x) = lim
n→∞

cos2n(m!xπ)

. When m!x ∈ Z, then fm(x) = 1, and for any other x, fm(x) = 0. Let

f(x) = lim
m→∞

fm(x)

. Then for any x ∈ R \ Q, we have fm(x) = 0∀m thus fm(x) = 0. If x ∈ Q, let
x = p

q . If m ≥ q, then m!x ∈ Z and so fm(x) = 1∀m ≥ q which gives that f(x) = 1.
Thus

f(x) =
{

1 x ∈ Q
0 x ∈ R \Q

Which is not Riemann integrable.

Example 1.4. Let R = Q ∩ [0, 1] and let {r0, r1, r2, . . .} be an enumeration. Then
let fn = χ({r0, . . . , rn}). Then we have that fn → χ(Q ∩ [0, 1]) pointwise and
χ(Q ∩ [0, 1]) is not Riemann integrable.

2. Algebras of Sets and σ-Algebras

The study of measure and integation begins with the notion of algebras and
σ-algebras. These are families of sets which are closed under certain set theoretic
operations. This is an anaologue to the generalization of open sets in topology. The
connection between measureable sets and functions and open sets and continuous
functions will continue later on.

Definition 2.1. Given a set X, then a family F ⊂ ℘(X), then F is called a
(boolean) algebra provided

(1) ∅ ∈ F
(2) A ∪B ∈ F , ∀A,B ∈ F
(3) Ac ∈ F , ∀A ∈ F
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We can extend this definition slightly as follows:

Definition 2.2. Given a set X, then a family F ⊂ ℘(X), then F is called a
σ-algebra provided

(1) ∅ ∈ F
(2)

⋃
Ai ∈ F , ∀{Ai} ⊂ F

(3) Ac ∈ F , ∀A ∈ F

By far the most important propositions involving algebras and σ−algebras is the
following:

Proposition 2.3. Given any set X and any collection C ⊂ ℘(X). Then there
exists σ(C) ( alg(C) ) a σ-algebra ( algebra ) containing C such that if F ⊂ ℘(X)
is any other σ−algebra ( algebra ) containing C then, σ(C) ⊂ F ( alg(C) ⊂ F).

Proof. This is so as arbitrary intersections of σ−algebras ( algebras ) are also
σ−algebras ( algebras ). Thus we can given the collection C let S = {F ⊂ ℘(X)|C ⊂
F and F is a σ−algebra ( algebra ) }. This collection is non-empty as ℘(X) ∈ S.
So we have that σ(C) =

⋂
{F∈S} F is the required σ−algebra ( algebra ). //

2.1. Borel, Fσ and Gδ sets. The above proposition is classically non-constructive.
Given a collection C we can form alg(C) as follows. Let C0 = C. Then let C1 = C0∪Cc
consist of members of C or their complement. That is C1 = {A∗|A ∈ C or Ac ∈ C}.
We can then form C2 = {

⋂n
i=1Ai|Ai ∈ C1}, and finally C3 = {

⋃n
i=1 |Ai ∈ C2}. One

can check that C3 = alg(C). However if one tries to repeat one quickly realizes
that it can go on ad infinitum. With the collection of all the open subsets in a
topological space in mind we quickly come to the following definitions:

Definition 2.4. A set is a Fσ set provided it is a countable union of closed sets.

Definition 2.5. A set is a Gδ set provided it is a countable intersection of open
sets

These sets arise naturally when one tries to find the smallest σ−algebra generated
by all the open ( closed )sets. The sets in this collection are called Borel.

We pause to give some examples of σ−algebras.

Example 2.6. Naturally the powerset ℘(X) of X is a σ−algebra.

Example 2.7. Given X a set. Let C = {A ∈ ℘(X)||A| = ω or |Ac| = ω}.

3. Measures

Now that we have σ−algebras, we will need a way to describe their size in order
to integrate over their elements.

Definition 3.1. Let F be a σ−algebra. Then a function µ : F → [0,∞] is called a
(positive) measure provided:

(1) µ(∅) = 0
(2) µ(

⋃
iAi) =

∑
i µ(Ai) for pairwise disjoint collections {Ai} ⊂ F

We will called a triple (X,F , µ) consisting of a σ−algebra contained in ℘(X) and
a measure on F a measure space. Such a space will be called finite if µ(X) < ∞
and σ−finite provided X =

⋃
iXi where µ(Xi) <∞. A measure space is complete

provided that for any set A ∈ F such that µ(A) = 0 then ∀B ⊂ A we have that
B ∈ F . We will see soon that µ(B) must be zero as well.
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Example 3.2. (Counting measure) Let X be a non-empty set. Then (X,℘(X), µ)
where µ(A) = |A| for |A| <∞, and µ(A) = ∞ for |A| ≥ ω.

Example 3.3. Given X a set. Let C = {A ∈ ℘(X)||A| = ω or |Ac| = ω}. Then
µ(A) = 1 for |Ac| = ω and µ(A) = 0 for |A| = ω is a measure.

We now pause to give some lemmas needed to compute with measures. For each
of the following fix a measure space (X,F , µ).

Lemma 3.4. For A ⊂ B where A,B ∈ F , then µ(A) ≤ µ(B).

Proof. Write B = A ∪ (B \A). Then µ(B) = µ(A) + µ(B \ (A)). //

Lemma 3.5. For any collection {Ai} ⊂ F . Then µ(
⋃
iAi) ≤

∑
i µ(Ai).

Proof. Let B1 = A1, B2 = A2 \ B1, B3 = A3 \ (B1 ∪ B2), . . .. Then the collection
{Bi} are disjoint and

⋃
iBi =

⋃
iAi. Then we have that µ(

⋃
iAi) = µ(

⋃
iBi) =∑

i µ(Bi) ≤ µ(Ai), the last inequality holds from the previous lemma. //

Lemma 3.6. Given a collection A1 ⊃ A2 ⊃ . . . all in F , such that µ(A1) < ∞,
then limµ(Ai) = µ(

⋂
Ai).

Proof. Let A =
⋂
Ai and Bi = Ai \ Ai+1. Then we have that {Bi} are pairwise

disjoint and so µ(A1 \ A) = µ(
⋃
{i≥1}Bi) =

∑
µ(Bi) =

∑
µ(Ai \ Ai+1). Then we

have that µ(A1) = µ(A) + µ(A1 \ A) and µ(Ai) = µ(Ai+1) + µ(Ai \ Ai+1). And
we have that µ(A1) − µ(A) =

∑
µ(Ai) − µ(Ai+1) = lim

∑n
i=1 µ(Ai) − µ(Ai+1) =

limµ(A1)− µ(An) = µ(A1)− limµ(An). Now since µ(A1) <∞ we can subtract to
get the result. //

This last lemma is probably the most useful.

4. Construction of Lebesgue Measure on R

We will now go through the construction of the lebesgue measure on R.
Given a set E ⊂ R, we can define m∗(E) = inf{E⊂⋃

In}
∑
l(In) where {In} is a

collection of intervals. We have the following trivial results:

Lemma 4.1. For m∗ defined above, we have the following
(1) For A ⊂ B, then m∗(A) ⊂ m∗(B)
(2) m∗(

⋃
Ai) ≤

∑
m∗(Ai)

(3) If E is countable then m∗(E) = 0
(4) m∗(A+ r) = m∗(A).

Proof. For (1) this is clear as any cover of B is also a cover of A. (3) follows from
(2) and the fact that m∗({r}) = 0,∀r ∈ R. (4) is trivial, so it suffices to show
(2). Without loss of generality m∗(Ai) < ∞. Let ε > 0, and for each i choose
{In,i} such that Ai ⊂

⋃
n I(n,i) and

∑
n l(I(n,i)) = m∗(Ai) + ε

2i . Then we have
that m∗(

⋃
Ai) ≤

∑
(n,i) l(I(n,i)) ≤

∑
m∗(Ai)+ ε

2i =
∑
m∗(Ai)+ ε, which gives the

result. //

We now define what it means for a subset of the real numbers to be measureable.

Definition 4.2. Let E be a subset of real numbers. Then E is measureable provided
∀A we have m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

Ideally we want to form a σ−algebra. We have the following theorem:
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Proposition 4.3. The collectionM = {E ⊂ ℘(R)|E is measurable } is a σ−algebra.

Proof. ∅ ∈ M as m ∗ (A) = m ∗ (A) + 0. Likewise if E ∈ F , then Ec ∈ M also
by defintion. So it suffices to show that

⋃
iEi ∈ M for a countable collection

{Ei} ⊂ M. First we show that E1 ∪ E2 for any E1, E2 ∈ M. Let A be any set.
Then we have that m∗(A∩Ec1) = m∗(A∩Ec1∩E2)+m∗(A∩Ec1∩Ec2). Further since
A∩(E1∪E2) = (A∩E1)∪(A∩E2∩Ec1) we have that m∗(A∩(E1∪E2))+m∗(A∩Ec1∩
Ec2) ≤ m∗(A∩E1)+m∗(A∩E2∩Ec1)+m∗(A∩Ec1∩Ec2) = m∗(A∩E1)+m∗(A∩Ec1) =
m∗(A). Induction gives finite sums of memebers of M are in M. Given any
collection {Ei} ⊂ M. Then we can construct Bn = En \ (E1 ∪ . . . ∪ En−1) =
En ∩Ec1 ∩ . . .∩Ecn−1, then {Bi} ⊂ M,

⋃
Bi =

⋃
Ei and {Bi} are pairwise disjoint.

Now let Cn =
⋃n
i=1Bi, and C =

⋃
Bi. Then m∗(A ∩ Cn) = m∗(A ∩ Cn ∩ Bn) +

m∗(A ∩ Cn ∩ Bcn) = m∗(A ∩ Bn) + m∗(A ∩ Cn−1), repeating this same argument
for m∗(A ∩ Cn−1),m∗(A ∩ Cn−2), . . . we have m∗(A ∩ Cn) =

∑n
i=1m

∗(A ∩ Bi).
Thus m∗(A) = m∗(A ∩ Cn) + m∗(A ∩ Ccn) ≥

∑n
i=1m

∗(A ∩ Bi) + m∗(A ∩ Cc).
Now taking the limit as n → ∞ we obtain m∗(A) ≥

∑
m∗(A ∩ Bi) + m∗(A ∩

Cc) ≥ m∗(
⋃
A ∩ Bi) + m∗(A ∩ Cc) = m∗(A ∩ C) + m∗(A ∩ Cc). This gives that

C =
⋃
Bi =

⋃
Ei ∈M. //

Now we will demonstrate some measureable sets.

Lemma 4.4. Let E be a set such that m∗(E) = 0, then E is measurable.

Proof. Let m∗(E) = 0. Let A ∈ ℘(R). Then A∩E ⊂ E so m∗(A∩E) = 0. LIkewise
m∗(A∩Ec) = 0, therefore we have that m∗(A) ≥ m∗(A∩E)+m∗(A∩Ec), therefore
E is measurable. //

Corollary 4.5. Any countable set is measurable

Lemma 4.6. Any interval is measurable.

Proof. Since the measurable sets are a σ−algebra, it suffices to show that (a,∞) is
measurable for any a ∈ R. Let A ∈ ℘(R). Now let A1 = A∩(a,∞) and A2∩(−∞, a].
Then we must show that m∗(A1) + m∗(A2) ≤ m∗(A). Likewise we are done if
m∗(A) = ∞, so let m∗(A) <∞. Now, let ε > 0. Then we can find {In}, A ⊂

⋃
In

and
∑
l(In) ≤ m∗(A) + ε. Let I ′n = In ∩ (a,∞) and I ′′n = In ∩ (−∞, a]. Then

l(In) = l(I ′n) + l(I ′′n). Likewise A1 ⊂
⋃
I ′n so m∗(A1) ≤ m∗(

⋃
I ′n) ≤

∑
m∗(I ′n).

Similarly m∗(A2) ≤
∑
m∗(I ′′n). m∗(A1) + m∗(A2) ≤

∑
(m∗(I ′n) + m∗(I ′′n)) ≤∑

l(In) ≤ m∗(A) + ε. This gives that m∗(A1) +m∗(A2) ≤ m∗(A), thus (a,∞) is
measurable. //

This gives that M is a σ−algebra which contains the open sets of R, and hence
any borel set. Now if we restrict m = m∗|M then we obtain a measure.

Proposition 4.7. The triple (R,M,m = m∗|M) is a measure space.

Proof. So far we have seen thatM is a σ−algebra. Likewise we have thatm∗(∅) = 0
so it suffices to show that m∗(

⋃
Ei) =

∑
m∗(Ei) for {Ei} ⊂ M. Likewise we have

that m∗(
⋃
Ei) ≤

∑
m∗(Ei). First we show that m∗(A ∪B) = m∗(A) +m∗(B) for

A,B ∈ M disjoint. This is so as R ∩ (A ∪ B) is a measurable set, thus we have
m∗(A ∪B) = m∗(R ∩ (A ∪B)) = m∗(R ∩ (A ∪B) ∩A) +m∗(R ∩ (A ∪B) ∩Ac) =
m∗(R∩A)+m∗(R∩B) = m∗(A)+m∗(B). Induction give the result for finite sums.
Now

⋃
Ei ⊃

⋃n
i=1Ei which gives that m∗(

⋃
Ei) ≥ m∗(

⋃n
i=1Ei) =

∑n
i=1m

∗(Ei).
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This gives that m∗(
⋃
Ei) ≥

∑
m∗(Ei) which gives that m∗(

⋃
Ei) =

∑
m∗(Ei) and

so m = m∗|M is a measure. //

This gives that (R,M,m) is a σ−finite complete measure space. We will call
the measure given the lebesgue measure on R. Now it is an unfortunate truth that
there are sets which are not measurable.

Proposition 4.8. Given any set E ∈ M such that m(E) > 0, then there is a set
A ⊂ E such that A /∈M.

Proof. Define x y provided x − y ∈ Q. Then this is an equivalence relation on
[0, 1]. Using the axiom of choice let A be the set formed by choosing a ele-
ment from each equivalence class. Now using translation invarience we have that
m∗(A+ q) = m∗(A). Moreover these sets are disjoint for different rationals q. Now
[0, 1] ⊂

⋃
q∈[−2,2]∩Q(A+ q) so m∗(A) > 0. However

∑
q∈[−2,2]∩Q m

∗(A+ q) must be
either 0 or infinte as {A + q} are disjoint and non-negative. Further we have that⋃
q∈[−2,2]∩Q(A+ q) ⊂ [−6, 6] so this gives that m∗(A) = 0 which is a contradiction,

therefore A is not measurable. //

5. Measureable Functions

The analogy between measure theory and topology is picked up again here. As
σ−algebras are to topologies, measureable functions are to continuous functions.
Recall that a continuous function can be defined as one whoes inverse images of
open sets are open. Likewise one can define measurable functions as those whoes
inverse images of open sets are measurable. We formalize this as following the next
result.

Proposition 5.1. For a given measure space (X,F , µ) and a function f : X → R,
then the following are equivalent:

(1) {x|f(x) > a} ∈ F , ∀a ∈ R
(2) {x|f(x) ≥ a} ∈ F , ∀a ∈ R
(3) {x|f(x) ≤ a} ∈ F , ∀a ∈ R
(4) {x|f(x) < a} ∈ F , ∀a ∈ R

Proof. We have by complementation 1 ⇔ 3 and 2 ⇔ 4, so it suffices to show 1 ⇔
2. Now we have that 1 ⇒ 2 as f−1([a,∞)) =

⋂
f−1((a− 1

n ,∞)). Likewise 2 ⇒ 1
as f−1((a,∞)) =

⋃
f−1([a+ 1

n ,∞)). //

Given this we have the following definition:

Definition 5.2. A function f : X → R where (X,F , µ) is a measure space is mea-
surable provided one ( equivalently all ) of the conditions in the previous proposition
hold.

Corollary 5.3. Monotonic and continuous functions are all lebesgue measurable.

It will be useful in the future to distinquish the following measurable functions:

Definition 5.4. Given a space (X,F , µ) and a measureable function f the set
supp(f) = {x|f(x) 6= 0} is called the support of f . A measurable function is finitely
supported provided µ(supp(f)) <∞.

We now give some tools to compute measurable functions:
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Proposition 5.5. Given a measure space (X,F , µ) and measurable functions f, g
and a set of measurable functions {fn}, then f + g, fg, sup{fn}, inf{fn} are all
measurable

Proof. First we we show that f+g is measurable. Consider {x|f(x)+g(x) < a} for
a ∈ R. This is the same as {x|f(x) < a− g(x)} =

⋃
q∈Q({x|f(x) < q} ∩ {x|g(x) <

a− q}. This gives that f + g is measurable. For fg, we first note that this is trivial
if f is constant. Futher we have that if a ≥ 0 then {x|f2(x) > a} = {x|f(x) >√
a} ∪ {x|f(x) < −

√
a} is measurable and when a < 0 then {x|f2(x) > a} = X is

measurable thus f2 is measurable. Futher since fg = 1
2 [(f + g)2− f2− g2] we have

that fg is measurable. Now let g = sup{fn}. Then {x|g(x) > a} =
⋃
{x|fn(x) >

a}. Dually inf{fn} is measurable. //

Corollary 5.6. Given a measure space (X,F , µ) and {fn} measurable functions.
Then lim fn and lim fn are both measurable, hence limits of meaurable functions
are measurable.

Frequently it will be convinent to describe situations that hold except on sets of
zero measure. So by convention, given a measure space (X,F , µ) a property is said
to hold µ− almost everywhere ( µ−a.e. ) the set of points on which it doesn’t hold
has µ measure zero. The following proposition exhibits this type of condition.

Proposition 5.7. Given a complete measure space (X,F , µ), if f is measurable
and f = g µ−a.e., then g is measurable.

Proof. Let E = {x|f(x) 6= g(x)}. The set {x|g(x) < a} = ({x|f(x) < a} ∪ {x ∈
E|g(x) < a}) \ {x ∈ E|g(x) ≥ a}. Each of the sets on the right hand side are
measruable as (X,F , µ) is complete.

//

Now we will give a method of constructing measurable functions

Lemma 5.8. Given a space (X,F , µ), let D be a dense set of real numbers and
{Bα}α∈D a collection of measurable sets such that Bα ⊂ Bβ for α < β. Then there
is a unique measurable function f such that f ≤ α on Bα and f ≥ α on Bcα.

Proof. Define f(x) = inf{α ∈ D|x ∈ Bα}. if x ∈ Bα, then f(x) ≤ α by definition.
Likewise if x /∈ Bα, then ∀β < α, x /∈ Bβ which gives that ∀β < α, f(x) ≥ β ⇒
f(x) ≥ α. Now given λ ∈ R we have that {x|f(x) < λ} =

⋃
nBαn

where {αn} → λ.
Let g be any other function satisfying the conclusion. Then for x ∈ Bα we have
g(x) ≤ α gives {α ∈ D|x ∈ Bα} ⊂ {α ∈ D|g(x) ≤ α}. Likewise for x such that
g(x) < α we have that x ∈ Bα this gives that {α ∈ D|g(x) < α} ⊂ {α ∈ D|x ∈ Bα}.
Further since D is dense we have g(x) = inf{α ∈ D|α > g(x)} = inf{α ∈ D|α ≥
g(x)} = inf{α ∈ D|x ∈ Bα} = f(x). //

Proposition 5.9. Given a space (X,F , µ), let D be a dense set of real numbers
and {Bα}α∈D such that µ(Bα \ Bβ) = 0 for α < β. Then there is a measurable
function f such that f ≤ αµ−a.e. on Bα and f ≥ αµ−a.e. on Bcα. This function
is unique in the sense that if g satisfies the same conditions, then g = fµ−a.e.

Proof. Let C be a countable dense subset of D and let N =
⋃
Bα \ Bβ for α <

β and α, β ∈ C. Then N is a countable union and so is measurable and has
measusure zero. Let B′α = Bα ∪ N . Then for α, β ∈ C such that α < β we have
B′α \ B′β = (Bα \ Bβ) \ N = ∅. Thus we have B′α ⊂ B′β . The previous lemma
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gives us a measureable function f such that f ≤ γ on B′γ and f ≥ γ on Bc
′

γ .
Now for each α ∈ D choose {γn} → α such that α > γn ∈ C. Then we have that
B′α\B′γn

⊂ Bα\Bγn
. Thus we have P =

⋃
Bα\B′γn

is measurable and has measure
zero. Let A =

⋂
B′γn

Then f ≤ inf γn = α on A and Bα \ A ⊂ P so f ≤ αµ−a.e.
on Bα. A similar argument shows f ≥ αµ−a.e. on Bcα. Now let g be a measurable
function that satisfies the conclusion. Then g ≤ γµ−a.e. on Bγ and g ≥ γµ−a.e.
on Bcγ for γ ∈ C. This gives that g ≤ γ on B′γ and g ≥ γ on Bc

′

γ except for some
measure zero set Qγ . Let Q =

⋃
Qγ . Now f = g except for the set Q which must

have measure zero. //

6. Littlewood Principles

The Littlewood theorems basically state the the following:
(1) Every measurable set is almost an open set
(2) Pointwise convergent sequences of functions are almost uniform
(3) Every measurable function is almost continuous

We will make these principles more percise under differing conditions. We should
note that Littlewood princples (1) and (3) make reference to topology ( open set,
continuous function ). These theorems can be made in some general settings for
a measure space with a nice enough topology. However for these principle we will
prove the results for the familar space (R,M,m).

Theorem 6.1. Let (R,M,m) be the real numbers with the lebesgue measure. Given
E a measurable set., then:

(1) ∀ε > 0,∃U open such that E ⊂ U and m(U \ E) < ε
(2) ∀ε > 0,∃C closed such that C ⊂ E and m(E \ C) < ε

Proof. Let E ∈M. Now let ε > 0. The problem is solved if m(E) = ∞ as we may
take U = R so assume m(E) < ∞. Then since m(E) = infE⊂

⋃
In

(
∑
l(IN )) we

have that there must be U =
⋃
In such that E ⊂ U and m(E) < m(U) + ε. This

proves the first conclusion. The second is the dual of the first. //

Lemma 6.2. Let (X,F , µ) be a finite measure space and {fn} → f − µ−a.e. all
measurable functions, ε, δ > 0, then ∃A (depending on ε), and N ∈ N such that
µ(A) < δ and ∀n ≥ N, |fn(x)− f(x)| < ε.

Proof. Let ε, δ > 0. Let A1 be the set of x ∈ X such that {fn(x)} does not
converge to f . Then µ(A1) = 0. Now let Gk = {x /∈ A1| |fk(x) − f(x)| ≥ ε}. Let
En =

⋃
k≥nGk. Then X ⊃ E1 ⊃ E2 ⊃ . . .. Further

⋂
nEn = ∅. Since µ(X) < ∞

we have that limµ(En) = µ(
⋂
En) = 0. Thus we can find N large enough such

that µ(EN ) < δ and ∀N ≥ n we have |fn(x)− f(x)| < ε by definition. //

Theorem 6.3. (Egoroff) Let (X,F , µ) be a finite measure space and {fn} →
fµ−a.e. all measurable functions. Then ∀η > 0 there is a set A such that µ(A) < η
and {fn(x)} converges uniformly to f(x) on Ac.

Proof. ∀k ∈ N let εk = 1
k and δk = 2−kη. Use the previous lemma to choose sets Ak

and numbers Nk such that µ(Ak) < δk and ∀n ≥ Nk we have |fn(x) − f(x)| < εk
on Ack. Let A =

⋃
Ak. Then µ(A) ≤

∑
2−kη = η. Let ε > 0. Choose k such that

1
k < ε, then ∀x ∈ Ac ⊂ Ack and n ≥ Nk we have |fn(x)− f(x)| ≤ 1

k < ε. //
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Lemma 6.4. Let (R,M,m) be the real numbers with the lebesgue measure. Let f
be a measurable function on [a, b] such that |f | <∞ a.e., then ∀η, ε > 0, there is a
continuous function ϕ such that m({x||f − ϕ| < ε}) < η

Proof. First given such an f we will show that f is bounded except on a set of small
measure. Let ε > 0. Let En = {x||f(x)| > n}. Then [a, b] ⊃ E1 ⊃ E2 ⊃ . . . and
m(

⋂
En) = 0 which gives that there is an M = n0 such that |f(x)| < M off of a

set En0 and m(En0) <
ε
3 . Now we will construct our continuous function in stages.

Let n be such that γ = 2M
n < ε. Then for k = 0, . . . , n let Ak = {x| −M + (k −

1)γ < f(x) ≤ −M + kγ}. Then Ak are disjoint measurable sets and the function
ϕ1 =

∑n
k=0 akχAk

where ak = −M + kγ, and |ϕ1 − f | < ε where |f(x)| < M . Now
ϕ1 is definitly not continuous, however we can modify it to be. First for each k
choose Uk open such that m(Uk4Ak) < ε

3n . Now revise ϕ2 =
∑n
k=0 akχUk

. Then
{x|ϕ2 6= ϕ1} ⊂

⋃n
k=1{x ∈ [a, b]|χUk

6= χAk
} ⊂

⋃n
k=1(Uk4Ak) which gives that

m({x|ϕ1 6= ϕ2} ≤ n ε
3n = ε

3 . Now ϕ2 is a step function, thus there is a partition
a = x0 < x1 < . . . < xn = b such that ϕ2 is constant ck on each piece (xk−1, xk).
Choose numbers xk−1 < αk < βk < xk such that αk−xk−1 <

ε
bn and xk−βk < ε

bn .
Now modify ϕ so that ϕ(xk) = 0, and ϕ(x) = ck on [αk, βk]. Extend ϕ(x) linearly on
[xk−1, αk] and [βk, xk]. Now ϕ is continuous and {x|ϕ 6= f} ⊂

⋃
([xk−1, αk]∪[βk, xk]

which gives that m({x|ϕ2 6= ϕ}) ≤
∑n
k=1{(αk−xk−1)+(xk−βk)} < n∗2∗ ε

6n = ε
3 .

Summing these differences we see that {x|f 6= ϕ} < ε. //

Theorem 6.5. (Lusin) Let (R,M,m) be the real numbers with the lebesgue mea-
sure. Let f be an measurable extended real valued function on [a, b] such that
|f | <∞ a.e. Then given δ > 0,∃ϕ continuous such that m({x|f 6= ϕ}) < δ.

Proof. Let δ > 0. Then by the previous lemma ∀k ∈ N let Ak ∈ M such that
Ak ⊂ [a, b] and ϕk : [a, b] → R continuous such that m(Ak) ≤ 2−k and |f −ϕk| < 1

k

on [a, b] \ Ak. Then we have that m(
⋃
n≥k An) ≤

∑∞
n=k 2−n = 2−k+1. This gives

that limk→∞m(
⋃
n≥k An) = 0. Thus we have that for B =

⋂
k

⋃
n≥k An, then

m(B) = 0. Further for x ∈ [a, b] \ B we have there must be an element k such
that x /∈

⋃
n≥k An which gives that x /∈ An for n ≥ k. Likewise for n ≥ k we

have |f(x)− ϕn(x)| < 1
n by construction which gives that {ϕn} → f pointwise on

[a, b] \ B. Now by Egoroff we can find a set C such that m(C) < δ for which the
convergence is uniform on [a, b] \ C. Now we can find an open set U such that
C ⊂ U and m(U) < δ. Let F = [a, b] \ U . Then F is closed, and {ϕn} converge
uniformally to ϕ′ a continuous function on F . We can extend ϕ′ to a continuous
function ϕ on [a, b] and {x|f 6= ϕ} ⊂ C which gives m({x|f 6= ϕ}) < δ //

7. Lebesgue Integral and Convergence Theorems

We are now ready to define the Lebesgue integral. To make some anaolgies we
recall Riemann-integration and the following definition of it. One a closed bounded
interval [a, b] we can define a step function ψ to be a function such that there is
a partition a = x0 < x1 < . . . < xn = b such that ψ(x) ∼= ck on (xk−1, xk).
Then we can define

∫ b
a
ψdx =

∑n
k=1 ck(xk − xk−1). Given a function f on [a, b] we

can define U
∫ b
a
fdx = inf

∫ b
a
ψdx for ψ(x) ≥ f(x) and L

∫ b
a
fdx = sup

∫ b
a
ψdx for

ψ(x) ≤ f(x). Then we have the equivalent defintion for Riemann integration of a
function f provided U

∫ b
a
fdx = L

∫ b
a
fdx and we define

∫ b
a
fdx to be this common
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value. We can define the Lebesgue integral analgously however we must have a
analogue to step functions.

Definition 7.1. Given a measure space (X,F , µ), a function ϕ : D → R is simple
if it is measurable and has finite range. Note that for a simple function ϕ with
range {a1, . . . , an}, we can give ϕ the canonical representation

ϕ =
n∑
i=1

aiχAi
where Ai = {x|ϕ(x) = ai}

.

Such a defintion will not be useful unless these functions somehow approximate
measurable functions.

Proposition 7.2. Let (X,F , µ) be a measure space and f a non-negative mea-
surable function. Then there is a sequence {ϕn} of simple functions that converge
monotonically pointwise to f . Further if X is a σ−finite space, then these functions
can be taken to be finitely supported.

Proof. Let En,k = {x|k2−n ≤ f(x) < (k + 1)2−n} and let ϕn = 2−n
∑22n

k=0 kχEn,k
.

Then ϕn → f and ϕn ≤ ϕn+1 as we only gain more sets as n increase. Now if
X is σ−finite, let X =

⋃
Xi. Then each ϕn is only non-zero on a finitely collec-

tion of disjoint sets, say E1, . . . , Em which must be contained in a finite collection
X1, . . . , Xk. Thus µ(X1 ∪ . . . ∪Xk) ≤ µ(X1) + . . .+ µ(Xk) <∞. //

Notice that the geometry of this construction is to partition the y-axis to obtain
the sets Ek = {x|k ≤ f(x) < k + 1}. This is the anaolgy between Riemann and
Lebesgue integration. In the Riemann case we split the x-axis. In the Lebesgue
case we split the y-axis. Notice that all the machinery so far has delt with giving
sets that arise like Ek a notion of length ( measure ). In this spirit if we wanted to
find an approximate for the integral of f we could just choose a test y-value and
add up that value times the measure of Ek.

7.1. Integration. We can now define integration on simple functions and use the
previous proposition to extend this definition to more general measurable functions.

Definition 7.3. Given a complete space (X,F , µ). For a given measurable set E ∈
F and simple function ϕ =

∑n
i=1 aiχAi

, we define
∫
E
ϕdµ =

∑n
i=1 ai ∗ µ(Ai ∩ E).

Now we have an ambiguity of notation, so just as a convienence from here on out
we will use R

∫ b
a
f to denote Riemann interation. Likewise we have an ambiguity

as ϕ could be represented in many different ways. However by finite addativity we
can see that this defintion is invarient under change of representation for ϕ.

We have the following computational proposition:

Proposition 7.4. Let (X,F , µ) be a measure space and ϕ,ψ simple functions, then
(1)

∫
(aϕ+ bψ)dµ = a

∫
ϕdµ+ b

∫
ψdµ

(2) ϕ ≤ ψ ⇒
∫
ϕdµ ≤

∫
ψdµ.

Proof. (1) is true as sums are linear. The second is true as when ϕ =
∑
aiχAi

and
ψ =

∑
biχBi

then for any x ∈ Ai we must have a set Bj such that x ∈ Bj and
ai ≤ bi which gives the result. //

We will extend our definition using the last proposition in the last section to
non-negative measurable functions.
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Definition 7.5. Let (X,F , µ) be a complete space and f a non-negative measure-
able function. Then we define

∫
E
fdµ = supϕ≤f{

∫
E
ϕdµ} where ϕ is simple.

A note that we could have defined integration of simple functions over non-
complete spaces by

∫
ϕdµ =

∑n
i=1 aiχAi and

∫
fdµ = supϕ≤f{

∫
ϕdµ} then define∫

E
ϕdµ =

∫
ϕ ∗ χEdµ. However restricting to complete measure spaces is not

unreasonable. As we can always given a space (X,F , µ) then we can construct a
space (X,F0, µ0) to be the same set where F0 = F∪{A ⊂ B|B ∈ F and µ(B) = 0}
and defining µ0 to be µ on F and 0 on any other set. Then this space is called the
completion.

We should extend our definition a bit more as follows.

Definition 7.6. Let (X,F , µ) be a complete space and f measurable function. Then
we can define f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0). Then each are
non-negative measurable and we have f = f+ − f− likewise |f | = f+ + f−. We
can define

∫
E
fdµ =

∫
E
f+dµ−

∫
E
f−dµ

Notice that now we have a notational ambiguity. For
∫
fdx does this mean a

Riemann integral or a lebesgue integral? We will henceforth denote R
∫ b
a
f(x)dx

for the Riemann integral of f over [a, b].

We now present some basic properties of this integral.

Proposition 7.7. Let (X,F , µ) be a complete measure space. Then we have the
following:

(1) 0 ≤ f ≤ g for f, g measurable, then
∫
E
fdµ ≤

∫
E
gdµ

(2) If f ≥ 0 and A ⊂ B both measurable then
∫
A
fdµ ≤

∫
B
fdµ for measureable

f .
(3) 0 ≤ f and c <∞ then

∫
E
cfdµ = c

∫
E
fdµ

(4) f(x) = 0 then
∫
E
fdµ = 0 for any E ∈ F

(5) µ(E) = 0 then
∫
E
fdµ = 0 for any f measurable

(6) If a ≤ f(x) ≤ b and µ(E) <∞ then aµ(E) ≤
∫
E
fdµ ≤ bµ(E).

Proof. (1) We have that any simple function ϕ ≤ f gives ϕ ≤ g.
(2) If A ⊂ B then for any simple function 0 ≤ ϕ ≤ f then we have

∫
A
ϕdµ ≤∫

B
ϕdµ by defintion.
(3) Let c <∞, and ϕ a simple function ϕ ≤ f . Then

∫
E
cϕdµ = c

∫
E
ϕdµ.

(4) Let E ∈ F and f(x) = 0. Then any non-negative simple function ϕ must be
0.

(5) Let f be measurable. Then for any simple function ϕ we have
∫
E
ϕdµ = 0

as µ(E) = 0.
(6) Let a ≤ f(x) ≤ b and µ(E) < ∞. Then the result holds for any simple

function a ≤ ϕ ≤ b which we can choose by approximation.
//

We must postpone linearity until later as it will require some of the convergence
theorems.

7.2. Bounded measurable functions on (R,M,m). While we don’t need this
section to get to the meat of the integration theory, namely the next section. The
methods here will mostly generalize for complete σ−finite spaces.

We start with the following propositon:
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Proposition 7.8. Let E ∈ M be such that m(E) <∞. Then a bounded function
f is measurable iff inff≤ψ

∫
E
ψ(x)dx = supϕ≤f

∫
E
ϕ(x)dx for simple functions ϕ

and ψ.

Proof. Let f be a bounded function that is measurable, |f | ≤ M . Then for any
n ∈ N and k ∈ Z let En,k = {x| (k−1)M

n ≤ f(x) ≤ kM
n } be a partition of the

y-axis. Then each En,k is measurable and
∑n
−nm(En,k) = m(E). Now we define

ψn = M
n

∑n
k=−n kχEn,k

and ϕn = M
n

∑n
k=−n(k − 1)χEn,k

. Then we have that
ϕn ≤ f ≤ ψn on E and ψn − ϕn = M

n χE . This gives the result. Conversly let
f be bounded such that inff≤ψ

∫
E
ψ(x)dx = supϕ≤f

∫
E
ϕ(x)dx. Then let ϕ∗ =

supϕ≤fϕn and ψ∗ = infψ≥fψn then ϕ∗ and ψ∗ are both measurable and we have
ϕ∗ ≤ f(x) ≤ ψ∗. Let 4 = {x|ϕ∗ < ψ∗}, and 4k = {x|ϕ∗ < ψ∗ − 1

k}. Then
m(4k) ≤ k

n . By letting n increase without bound, we have m(4k) = 0 for each k
thus m(4) = 0, thus f = ϕ∗ a.e. and so f is measurable. //

This common value is of course the lebesgue integral of f . Likewise not the
similarity of this proposition and the definition of Riemann integrals using step
functions. As a matter of fact, All step functions are just specific simple functions.
This restriction is why the lebesgue integral is more general than the Riemann
integral.

Proposition 7.9. Let f be a bounded function on [a, b]. Then f if is Riemann
integrable then it is measurable and R

∫ b
a
fdx =

∫ b
a
fdx.

Proof. This is clear as simple functions are step functions, soRL
∫ b
a
fdx ≤ supϕ≤f

∫ b
a
ϕdx ≤

infψ≥f ψdx ≤ RU
∫ b
a
fdx. //

We can easily show linearity for the bounded measurable functions as follows:

Proposition 7.10. Let f, g be bounded measurable functions and E ∈ M be such
that m(E) <∞. Then

∫
E

(f + g)dx =
∫
E
fdx+

∫
E
gdx.

Proof. Let f ≤ ψ1, g ≤ ψ2 where ψ1 and ψ2 are simple functions. Then we have
that

∫
E

(f + g)dx ≤
∫
E

(ψ1 + ψ2)dx =
∫
E
ψ1dx +

∫
E
ψ2dx. Now we can take the

infimum of the right side to get
∫
E

(f + g)dx ≤
∫
E
fdx +

∫
E
gdx. Now we can

make the dual argument with ϕ1 and ϕ2 simple functions such that ϕ1 ≤ f and
ϕ2 ≤ g. //

Now we have a ’convergence’ theorem for bounded measurable functions. Theo-
rems of this type are the meat of the integration theory as the results of such tend
to give the closure of integrals under pointwise convergence theorems.

Theorem 7.11. (Bounded Convergence Theorem) Let {fn} be a sequence of mea-
sureable functions such that |fn(x)| ≤M for each n and x. Then if {fn} → f , then∫
E
fndx→

∫
E
fdx.

Proof. Given ε > 0 we need to choose N such that for each n ≥ N we have∫
E

(fn − f)dx < ε. First we will use Egoroff to obtain uniform convergence except
on a small set. Egoroff gives that we can choose δ such that for any set A ⊂ E
such that m(A) < δ then we can have uniform convergence on E \ A. Given
this set A we can find N such that |fn − f | < ε

2m(E) on E \ A. This gives that∫
E\A |(fn − f)|dx < ε

2m(E)m(E) = ε
2 . Now which every δ we choose, we will have
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m(A) < δ and so
∫
A
|fn − f |dx ≤

∫
A

2Mdx ≤ 2Mδ. So the nice choice for δ < ε
4M .

Then we would have
∫
A
|fn−f |dx ≤ 2Mδ ≤ ε

2 . Putting this all together for n ≥ N

we have |
∫
E

(fn − f)dx| ≤
∫
E
|fn − f |dx ≤

∫
A
|fn − f |dx +

∫
E\A |fn − f |dx ≤

2Mδ + ε
2m(E) ∗m(E) ≤ ε

2 + ε
2 = ε. //

A nice result to mention here is the following theorem.

Theorem 7.12. (Lebesgue Theorem) A bounded function f on [a, b] is Riemann
integrable iff f is continuous almost everywhere

The proof of this theorem is in the exercise section below.

7.3. Convergence Theorems. We now prove the big theorems in the integration
theory. We begin with the following:

Theorem 7.13. (Monotone Convergence) Let (X,F , µ) be a space. Let {fn} be a
montone sequence of non-negative measurable functions and {fn} → fµ−a.e. Then∫
fdµ = lim

∫
fndµ.

Proof. Let (X,F , µ) be a space. Since fn ≤ fn+1 we have that
∫
fndµ ≤

∫
fn+1dµ,

we have that lim
∫
fndµ → α ∈ [0,∞]. Now since

∫
fndµ ≤

∫
fdµ we have that

α ≤
∫
fdµ. Now let ϕ be a simple function such that ϕ ≤ f . Let c ∈ (0, 1).

Let An = {x|fn(x) ≥ cϕ(x)}. Since fn(x) increases to f(x) and c < 1 we have
A1 ⊂ A2 ⊂ . . ., and

⋃
An = X. Then we have c

∫
An

ϕdµ ≤
∫
An

fndµ ≤
∫
fndµ.

Taking limits with respect to n, we have that α ≥ c
∫
ϕdµ. Since c ∈ (0, 1) was

arbitrary, we have that
∫
ϕdµ ≤ α. And so taking suprema we find that

∫
fdµ ≤ α.

Which gives the result. //

We should note we can use the results above for bounded measurable functions
to give a different proof in the case of a σ−finite complete measure space.

Proof. Let (X,F , µ) be a σ−finite complete measure space. Let f be a non-negative
measurable function. Then we can approximate f with a sequence {hn} of bounded
finitely supported simple functions such that hn ≤ fn. This gives that

∫
hndµ ≤∫

fndµ and taking supremums and the Bounded Convergence theorem we have∫
fdµ ≤ sup

∫
fndµ. Likewise since fn ≤ f we have that

∫
fndµ ≤

∫
fdµ which

gives that sup
∫
fndµ ≤

∫
fdµ, thus

∫
fdµ = sup

∫
fndµ = lim

∫
fndµ. //

Lemma 7.14. (Fatou) Let (X,F , µ) be a space. Then for {fn} a sequence of
non-negative measurable functions we have

∫
lim fn ≤ lim

∫
fn.

Proof. Let (X,F , µ) be a space, let f = limfn = supn≥1 infn≥kfk. Let gn =
infk≥nfk. Then gn is an monotone sequence going to lim fn. So by monotone con-
vergence theorem we have lim

∫
gndµ =

∫
lim fndµ. Now gn ≤ fk for k ≥ n, thus∫

gndµ ≤
∫
fkdµ. Taking infema we have

∫
gndµ ≤ infk≥n

∫
fkdµ. Now taking

suprema we have
∫

lim fndµ = supn
∫
gndµ ≤ supn infk≥n

∫
fkdµ = lim

∫
fkdµ.

//

We should note that these two results are equivalent to one another.

Theorem 7.15. (Monotone Convergence) Let (X,F , µ) be a space. Let {fn} be a
montone sequence of non-negative measurable functions and {fn} → fµ−a.e. Then∫
fdµ = lim

∫
fndµ.
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Proof. Let (X,F , µ) be a space. Let fn ↗ f be a sequence of non-negative mea-
surable functions. Then we have by Fatou that

∫
f ≤ lim fn and since fn ≤ f we

have that
∫
fn ≤

∫
f so lim

∫
fn ≤

∫
f , so we have

∫
fn =

∫
f . //

Now we can obtain the result:

Proposition 7.16. Given (X,F , µ), let f, g be non-negative measurable functions.
Then

∫
E

(f + g)dµ =
∫
E
fdµ+

∫
E
gdµ.

Proof. Let (X,F , µ) be a space, let ϕn be a simple approximation for f and ψn be
a simple approximation for g. Then we have ϕn+ψn then we have that ϕn+ψn →
f+g thus we have

∫
fdµ+

∫
gdµ =

∫
ϕndµ+

∫
ψndµ =

∫
(ϕn+ψn)dµ =

∫
(f+g)dµ

by the Monotone convergence theorem. //

We have the following quick corollary

Corollary 7.17. Given (X,F , µ) Then for disjoint measurable sets A,B and mea-
surable function f , we have that

∫
A∪B f =

∫
A
f +

∫
B
f

Proof. We have that χA∪B = χA + χB and so
∫
A∪B f =

∫
fχA∪B =

∫
f(χA +

χB) == intfχA +
∫
fχB =

∫
A
f +

∫
B
f //

We now make the following defintion.

Definition 7.18. Given (X,F , µ), let f be a measureable function. Then f is
Lebesgue integrable on E ∈ F provided

∫
E
fdµ <∞.

Integrable functions have many nice properties. For example:

Corollary 7.19. Given (X,F , µ), let f be a non-negative integrable function on a
set E ∈ F . Then for each ε > 0 there is a δ > 0 such that for any set µ(A) < δ
then

∫
A
f < ε.

Proof. Let (X,F , µ) be a space, f non-negative integrable, and let ε > 0. Let fn =
minf, n, then fn is a monotonic sequence going to f . By montone convergence we
have then that lim

∫
E
fndµ =

∫
E
fdµ. Therefore we can findN such that

∫
E
fndµ >∫

E
fdµ− ε

2 . Since f is integrable we have then that
∫
E

(fn−f)dµ < ε
2 . Then for any

set A ⊂ E such that µ(A) < δ we have
∫
A
fdµ =

∫
A
(f−fn)dµ+

∫
A
fn <

ε
2 +Nµ(A)

so if we need to choose δ < ε
2N , then we have

∫
A
fdµ =

∫
A
(f − fn)dµ +

∫
A
fn <

ε
2 + ε

2 = ε //

Corollary 7.20. Let (X,F , µ) be a space, let {fn} be a sequence of non-negative
measurable functions and f =

∑∞
n=1 fn. Then we have

∫
fdx =

∑∞
n=1

∫
fndx.

Proof. Let gk =
∑k
n=1 fn. Then gk increases monotonically to

∑∞
n=1 fn. Therefore∑∞

n=1

∫
fndµ = lim

∫
gkdµ =

∫ ∑∞
n=1 fndµ. //

Using integrable functions we can get a stronger convergence theorem.

Theorem 7.21. (Lebesgue Dominated Convergence Theorem) Let (X,F , µ) be a
space,let {fn} be a sequence of measureable functions such that |fn| ≤ g and g is
integrable. Then if {fn} → fµ−a.e. Then we have

∫
f = lim

∫
fn.

Proof. Let (X,F , µ) be a space. Since |fn| ≤ g we have that (g−fn) ≥ 0. Then we
have a sequence of non-negative functions, we have by Fatou that

∫
gdµ−

∫
fdµ =∫

(g−f)dµ ≤ lim
∫

(g−fn)dµ = lim(
∫
gdµ−

∫
fndµ) ≤ lim

∫
gdµ+lim

∫
(−fn)dµ) =
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fdµ− lim

∫
fndµ. This gives that

∫
gdµ−

∫
fdµ ≤

∫
gdµ− lim

∫
fndµ since g is

integrable we have then that lim
∫
fndµ ≤

∫
fdµ. Now we have also that g + fn ≥

0 which gives that this also is a sequence of non-negative functions. Therefore
again by Fatou we have that

∫
gdµ +

∫
fdµ =

∫
(g + f)dµ ≤ lim

∫
(g + fn)dµ =

lim(
∫
gdµ +

∫
fndµ) ≤ lim

∫
gdµ + lim

∫
fndµ =

∫
gdµ + lim

∫
fndµ. Then again

since g is integrable we have that
∫
fdµ ≤ lim

∫
fndµ. This gives the result.

//

The same proof using g replaced by the right gn essentially give the following
generalization:

Theorem 7.22. (Lebesgue Dominated Convergence Theorem) Let (X,F , µ) be a
space,let {fn} be a sequence of measureable functions such that |fn| ≤ gn and gn
is integrable. If {fn} → fµ−a.e. and {gn} → gµ−a.e. Then we have

∫
gdx =

lim
∫
gndx⇒

∫
fdx = lim

∫
fndx.

The following example shows a sequence which does not meet the hypothesis for
Lebesgue Dominated Convergence Theorem.

Example 7.23. Consider (R,M,m). Let fn = nχ(0, 1n ). Then fn ≥ 0 and fn → 0.
However

∫
fndx = 1. However notice that no integrable g that bounds all the f .

Notice also in the previous example that the sequence is decreasing, that is
fn ↘ 0. This gives that we cannot have a decreasing version of the monotone
convergence theorem without some hypothesis of integrability

8. General Mesaure

Up to this point we have only been dealing with one fixed measure on a fixed
σ−algebra. Now we will consider what kinds of relationships can exists between
different measures on the same σ−algebra, specifically when they have the same
measureable sets. For notational purposes we will denote by a (X,F) a set X and
a σ−algebra F such that F ⊂ X.

We are concenred with the following two relationships.

Definition 8.1. Given two measures λ and µ on a given σ−algebra F on a set X.
Then we say that λ is absolutely continuous with respect to µ ( written λ << µ )
provided that for any E ∈ F such that µ(E) = 0 then λ(E) = 0. The two measures
are mutually singular provided there exits A,B ∈ F disjoint such that X = A ∪ B
and µ(A) = λ(B) = 0. This is written µ ⊥ λ.

In this definition, absolutely continuous essentially says that the one measure λ
repsects the sets that don’t matter with respect to µ. One can think of this that
λ does not try to give validity to any set which µ has already disregarded, in this
sense the two are compatible. The other relationship says that neither measure is
positive at the same time, hence both measures leave each other alone.

We will show some examples of these relationships.

Example 8.2. Given a measure space (X,F , µ) and an integrable function f , then
we can form a new measure λ(E) =

∫
E
fdµ on F . We have that λ << µ.

Example 8.3. Consider (R,M) where M are the lebesgue measureable subsets of
R. Then define µ(E ∩ (∞, 0) = m(E ∩ (∞, 0)) where m is the regular lebesgue
measure, and λ(E ∩ [0,∞)) be the counting measure. Then we have that µ ⊥ λ.
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The reason we call λ << µ absolutely continuous is that from above we have for
integrable f then λ(E) =

∫
E
fdµ < ε for µ(E) < δ.

To fully describe the relationships that can occur in general we will need to
extend our definition of measure slightly and develop some techniques for dealing
with situations when our measures aren’t always positive.

8.1. Signed Measures, Hahn and Jordan Decompositions. Consider the
situtation when we have two measures µ, λ on the same σ−algebra F . Then we
would have naturally that µ + λ is a measure, however what happens when we
consider µ − λ. Well given the right set this quantity could be negative. Further
we could have some arithemtical problems if either measure measures sets to be
infinite. We can extend our definition of measure slightly to allow for measures to
take on negative values.

Definition 8.4. Consider (X,F). Then we call a set function µ : F → [−∞,∞]
a (signed) measure provided

(1) µ omits either ∞ or −∞.
(2) µ(∅) = 0.
(3) µ(

⋃
Ei) =

∑
µ(Ei) for {Ei} ⊂ F disjoint and the series

∑
µ(Ei) converges

absolutely.

The triple (X,F , µ) where µ is a signed measure is called a signed measure space.
Now for a given signed measure space, we can reference sets in the σ−algebra

by how they are measured.

Definition 8.5. Let (X,F , µ) be a signed measure space. Then a set A ∈ F is
called positive provided ∀E ⊂ A such that E ∈ F then µ(E) ≥ 0. Dually a set is
negative if µ(E) ≤ 0, and a set is a null set if E is both positive and negative.

We have that measureable subsets of a positive, negative, or null sets are re-
specively so, and likewise so are countable unions. We pause to give some examples
of signed measure spaces.

Example 8.6. Consider X = N and F = ℘(N). Then define µ(n) = 2−n −
1+(−1)n

2 , and extend by taking sums. Consider A = { odd numbers } Then µ(A) =∑
2−(2n+1) = 2

3 , and for B = { even numbers }, then µ(B) = −∞.

Naturally many examples can come about by simple subtracting two measures µ
and λ to obtain a signed measure ν = µ− λ provided one of the measures is finite.
The next couple theorems basically say that this is the only way to obtain signed
measures.

Theorem 8.7. (Hahn) Given a signed measure space (X,F , µ) then there is a
positive set A and a disjoint negative set B such that X = A ∪B.

Proof. Without loss of generality let µ(A) 6= −∞ for any A ∈ F . Let α =
sup

A∈Fpositive
µ(A). Then we have that 0 ≤ α. Then we can find {Ai} a sequence of sets

such that α = limµ(Ai). Let A =
⋃
Ai. Then A is positive and µ(A) ≤ α. We have

also that A\Ai ⊂ A so µ(A\Ai) ≥ 0. This gives that µ(Ai) ≤ µ(Ai)+µ(A\Ai) =
µ(A) this gives that µ(A) ≥ α and so µ(A) = α. Let B = X \A. Then if E ⊂ B is
positive then α+ µ(E) = µ(A) + µ(E) = µ(E ∪ A) ≤ µ(A) = α, so µ(E) = 0, and
we have that B must be negative. //
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The pair (A,B) given by the theorem is called the Hahn decomposition, and
unfortunately this is not unique. The set E in the proof of the theorem could be
null and so lie in either A or B without affecting the decomposition. We give an
example to illustrate this.

Example 8.8. Let X = {a, b, c, d, e} and F = ℘(X). Then let f : X → R be
f(a) = f(b) = −1 and f(d) = f(e) = 1 and f(c) = 0. Let µ(E) =

∑
x∈E

f(x).

Then µ is a signed measure, and we have that both X+
1 = {c, d, e}, X−

1 = {a, b} and
X+

2 = {d, e}, X−
2 = {a, b, c} are both valid Hahn decompositions.

Given a Hahn decomposition (X+, X−) of a signed measure space (X,F , µ)
consider µ+(E) = µ(E ∩X+) and µ−(E) = −µ(E ∩X−) then we have that both
µ+ and µ− are measures and µ(E) = µ+(E)− µ−(E). These two measures are in
fact mutually singular ( µ+ ⊥ µ− ) by definition. We will summarize this in the
following definition.

Definition 8.9. Given a signed measure space (X,F , µ) then we have that the pair
µ+ and µ− is the unique pair of mutually singular measures such that µ = µ+−µ−
is called the Jordan decomposition.

Now given a signed measure and a Jordan decomposition µ+ and µ− then we
have that µ = µ+ − µ− however we can construct a related positive measure as
follows.

Definition 8.10. Given a signed measure space (X,F , µ) then we define the total
variation measure |µ| given the Jordan decomposition µ+ and µ− as |µ| = µ+ +µ−.
Further we define the norm of the measure ||µ|| = |µ|(X).

In the above example let X+
1 and X−

1 be the first Hahn decomposition, then
µ+(E) = |E ∩ {d, e}| and µ−(E) = |E ∩ {a, b}|. Then we have that |µ| = |E ∩
{a, b, d, e, }| and ||µ|| = 4.

We may not have uniqueness of Hahn decompositions, however we do have that
measures which ’share’ Hahn decompositions in some fasion must be the same.

Lemma 8.11. Let µ, ν, λ be measures on a pair (X,F) such that µ(X) < ∞ and
ν << µ and λ << µ. Then suppose that ∀α ∈ R we have ν − αµ and λ− αµ have
the same Hahn decompositions. then ν = λ.

Proof. ∀α ∈ R let (Aα, Bα) be a common Hahn decomposition for ν − αµ and
λ − αµ. Fix N . Then for k let EN,k = B k

N
\ B k−1

N
. If C ∈ F , and C ⊂ EN,k

then (ν − k
N µ)(C) ≤ 0 ≤ ν − k−1

N µ)(C) so k−1
N µ(C) ≤ ν(C) ≤ k

N µ(C). Likewise
we have k−1

N µ(C) ≤ λ(C) ≤ k
N µ(C). Let EN,∞ = X \

⋃
EN,k, and let C ∈

F . Then we can write C =
⋃

(C ∩ EN,k) ∪ (C ∩ EN,∞). We have then that
ν(EN,k) − 1

N µ(EN,k) ≤ λ(EN,k) ≤ ν(EN,k) + 1
N µ(EN,k). If µ(EN,∞) = 0 then we

have that ν(EN,∞) = 0 = λ(EN,∞). If µ(EN,∞) then since EN,∞ is positive for
(ν − αµ) and (λ − αnu) for each α we have that ν(EN,∞) = λ(EN,∞). Hence we
have that ν(C) − 1

N µ(C) ≤ λ(C) ≤ ν(C) + 1
N µ(C). Since µ(C) < ∞ and N was

arbitrary we have that ν(C) = λ(C) and the lemma is proved. //

8.2. Complex Measures. In this last section we saw some of the extension of
measures into ranges other than R+ namely R. One could beg the question of what
does it mean to have a measure with a range of C. We can extend just as we did in
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the case of signed measurs, only now we do not have to worry about ∞. We make
the following definition

Definition 8.12. Given (X,F), then a set function µ : F → C is a complex
measure provided

(1) µ(∅) = 0.
(2) µ(

⋃
Ei) =

∑
µ(Ei) for {Ei} ⊂ F disjoint and the series

∑
µ(Ei) converges

absolutely.

We well call then a triple (X,F , µ) a complex measure space provided µ is a
complex measure.

Recall now the decompositions for a signed measure space (X,F , µ) and a Hahn
decomposition X+ and X−. Then we have that the total variation measure |µ| is a
positive measure such that for any measurable E, then |µ(E)| = |µ+(E)−µ−(E)| ≤
µ+(E)+µ−(E) = |µ|(E) and further this is the smallest such in the following sense.
Given a positive measure λ that satisfies the same conditions, then we have that for
any set E that E = E∩X+∪E∩X−. So |µ|(E∩X+) = µ+(E∩X+) ≤ λ(E∩X+)
and |µ|(E ∩ X−) = µ−(E ∩ X−) = |µ(E ∩ X−)| ≤ λ(E ∩ X−) so we would have
that |µ|(E) ≤ λ(E). So we note that |µ|(E) = |µ(E ∩X+)|+ |µ(E ∩X−)|. We also
note that E ∩X+ and E ∩X− are the maximal way to split E in the sense that if
we write E = ∪Ei then |µ|(E) ≥

∑
|µ(Ei)|. Inspired by this we can similarly then

given a complex measure space (X,F , µ), the total variation measure.

Definition 8.13. Given a complex measure space (X,F , µ) then the total variation
measure of µ is given by |µ|(E) = sup

∑
|µ(Ei)| where the supremum is taken over

all
⋃
Ei = E.

We have then that |µ| again satisfies the two conditions afore mentioned. We
have then also that we can define a Jordan decomposition µ+ = 1

2 (|µ| + µ) and
µ− = 1

2 (|µ| − µ) as µ = µ+ − µ− and |µ| = µ+ + µ−. This defintion is consistent
with the Jordan composition when µ is a finite signed measure.

We can now extend our definition of absolute continuity to complex ( and hence
signed ) measures by saying that for complex measures, λ, µ then we say λ << µ
when |λ| << |µ|. We note that for any complex measure µ then µ << |µ|, that is
to say if |µ|(E) = 0 then µ(E) = 0.

8.3. Radon-Nikodym. The main result of this section in many ways can be called
the fundemental theorem of measure theory. We will also be able to classify the
relationship between two measures on the same σ−algebra.

In the example given above of we obtained an absolutely continuous measure
λ given a measure µ and a integralbe function f by λ(E) =

∫
E
fdµ. The next

theorem gives that for σ−finite spaces, this is the only way that this can happen.

Theorem 8.14. (Radon-Nikodym) Let (X,F , µ) be a σ−finite positive space and
and let λ be a 3 measure on F such that λ << µ. Then there is a unique almost
everywhere non-negative function f such that

λ(E) =
∫
e

fdµ

.

3The case of where λ is a complex measure is handled in eloquantly [4], however this proof
went beyond the scope of the course offered this semester, in this case we lose the non-negativite

condition and gain integrability
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Proof. Extending from the finite case to the σ−finite case is easy by taking and
X =

⋃
En where µ(En) <∞ and f =

∏
fnχEn with fn given by the finite case. So

without loss of generality let µ(X) <∞. Now consider λ− αµ is a signed measure
for each rational α. Let (Aα, Bα) be a Hahn decomposition and take A0 = X and
B0 = ∅. Now Bα \ Bβ = Bβ ∩ Aβ , so we have that (λ − αµ)(Bα \ Bβ) ≤ 0 and
(λ − βµ)(Bβ \ Bα) ≥ 0, so if β > α then µ(Bα \ Bβ) = 0. Thus we can find a
µ−measurable function f such that f ≥ α µ−a.e. on Aα and f ≤ α µ− on Bα.
Since B0 = ∅ we may take f to be non-negative. Let ν(E) =

∫
E
fdµ. Now we must

show that λ = ν. This was solved for us by the previous lemma. //

Here is quick example to show that σ−finiteness is important.

Example 8.15. Consider X = {a} and F = ℘(X). Define µ(∅) = 0 nad µ(X) =
∞, also define λ(∅) = 0 and λ(∅) = 1. Then we have that λ << µ but λ(E) 6=∫
E
fdµ for any f .

We call f the Radon-Nikodym derivative and it is denoted f = [ dλdµ ]. Using this
theorem we will prove the following.

Theorem 8.16. (Lebesgue decomposition) Let (X,F , µ) be a σ−finite measure
space, and λ another σ−finite measure on F . Then we can write λ = λa + λs
uniquely such that λs ⊥ µ and λa << µ.

Proof. Since µ and λ are both σ−finite so is ν = µ + λ, and since µ and λ are
absolutely continuous with respect to ν we can find a Radon-Nikodym derivatives
f, g such that µ(E) =

∫
E
fdν and λ(E) =

∫
E
fdν. Let A = {x|f(x) > 0} and

B = {x|f(x) = 0}. Then X = A ∪ B disjointly and if µ(B) = 0 then we can
define λs(E) = λ(E ∩ B). We have that λs(A) = 0 and so λs ⊥ µ. Further Let
λa(E) = λ(E∩A) =

∫
E∩A gdν. Then we have htat λ = λa+λs. Given E such that

µ(E) = 0 then we have that µ(E) = 0 =
∫
E
fdν or that f must be 0 ν−a.e. on E.

Since f > 0 on A ∩ E we have that ν(A ∩ E) = 0 which gives that λ(A ∩ E) = 0
and finally λa(A ∩ E) = 0. //

9. Fundamental Theorem

We will now discuss some generalities of the fundemental theorem of Calculus.
Recall that for a differentiable function f then

∫ b
a
f ′(x)dx = f(b)−f(a) for Riemann

integration and likewise d
dx

∫ x
a
f(y)dy = f(x) also for Riemann integrable functions.

We ask the question of when does this notion extend for the lebesgue integral on
(R,M,m).

We first start with some definitions:

Definition 9.1. A collection of intervals {In} is said to be a Vitali covering of a
set E ( or a covering of E in the sense of Vitali ), provided E ⊂

⋃
In and for each

ε > 0 and x ∈ E then we can find I ∈ {In} such that x ∈ I and l(I) < ε.

Lemma 9.2. 4 Let E be a set such that m∗(E) < ∞, and {In} be a Vitali
covering. Then given ε > 0 there is a collection {I1, . . . , IN} ⊂ {In} such that
m∗(E \

⋃N
j=1 Ij) < ε.

4The proof of this lemma is difficult and technical, so it is omited
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9.1. Functions Bounded Variation. We now consider certain but important
class of functions.

Definition 9.3. Let f be a function defined on [a, b]. Then we define:

(1) P ba(f) = sup
P partition [a, b]

∑k
i=1[f(xi)− f(xi−1)]+

(2) N b
a(f) = sup

P partition [a, b]
∑k
i=1[f(xi)− f(xi−1)]−

(3) T ba(f) = sup
P partition [a, b]

∑k
i=1 |f(xi)− f(xi−1)|

We call P ba(f) the positive variation, N b
a(f) the negative variation and T ba(f) the

total variation. We have the following:

Definition 9.4. Let f be a function defined on [a, b] then we say that f is of
bounded variation provided T ba(f) <∞.

Consequences of bounded variation are far reaching:

Lemma 9.5. Let f be a function of bounded variation. Then T ba(f) = P ba(f) +
N b
a(f) and f(b)− f(a) = P ba(f)−N b

a(f).

Proof. The first statement is clear since |f(x)| = f(x)+ + f(x)−. Now for any
parition P we have that

∑k
i=1[f(xi)−f(xi−1)]+ =

∑k
i=1[f(xi)−f(xi−1)]−+f(b)−

f(a) ( write f = f+ − f− and the sum telescopes ). Taking supremums gives
P ba(f)−N b

a(F ) = f(b)− f(a). //

Theorem 9.6. f is a function of bounded variation on [a, b] iff f is the difference
of two monotone functions on [a, b].

Proof. Let f be of bounded variation, and define g(x) = P xa (f) + f(a) and h(x) =
Nx
a (f). Then g(x) − h(x) = P xa (f) − Nx

a (f) + f(a) = f(x) − f(a) + f(a) = f(x).
Likewise g(x) and h(x) are monotone increasing functions. Conversly let f = g−h.
Then for any partition P we have

∑k
i=1 |f(xi)− f(xi−1)| ≤

∑k
i=1[g(xi)− g(xi−1]+∑k

i=1[g(xi)− g(xi−1] = g(b)− g(a) + h(b)− h(a) ≤ ∞. Taking supremums we are
done. //

Incidentially we have that f(x) = P xa (f)−Nx
a (f)+f(a) which are both increasing

functions we will see how important this is in the next section.

9.2. Differentiation. Since not all functions are differentiable, sometimes to ex-
tend results we can talk only about left and right handed derivatives, or since
derivatives are limits, either about the limsup or liminf in place of the derivative.
These quantities are known as derivates:

Definition 9.7. For a function f(x) we have the following:

(1) D+f(x) = lim
h→0+

f(x+h)−f(x)
h

(2) D−f(x) = lim
h→0+

f(x)−f(x−h)
h

(3) D+f(x) = lim
h→0+

f(x+h)−f(x)
h

(4) D−f(x) = lim
h→0+

f(x)−f(x−h)
h
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We have that D+f(x) ≥ D+f(x) and D−f(x) ≥ D−f(x), also we say that f
is differentiable provided d+f(x) = D+f(x) = D−f(x) = D−f(x). f has a right
hand derivative when D+f(x) = D+f(x) and similarly for left hand derivatives.
The following proposition is proved in the homework section:

Proposition 9.8. If f is continuous on [a, b] and one of its derivates is everywhere
non-negative then f is non-decreasing on [a, b].

We have then the first weak generalization of fundemental theorem:

Lemma 9.9. Let f be an monotone differentable a.e. real valued function on
[a, b]. Then its almost everywhere derivative f ′ is measurable and

∫ b
a
f ′(x)dm ≤

f(b)− f(a).

Proof. Let g(x) = f ′(x), and gn(x) = n[f(x + 1
n ) − f(x)], then {gn(x)} → g.

Redefine f so that f(x) = f(b) for x ≥ b. Then gn is measurable and since f is
monotone we have gn ≥ 0. This gives by Fatou,

∫ b
a
g ≤ lim

∫ b
a
gn = limn

∫ b
a
(f(x+

1
n )− f(x))dm = limn(

∫ b+ 1
n

b
fdm−

∫ a+ 1
n

a
fdm) = lim(f(b)−n

∫ a+ 1
n

a
fdm ≤ f(b)−

f(a). //

This condition is not so restrictive as it can be shown that

Theorem 9.10. Let f be a increasing function on [a, b]. Then f is differentable
a.e. on [a, b].

Proof. We show that f is differentable almost every by showing the the derivates
all agree on the complement of a measure zero set. Without loss of generality
consider D+f(x) and D−f(x). Let Eu,v = {x|D+f(x) > u > v > D−f(x)} for
rational u > v. Then it suffices to show that m∗(Eu,v) = 0. Let ε > 0, and
choose a open set O such that mO < m∗(Eu,v) + ε. For each x ∈ Eu,v we can
find a interval [x− h, x] ⊂ O such that f(x)− f(x− h) < vh. Then the collection
{[x − h, x]} forms a Vitali covering of Eu,v. Let I1, . . . , In ∈ {[x − h, x]} such
that

∑
l(Ij) > m∗(Eu,v) − ε. Then we have that over these intervals we obtain∑N

j=1[f(xj) − f(xj − hj)] < v
∑N
j=1 hj < vm(0) < v(m∗(Eu,v) + ε). Let A =

Eu,v ∩
⋃N
j=1 Ij . Then for each y ∈ A we can find (y, y+ k) such that (y, y+ k) ⊂ Ij

for some j and f(y + k) − f(y) > uk. Then {(y, y + k)} is also a Vitali covering.
Therfore we can find J1, . . . , JM such that

∑
l(Jj) > m∗(Eu,v)−2ε. Then summing

over these intervals we have
∑M
i=1 f(yi + ki)− f(yi) > u

∑
ki > u(m∗(Eu,v)− 2ε).

Each interval Ji is contained in some Ij , and so if we sum over those intervals
Ji ⊂ Ij then we have

∑
f(yi+ki)−f(yi) ≤ f(xj)−f(xj −hj) since f is increasing.

So we have
∑N
j=1 f(xj) − f(xj − hj) ≥

∑M
i=1 f(yi + ki) − f(yi) which gives that

v(m∗(Eu,v) + ε) > u(m∗(Eu,v) − 2ε) which gives that vm∗(Eu,v) ≥ um∗(Eu,v).
But we had that u > v so this gives that m∗(Eu,v) = 0, and so f is differentiable
a.e. //

Corollary 9.11. If f is a function of bounded variation on [a, b] then f ′ exists
almost everywhere on [a, b].

9.3. Fundemental Theorem of Calculus. So we have some generalization of
the first fundemental theorem. Now we approach the second, namly consider the
function F (x) =

∫ x
a
f(t)dm. We will find that for integrable function the funde-

mental theorem still holds. We will then explore an important class of functions
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in the next section that will give a necessary and sufficent condition for when the
fundemental theorem holds.

Lemma 9.12. Let f be an integrable function on [a, b], then F (x) =
∫ x
a
f(t)dm is

a continuous function of bounded variation on [a, b]

Proof. We know already that the integral is continuous as follows by the monotone
convergence theorem. Let P be a partition of [a, b]. Then

∑
|F (xi) − F (Xi−1) =∑

|
∫ xi

xi−1
f(t)dm| ≤

∑∫ xi

xi−1
|f(t)|dm =

∫ b
a
|f(t)|dm so we have T ba(F ) ≤

∫ b
a
|f(t)|dm <

∞ as f ∈ L1. //

Lemma 9.13. Let f be an integrable function on [a, b], such that
∫ x
a
f(t)dm = 0

for x ∈ [a, b]. Then f(t) = 0 a.e. on [a, b].

Proof. Let E = {x|f(x) > 0}, and m(E) > 0. We have that
∫ b′
a′
f =

∫ b′
a
fdm −∫ a′

a
fdm = 0 which gives that for any U ⊂ [a, b] open, then

∫
U
fdm = 0 which

gives by complements that
∫
F
fdm for any closed F ⊂ [a, b]. Let ε > 0 and δ such

that m(A) < δ then
∫
A
f < ε. Let F be a closed set such that m(E \ F ) < δ

and so we have that
∫
E
f =

∫
F
f +

∫
E\F f which gives that

∫
E
f =

∫
E\F f and

since m(E \ F ) < δ we have that
∫
E
fdm < ε. Since ε was arbitrary we have that∫

E
f = 0 a contradiction. //

We start with the following attempts at generalization

Lemma 9.14. Let f be a bounded measurable function on [a, b], and F (x) =∫ x
a
f(t)dm then F ′(x) = f(x) a.e. on [a, b]

Proof. First note that F is of bounded variation, and so F ′(x) exists a.e. Let
|f | ≤ K. Let fn = n[f(x + 1

n ) − f(x)] = n
∫ x+ 1

n

x
fdm. Then we have that fn →

F ′ and |fn ≤ K and so we have that
∫ c
a
fn →

∫ c
a
F ′ for each c ∈ [a, b], by the

convergence theorems ( LDCT or Bounded convergence ). This gives then that∫ c
a
(F ′(x) − f(x))dm = 0 for each c ∈ [a, b] so F ′(x) = f(x)a.e. by the previous

lemma. //

We now extend this to integrable functions.

Theorem 9.15. Let f be integrable on [a, b] and F (x) = F (a) +
∫ x
a
f(t)dm then

F ′(x) = f(x) a.e. on [a, b].

Proof. Without loss of generality we have that f ≥ 0. Let fn = max(f(x), n)
then fn is bounded and non-negative, so let Gn =

∫ x
a

(f − fn)dm. Then G is
increasing and differentiable almost everywhere such that G′n(x) ≥ 0. Now we have
that F (x) =

∫ x
a
f =

∫ x
a
fn +

∫ x
a

(f − fn) =
∫ x
a
fn + Gn(x). So we have by the

previous lemma d
dx

∫ x
a
fn = fn(x) a.e. Now we have F ′(x) = fn+G′n(x) a.e. which

gives that F ′(x) ≥ fn for each n and thus F ′(x) ≥ f a.e. This gives then that∫ b
a
F ′ ≥

∫ b
a
f = F (b)− F (a) so we have then that F ′ = f a.e. //

9.4. Absolute Continuity of functions.

Definition 9.16. A function f on [a, b] is said to be absolutly continuous (a.cts)
provided that ∀ε > 0, ∃δ > 0 such that for non-overlapping intervals (may share
endpoints) {(xi, yi)} such that

∑n
i=1 |yi − xi| < δ then

∑n
i=1 |f(yi)− f(xi)| < ε.
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We note that a.cts functions are uniformly so (Let n = 1 in the above definition
), and we will show that they are of bounded variation, hence differntiable almost
everywhere.

Lemma 9.17. Let f be a.cts on [a, b]. Then f is of bounded variation.

Proof. Let f be a.cts on [a, b]. Let δ be such that when
∑n
i=1 |yi − xi| < δ for

{(xi, yi)}, then
∑n
i=1 |f(yi) − f(xi)| < 1. Then any partition of [a, b] has a re-

finement that can be split into K intervals each of total length less than δ where
K = b1 + b−a

δ c. Then we have that T ba(f) ≤ K. //

We have as a quick corollary that absolutely continuous functions are differen-
tiable almost everywhere.

Lemma 9.18. Let f be a.cts on [a, b] such that f ′(x) = 0 a.e., then f is constant.

Proof. Let f be a.cts on [a, b] such that f ′(x) = 0 a.e. Let c ∈ [a, b] Then we want ot
have htat f(c) = f(a). Let ε, η > 0. Define E = {x|f ′(x) = 0 for x ∈ (a, c)}. Then
we have that m(E) = c − a. Let I = {[x, x + h]} be such that [x, x + h] ⊂ [a, c],
and |f(x + h) − f(x)| < η ∗ h. Then I is a Vitali cover. Let δ be such that∑n
i=1 |f(yi)− f(xi)| < ε for

∑n
i=1 |yi − xi| < δ. By the Vitali lemma we have that

finitely many [xi, yi]ni=1 such that m(E \
⋃
i[xi, yi]) < δ, then

∑
|xi+1 − yi| < δ.

This gives then that
∑
|f(yi)−f(xi)| ≤ η

∑
|yi−xi| < η(c−a) and |f(c)−f(a)| =

|
∑
f(xi+1 − f(yi)|+

∑
|f(yi)− f(xi)| ≤ ε+ η(c− a) ⇒ f(c)− f(a) = 0. //

We now prove the last version of the fundemental theorem, essentially stating
that the fundemental theorem holds only for a.cts functions.

Theorem 9.19. A function F is an indefinite integral iff it is absolutely continuous.

Proof. If F is an indefinite integral, then it is a.cts by the continuity of the integral.
Conversly let F be a.cts on [a, b], then F is of bounded variation and so we can
write F = F1−F2 where F1, F2 are monotone increasing functions. So F ′(x) exists
almost everywhere, and we have that |F ′(x)| ≤ F ′1(x) + F ′2(x). This gives that∫
|F ′(x)| ≤ F1(b) + F2(b)− F1(a)− F2(a). Let G(x) =

∫ x
a
F ′(t)dm then G is a.cts

and F ′ = G′ a.e. This gives then that F = G + K for some constant K, then
F =

∫ x
a
F ′(t)dm. //

In general telling whether or not a function is of bounded variation or not can
be difficult, however functions with bounded derivatives tend to behave very nicely.

Theorem 9.20. Given a function continuous on [a, b] and differentiable on (a, b)
with bounded derivative |f ′(x)| ≤ M on (a, b) then f is of bounded variation f is
absolutely continuous

Proof. Naturally bounded variation follows from our function being absolutely con-
tinuous. So we consider

∑n
i=1 |f(xi) − f(yi)| =

∑n
i=1 |f ′(ci)||xi − yi| by the mean

value theorem wher ci ∈ (xi − yi). Then we have that
∑n
i=1 |f(xi) − f(yi)| ≤

M
∑n
i=1 |xi − yi|. So if we desire

∑n
i=1 |f(xi) − f(yi)| < ε then we would take∑n

i=1 |xi − yi| < ε
M //
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10. Convex Functions

We pause to give a all be it short description of a very special class of functions.

Definition 10.1. A function ϕ : (a, b) → R will be called convex provided ∀x, y ∈
(a, b) and 0 ≤ λ ≤ 1 then ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y).

Graphically we have that a given 0 ≤ λ ≤ 1 corresponds to a point a ≤ t ≤ b.
Then the convex property is equivalent to (t, ϕ(t)) lying above the chord connecting
(a, ϕ(a)) and (b, ϕ(b)). That is if a < s < t < u < b then we have that

ϕ(t)− ϕ(s)
t− s

≤ ϕ(u)− ϕ(t)
u− t

We now will prove two key results about convex functions. The first is a clas-
sification of its continuity and differentiability properties. The second is a key
inequality due to Jensen which will be an important cog in our study of linear
spaces.

Proposition 10.2. Given ϕ a convex function on (a, b), then ϕ is absolutely so on
any closed subinterval, continuous on (a, b) and is differentiable almost everywhere.

Proof. Let [c, d] ⊂ (a, b). Then we have that ϕ(c)−ϕ(a)
c−a ≤ ϕ(y)−ϕ(x)

y−x ≤ ϕ(b)−ϕ(d)
b−d

for x, y ∈ [c, d]. Thus we have |ϕ(y) − ϕ(x)| ≤ M |x − y|. and so ϕ is absolutely
continuous on [c, d]. Let x0 ∈ (a, b). Then we have that ϕ(x)−ϕ(x0)

x−x0
is an increasing

function and so must be differentiable hence continuous off set of zero measure.
This gives that the left and right hand limits exists and agree. //

The next proposition is a essential inequality

Proposition 10.3. (Jensen) Let (X,F , µ) be a space such that µ(X) = 1. Let
ϕ be a convex function on (a, b). Then for any integrable function f such that
a < f(x) < b we have that ϕ(

∫
fdµ) ≤

∫
(ϕ(f))dµ.

Proof. Let α =
∫
fdµ. Then a < α < b. Let β = sup

a<s<α

ϕ(α)−ϕ(s)
α−s . Then we have

that ϕ(s) ≥ ϕ(α) + β(s − α) where a < s < b. This gives that for each x ∈ X
we have that ϕ(f(x)) − ϕ(α) − β(f(x) − α) ≥ 0. Now since ϕ is convex, whence
continuous we have that ϕ(f) is measurable, and so we can integrate to obtain∫
ϕ(f)dµ −

∫
ϕ(α)dµ − β(

∫
fdµ − α) ≥ 0 which gives that

∫
ϕ(f)dµ ≥ ϕ(α) =

ϕ(
∫
fdµ).

//

We exhibit some of these inequalities, for example ex, log(x), and xp are both
convex functions where p ≥ 1. We have then by Jensen’s inequality that

∫
ef ≤ e

∫
f ,∫

log(f) ≤ log(
∫
f) and (

∫
f)p ≤

∫
fp.

11. Lp spaces

We begin our discussion of Lp linear spaces by defining a useful arithmetical
relationship.

Definition 11.1. Let p ∈ [1,∞] then a extended real number q such that 1
q + 1

p = 1
is called a conjugate exponent of p.

This relationship will be fantastically useful. Before we jump into the full de-
scription of Lp spaces, we will need one more useful lemma.
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Lemma 11.2. For p ∈ (0,∞) and a, b real numbers, then then we have that (a +
b)p ≤ 2p(ap + bp).

Proof. Since a + b ≤ 2 max(a, b) we have then that (a + b)p ≤ 2p max(ap, bp) and
so we have that (a+ b)p ≤ 2p(ap + bp). //

Now we will describe our space. Fix a space (X,F , µ) and a value p ∈ (0,∞).
Then for a given measurable function f we can examine

∫
|f |p. Naturally we can

have this quantity be infinite or finite.
First consider the collection {f | f is measurable and

∫
|f |p <∞}.

Then we note that for c ∈ R and f, g in the collection then cf and f+g are both in
the collection as

∫
|f+g|p ≤

∫
2p(|f |p+|g|p). This makes the collection a real vector

space. Further we can propose a norm on this collection by ||f ||p = (
∫
|f |pdµ)

1
p .

However if this is to be a norm we had better have ||f ||p = 0 and we don’t have
this necessarily as when f = 0 µ−a.e then

∫
|f |p = 0. So we make an equivalence

relation f ∼ g provided f = g µ−a.e. Under this equivalence we do have that
||f ||p gives an honest norm ( we will show this momentarily ), and so we will define:

Definition 11.3. Given a space (X,F , µ) we define for p ∈ [1,∞) Lp(µ) =
{f | f is measurable and

∫
|f |p <∞}/ ∼ where f ∼ g if and only if f = g µ−a.e.

In order for this to be a normed linear space we must show that
(1) ||f + g||p ≤ ||f ||p + ||g||p
(2) ||f ||p = 0 iff f = 0
(3) ||cf ||p = |c|||f ||p

We have already shown that ||f ||p = 0 iff f = 0 where this equivalence is up to
µ−a.e. as described. We will show the other two properties later.

First we will introduce a very realted normed linear space. In order to do this
we will talk about functions being bounded almost everywhere and we will denote
the smallest such bound by the following definition

Definition 11.4. For a given space (X,F , µ) and a µ−measurable function. Then
we define ||f ||∞ = inf(M |µ(t|f(t) > M) = 0) that is ||f ||∞ = inf(M ||f | ≤M µ−
a.e.). We will call ||f ||∞ the essential supremum ( or ess sup ) of f , and if ||f ||∞ <
∞ then we will call f essentially bounded.

Notice that the space L1 is exactly the space of µ−integrable functions. We
can also construct then the linear space L∞ = {f |||f ||∞ < ∞}, under the same
equivalence as before.

Now we will begin working through the details of showing that the Lp spaces (
here p ∈ [1,∞]) are normed linear spaces. This structure will allow use to discuse
convergence of sequences in Lp and duality. We will gain some useful inequalities
for estimating the size of integrals when dealing with functions in a particular Lp.

Lemma 11.5. (Young) For given real numbers α, β ≥ 0 then we have that αβ ≤
αp

p + βq

q where p ∈ (1,∞) and q is the conjugate. Equality happends when αp = βq.

Proof. If α = 0 or β = 0 then we are done, so assume α > 0 and β > 0. Let
ϕ(t) = αp

p + tq

q − αt, for t > 0. Now we will minimize ϕ(t). We differentiate
ϕ′(t) = tq−1−α and ϕ′′(t) = (q− 1)t(q− 2) > 0 for t > 0 so our function is convex.
Next we find the minimum by finding the root α

1
q−1 to our first derivative. Now

since 1
p+ 1

q = 1 we have that p+q = pq and 1
q−1 = p

q so we have that α
1

q−1 then since
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ϕ(α
1

q−1 ) = αp

p + α
pq
q

q −α
p
q +1 = αp

p + αp

q −α
p
q +1 = αp( 1

p + 1
q )−α

p+q
q = αp−α

pq
q = 0,

hence we have a minimal value for ϕ(t) of 0, which gives that αp

p + tq

q ≥ αt.

Likewise we attain our minimum at α
1

q−1 = α
p
q = β which gives equivalence when

αp = βq. //

Next we prove an estimate theorem for integrals.

Proposition 11.6. (Hölder) For a given space (X,F , µ), let p, q be conjugate
indicies. Then for f ∈ Lp and g

∫
Lq such that f, g ≥ 0, then we have that∫

|fg|dµ ≤ ||f ||p||g||q, and equality iff c|f |p = d|g|q for some c, d ∈ R.

Proof. if p = 1 and q = ∞ then we are done, so assume that p ∈ (1,∞). If either
||f ||p = 0 or ||g||q = 0 then either f = 0 µ−a.e. or g = 0 µ−a.e. and so we
would have fg = 0 µ−a.e. and

∫
|fg|dµ = 0, and the inequality is true. So now

assume ||f ||p 6= 0 and ||g||q 6= 0. Now, consider f0 = f
||f ||p and g0 = g

||g||q . Then

for each x we have that |f0(x)||g0(x)| ≤ |f0(x)|p
p + |g0(x)|q

q by Young’s inequality.

Integrating we have
∫
|f0g0|dµ ≤

∫ |f0|p
p +

∫ |g0|q
q = ||f0||pp

p + ||g0||qq
q = 1

p + 1
q = 1.

Now this gives that
∫
|f0g0|dµ =

∫
|fg|dµ

||f ||p||g||q ≤ 1 and the inequality is solved. We
have equivalence when Young’s inequality is equality which gives that we would
have |f0(x)||g0(x)| = |f0(x)|p

p + |g0(x)|q
q which again by Young’s lemma occurs when

|f0(x)|p = |g0(x)|q which happens when ||g||q|f |p = ||f ||p|g|q. //

We now give the final basic inequality for the Lp spaces.

Proposition 11.7. (Minkowski) For a given space (X,F , µ), let f, g ∈ Lp(µ) for
p ∈ [1,∞]. Then ||f + g||p ≤ ||f ||p + ||g||p.

Proof. We have that for p = 1 this is the triangle inequality and for p = ∞ we
can take the larger essential sup and we would be done, so assume p ∈ (1,∞).
Now without loss of generality assume ||f + g||p 6= 0. Then ||f + g||pp =

∫
|f +

g|p =
∫
|f + g||f + g|p−1 ≤

∫
|f |(|f + g|p−1) + |g|(|f + g|p−1) =

∫
|f |(|f + g|p−1 +∫

|g|(|f + g|p−1). Now let q be the conjugate index of p. By lemma we have
that |f + g|p ≤ 2p(|f |p + |g|p) and so since f, g ∈ Lp we have that f + g ∈ Lp.
Then we have that (p − 1)q = pq − q = p and so

∫
|f + g|(p−1)q

=
∫
|f + g|p ≤

2p(
∫
|f |p +

∫
|g|p) < ∞ and so we have that |f + g|p−1 ∈ Lq(µ) hence we can use

Hölder to obatain ||f + g||pp ≤
∫
|f |(|f + g|p−1 +

∫
|g|(|f + g|p−1) ≤ (

∫
|f |p)

1
p

∫
(|f +

g|(p−1)q

)
1
q + (

∫
|g|p)

1
p

∫
(|f + g|(p−1)q

)
1
q = (||f ||p + ||g||p)(

∫
|f + g|p)

1
q = (||f ||p +

||g||p)(
∫
|f + g|p)

1
q

p
q

= (||f ||p + ||g||p)(
∫
|f + g|p)

1
q

p
q

= (||f ||p + ||g||p)(||f + g||
p
q
p ).

So we have that ||f + g||pp ≤ (||f ||p + ||g||p)(||f + g||
p
q
p ) or ||f+g||pp

||f+g||
p
q
p

≤ ||f ||p + ||g||p

and since ||f+g||pp

||f+g||
p
q
p

= ||f + g||p−
p
q

p = ||f + g||p so the inequality is solved. //

The fruit of this is that we have for p ∈ [1,∞) then

(1) ||f + g||p ≤ ||f ||p + ||g||p
(2) ||f ||p = 0 iff f = 0
(3) ||cf ||p = |c|||f ||p
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. (1) is just the last inequality, (2) we showed earlier and (3) is true (
∫
|c||f |p =

|c|
∫
|f |p ) and so we have that Lp is a normed linear space. Hence we can now

discuss attributes of this.
Now since the space Lp is a normed linear space, it makes sense to talk about

convergence in this norm, that is fn → f in mean of order p provided ||fn−f ||p → 0.
It is fortuitus that our space is actually complete with respect to this norm. To
prove this we use the following lemma.

Lemma 11.8. A normed linear space X is complete if and only if ever absolutely
summable series is summable

Proof. LetX be a complete normed linear space. Then given a absolutely summable
series

∑
fn such that

∑
||fn|| = M < ∞. Let sn =

∑n
i=1 fn be the partial

sum. Now we can for any ε > 0 we can find N such that for ∀n ≥ N such that∑∞
n=N ||fn|| < ε. So for n ≥ m ≥ N then ||sn−sm|| = ||

∑n
i=m fi|| ≤

∑n
i=m ||fi|| ≤∑∞

i=N ||fi|| < ε. Since our sequence is cauchy and in our complete space must
converge.

Now assume absolutely summable series is summable. Let {fn} be any Cauchy.
Then for each k we can find nk such that ||fn−fm|| ≤ 2−k for n,m ≥ nk. Without
loss of generality choose nk < nk+1 < . . .. Then {fnk

} is a subsequence. Let
g1 = fn1 and gk = fnk

− fnk−1 for k > 1. Then we get a sequence {gk} whose
such that

∑k
i=1 gk =

∑k
i=1 fnk

− fnk−1 = fnk
. So ||gk|| = 2−k+1 for k > 1 and so∑

||gk|| = ||g1||+
∑

2−k+1 = ||g1||+ 1. So the series
∑
gk is absolutely summable

and so we can find f such that fnk
→ f . Now since fn is cauchy so let ε > 0 and

let N ||fn − fm|| < ε
2 for n,m ≥ N . Since fnk

→ f then there is K such that for
k ≥ K, we have ||fnk

− f || < εε2. Let k be such that k > K and nk > N . Then
||fn − f || ≤ ||fn − fnk

||+ ||fnk
− f || ≤ ε

2 + ε
2 = ε so fn → f . //

Now we will use this to show that Lp is complete.

Theorem 11.9. (Riesz-Fischer) Lp is complete.

Proof. It suffices to show that any absolutely summable series in Lp is summable.
Give

∑∞
k=1 fk such that {fk} ⊂ Lp, and

∑∞
k=1 ||fk||p = M < ∞, then we will

show that
∑∞
k=1 fk = g ∈ Lp is summable. Consider hn =

∑n
k=1 |fk|. Let h

be a measurable function such that hn → h µ−a.e. We have that ||hn||p ≤∑n
k=1 ||fk||p < M by Minkowski’s inequality. This gives then that ||hn||pp =

∫
hpn ≤

Mp and so we have
∫
hp ≤Mp which gives that h is finite µ−a.e. Where h(x) <∞

we have that g(x) =
∑∞
k=1 fk(x). Since

∑∞
k=1 fk is absolutely summable we have

that
∑∞
k=1 |fk(x)| < ∞ and so we have that

∑∞
k=1 fk(x) is a real number. Let

g(x) = 0 where h(x) = ∞. Now let gn =
∑∞
k=1, then we have that |gn| ≤ |hn| ≤ h

which gives that |g| ≤ h and so g ∈ Lp. Now we have that gn ↗ g µ−a.e., and
since |gn − g|p ≤ 2p+1|g|p we have that

∫
|gn − g|p → 0 by dominated convergence,

and so
∑∞
k=1 fk = g is summable, whence Lp is complete. //

Now that we have convergence in Lp we have the following fantastic equivalence.

Proposition 11.10. Let (X,F , µ), and consider Lp(µ). Then given a sequence
{fn} ⊂ Lp(µ) such that fn → f ∈ Lp(µ). Then we have that ||fn||p → ||f ||p iff
||fn − f ||p → 0.

Proof. Since ||f + g||p ≤ ||f ||p + ||g||p, we have that ||f − g||p ≤ ||f ||p − ||g||p
then given that ||fn − f ||p → 0 we have then that ||fn||p − ||f ||p ≤ ||fn − f ||p →
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0. Conversly assume ||fn||p → ||f ||p. Consider gn = |fn − f |p. Then gn → 0.
Likewise gn ≤ 2p(|fn|p + |f |p) = hn. Then we have that hn → 2p+1|f |p. Likewise∫
hn = 2p(

∫
|fn|p +

∫
|f |p) → 2p+1|f |p =

∫
h by hypothesis. Therefore by lebesgue

dominated covergence theorem
∫
gn =

∫
g =

∫
0 = 0. //

One powerful aspect about Lp functions is that they are easily approximated.

Proposition 11.11. For (X,F , µ) a space, then Simple functions and continuous
functions of compact support are dense in Lp(µ).

Proof. Given (X,F , µ) a space, and f ∈ Lp, then we have a sequence ϕn of simple
functions such that limϕn = f , and ϕn ≤ f . Since f ∈ Lp this gives that ϕn ∈ Lp,
and |ϕn − f |p = |f − ϕn|p ≤ |f |p we have that ||ϕn − f ||p = (

∫
|ϕn − f |p)

1
p → 0 by

the dominated convergence theorem, thus simple functions are dense in Lp. Given a
continuous function g with compact support, then given ε > 0 we can find a simple
function ϕ such that for E = {x|g 6= ϕ} we have µ(E) < ε and |g| ≤ ϕ. This gives
that ||g−ϕ||p = (

∫
|g−ϕ|p)

1
p = (

∫
E
|g−ϕ|p+

∫
Ec |g−ϕ|p))

1
p ≤ (

∫
Ec |g|+||ϕ||∞))

1
p =

µ(Ec))
1
p 2||ϕ||∞ = ε

1
p 2||ϕ||∞, since ε was arbitrary the result follows. //

Fixing a space (X,F , µ), One may ask the natural question as to when given a
function f in Lp(µ) can we say that f ∈ Lr for p < r or r < p. The solution tends
to lend itself well to picture. Fixing f ∈ Lp lowering the power brings our function
closer to the constant function 1. This would imply that if we would like f ∈ Lr

then we would need 1 to be integrable, hence a finite space. To get the opposite
direction, we note that any spot where our function is blowing up will only blow
up more, hence we need these uncontrolled blow ups to happen on a negligable set,
hence we need our functions to be essentially bounded. We present this as follows:

Proposition 11.12. Given (X,F , µ), then for f ∈ Lp we have that f ∈ Lr for
r < p provided µ(X) <∞ and we have that Lp ∩ L∞ ⊂ Lr for r > p.

Proof. Fix a finite space (X,F , µ), and f ∈ Lp. Then for r < p we have that∫
|f |rdµ =

∫
f<1

|f |rdµ+
∫
f≥1

|f |rdµ ≤
∫
f<1

1dµ+
∫
f≥1

|f |pdµ <∞, so f ∈ Lr
Now given any space (X,F , µ), we have that for f ∈ Lp ∩L∞ then for p < r we

have that
∫
|f |rdµ =

∫
f<1

|f |rdµ+
∫
f≥1

|f |rdµ ≤
∫
f<1

|f |pdµ+
∫
f≥1

||f ||r∞dµ <∞
as f ∈ p gives that

∫
f≥1

1dµ ≤
∫
f≥1

|f |pdµ <∞ since fp ∈ L1. This concludes the
result. //

After one has some idea about the nature of a linear space, one way to study the
space further is to understand the linear functionals on the space (i.e., for a real
vector space X these are the maps F : X → R). These maps algebraically form
what is called the dual space X∗. Let us see what some bounded linear functionals
look like on Lp. Given a function in Lq where q is the conjugate index to p, we
can form F : Lp → R by F (f) =

∫
fgdµ, which would be bounded by Hölder’s

inequality. We have then that this is a bounded linear functional. We can estimate
size of a bounded linear functional as follows:

Definition 11.13. Given a space (X,F , µ) and a bounded linear functional F :
Lp(µ) → R then we define the norm of F to be ||F || = sup

f∈Lp

|F (f)| = sup
||f ||p=1

|F (f)|.

Alternatively we could have defined our norm ||F || = inf
f∈Lp

{M ||F (f)| ≤M ||f ||p}.
It is convenient to note that for a bounded linear functional then F is libschitz,
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uniformially continuous, and continuous exactly when it is continuous at a partic-
ular point. We have the following lemma to give some continuity conditions on our
function.

Lemma 11.14. Let F be a bounded linear functional. Then F is continuous

Proof. We have that it suffices to show continuity at one point. For ε > 0 let
||f ||p ≤ ||F ||

ε then we have that ||F (f)|| = |F (||f ||pf |
||f ||p ≤ M

||f ||p = ε. //

It turns out that Lp spaces have very nice duals, namely Lq where q is the
conjugate index for p. This result is called the Reisz Representation theorem.

Theorem 11.15. (Reisz) Let (X,F , µ) be a σ−finite measure space and p ∈ [1,∞).
Let F be a bounded linear functional on Lp(µ). Then there is a unique element
g ∈ Lq where q is the conjugate index for p such that F (f) =

∫
fgdµ. Also we have

||F || = ||g||q.

Proof. First consider µ(X) <∞. Then we have that for any measurable E, χE ∈ Lp
for any p. We can then define λ(E) = F (χE). Given E =

⋃
En all disjoint

measurable, then we have htat λ(
⋃
En) = F (χ⋃

En
) = F (

∑
χEn

) =
∑
F (χEn

) =
λ(En). Further if we let f =

∑
(sgn(F (χEn

))χEn
, then

∑
|λ(En)| = F (f) <∞ so

the sum is absolutely convergent and we have that λ is a signed measure. Now by
the Radon-Nikodym theorem we have that λ(E) =

∫
E
gdµ and since λ is finite we

have that g is integrable. Further we have that g ∈ Lq since |F (ϕ)|
||ϕ||p ≤ ||F || which

gives that |F (ϕ)| ≤ ||ϕ||p||F ||. Now we will show that g is in Lq. We can find a

sequence ϕn ↗ |g|q. Let ψn = (sgng)ψ
1
p
n . Then we have that ||ψn||p = (

∫
ϕndµ)

1
p .

Now ϕn = |ϕn|
1
p + 1

q = |ψn||ϕn|
1
q ≤ |ϕn||g|. So we have that

∫
ϕndµ ≤

∫
ψngdµ ≤

||F ||||ψn||p = M(
∫
ϕndµ)

1
p so this gives that by Monotone Convergence

∫
|g|qdµ =∫

ϕndµ ≤ Mq, thus g ∈ Lq(µ). Let G(f) =
∫
fgdµ. Then G − F is a bounded

linear functional and F (ϕ) =
∫
ϕgdµ for any simple function ϕ by linearity, so we

have (F − G)(ϕ) = 0 for simple functions. This gives that (F − G)(f) = 0 for
f ∈ Lp by lemma. Finally we have that ||F || = ||G|| = ||g||q.

Now to extend our proof to the σ−finite case. Let {Xn} be an increasing sequence
of measurable sets of finite measure whose union is X. Then for each n we can find
gn ∈ Lq non-negative such that gn vanishes outside Xn, and F (f) =

∫
fgndµ.

We have also that ||gn||q ≤ ||F ||. Let g(x) = gn(x) for x ∈ Xn. Since the gn’s
are almost unique, that is gn+1(x) = gn(x) µ−a.e, then g is well defined and we
have that by the monotone convergence theorem

∫
|g|qdµ = lim

∫
|gn|qdµ ≤ ||F ||.

Let f ∈ Lp and fn = fχXn . Then fg ∈ L1 by Hölder and since |fng| ≤ |fg| we
have that

∫
fgdµ = lim

∫
fngdµ = lim

∫
fngndµ = limF (fn) = F (f) by Lebesgue

dominated convergence. //

We provide a counter example to show that σ−finiteness is needed for p = 1.

Example 11.16. Let X = {a} and F = ℘(X). Let µ(∅) = 0 and µ(X) = ∞.
Then L1(µ) = {f ≡ 0} and L∞(µ) = R = {f ≡ α} so ||f ||∞ = |α|, and for any
linear functional F we have 0 = F (f) but for any g ∈ L∞ then

∫
fgdµ = ∞ 6= 0

One can also show that the σ−finiteness is not needed for p > 1.
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12. Modes of convergence

This section deals with differing ideas of convergence and how they related to
one another. We have the following modes that will be considered:

Definition 12.1. Given a space (X,F , µ) and a sequence {fn} of functions. Then
we say that:

(1) {fn} → fµ−almost everywhere provided µ({x|fn(x) does not converge to f(x)}) =
0

(2) {fn} → f Almost uniform provided ∀ε > 0 there is a set A such that
µ(A) < ε and {fn} converges uniformly to f on Ac.

(3) {fn} → f in measure provided ∀ε > 0 we have that µ({x| |fn(x)− f(x)| ≥
ε}) → 0 as n→∞.

(4) {fn} → f in mean of order p provided
∫
|fn − f |p → 0 as n→∞.

We will for convenience denote these modes by the abbreviations AE for µ−almost
everywhwere, AU for almost uniform, M for measure and Lp for mean of order p.
The question that will be asked now is when and under what circumstances does
convergence in one mode imply convergence in the others. We will find that there
are three basic hypotheses to cover and that each direction will be treated.

12.1. General Case. For the general case we have the following diagram5 describ-
ing the results:

AE AUoo

��
Lp

<<y
y

y
y

OO�
�
�

// M

bbE
E

E
E

OO�
�
�

In the diagram a solid arrow means convergence in the first mode gives converence
in the second mode. A dotted arrow means that convergence in the first mode
gives a subsequence that convergence in second mode. A lack of arrow shows that a
counter example can be constructed. Note that arrows which follow by transitivity
are also shown.

To prove this siutation we show the following directions, AU → M, AU → AE,
M → Lp, and that converging in M gives a subsequence which converges AU. The
last result is known as Riesz lemma.

Lemma 12.2. Given a space (X,F , µ), Given a sequence {fn} which converges
almost uniform, then it also converges µ−a.e.

Proof. Let (X,F , µ) a space and {fn} a sequence which converges almost uniform
to f . Then ∀k ∈ N we have a set Ak such that µ(Ak) < 1

k such that {fn} converges
uniformly to f on Ack. Let A =

⋂
Ak. Then µ(A) = 0 and for each x ∈ Ac =

⋃
Ack

then x ∈ Ack for some k which gives that {fn} converges uniformly on Ack, whence
pointwise to f . Thus {fn} converges µ−a.e. //

Lemma 12.3. Given a space (X,F , µ), Given a sequence {fn} which converges
almost uniform , then it also converges in Measure.

Proof. Let (X,F , µ) a space and {fn} a sequence which converges almost uniform
to f . Then we have that ∀δ > 0 we can find Aδ such that {fn} converges uniformly
on Acδ and µ(Aδ) < δ. This gives that ∀ε > 0 there is an N such that ∀n ≥ N we

5The latex for these diagrams were provided by Will Dicharry
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have |fn(x) − f(x)| < ε, thus µ({x| |fn(x) − f(x)| ≥ ε}) ≤ µ(Aδ) < δ. Therefore
{fn} converges in meausure to f . //

Lemma 12.4. Given a space (X,F , µ), Given a sequence {fn} that converges in
mean of order p then it converges in measure.

Proof. Let (X,F , µ) be a space, and {fn} be a sequence which converges in mean
of order p. Given ε > 0 let En = {x| |fn(x) − f(x)| ≥ ε} then we can write
µ(En) =

∫
En

1dµ. We have also that |fn(x) − f(x)| ≥ ε ⇒ |fn(x) − f(x)|p ≥ εp.
Then εpµ(En) =

∫
En
εp ≤

∫
En
|fn(x) − f(x)|p ≤

∫
|fn(x) − f(x)|p → 0 as n → ∞,

therefore we have that εpµ(En) → 0 as n → ∞ which gives that µ(En) → 0 as
n→∞. //

Lemma 12.5. Given a space (X,F , µ), then given a sequence {fn} which converges
in Measure, then there is a subsquence {fnk

} such that converges almost uniform.

Proof. Given a space (X,F , µ) and {fn} a sequence which converges in measure.
Then ∀k ∈ N we have that for En = {x| |fn(x) − f(x)| ≥ 1

k} then µ(En) → 0
as n → ∞. Choose nk such that ∀n ≥ nk we have µ(En) < 2−k. Now let
Ak = {x| |fnk

(x)− f(x)| ≥ 1
k} and let Gj =

⋃∞
k=j Ak. Then for x ∈ Gcj ⇒ x ∈ Ack

for k ≥ j. This gives that |fnk
(x) − f(x)| < 1

k for k ≥ j. Now let G =
⋂
Gj .

Then we have µ(G) ≤ µ(Gj) ≤
∑∞
k=j µ(Ak) =

∑∞
k=j 2−k = 2−j+1 for each j which

gives that µ(G) = 0. Now for x /∈ G we have x /∈ Gj for each j which gives that
|fnk

(x)− f(x)| < 1
k for each k. Let ε > 0, choose k such that 1

k < ε. Then we have
for x /∈ G we have for nl ≥ nk, then |fnl

(x) − f(x)| < 1
k < ε. Since nk did not

depend on x we have that the convergence is almost uniform. //

We have the following examples which offer counter examples for the rest of the
directions.

Example 12.6. Consider (R,M,m). Let fn = χ[n,n+1]. Then we have that fn →
0, however En = {x| |fn(x) − f(x)| ≥ 1

2} = [n, n + 1] and so m([n, n + 1]) =
1∀n. This gives that convergence µ−a.e. does not give convergence in measure and
by transitivity we have that convergence µ−a.e. cannot give convergence almost
uniform.

Example 12.7. Consider ([0,∞),M,m). Let fn = nχ[ 1
n ,

2
n ]. Then again we have

that fn → 0. However given ε > 0 choose N such that 2
ε < N . Let A = [0, 2

N ]. Then
m(A) = 2

N < ε. Now for any x ∈ Ac we have that x > 2
N > 2

n for n ≥ N . Thus we
have that for n ≥ N and x ∈ Ac then |fn(x)| = 0. This gives that the convergence
is almost uniform. However consider

∫
|f |p =

∫
npχ[ 1

n ,
2
n ] = np · 1

n = np−1 ≥ 1
for p ≥ 1. This gives that almost uniform convergence does not give convergence
in mean of order p. Likewise by transitivity we also cannot have convergence in
measure giving convergence in mean of order p nor convergence µ−a.e. giving
convergence in mean of order p.

Example 12.8. Consider (R,M,m). Let {In} be a enumeration of subintervals of
the unit interval by: I1 = [0, 1], I2 = [0, 1

2 ], I3 = [ 12 , 1], I3 = [0, 1
3 ], I4 = [ 13 ,

2
3 ], I5 =

[ 23 , 1], . . .. Let fn = χIn
. Then we have that fn does not converge µ−a.e. However

for n > m(m+1)
2 we have that

∫
fn <

1
m which gives that {fn} does converge in mean

or order p to f = 0. Thus convergence in mean of order p does not give convergence
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µ−a.e. This gives that by transitivity we have that convergence in measure cannot
give convergence µ−a.e., convergence in measure cannot give convergence almost
uniform, and that convergence in mean or order p cannot give convergence almost
uniform.

12.2. Finite Case. The finite case handels the added hypothesis when µ(X) <∞.
This adds the implications AE → AU and AE → M. The latter implication follows
transitivly from the first. The first implications was proved above as Egoroff’s
theorem. We obtain the following diagram as a result:

AE

""EE
EE

EE
EE

//
AUoo

��
Lp

<<y
y

y
y

OO�
�
�

// M

bbE
E

E
E

OO�
�
�

12.3. Dominated Case. This case assumes the hypothesis that |fn| ≤ g where
g ∈ Lp. In this case we can prove a version of Egoroff’s theorem even though the
space. Likewise we will show the implication M → Lp which will give AE → Lp

and AU → Lp by transitivity. So we have the following diagram as a result:

AE

�� ""EE
EE

EE
EE

//
AU

��||yy
yy

yy
yy

oo

Lp

<<y
y

y
y

OO�
�
�

// M

bbE
E

E
E

OO�
�
�

oo

Lemma 12.9. Let be a space (X,F , µ), and a sequence {fn} such that |fn| ≤ g
for g ∈ Lp. Then if {fn} converges µ−a.e. then it also converges almost unifrom.

Proof. Given a space (X,F , µ), and a sequence {fn} such that |fn| ≤ g for g ∈ Lp
and {fn} converges µ−a.e. Let ε, δ > 0. Let A1 be the set of x ∈ X such that
{fn(x)} does not converge to f . Then µ(A1) = 0. Now let Gk = {x /∈ A1| |fk(x)−
f(x)| ≥ ε}. Let En =

⋃
k≥nGk. Then X ⊃ E1 ⊃ E2 ⊃ . . .. Likewise µ(E1) < ∞

as E1 = {x| |fk(x) − f(x)| ≥ ε for some k} ⊂ {x| 2|g(x)| ≥ ε} = {x| 2p|g(x)|p ≥
εp} < ∞ since g ∈ Lp. Further

⋂
nEn = ∅ since fn → fµ−a.e. Then we have

that limµ(En) = µ(
⋂
En) = 0. Thus we can find N large enough such that

µ(EN ) < δ and ∀n ≥ N we have |fn(x) − f(x)| < ε by definition. ∀k ∈ N let
εk = 1

k and δk = 2−kη. Use the previous argument to choose sets Ak and numbers
Nk such that µ(Ak) < δk and ∀n ≥ Nk we have |fn(x) − f(x)| < εk on Ack. Let
A =

⋃
Ak. Then µ(A) ≤

∑
2−kη = η. Let ε > 0. Choose k such that 1

k < ε, then
∀x ∈ Ac ⊂ Ack and n ≥ Nk we have |fn(x)− f(x)| ≤ 1

k < ε. //

Lemma 12.10. Let be a space (X,F , µ), and a sequence {fn} such that |fn| ≤ g
for g ∈ Lp. Then if {fn} converges in measure, then it converges in Lp.

Proof. Given a space (X,F , µ), and a sequence {fn} such that |fn| ≤ g for g ∈ Lp
and {fn} converges in measure. Suppose {fn} does not converge in mean of order p.
Then there is a ε > 0 such that for each n we can find nk such that

∫
|fnk

− f |p ≥
ε. Without loss of generality we have n1 < n2 < . . .. Then we have also that
{fnk

} also converges in measure, so there is a subsequence {kj} such that {fnkj
}

converges almost uniform, whence almost everywhere to a function f ∈ Lp since
Lp is complete. Then we have that

∫
fp = lim

∫
fpnkj

by the Lebesgue Dominated
Convergence Theorem. Now let gj = |fnkj

− f |p. Then gj → 0µ−a.e. Let hj =
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2p(|fnkj
|p + |f |p) and h = 2p+1|f |p, then we have that hj → h and

∫
hj →

∫
h

since
∫
|fnkj

|p →
∫
|f |p. This gives then by the Lebesgue Dominated Convergence

Theorem and the fact that |gj | ≤ hj , that
∫
|fnkj

− f |p =
∫
gj →

∫
g = 0. This is

a contradiction.
//

Note that each of the three examples above discounts a specific set of arrows.
The first one removes exactly the arrows that are added in by the Finite case. The
second one and the first removes the arrows that are added in by the Dominated
case ( because you basically pick up the Finite case from the Dominated case ).
The final example is never removed and this elimenates the arrows that are not in
the final diagram, essentially that Reisz lemma is the best transfer of convergence
upward in the diagram.

13. Product measures

Consider two complete spaces (X,A, µ) and (Y,B, ν). Then we wish to define a
measure space on the product (X×Y ). We first wish to define our measurable sets.
Naturally we would like any set of the form A× B where A ∈ A and B ∈ B to be
measurable. Consider R = {A×B|A ∈ A, B ∈ B}. We wish to define λ : R → R∞
such that λ(A×B) = µ(A)ν(B).

Lemma 13.1. Let {Ai × Bi} ⊂ R such that
⋃
Ai × Bi = A × B ∈ R Then

λ(A×B) =
∑
λ(Ai ×Bi).

Consider R′ = { finite disjoint unions of sets in R }. Then we have that R′ is a
algebra and we can extend define λ ∗ (E) =

∫
{
∑
λ(Ri)|Ri ∈ R′ and E ⊂

⋃
Ri}.

The we have a similar ’outer measure’ as we did in our construction of the lebesgue
measure, and similarly to this 6 we have a measure µ×ν on the measureable subsets
of R′.

In order to prove the following theorems about integration on product spaces,
we need the following lemma.

Theorem 13.2. (Fubini) Given (X,A, µ) and (Y,B, ν) two complete spaces and
f(x, y) a (µ× ν)−integrable function. Then

(1) For almost all x, fx(y) = f(x, y) is ν−integrable
(2) For almost all y, fy(x) = f(x, y) is µ−integrable
(3)

∫
Y
f(x, y)dν is a µ−integrable function

(4)
∫
X
f(x, y)dµ is a ν−integrable function

(5)
∫
X

[
∫
Y
fdν]dµ =

∫
X×Y fd(µ× ν) =

∫
Y

[
∫
X
fdµ]dν.

Likewise we can gain a similar theorem if we restrict our spaces and weaken the
condition on f .

Theorem 13.3. (Tonelli) Given (X,A, µ) and (Y,B, ν) two complete σ−finite
spaces and f(x, y) a (µ× ν)−measurable function. Then

(1) For almost all x, fx(y) = f(x, y) is ν−measureable
(2) For almost all y, fy(x) = f(x, y) is µ−measureable
(3)

∫
Y
f(x, y)dν is a µ−measureable function

(4)
∫
X
f(x, y)dµ is a ν−measureable function

6the proof of extensions is contained in [3], and has been omited due to time
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(5)
∫
X

[
∫
Y
fdν]dµ =

∫
X×Y fd(µ× ν) =

∫
Y

[
∫
X
fdµ]dν.

We will now use these theorems to discuss an important technique. We will
define the convolution of two functions as follows:

Definition 13.4. Given the space (R,M,m) and two functions f, g such that f ∈
L1 and g ∈ L∞ ∩ L1 then we define for x ∈ R the function (f ? g)(x) =

∫
R f(x −

y)g(x)dy.

We note that for a given x the convolution (f ? g)(x) is the area intersecting the
two curves f(t − x) and g(t), weighted by the fuction g. We have one very nice
property about convolution, and we will show how convolution can be used to solve
seemingly unrelated problems.

Proposition 13.5. On (R,M,m) then for two functions f, g such that f ∈ L1 and
g ∈ L∞ ∩ L1 convolution f ? g is continuous

Proof. Let x0 ∈ R. Then we will to show that for |t| < δ we have |f ?g(x0 + t)−f ?
g(x0)| = |

∫
f(x0+t−y)g(y)dy−

∫
f(x0−y)g(y)dy| ≤

∫
|g(y)||f(x0+t−y)−f(x0−

y)|dy. Given ε > 0, then we can find a continuous function ϕ with compact support
[a, b] such that

∫
|f−ϕ| < ε

3||g||∞ . Since ϕ is continuous on [a, b] it is uniformilly so,
and we can choose δ such that when |r−s| < δ we have |f(r)−f(s)| < ε

3(b−a)||g||∞ .
We would then have for |t| < δ, that |f ?g(x0+t)−f ?g(x0)| ≤

∫
|g(y)||f(x0+t−y)−

f(x0−y)|dy =
∫
|g(y)||f(x0+t−y)−ϕ(x0+t−y)+ϕ(x0+t−y)−ϕ(x0−y)+ϕ(x0−y)+

f(x0−y)|dy ≤
∫
|g(y)||f(x0+t−y)−ϕ(x0+t−y)|+

∫ b
a
|ϕ(x0+t−y)−ϕ(x0−y)|dy+∫

|ϕ(x0−y)+f(x0−y)|dy ≤ ||g||∞ ε
3||g||∞ +||g||∞

∫ b
a

ε
(b−a)||g||∞ dy+||g||∞ ε

3||g||∞ < ε.
//

We can use this to show the following:

Proposition 13.6. Given sets E,F such that m(E) > 0 and m(F ) > 0 then we
have that E + F contains an interval.

Proof. First consider χE ?χF . If either m(E) = ∞ or m(F ) = ∞ then choose finite
subsets of them, so without loss of generality m(E) < ∞ and m(F ) < ∞. This
gives that both χE and χF are integrable and essentially bounded. We have that∫
X
χE?χF dx =

∫
X

∫
Y
χE(x−y)χF (y)dydx =

∫
Y

∫
X
χE(x−y)χF (y)dxdy by Fubini.

We have also that
∫
X
χE?χF dx =

∫
Y

∫
X
χE(x−y)χF (y)dxdy =

∫
Y
χF (y)

∫
X
χE(x−

y)dxdy =
∫
Y
χF (y)m(E)dy = m(E)m(F ) > 0, so since

∫
X
χE ? χF dx > 0 we

have that χE ? χF > 0 at some point, say x0. Since convolution is continuous
we must have that χE ? χF > 0 on some interval (a, b). For any t ∈ (a, b) since
χE ?χF (t) =

∫
χE(t− y)χF (y)dy > 0 we have that χE(t− y)χF (y) > 0 for some y.

This condition gives that y ∈ F and t−y ∈ E which says that t = t−y+y ∈ E+F ,
hence (a, b) ⊂ E + F . //
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14. Assignments

Homework assignments were composed of problems that were to be graded and
problems that were not required. I will list the problems ( almost all out of [3],
the complement being a set of measure zero ), by bolding the problems that were
assigned.

Assignment 0

Let f = g ◦h where h is a Riemann integrable function on [a, b], h([a, b]) ⊂ [s, t],
and g is continuous on [s, t]. Then f is Riemann integrable.

Proof. Since [s, t] is compact we know that g attains its maximum value on the
interval [s, t], so let M = supx∈[s,t]|g(x)|. Let ε > 0. We seek a partition P of [a, b]
so that Uf (P )−Lf (P ) ≤ ε. Since g is continuous on a compact set, it is uniformly
so, thus we can find a δ so that for any y, z ∈ [s, t] such that if |y − z| ≤ δ, then
|g(y)− g(z)| ≤ ε

2(b−a) . Now since h is Riemann integrable, we can find a partition
P = {x0, x1, . . . , xn} of [a, b] so that

∑
{k|Mk(h)−mk(h)>δ} ≤

ε
4M . Then we consider

the difference Uf (P ) − Lf (P ) =
∑n
k=1Mk(f) − mk(f)4xk. We split this sum

into two categories. Let k ∈ G if Mk(h) −mk(h) ≤ δ and k ∈ B otherwise. For∑
k∈GMk(f)−mk(f)4xk we have that Mk(h)−mk(h) ≤ δ ⇒Mk(f)−mk(f) ≤
ε

2(b−a) . Thus
∑
k∈GMk(f)−mk(f)4xk ≤ ε

2(b−a)
∑
k∈G4xk ≤

ε
2(b−a) ∗(b−a) = ε

2 .
For

∑
k∈BMk(f) −mk(f)4xk, we know that at worst Mk(f) −mk(f) ≤ 2M , so

we have that
∑
k∈BMk(f) − mk(f)4xk ≤ 2M

∑
k∈B4xk, but by our choice of

partition
∑
k∈B4xk ≤

ε
4M so we have

∑
k∈BMk(f) −mk(f)4xk ≤ 2M ∗ ε

4M =
ε
2 . Thus Uf (P ) − Lf (P ) =

∑n
k=1Mk(f) − mk(f)4xk =

∑
k∈GMk − mk4xk +∑

k∈BMk −mk4xk ≤ ε
2 + ε

2 = ε which shows that f is Riemann integrable over
[a, b]. //
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Assignment 1

Problems 19/20, 58/5, 58/6

1) Let C be a nonempty family of subsets of X, and let A bethe algebra of
subsets of X generated by C. Let ε0 = C. Let C∗ = {X \ A|A ∈ C}. Then define
ε1 = C ∪C∗. Let ε2 = {A1 ∩ . . .∩An|Aj ∈ ε1}, and ε3 = {A1 ∪ . . .∪Am|Ak ∈ ε2}.
We have that C = ε0 ⊂ ε1 ⊂ ε2 ⊂ ε3 ⊂ A. We now show that ε3 = A.

Proof. We show that A ⊂ ε3 by showing that ε3 is an algebra containing C and is
contained in any other algebra containing C.

However first we show that ε3 is an algebra. Let A1∪ . . .∪An and B1∪ . . .∪Bm
both be elements of ε3, then A1 ∪ . . . ∪ An ∪ B1 ∪ . . . ∪ Bm ∈ ε3 as each Ai
and Bj are in ε2, thus ε3 is closed under union. Similarly we can show that ε3
is closed under intersection. Let A1 ∪ . . . ∪ An and B1 ∪ . . . ∪ Bm ∈ ε3, then
(A1∪ . . .∪An)∩(B1∪ . . .∪Bm) = (A1∪ . . .∪An)∩B1)∪ . . .∪(A1∪ . . .∪An)∩Bm) =
(A1 ∩ B1) ∪ . . . ∪ (An ∩ B1) ∪ . . . ∪ (A1 ∩ Bm) ∪ . . . ∪ (An ∩ Bm) ∈ ε3 as each
Ai ∩Bj ∈ ε2∀i, j Now let A1 ∪ . . .∪An ∈ ε3, then (A1 ∪ . . .∪An)c = Ac1 ∩ . . .∩Acn.
However since each Ai ∈ ε2 ⇒ Ai = Bi,1 ∩ . . . ∩ Bi,mi , therefore Ac1 ∩ . . . ∩ Acn =
(Bc1,1∪. . .∪Bc1,m1

∩Bc2,1∪. . .∪B2,m2∩B3,1∪. . .∪Bcn−1,mn−1
∩Bcn,1∪. . .∪Bcn,mn

). With
Bi,j ∈ ε1 ⊂ ε3. Since we have already shown ε3 to be closed under both union and
intersection, we have now that ε3 is closed under complement. and is so an algebra.
Now let A′ be any algebra such that C ⊂ A′. Then since C ⊂ A′ ⇒ C∗ ⊂ A′. This
gives then that A1 ∩ . . . ∩ An ∈ A′ where Ai ∈ ε1 which gives that ε2 ⊂ A′. Again
since A is an algebra, we have that A1 ∪ . . .∪Am ∈ A′ for Ai ∈ ε2 which gives that
ε3 ⊂ A′ which completes the proof. //

19/20) Let C be a collection of sets and denote the smallest σ−algebracontaining
C to be σ(C). Let E ∈ σ(C). Then we show that there is a σ−algebra generated
by a countable collection C ′ ⊂ C such that E ∈ σ(C ′).

Proof. Consider σc(C) =
⋃
C′ σ(C ′) where C ′ ranges over all countable subsets of C.

If we can show that σ(C) ⊂ σc(C) then ∀E ∈ σ(C) we would have E ∈ σc(C) which
gives that there is a countable collection C ′ ⊂ C such that E ∈ σ(C ′). We show that
σ(C) ⊂ σc(C) by showing that σc(C) is a σ−algebra containing C. First C ⊂ σc(C)
as ∀c ∈ C then σ({c}) ⊂ σc(C) which gives c ∈ σc(C). Now, let A ∈ σc(C). Then
A ∈ σ(C ′) for some countable C ′ ⊂ C, then Ac ∈ σ(C ′) ⇒ Ac ∈ σc(C). Let
{Ai}∞i=1 ⊂ σc(C) be a countable collection of sets. Then each Ai ∈ σ(Ci) for some
countable collection Ci ⊂ C. Let C ′ =

⋃∞
i=1 Ci. Then C ′ ⊂ C is countable, and

Ai ∈ σ(C ′)∀i. This gives that
⋃∞
i=1Ai ∈ σ(C ′) ⊂ σc(C). This gives that σc(C) is

a σ−algebra containing C, thus σ(C) ⊂ σc(C).
//

58/5) Let A = Q ∩ [0, 1]. Let {In}kn=1 be a finite collection of open intervals
covering A. Then

∑
l(In) ≥ 1.

Proof. Let {In = (an, bn)}kn=1 be a finite collection of open intervalscovering A.
Then some element (aj , bj) ∈ {In}kn=1 must be such that aj ≤ 0. As otherwise
an > 0∀n. Let m = min{a1, . . . , ak}. Then since Q is dense, any q ∈ (0, am) ∩ Q
would not be covered. So up to renumbering let a1 ≤ 0. Now we can repeat the same
argument for b1. If b1 is rational, then it must be contained in one of the intervals,
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and without loss of generality we would have a2 < b1. If b1 is irrational, then a
similar argument shows that at least one of the a′ns must be such that an ≤ b1.
Either way let I2 = (a2, b2) be such that a2 ≤ b1. We can continue one, and since
our collection of intervals is finite we must terminate. More importantly, without
loss of generality we must have ak ≥ 1. This is because if am = max{a1, . . . , ak},
and am < 1, then we can find q ∈ (am, 1) that is not covered. So we have finally
that {In}∞n=1 such that a1 ≤ 0 and bk ≥ 1, and ai ≤ bi − 1. This gives that∑

l(In) = b1−a1 . . . bk−ak = bk−a1+b1+b2−a2+. . .+ak−1−ak ≥ bk−a1 ≥ 1. //

4) Let {En} be an infinite sequence of measurable sets. We define limEn =
{x|x ∈ En for infinitely many n} and limEn = {x|x ∈ En for all but finitely many n}.

a) We will give limEn and limEn in terms of unions and intersections of
elements of {En}. We recall the definitions for lim and lim for sequences
of points xn. Namely that

limxn = inf
n>0

sup
k≥n

(xk) and limxn = sup
n>0

inf
k≥n

xk

If we extend these for our sequence of sets we see that we should have:

limEn = inf
n>0

sup
k≥n

(Ek) and limEn = sup
n>0

inf
k≥n

Ek

Now we recall that for a collection of sets {En}, then sup{En} =
⋃
nEn

and inf{En} =
⋂
nEn. So we make the following claim:

limEn =
⋂
n>0

⋃
k≥n

Ek and limEn =
⋃
n>0

⋂
k≥n

Ek

Proof. Let x ∈ limEn. Then ∀n > 0,∃k ≤ n such that x ∈ Ek ⇒ x ∈⋃
k≤nEk ⇒ x ∈

⋂
n>0

⋃
k≤nEk. Conversly let x ∈

⋂
n>0

⋃
k≤nEk, then

∀n > 0, x ∈
⋃
k≤nEk which gives that there is a k ≤ n such that x ∈ Ek

or that x ∈ limEn. Dually limEn =
⋃
n>0

⋂
k≤nEk as x ∈ limEn gives

that x /∈ En for finitely many n. Let m be the maximal index so that
x /∈ Em. Then ∀k ≥ mx ∈ Ek ⇒

⋂
k≥mEk ⇒ x ∈

⋃
n>0

⋂
k≥nEk. Also if

x ∈
⋃
n>0

⋂
k≥nEk ⇒ ∃n such that ∀k ≥ n, x ∈

⋂
k≥nEk This gives that

the collection of indicies for which x /∈ Ek is limited to {1, 2, . . . , n}, which
is thereby finite, so x ∈ limEn.

//

b) We will show that lim m(En) ≤ m(limEn) given that En ⊂ A and m(A)
is finite.

Proof. Now using the definitions in part (a), we can show that lim m(En) ≤
m(limEn). We note that

⋃
k≥n+1Ek ⊂

⋃
k≥nEk so that {

⋃
k≥nEk}n is a

decreasing sequence. Now we start with m(limEn) = m(
⋂
n>0

⋃
k≥nEk) =

limn→∞m(
⋃
k≥nEk) by proposition. Further by subaddativity we have

limn→∞m(
⋃
k≥nEk) ≥ limn→∞

∑
k≥nm(Ek) ≥ limn→∞ supk≥nm(Ek) =

lim m(En). //
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Assignment 2

Problems 71/22, 71/23, 71/24, 71/25, 71/28 ( assume 46/2.37, 50/2.48, 64/3.14(a),
66/3.16), 85/2(b), 89/9

Exercise 71/28 Let C be the Cantor Set. Now for each x ∈ [0, 1] write x with its
ternary expansion x = a1a2 . . .. Define N = ∞ if an 6= 1∀n. If this condition is not
met, let N be minimal such that aN = 1. Define bn = 1

2an for n < N and bN = 1.
Define fC(x) =

∑N
i=1

bn

2n . Then fC is continuous, monotone, and constant on each
interval I ⊂ [0, 1] C. Define f : [0, 1] → [0, 2] to be f(x) = fC(x) + x, Then:

a) f is a homeomorphism

Proof. We show that f is a bijective continuous and open. f is continuous
as it is the sum of two continuous functions. f is injective as x 6= y then
without loss of generality x < y, and we have that fC(x) ≤ fC(y) ⇒ fC(x)+
x < fC(y)+y ⇒ f(x) 6= f(y). f is surjective as f(0) = fC(0)+0 = 0, f(1) =
fC(1)+1 but fC(1) =

∑∞
n=1

1
2n =

∑∞
n=0

1
2n −1 = 1

1− 1
2
−1 = 2−1 = 1, thus

f(1) = 1 + 1 = 2, and so since f is continuous by the intermediate value
property, f is surjective. We now show that f is open. Any open subset
of [0, 1] is generated by the basis elements [0, a), (b, 1], (a, b) for a, b ∈ [0, 1].
Now f([0, a)) = [0, f(a)), f((b, 1]) = (f(b), 2], f(a, b) = (f(a), f(b)) since f
is continuous and monotone, again using the intermediate value property.
Thus f is an open map, and is so a homeomorphism. //

b) m(f(C)) = 1

Proof. We know that m(C) = 0 which gives that m([0, 1]\C) = 1. Further
since f is a bijection we know that f(C)∪[0, 2]\f(C) = [0, 2], so m(f(C))+
m([0, 2]\f(C)) = m([0, 2]) = 2. Now we can write [0, 1]\C =

⋃
i(ai, bi) as a

disjoint union of open intervals. This gives that [0, 2]\f(C) = f([0, 1]\C) =
f(

⋃
i(ai, bi)) =

⋃
i f(ai, bi) as f is a bijection. Now since x ∈ (ai, bi) ⇒

fC(x) = ci, then we have that [0, 2] \ f(C) =
⋃
i f(ai, bi) =

⋃
i(ai + ci, bi +

ci). However this gives that m([0, 2] \ f(C)) = m(
⋃
i(ai + ci, bi + ci)) =∑

im(ai+ci, bi+ci) =
∑
im(ai, bi) = m([0, 1]\C) = 1. Thus we have that

m(f(C)) = 2−m([0, 2] \ f(C)) = 2− 1 = 1. //

c) Let g = f−1, then there is a measurable set A such that g−1(A′) is not
measurable

Proof. Consider f(C) in the previous problem. Thenm(f(C)) = 1, so there
is a non-measureable subset, say A′ ⊂ f(C). Let A = g(A′). Then since
f is a bijection, so is g, hence A ⊂ C which gives that A is measurable.
However g−1(A) = A′ which by construction is not measureable. //

d) There is a measurable function h such that h ◦ g is not measureable

Proof. Let h = χA. Then h : [0, 1] → R is measurable and we have that
h◦g is not measurable. This is so as (h◦g)−1(( 1

2 ,∞)) = g−1(h−1( 1
2 ,∞)) =

g−1(A) = A′ which is not measurable. //

e) There is a measurable set which is not Borel
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Proof. We know that A is measurable, however A cannot be a Borel set.
We begin by noting that the continuous inverse image of a Borel set is
Borel, as continuous inverse images preserve set operations and open sets.
Therefore since g is continuous, we have that g−1(A) = A′ would have to
be Borel if A were, however A′ is not measurable and in so cannot be Borel.

//

Exercise 85/2b: (Lebesgue’s Theorem) A function f : [a, b] → R is Riemann
integrable iff f is continuous almost everywhere

Proof. (⇒)Let f be Riemann integrable. Let D = {x|f is not continuous at x}.
Then we show that ∀η > 0, then m(D) < η. This gives that f is continuous a.e.
Let η > 0, and choose {λj}, {µj} positive real sequences such that {λj} → 0 and∑
j µj < η. Then ∀j we can find a partition Pj such that

∑
{k|Mk,j−mk,j>λj}4xk,j <

µj . Let Uj =
⋃
{k|Mk,j−mk,j≤λj}(xk−1,j , xk,j). Now let G =

⋂∞
j=0 Uj . Then

∀x ∈ G, x ∈ Uj∀j. Then ∀ε > 0, choose j such that λj < ε. then we have
that x ∈ Uj ⇒ ∃k such that x ∈ (xk−1,j , xk,j) such that ∀y ∈ (xk−1,j , xk,j) we
have |f(x) − f(y)| ≤ Mk,j − mk,j ≤ λj < ε, so f is continuous at x. This gives
that D ⊂ [a, b] \G. Now m([a, b] \G) = m([a, b] \

⋂∞
j=0 Uj) = m(

⋃∞
j=0[a, b] \ Uj) ≤∑∞

j=0m([a, b] \ Uj) ≤
∑∞
j=0 µj < η. Thus f is continuous a.e.

(⇐)Now assume f to be continuous a.e., and let λ, µ > 0 be given. Then let
D = {x|f is not continuous at x} Let U be an open set such that D ⊂ U and
m(U) < µ. Now consider F = [a, b] \ U . Then F is both closed and bounded,
hence compact. Now for each point p ∈ F , choose δp such that |x − p| ≤ δp,
then |f(x) − f(p)| < λ

2 , which we can do because f is continuous on F . Then
this forms an open cover, to which there must be a finite subcover, generated by
p1, . . . , pn in F . Let P = {xi}ni=0 be the partition generated by the endpoints
(pj−δpj

, pj+δpj
)∩ [a, b]. Then P is a partition of [a, b]. Now given (xk−1, xk) ⊂ F ,

thenMk−mk ≤ λ
2 +λ

2 = λ, thus
⋃
{k|Mk−mk>λ}(xk−1, xk) ⊂ U , and sincem(U) < µ

we have that f is Riemann integrable.
//

Exercise 89/9: Let {fn : (−∞,∞) → R} be a sequence of non-negative measur-
able functions such that fn → f a.e. and

∫
fn →

∫
f <∞. Then we show that for

each measurable set E, we have that
∫
E

(fn) →
∫
E
f .

Proof. Let E be a measurable set. By Fatou’s lemma we have
∫
E
f ≤ lim

∫
E
fn.

Now we consider lim
∫
E
fn = lim(

∫
fn−

∫
Ec fn) ≤ lim(

∫
fn)+lim(−

∫
Ec fn) =

∫
f−

lim(
∫
Ec fn). Again Fatou gives us

∫
Ec f ≤ lim(

∫
Ec fn) ⇒ −

∫
Ec f ≥ − lim(

∫
Ec fn),

thus we have
∫
f − lim(

∫
Ec fn) ≤

∫
f −

∫
Ec f =

∫
E
f . Thus lim

∫
E
fn ≤

∫
E
f ⇒∫

E
fn →

∫
E
f . //
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Assignment 3

Problems 89/4, 93/15, 94/16, 94/18, 94/19, 102/4, 104/5, 105/10

Exercise 94/18 We prove the Riemann-Lebesgue theorem. Let f be an integrable
function on R. Then limn→∞

∫
f(x) ∗ cos(nx) = 0

Proof. Let ε > 0. Choose a step function φ =
∑k
i=1 ciχ[ai,bi] such that

∫
|f−φ| < ε

2 .
Then we have that

∫
f −

∫
φ < ε

2 , and so
∫
f ∗ cos(nx)−

∫
φ ∗ cos(nx) < ε

2 . Then
we can integrate

∫
φ ∗ cos(nx) = 1

n

∑k
i=1(sin(nbi)− sin(nai). Choose N such that

∀n ≥ N we have
∫
φ ∗ cos(nx) = 1

n

∑k
i=1(sin(nbi) − sin(nai) ≤ 2k

n < ε
2 , then

∀n ≥ N ,
∫
f ∗ cos(nx) ≤

∫
φ ∗ cos(nx) + ε

2 ≤ ε so lim
n→∞

∫
f ∗ cos(nx) = 0.

//

Exercise 102/4: Let f be such that f is continuous on [a.b] and D+f ≥ 0, then
f is nondecreasing.

Proof. It suffices to assume that D+f ≥ ε for some ε > 0 as given f in the de-
scription then f is nondecreasing exactly when f + ε ∗ x is nondecreasing and
D+(f + ε ∗x) = lim

h→0+

f(x+h)+ε∗(x+h)−f(x)−ε∗h
h = lim

h→0+

f(x+h)−f(x)
h + ε ≥ ε. So let f

be such that D+f ≥ ε. Let x ≤ y. Then [x, y] ⊂ [a, b]. We show that f must attain
its maximum on [x, y] at y. Suppose f attains its maximum at x′ ∈ [x, y). Then
f(x′ + h) ≤ f(x′) which gives that f(x′ + h)− f(x′) ≤ 0 ⇒ lim

h→0+

f(x′+h)−f(x′)
h ≤ 0

which is a contradiction. //

Exercise 104/10:

(1) f(x) =
{
x2 ∗ sin( 1

x2 ) if x 6= 0
0 x = 0 is not of bounded variation on [−1, 1]

Proof. Consider the points xi =
√

2
π(2i+1) . Then we compute T 1

−1(f, P )

where P is the partition consisting of the points xi. We consider
∑∞
i=1 |x2

i sin( 1
x2

i
)−

x2
i−1sin( 1

x2
i−1

)| = 2
π

∑∞
i=1

1
2i+1 + 1

2i−1 = 2
π (

∑∞
i=1

1
2i+1 +

∑∞
i=1

1
2i−1 ) =

2
π (

∑∞
i=1

1
2i+1 +

∑∞
i=0

1
2i+1 ) = 2

π (1 + 2
∑∞
i=1

1
2i+1 ) ≥ 2

π (1 +
∑∞
i=1

1
i+1 ), as

2
2i+1 ≥

1
i+1 , However 2

π

∑∞
i=1

1
i+1 diverges by comparision to a harmonic

series, thus our variation for this partition is unbounded and our function
is not of bounded variation. //

(2)

f(x) =
{
x2 ∗ sin( 1

x ) if x 6= 0
0 x = 0

is of bounded variation on [−1, 1]

Proof. So our function is continuous on [−1, 1] and differentiable atany x 6=
0, and since limt→0

t2sin( 1
t )

t = tsin( 1
t ) → 0 we have that f is differentiable

at x = 0. Further f ′ is Riemann integrable since it is discontinuous at only
one point, and since we have |x ∗ cos( 1

x2 ) ∗ (−2
x ) + sin( 1

x2 )| = |sin( 1
x2 )− 2 ∗

cos( 1
x2 )| ≤ 3 we have that f ′ is bounded and so f is of bounded variation.

//
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Assignment 4

Problems 110/12, 110/14, 111/16, 111/17, 112/20, 116/26, 117/27, 119/1,
119/2, 119/3, 119/4, 126/13, 127/17

Exercise 112/20
(1) Every lipschitz function is absolutly continuous

Proof. Let f be such that |f(x)− f(y)| ≤M |x− y|. Now ε > 0 and choose
δ < ε

M . Then we have that for
∑n
i=1 |x′i − xi| then

∑n
i=1 |f(x′i)− f(xi)| ≤∑n

i=1M |x′i − xi| ≤Mδ = ε. So f is absolutly continuous. //

(2) For absolutly continuous functions lipschitz is equivalent to having a bounded
derivative

Proof. Any lipschitz function f has a bounded derivative as |f(x)−f(y)| ≤
M |x − y| ⇒ |f(x)−f(y)

|x−y| ≤ M for any x, y. So it suffices to show that an
absolutly continuous function with bounded derivative is lipschitz. So we
must show that |f(x)−f(y)| ≤M |x−y|. Without loss of generality choose
x = a and y = b as for any smaller interval all of the same properties hold.
Let ε > 0 and let δ be the corresponding tolerence for f to be absolutely
continuous. Let l([a, b]) = {x|∀y ∈ (x, x+h) we have f(x)−f(y)

x−y ≤M}. This
is a vitali covering, so we can choose {(xi, yi)}ni=0 + 1 such a = y0 ≤ x1 <
y1 ≤ x2 < . . . ≤ xn+1 = b so that

∑n
k=0 |xk+1 − yk| < δ. So now we have

that
∑n
k=0 |f(xk+1)− f(yk)| < ε, and |f(xi)− f(yi)| ≤M |xi− yi. Thus we

have |f(x) − f(y)| = |sumn
k=0|f(xk+1) − f(yk)| +

∑n
k=1 |f(xk) − f(yk)| ≤

ε + M
∑n
k=1 |xk − yk| ≤ ε + M |x − y|. And since epsilon was arbitrary

|f(x)− f(y)| ≤M |x− y| which gives that f is lipschitz. //

(3) A function with D+ bounded is lipschitz

Proof. We have that if f has a bounded derivate then, f must be of bounded
variation since we can choose a partition π = {a = x0, x1, . . . , xn = b}
so that |f(xi) − f(xi+1| ≤ M . Therefore f is given as a difference of
nondecreasing functions. So it suffices to assume that f is nondecreasing.
Given this, for each n choose xn > yn such that f(xn)−f(yn)

xn−yn
> n. Without

loss of generality let (xn, yn) → (x∗, y∗). Then since |f(x)| < K we have
that |f(xn) − f(yn)| < 2K so because f(xn)−f(yn)

xn−yn
> n we have that xn −

yn → 0 or that x∗ = y∗. However this contradicts the fact that D+ must be
bounded at x∗ so we have a contradiction, and thus f must be lipschitz. //

Exercise 116/26 For which functions f do we have
∫
ef = e

∫
f on [0, 1]

Proof. We note that any function which is constant almost everywhere provides
equality. Now let f be given and let α =

∫
f . Then we choose m so that ef ≥

m(f−α)+eα. Now let E = {f 6= α}. Then if f is not constant almost everywhere,
we have thatm(E) > 0. then we know that ef−m(f−α)−eα > 0 on E. Integrating
gives a strictly positive result, which gives strict inequality above. //

Exercise 119/2 Show that for f bounded measurable we have limp→∞||f ||p =
||f ||∞
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Proof. First note that since |f | ≤ ||f ||∞ we have that ||f ||p = (
∫
|f |p)

1
p ≤ (

∫
||f ||p∞)

1
p =

||f ||∞ so our sequence is bounded. Likewise for p1 < p2, let p = p2
p1

> 1. Let q
be such that 1

p + 1
q = 1. Then we have that ||f ||p1p1 =

∫
|f |p1 =

∫
|f |p1 ∗ 1 ≤

||fp1 ||p ∗ ||1||q = ||fp1 ||p by Hölder’s inequality. Now ||fp1 ||p = (
∫

(|f |p1)p)
1
p =

((
∫
|f |p2)

1
p2 )p1 = ||f ||p1p2 which gives that ||f ||p1 ≤ ||f ||p2 so our sequence is increas-

ing, and hence convergent. This gives that the sequence { ||f ||p||f ||∞ } is also conver-
gent and that its limit is less than 1. If we have that the limit is 1 then we
are done. So we will show that the limit is greater than 1 − ε for any ε. Let
ε > 0. Then there exists E a set such that m(E) > 0 and |f |

||f ||∞ > 1 − ε. This

gives that (
∫

( |f |
||f ||∞ )p)

1
p ≥ (

∫
E

( |f |
||f ||∞)p )

1
p ≥ (1 − ε)(m(E))

1
p which as p → ∞ then

(1− ε)(m(E))
1
p → 1− ε thus limp→∞

||f ||p
||f ||∞ > 1− ε. This gives the result. //

Exercise 127/17 Let fn ⊂ Lp be such that fn → f a.e. Then for g ∈ Lq where
1
p + 1

q = 1, we have that lim
∫
fng =

∫
fg

Proof. Let {fn} ⊂ Lp, ||fn||p ≤ M ||, and fn → f ∈ Lp a.e. Let g ∈ Lq. Then
since m([0, 1]) < ∞ we have that g ∈ L1 and so

∫
|g| = α < ∞. Likewise g ∈

Lq ⇒ |g|q ∈ L1 so we can find a number η > 0 such that if A is a set with
m(A) < η then

∫
A
|g|q < εq

2q(M+||f ||p)q . Now since we are again in a finite space,
Egoroff gives that we can find a set A such that m(A) < η and fn → f uniformly
on Ac. Then choose N such that n ≥ N gives |fn − f | ≤ ε

2(α)m(Ac) and we have
that

∫
|fng − fg| =

∫
|fn − f ||g| =

∫
A
|fn − f ||g| +

∫
Ac |fn − f ||g| ≤ (

∫
A
|fn −

f |p)
1
p (

∫
A
|g|q) 1

q + ε
2αm(Ac)

∫
Ac |g| ≤ (||fn||p+ ||f ||p)( εq

2q(M+||f ||p)q )
1
q + ε

2 ≤
ε
2 + ε

2 = ε.
//
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Assignment 5

Problems: 130/19, 134/21, 135/22, 135/23, 135/24, 258/5, 263/14, 268/21,
268/22, 270/24, 270/25, 270/26.

Exercise 130/19
For a partition 4 = (ξ0, . . . , ξn) let T4(f) denote the 4-approximate. Show

||T4(f)||p ≤ ||f ||p for 1 ≤ p <∞.

Proof. Let 4ξk = ξk+1 − ξk, and αk =
∫ ξk+1

ξk
f . Our proof is split into two

cases. Case p = 1: Consier ||T4(f)||1 =
∑n−1
k=0

∫ ξk+1

ξk
| αk

4ξk
| =

∑n−1
k=0 |

∫ ξk+1

ξk
f | ≤∑n−1

k=0

∫ ξk+1

ξk
|f | = ||f ||1. Case p > 1: Consider ||T4(f)||pp =

∫
|T4(f) =

∑n−1
k=0

∫ ξk+1

ξk
|T4(f)|p =∑n−1

k=0
|αk|p

(4ξk)p−1 =
∑n−1
k=0

|
∫ ξk+1

ξk
fp|

(4ξk)p−1 ≤
∑n−1
k=0

∫ ξk+1
ξk

|f |p

(4ξk)p−1 Now let q be such that 1
p+ 1

q =

1. Then we have that by Hölder’s inequality
∫ ξk+1

ξk
|f | ≤ ||f ||p∗||q||q, so we have that∑n−1

k=0

((
∫ ξk+1

ξk
|f |p)

1
p (

∫ ξk+1
ξk

1q)
1
q )p

(4ξk)p−1 =
∑n−1
k=0

((
∫ ξk+1

ξk
|f |p)

1
p (4ξk)

1
q )p

(4ξk)p−1 =
∑n−1
k=0

∫ ξk+1
ξk

|f |p(4ξk)
p
q

(4ξk)p−1

but since p
q = p− 1 we have

∑n−1
k=0

∫ ξk+1
ξk

|f |p(4ξk)
p
q

(4ξk)p−1 =
∑n−1
k=0

∫ ξk+1

ξk
|f |p = ||f ||pp this

gives the result. //

Exercise 134/21
Let g be an integrable function on [0, 1]. Find a bounded measurable function f

such that ||f || 6= 0 and
∫
fg = ||g||1||f ||∞.

Proof. Let f = sgn(g). Then ||f ||∞ = 1 and fg = |g|. This gives that F (f) =∫
fg =

∫
|g| = ||g||1 = ||g||1||f ||∞. //

Now let f ∈ L∞, then ∀ε > 0 show that ∃g ∈ L1 such that
∫
fg ≥ (||f ||∞ −

ε)||g||1.

Proof. Let E = {x||f | ≥ ||f ||∞ − ε}. Let g = χE . Then we have that fg = 0
off of E and fg ≥ ||f ||∞ − ε on E. Thus we have

∫
fg ≥ (||f ||∞ − ε)m(E) =

(||f ||∞ − ε)||g||1. //

Exercise 263/14
Let (X,B, µ) be a measure space and (X,B0, µ0) be its completion. Then f is

measurable with respect to B0 iff there is a function g measurable with respect to
B such that f = g on the complement of a set E ∈ B such that µ(E) = 0.

Proof. Let f be measurable in B0. Then ∀α ∈ Q, let Bα = {x|f(x) ≤ α}, we have
then that Bα ∈ B0. Let Bα = B′α ∪ Aα, where B′α ∈ B and Aα ⊂ Cα with Cα ∈ B
and µ(Cα) = 0. Then for α < β we have B′α ∪ Aα ⊂ B′β ∪ Aβ , and B′α \ B′β ∈ B.
Further since B′α \ B′β = B′α ∩ (X \ B′β) ⊂ B′α ∩ Aβ ⊂ Aβ ⊂ Cβ and µ(Cβ) = 0
we have µ(B′α \ B′β) = 0. Then the collection {Bα} satisfies the condition of the
proposition 11.10 so there is a function g measurable in B such that f = g a.e.

Now let f be such that there is a function g measuable in B such that f = g
on X \ E where E ∈ B and µ(E) = 0. Let α ∈ R. Let B′α ∈ B such that
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B′α = {x|g(x) ≤ α}. Consider Bα = {x|f(x) ≤ α}. Let C = Bα \ B′α. Then we
have that C ⊂ E and Bα = B′α ∪ (Bα \B′α) and further µ(E) = 0 so that Bα ∈ B0.

//

Exercise 270/24: Let (X,B) be a measure space and {µn} be a sequence of
measures. such that µn+1(E) ≥ µn(E). Let µ = limµn, then µ is a measure on B.

Proof. Since µn(∅) = 0 we have that µ(∅) = 0. So we must show that µ(
⋃
Ek) =∑

µ(Ek) for {Ek} a disjoint collection. Since µn(Ek) ≤ µ(Ek) we have µ(
⋃
Ek) ≤∑

µ(Ek). Now for any fixed l, we have that
∑
µn(Ek) ≥

∑l
k=1 µn(Ek) = µn(

⋃l
k=1Ek).

Taking limits on n gives us that µ(
⋃
Ek) ≥

∑l
k=1 µ(Ek). However this was true

for any l so we have that µ(
⋃
Ek) ≥

∑
µ(Ek).

//

Exercise 270/25 Give and example of a sequence {µn} of measures such that the
set function µ = limµn is not a measure.

Proof. Let {Ak} be a countable collection of disjoint sets. Let X =
⋃
Ak. Let B

be the smallest σ−algebra containing {Ak}. Let µn(Ak) = 1
k and for B ∈ B let

µn(B) =
∑∞
k=1 µn(B ∩Ak). Then µn are each measures. Let µ = limµn. We have

then that µn(X) = ∞ for all n so µ(X) = ∞. However µ(
⋃
Ak) =

∑
µ(Ak) =∑

limµn(Ak) =
∑

0 = 0, so µ is not countably additive. //

Exercise 270/26 Let (X,B) be a measure space and {µn} be a sequence of meaus-
res such that µn+1(E) ≤ µn(E) and µ = limµn such that µ(X) < ∞. Then show
µ is a measure.

Proof. Since µn(∅) = 0 we have that µ(∅) = 0. So we must show that µ(
⋃
Ek) =∑

µ(Ek) for {Ek} a disjoint collection. Since µn(Ek) ≥ µ(Ek) we have that
µ(

⋃
Ek) ≥

∑
µ(Ek). So we need to show that µ(

⋃
Ek) ≤

∑
µ(Ek). Without loss

of generality we can assume X =
⋃
Ek. Now defined Al =

⋃∞
k=lEk. Then we have

that Al+1 ⊂ Al and
⋂
Al = ∅. By proposition for each n, µn(

⋂
Al) = liml µn(Al) =

0 so liml µ(Al) = 0. Now we have that Ek = Ak \Ak+1. This gives that µn(Ek) =
µn(Ak \ Ak+1. Since µn is a measure, we have that µn(Ek) ≥ µn(Ak)− µn(Ak+1)
and passing to the limit we have µ(Ek) ≥ µ(Ak) − µ(Ak+1). Then we have that∑
µ(Ek) ≥

∑
µ(Ak)−µ(Ak+1) = µ(A0)−limlµ(Al) = µ(

⋃
Ek)−0 = µ(

⋃
Ek). //
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15. Midterm 2005

1. Let X,Y be nonempty sets, let A be a σ−algebra of subsets of X, and f be
a function from X to Y . Define E to be the family of all subsets E of Y such that
f−1[E] ∈ A. Prove that E is a σ−algebra of subsets of Y .

Proof. Let A ∈ E then f−1(Ac) = f−1(A)c ∈ A which give that Ac ∈ E . Likewise
let {Aα} ⊂ E , then f−1(Aα) ∈ A which gives that

⋃
α f

−1(Aα) = f−1(
⋃
αAα) ∈ A,

thus
⋃
αAα ∈ E . Now f−1(Y ) = X so we have that Y ∈ E and so ∅ ∈ E . This

gives that E is a σ−algebra. //

2. Let f : R → R be a differentiable function whose derivative f ′ is bounded.
That is there exists a positive finite constant K such that |f ′(x)| ≤ K for all
x ∈ R. In this problem, you may assume all the standard properties of Lebesgue
out measure m∗.

(a) Show that if E is any subset of R then m∗(f [E]) ≤ Km∗(E) where f [E] is
the image of E under f . [Suggestion: Begin by doing it for E an open interval
(a, b), using the Mean Value Theorem from calculus.]

(b) Deduce that if E is a set of (outer) measure 0 in R, m(E) = m∗(E) = 0,
then f [E] is a measurable set.

Proof. (a)First consider E = I = (a, b) an open inteval. We may suppose m∗(I) <
∞. Let λ = inf{f(x)|x ∈ I} and µ = sup{f(x)|x ∈ I}. If s, t ∈ I then f(t)−f(s) =
f ′(c)(t − s) for some c ∈ I, by the Mean Value Theorem if s 6= t, or for any c ∈ I
if s = t. Let |f ′(c)| ≤ K, so f(t) − f(s) ≤ |f ′(c)||t − s| ≤ K(b − a). For fixed
s ∈ I, f(t) ≤ K(b − a) + f(s) for each t ∈ I and by taking supremum over t we
have µ ≤ K(b − a) + f(s). Then µ is finite and µ − K(b − a) ≤ f(s) for each
s ∈ I. Taking infimum over s we have then that µ −K(b − a) ≤ λ so λ is finite,
and we have that µ − λ ≤ K(b − a). The since f [I] ⊂ [λ, µ] we have m∗(f [I]) ≤
m∗([λ, µ]) = µ−λ ≤ K(b−a) = Kl(I) = Km∗(I). Now suppose E ⊂ R is arbitrary.
We may suppose m∗(E) < ∞. Given ε > 0 then we have that there is {In} such
that E ⊂

⋃
n In and

∑
l(In) < m∗(E) + ε

K . Then f [E] ⊂
⋃
f [In] so we have

m∗(f [E]) ≤
∑
m∗(f [In]) ≤

∑
Kl(In) = K

∑
l(In) < K(m∗(E)+ ε

K ) = Km∗E+ ε
which gives m∗(f [E]) ≤ Km∗(E).

(b) If m∗(E) = 0 then we have that m∗(f [E]) ≤ Km∗(E) = 0 thus f(E) is
measurable. //

3. Reacll that if f is a nonnegative measurable function on R and f is integrable
then f is finite almost everywhere, that is, m({x|f(x) = ∞}) = 0. Suppose that
{un} is an infinite sequence of nonnegative measurable functions on R such that∑∫

un <∞. Show that the series
∑
un converges almost everywhere, that is, the

series
∑
un(x) converges for all x except for a set of measure 0.

Proof. Let f =
∑
un be a nonngeative measurable function. By ( a corollary to )

the Monotone Convergence Theorem,
∫
f =

∑∫
un <∞. Thus f is integrable, let

A = {x|f(x) = ∞} so m(A) = 0. If x ∈ R \ A then
∑
un(x) = f(x) < ∞, so the

series
∑
un(x) converges. //
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16. Final 2005

1. Let f be a bounded real-valued function on the square [0, 1] × [0, 1]. Let
fx(y) = f(x, y), fy(x) = f(x, y) and suppose that:

(i) For each number x ∈ [0, 1] fx is continuous
(ii) For each rational y ∈ [0, 1]then fy is Lebesgue measurable

Show that g(y) =
∫
[0,1]

f(x, y)dx is a well-defined continuous function on [0, 1]

Proof. We have by (ii) that g(q) is well-defined for each rational q ∈ [0, 1]. Now let
y ∈ [0, 1] and rn → y where rn is rational. Then we have that f(x, rn) → f(x, y)
since g(x, ·) is continuous, and so we have that f(x, y) is a bounded measureable
function, hence integrable and so g(y) is well-defined. Now let y ∈ [0, 1] and let
{yn} be any sequence yn → y. Then we have that g(yn) =

∫
f(x, yn) →

∫
f(x, y)

by bounded convergence so g is continuous at y. //

2. This problem studies the value of lim
p→0+

||f ||p for a lebegue measurable function

f on [0, 1]
a) Show that if f is measurable on [0, 1] and 0 < p1 < p2 < ∞ then ||f ||p1 ≤
||f ||p2 (Hint: ||f ||p1p1 =

∫
|f |p1 · 1).

Proof. If ||f ||p2 = ∞ then we are done, so without loss of generality assume
||f ||p2 <∞. Let p = p2

p1
> 1. Let q be such that 1

p + 1
q = 1. Then we have

that ||f ||p1p1 =
∫
|f |p1 =

∫
|f |p1 ∗ 1 ≤ ||fp1 ||p ∗ ||1||q = ||fp1 ||p by Hölder’s

inequality. Now ||fp1 ||p = (
∫

(|f |p1)p)
1
p = ((

∫
|f |p2)

1
p2 )p1 = ||f ||p1p2 which gives

that ||f ||p1 ≤ ||f ||p2 //

b) Suppose 0 < p1 < p2 <∞. Give an example of a measurable function f on
[0, 1] such that ||f ||p1 < ∞ but ||f ||p2 = ∞. ( Of course, the formula for
you answer will involve p1 and/or p2 )

Proof. Let f(x) = 1

x
1

p2
then we have that ||f ||p1p1 =

∫
1

x
p1
p2

which is finite

since p1
p2
< 1. However ||f ||p2p2 =

∫
1

x
p2
p2

=
∫

1
x = ∞. //

c) Show that if ϕ is a (strictly) positive simple function on [0, 1] then lim
p→0+

||ϕ||p =

e
∫

log(ϕ) (Suggestion: Apply l’Hopital’s rule to log||ϕ||p)

Proof. Given ϕ =
∑n
i=1 aiχAi

a strictly positive simple function, that is∑
µ(Ai) = 1 and ai > 0 then we compute lim

p→0+
log ||ϕ||p = lim

p→0+
log((

∑
apiµ(Ai))

1
p ) =

lim
p→0+

log((
∑
ap

i µ(Ai))

p . Here evaluating the limit gives an indeterminate form,

so using L’Hopitals rule we have lim
p→0+

log ||ϕ||p = lim
p→0+

log((
∑
ap

i µ(Ai))

p =

lim
p→0+

(
∑
ap

i log(ai)µ(Ai)

(
∑
ap

i µ(Ai))
. Now taking the limit we arrive at (

∑
log(ai)µ(Ai)
(
∑
µ(Ai))

=∑
log(ai)µ(Ai) =

∫
log(ϕ). So we have that lim

p→0+
log ||ϕ||p =

∫
log(ϕ) and

after exponentiating we obtain lim
p→0+

||ϕ||p = e
∫

log(ϕ). //
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d) Show that if f is measurable on [0, 1], then for all p for which |f |p is inte-
grable, e

∫
log |f | ≤ ||f ||p where integrals may be infinite, log0 = −∞, e∞ =

∞ and e−∞ = 0.

Proof. We have that e
∫

log(|f |)p

= ep
∫

log(|f |) = e
∫

log(|f |p) ≤
∫
elog |f |

p

=∫
|f |p = ||f ||pp which gives that e

∫
log(|f |) ≤ ||f ||p //

e) Show that if f is bounded measurable on [0, 1] ( that is f ∈ L∞), then
lim
p→0+

||f ||p = e
∫

log |f |.

Proof. Let ϕn ↘ |f | be a sequence of strictly positive simple functions.
Then we have that |f |p ≤ ϕpn and logϕn ↘ log |f |, so we have by mono-
tone convergence that

∫
log(ϕn) ↘

∫
log |f |. For each n we have that

lim
p→0+

||f ||p ≤ lim
p→0+

||ϕn||p = e
∫

log(ϕn). If we let n → ∞ then we have that

lim
p→0+

||f ||p ≤ e
∫

log |f | and so by (d) we have that lim
p→0+

||f ||p = e
∫

log |f |. //

3. Let (X,A, µ) and (Y,B, ν) be finite measure spaces ( that is µ(X) <∞, ν(Y ) <
∞). Let R = {A × B|A ∈ A, B ∈ B} and let R′ consist of finite unions of sets in
R. Let A×B denote σ(R) For E ⊂ X×Y and x ∈ X let Ex = {y ∈ Y |(x, y) ∈ E}.
Take as given that there is a unique measure λ on A×B that satisfies λ(A×B) =
µ(A) · ν(B) for each A×B ∈ R. Our goal is to study the equation

(∗) λ(E) =
∫
X

ν(Ex)dµ

(a) Show that if E ∈ A× B and x ∈ X then Ex ∈ B

Proof. Let C = {E ∈ A × B|Ex ∈ B}. We have that ∀E ∈ R, E = A × B
then Ex ∈ {B, ∅}, so we have that E ∈ C so R ⊂ C. We have also then that
X × Y ∈ C. Now, given E ∈ C then we have that Ex ∈ B which gives that
(Ec)x) = (Ex)c ∈ B so Ec ∈ C. Now given {En} a disjoint collection in C,
then we have that ∀n, (En)x ∈ B which gives that

⋃
(En)x = (

⋃
En)x ∈ B

thus
⋃
En ∈ C and C is a σ−algebra, and since R ⊂ C we have that

A× B ⊂ C. //

(b) Let Rσ consist of those sets that are finite or countable unions of sets in R
( or R′). Assuming that (*) holds for every E ∈ R′, prove that (*) holds
for every E ∈ Rσ
Proof. Let E ∈ Rσ and write E =

⋃
En a disjoint union of members of

R′. For any x we have Ex =
⋃

(En)x and this union is also disjoint, so
we have ν(Ex) =

∑
ν((En)x). so by monotone convergence

∫
ν(Ex) =∫ ∑

ν((En)x) =
∑∫

ν((En)x) =
∑
λ(En) = λ(

⋃
En) = λ(E). //

(c) With the same assumption as in part (b), let {En} be an infinite sequence
in Rσ such that En ⊃ En+1 for every n, and let E =

⋂
En. Prove that (*)

holds for E.

Proof. Given En ↘ E then λ(En) ↘ λ(E) since we are finite spaces. This
gives then for each x that (En)x ↘ Ex, and so ν((En)x) ↘ ν(Ex). So we
have that

∫
ν(Ex)dµ = lim

∫
ν((En)x)dµ = limλ(En) = λ(E). //



MEASURE THEORY COURSE NOTES 49

17. Prelim Material

17.1. Syllabus. Lebesgue Measure and Integration in Rn

a) Lebesgue measureable sets, Borel sets
b) Measurable functions, modes of convergence (uniform, pointwise, a.e., in

measure).
c) Lebesgue integral, convergence theorems
d) Functions of bounded variation, absolutely continuous functions, differen-

tiation, Lebesgue decomposition of measures
e) Relationship between Riemann and Lebesgue integration

General Measure and Integration
a) Measurable spaces, measurable functions
b) Measure spaces, Caratheodory’s theorem
c) Integration, convergence theorems
d) Signed measures, Complex measures, Hahn and Jordan decompositions
e) Radon-Nikodym theorem
f) Basic inequalities( Cauchy-Schwartz, Jensen, Hölder, Minkowski)
g) Lp spaces completeness duality
h) Riesz Representation theorem
i) Fubini-Tonelli theorem

17.2. Things to prove. I have annotated page number references to where the
proofs of these results can be found.

(1)
∫
A
fdµ < ε for µ(A) < δ 57

(2) Fatou Lemma ⇐⇒ Monotone Convergence Theorem 14
(3) Egoroff 9
(4) d

dt

∫
f(x, t)dx =

∫
∂f
∂t f(x, t)dx 53

(5) Modes of Convergence Section 31
(6) Young ⇒ Hölder ⇒ Minkowski 26
(7) BV

∫
|f ′(x)| ≤ T baf and equality if a. cts. 78

(8) When is are Lebegue integrable functions Riemann integrable 66
(9) E + F contains an interval 35

(10) Lp is complete 28
(11) f ∗ g is continuous for f ∈ L1(R) and g ∈ L∞(R). 35
(12) lim

p→∞
||f ||p → ||f ||∞ 69

(13) When is Lr(X,µ) ⊂ Lp(X,µ) 29
(14) For {fn} ⊂ Lp then ||fn||p → ||f ||p iff ||fn − f ||p → 0 28.
(15) lim

p→0+
||f ||p = e

∫
(log|f |) for f ∈ Lr(R for some r. 69

(16)
∫
fn · g →

∫
f · g for {fn} ⊂ Lp and g ∈ Lq, with 1

p + 1
q = 1 70.

(17) ||f ∗ g||p ≤ ||f ||p||g||1 for f ∈ Lp(R) and g ∈ L1(R) 56
(18) General Minkowski 68

17.3. Things to Know.
(1) Radon-Nikodym
(2) Fubini/Tonelli
(3) Riesz Representation
(4) Vitali Covering and the Vitali Covering Lemma
(5) Jensen’s inequality
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17.4. Technqiues/Rules of thumb.
(1) All Littlewood principles
(2) For f ∈ L1 you can obtain a step function ψ with

∫
f =

∫
ψ + ε.

(3) To show bounded variation or absolutely continuous, try bounding the de-
rivative

(4) For dominated sequences you can gain almost uniform convergence
(5) To show that

∫
f has some property, first show the property when f is

simple, then use convergence theorems and a simple approximation of f to
get for

∫
f

(6) Write your function f as a sequence of functions, ( like f ′ = lim
n→∞

fn where

fn(x) = n[f(x+ 1
n ))− f(x)])

(7) Simple functions are dense in Lq

(8) On a finite space, 1 ∈ Lp for any p so you can pretty much Hölder whenever
you want.

(9) Write µ(A) =
∫
A

1dµ
(10) µ << |µ|
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17.5. Problems and solutions.

2004

1. State clearly and completely all major results that you use and cite in
your work.

2. Prove or disprove:
a) If a sequence of Lebesgue-measureable functions on [0, 1] converges a.e.,

then it converges in measure
b) If a sequence of Lebesgue-measureable functions {fn} converges to f in

L1([0, 1]) then fn → f a.e. on [0, 1]
c) If f ∈ L1(X,F , µ) and fn ∈ L1(X,F , µ) for each n ∈ N then if fn converges

a.e. and
∫
|fn| →

∫
|f | then fn → f in L1(X,F , µ)

d) If f ∈ L1(R) and f is uniformly continuous on R then f ∈ C0(R).
e) If f ∈ L1(X,F , µ) and G ⊂ F a σ−algebra. Then there exists a G−measurable

function g such that for each A ∈ G we have
∫
A
gdµ =

∫
A
fdµ.

3. Suppose f is a non negative integrable function on a space (X,F , µ).
a) limλ→∞λµ(f ≥ λ) = 0
b) Produce a non-negative Lebesgue measureable function f on [0, 1] such that

above holds but f /∈ L1([0, 1]).
c) Suppose that µ is a finite measure, such that f is a non-negative F−measurable

function. Prove f ∈ L1(X,F , µ) ⇐⇒
∑∞
n=1 µ(f > n) <∞.

4. Let p ∈ [1,∞) prove that if f ∈ Lp(R) and g ∈ L1(R) then f ∗ g(x) =
∫
f(x−

y)g(y)dy is well defined a.e. and f ∗ g ∈ Lp(R) such that ||f ∗ g||Lp ≤ ||f ||Lp ||g||L1 .

5. Let (R,M ∩ (0, 1),m) be the Lebesgue measure space on R. For a space
(X,F , µ) consider a R valued σ(M×F)−measurable function f on (0, 1)×X such
that

i For t ∈ (0, 1) then f(t, ·) ∈ L1(µ)
ii For x ∈ X, then f(·, x) is differentiable on (0, 1)
iii There is a function g ∈ L1(µ) such that for s ∈ (0, 1) and x ∈ X we have
|∂f∂t (s, x)| ≤ g(x)|.

Then define ϕ : (0, 1) → R by ϕ(t) =
∫
f(t, x)dµ. Then

a) Prove that ϕ is differentiable at every point of (0, 1) and that for s ∈ (0, 1)
we have ϕ′(s) =

∫
∂f
∂t (s, x)dµ.

b) Determine whether ϕ is absolutely continuous (0, 1).
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2004 Solutions

1. State clearly and completely all major results that you use and cite in
your work.

2. Prove or disprove:
a) If a sequence of Lebesgue-measureable functions on [0, 1] converges a.e.,

then it converges in measure

Proof. Prove. This is so as we are in a finite space, thus Egoroff’s theorem
gives convergence almost everywhere gives convergence almost uniform and
this in turn gives convergence in measure. //

b) If a sequence of Lebesgue-measureable functions {fn} converges to f in
L1([0, 1]) then fn → f a.e. on [0, 1]

Proof. Disprove. Consider (R,M,m). Let {In} be a enumeration of subin-
tervals of the unit interval by: I1 = [0, 1], I2 = [0, 1

2 ], I3 = [ 12 , 1], I3 =
[0, 1

3 ], I4 = [ 13 ,
2
3 ], I5 = [ 23 , 1], . . .. Let fn = χIn

. Then we have that fn
does not converge µ−a.e. However for n > m(m+1)

2 we have that
∫
fn <

1
m

which gives that {fn} does converge in mean or order 1 to f = 0. //

c) If f ∈ L1(X,F , µ) and fn ∈ L1(X,F , µ) for each n ∈ N then if fn converges
a.e. and

∫
|fn| →

∫
|f | then fn → f in L1(X,F , µ)

Proof. This is true. Let gn = |fn − f | and hn = |fn| + |f |. Then gn →
0µ−a.e. Since f ∈ L1(X,F , µ) we have that 2f ∈ L1(X,F , µ). Let h = 2f .
Then we have that

∫
hn →

∫
h by hypothesis and |gn| ≤ hn by the triangle

inequality, hence by Lebesgue dominated convergence theorem we have that∫
gn →

∫
g = 0 //

d) If f ∈ L1(R) and f is uniformly continuous on R then f ∈ C0(R). 7

e) If f ∈ L1(X,F , µ) and G ⊂ F a σ−algebra. Then there exists a G−measurable
function g such that for each A ∈ G we have

∫
A
gdµ =

∫
A
fdµ.

Proof. Let X = N and F = ℘(X) with µ the counting measure. Let
G = {∅,N}. Then for 0 6= f ∈ L1(µ), any such g that is G−measurable
must be constant. However then

∫
X
g = ∞ and since f

∫
L1 we cannot

have
∫
X
fdµ =

∫
X
gdµ. //

3. Suppose f is a non negative integrable function on a space (X,F , µ).
a) limλ→∞λµ(f ≥ λ) = 0

Proof. We have that λµ(f ≥ λ) = λ
∫
χf≥λdµ. Now we have also that

λχf≥λ ≤ f and since f ∈ L1(µ) we have that limλ
∫
χf≥λ =

∫
limλχf≥λdµ =∫

0dµ = 0. //

b) Produce a non-negative Lebesgue measureable function f on [0, 1] such that
above holds but f /∈ L1([0, 1]).

7Due to some argument as to the exact definition of C0 on this prelim (Different references

define this differently, and the question is which one was used on this particular years prelim), I
have omitted the proof.
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Proof. Let f = 1
x(1−lnx) then f /∈ L1(µ) as

∫ 1

0
dx

x(1−lnx) = limb→0+

∫ 1

0
−du
u =

limb→0+ [−ln|1 − lnx|]1b → ∞. However we have that limλµ(f ≥ λ) =
lima→inftye

−a( ea

1+a ) = lim 1
1+a = 0. //

c) Suppose that µ is a finite measure, such that f is a non-negative F−measurable
function. Prove f ∈ L1(X,F , µ) ⇐⇒

∑∞
n=1 µ(f > n) <∞.

Proof. Let f ∈ L1(µ) then
∑∞
n=1 µ(f > n) =

∑∞
n=1

∫
χf>n =

∫ ∑∞
n=1 χf>n ≤∫

f <∞. Let
∑∞
n=1 µ(f > n) <∞. Then we have that f(x) ≤

∑∞
n=1 χf>n+

1. Thus we have
∫
f ≤

∫
(
∑∞
n=1 χf>n + 1)dµ =

∫ ∑∞
n=1 χf>n +

∫
1dµ =∑∞

n=1 µ(f > n) + µ(X) <∞ as µ is a finite measure. //

4. Let p ∈ [1,∞) prove that if f ∈ Lp(R) and g ∈ L1(R) then f ∗ g(x) =
∫
f(x−

y)g(y)dy is well defined a.e. and f ∗ g ∈ Lp(R) such that ||f ∗ g||Lp ≤ ||f ||Lp ||g||L1 .

Proof.

||f ∗ g||p =
(∫
X

(f ∗ g(x))pdx
) 1

p

=
(∫

(
∫
f(x− y)g(y)dy)pdx

) 1
p

By General Minkowski ≤
∫ (∫

(f(x− y)g(y))pdx
) 1

p dy

=
∫
g(y)||f ||pdy

= ||f ||p||g||1
This also shows that f ∗ g is well defined a.e. //

5. Let (R,M ∩ (0, 1),m) be the Lebesgue measure space on R. For a space
(X,F , µ) consider a R valued σ(M×F)−measurable function f on (0, 1)×X such
that

i For t ∈ (0, 1) then f(t, ·) ∈ L1(µ)
ii For x ∈ X, then f(·, x) is differentiable on (0, 1)
iii There is a function g ∈ L1(µ) such that for s ∈ (0, 1) and x ∈ X we have
|∂f∂t (s, x)| ≤ g(x)|.

Then define ϕ : (0, 1) → R by ϕ(t) =
∫
f(t, x)dµ. Then

a) Prove that ϕ is differentiable at every point of (0, 1) and that for s ∈ (0, 1)
we have ϕ′(s) =

∫
∂f
∂t (s, x)dµ.

Proof. Fix s ∈ (0, 1). Let hn(x) = n[f(s + 1
n , x) − f(s, x)]. Now hn(x) →

∂f
∂t (s, x). Let h(x) = ∂f

∂t (s, x). Further we have that |hn(x)| = |∂f∂t (s
′, x)| ≤

g(x) ∈ L1(µ) by the mean value theorem. This gives then that
∫
hn →

∫
h.

However we have now that ϕ′(s) = limn→0n[
∫
f(s + 1

n , x) −
∫
f(s, x)] =

limn→0

∫
hn =

∫
h =

∫
∂f
∂t (s, x). //

b) Determine whether ϕ is absolutely continuous (0, 1).

Proof. Part (a) gives that ϕ is absolutely continuous as it is an anti-
derivative. //
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2003

1. Let (X,F , µ) be a measure space. Let f be a realvalued measureable
function. Then for p ∈ (0,∞) let ϕ(p) =

∫
|f |pdµ = ||f ||pp. Let E = {p|ϕ(p) <∞}.

Assume that ||f ||∞ <∞ then:
a) Prove that either E 6= ∅ or E is an unbounded interval of (0,∞) and that if

ϕ(p) > 0 for some ( equivalently all ) p > 0 and E 6= ∅ then logϕ is convex
on E.

b) Prove that if E 6= ∅ then ϕ is a continuous function.
c) Is E necessarily open? Closed?

2. Prove: for p ∈ [1,∞) then if f ∈ LP (R,M,m) and g ∈ L1(R,M,m) then
||f ∗ g||p ≤ ||f ||p||g||1.

3. Let (X,F , µ) be a finite measure space.
a) Prove or disprove: If a sequence {fn} of real valued F−measureable func-

tions on X converge µ−a.e. then {fn} converges in measure.
b) Prove or disprove: If a sequence {fn} of real valued F−measureable func-

tions on X converge in measure then {fn} converges µ−almost everywhere.
c) Prove or disprove: If a sequence {fn} of real valued F−measureable func-

tions on X is Cauchy in L1(µ) then {fn} converges in measure

4. Let (X,F , µ) be a measure space.
a) Prove that if f ∈ L1(µ) then for every ε > 0 there is δ > 0 such that

µ(A) < δ then
∫
A
|f |dµ < ε.

b) A sequence {fn} is said to have uniformaly absolutely continuous intergrals
if for ε > 0 there is δ > 0 such that µ(A) < δ then

∫
A
|fn| < ε for each n.

Suppose µ(X) < ∞ and {fn} → f has uniformaly absolutely continuous
integrals. Then fn → f in L1(µ).

c) Show that (b) imples the Lebesgue Dominated Convergence Theorem

5. Let µ be a signed measure on F a σ−algebra. Prove by applying Radon-
Nikodym that there is a unique F−measureable function h such that |h(x)| =
1µ−a.e. and µ(A) =

∫
A
hd|µ| where |µ| is the total variation measure.
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2003 Solutions

1. Let (X,F , µ) be a measure space. Let f be a realvalued measureable
function. Then for p ∈ (0,∞) let ϕ(p) =

∫
|f |pdµ = ||f ||pp. Let E = {p|ϕ(p) <∞}.

Assume that ||f ||∞ <∞ then:
a) Prove that either E 6= ∅ or E is an unbounded interval of (0,∞) and that if

ϕ(p) > 0 for some ( equivalently all ) p > 0 and E 6= ∅ then logϕ is convex
on E.

Proof. We first show that E is connected by showing that if r, s ∈ E then
(r, s) ⊂ E. This is so by Hölders inequality. If we let r ≤ p ≤ s, then let A =
{x|f(x) ≥ 1} can split

∫
|f |p =

∫
A
|f |p +

∫
Ac |f |p ≤

∫
A
|f |s +

∫
Ac |f |r <∞.

Now we have that since f ∈ L∞ and lim
p→∞

||f ||p = ||f ||∞ , that if p ∈ E then

[p,∞) ⊂ E. This gives then that E must be an unbounded interval as when
p0 = inf(E) then we have that [p,∞) ⊂ E for p > p0 thus E = (p0,∞) or
[p0,∞). Now to show that logϕ is convex on E. We note that for λ ∈ [0, 1],
and x, y ∈ E we have that ϕ(λx + (1 − λ)y) =

∫
|f |λx|f |(1−λ)y. Now

|f |λx ∈ L
1
λ and |f |(1−λ)y ∈ L

1
1−λ . This gives that by Hölder’s inequality

we have ϕ(λx+(1−λ)y) ≤ ||fxλ|| 1
λ
||f (1−λ)y|| 1

1−λ
=

(∫
|f |x

)λ(∫ |f |y)1−λ =
ϕ(x)λϕ(y)1−λ. Now since log is monotonic we have that logϕ(λx + (1 −
λ)y) ≤ log(ϕ(x)λϕ(y)1−λ) = log(ϕ(x)λ) + log(ϕ(y)1−λ) = λ log(ϕ(x)) +
(1− λ) log(ϕ(y)). //

b) Prove that if E 6= ∅ then ϕ is a continuous function.

Proof. Since log(ϕ) is a convex function then it must also be continuous,
and so we have that ϕ = elog(ϕ) is also continuous. //

c) Is E necessarily open? Closed?

Proof. E does not necessarily need to be closed as f(x) = 1
x is in Lp([1,∞])

for p > 1 but not in L1([1,∞]). E does however need to be open. We have
that ϕ(Ec) = ∞. So consider (0,∞) ⊂ (0,∞] in the range. We have
then that (0,∞) = ϕ(E) ∪ ((0,∞) \ ϕ(E)). Now taking inverse images
ϕ−1(0,∞) = ϕ−1(ϕ(E)) ∪ (ϕ−1((0,∞) \ ϕ(E)) = E ∪ (ϕ−1(0,∞) \ E).
However as we have ϕ(E)c = ∞ we have then that (ϕ−1(0,∞) \ E) = ∅
which gives that ϕ−1(0,∞) = E so E is open as ϕ is continuous. //
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2. Prove: for p ∈ [1,∞) then if f ∈ LP (R,M,m) and g ∈ L1(R,M,m) then
||f ∗ g||p ≤ ||f ||p||g||1.

Proof.

||f ∗ g||p =
(∫
X

(f ∗ g(x))pdx
) 1

p

=
(∫

(
∫
f(x− y)g(y)dy)pdx

) 1
p

By General Minkowski ≤
∫ (∫

(f(x− y)g(y))pdx
) 1

p dy

=
∫
g(y)||f ||pdy

= ||f ||p||g||1
//

3. Let (X,F , µ) be a finite measure space.
a) Prove or disprove: If a sequence {fn} of real valued F−measureable func-

tions on X converge µ−a.e. then {fn} converges in measure.

Proof. Disprove. Consider (R,M,m) as a space, and let fn = χ[n,n+1],
then fn → 0 a.e. However ∀n we have m({x| |fn(x)| > 1

2}) = 1, so fn does
not converge in measure to 0. //

b) Prove or disprove: If a sequence {fn} of real valued F−measureable func-
tions on X converge in measure then {fn} converges µ−almost everywhere.

Proof. Disprove. We do this in two steps. First we show that convergence
in mean of order p gives convergence in measure. Then we show that conver-
gence in mean of order p does not give convergence µ−a.e. The statement
is then false by transitivity. (1) Convergence in Lp gives convergence in
measure. Let {fn} → f in mean of order p. That is

∫
|fn − f |p → 0. Let

ε > 0. Consider En = {x| |fn − f | ≥ ε}. Now consider εp limµ(En) =
lim εpµ(En) = lim

∫
En
εp. Since |fn − f |p ≥ εp ⇒

∫
|fn − f |p ≥

∫
εp

and
∫
|fn − f |p → 0 we have that εp limµ(En) = lim

∫
En
εp → 0, thus

limµ(En) → 0, and so we converge in measure. However if we con-
sider the space (R,M,m), and give a enumeration of the unit interval
I0 = [0, 1], I1 = [0, 1

2 ], I2 = [ 12 , 1], I3 = [0, 1
3 ], I4 = [ 13 ,

2
3 ], I5 = [ 23 , 0], . . ..

Let fn = χIn . Then we have that for n > m(m+1)
2 then

∫
|fn| < 1

m and
so {fn} → 0 in mean or order p namely p = 1. However {fn} does not
converge to 0 a.e., and so this sequence is a sequence which converges in
mean of order p, hence in measure, but does not converge µ−a.e. //

c) Prove or disprove: If a sequence {fn} of real valued F−measureable func-
tions on X is Cauchy in L1(µ) then {fn} converges in measure

Proof. Prove. Since Lp is complete and the above argument showes that
convergence in mean of order p gives convergence in measure, the statement
is true. //
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4. Let (X,F , µ) be a measure space.
a) Prove that if f ∈ L1(µ) then for every ε > 0 there is δ > 0 such that

µ(A) < δ then
∫
A
|f |dµ < ε.

Proof. Let ε > 0 and fn = max(f, n). Then we have that {fn} converge
monotonically to f . Therefore by monotone convergence we have that∫
fn →

∫
f . Thus we can find N such that

∫
(f − fN ) < ε

2 . Now choose
δ < ε

2·N . Then we have that for any set A such that µ(A) < δ then
∫
A
f =∫

A
f−fN+fN =

∫
A
(f−fN )+

∫
A
fN <

∫
(f−fN )+

∫
A
N ≤ ε

2 + ε·N
2·N = ε //

b) A sequence {fn} is said to have uniformaly absolutely continuous intergrals
if for ε > 0 there is δ > 0 such that µ(A) < δ then

∫
A
|fn| < ε for each n.

Suppose µ(X) < ∞ and {fn} → f has uniformaly absolutely continuous
integrals. Then fn → f in L1(µ).

Proof. We want to show that
∫
|fn − f | → 0. Let ε > 0. Then we can find

δ > 0 such that both
∫
E
|f | < ε

3 and
∫
E
|fn| < ε

3 for µ(E) < δ. Now since we
are in a finite space, choose A such that µ(A) < δ and fn → f uniformally
on Ac. Now this gives that we can find N such that for n ≥ N we have
|fn−f | < ε

3µ(Ac) . Now we have that
∫
|fn−f | ≤

∫
A
|fn−f |+

∫
Ac |fn−f | ≤∫

A
|fn|+

∫
A
|f |+

∫
Ac |fn − f | < ε

3 + ε
3 + µ(Ac) · ε

3µ(Ac) = ε. Therefore {fn}
converges to f in L1. //

c) Show that (b) imples the Lebesgue Dominated Convergence Theorem

Proof. Lebesgue dominated convergence follows from this as when we have
{fn} ⊂ L1(µ) such that |f | ≤ g ∈ L1, then let ε > 0. Now let δ be such
that

∫
A
g < ε for µ(A) < δ. Then we have that

∫
A
|fn| ≤

∫
A
|g| < ε for

µ(A) < δ as well. This gives that {fn} has absoluetly continuous integrals,
which by part (b) gives that

∫
|fn − f | → 0 which gives

∫
fn →

∫
f . //

5. Let µ be a signed measure on F a σ−algebra. Prove by applying Radon-
Nikodym that there is a unique F−measureable function h such that |h(x)| =
1µ−a.e. and µ(A) =

∫
A
hd|µ| where |µ| is the total variation measure.

Proof. We have that µ+ << |µ| and µ− << |µ| and in so by Radon-Nikodym each
generates a derivative f1 and f2 respectively. Further given a Hahn Decomposition
(A,B) of X we have that f1(x) = 1 on A and f1(x) = 0 on B, and visa versa for f2.
Now we have that µ(E) = µ+(E ∩A)− µ−(E ∩B) =

∫
E∩A f1d|µ| −

∫
E∩B f2d|µ| =∫

E
(f1 ·χA−f2 ·χB)d|µ|. Let h = f1 ·χA−f2 ·χB . Now given x we have that either

x ∈ A or x ∈ B. If x ∈ A then χB(x) = 0 and so |h(x)| = |f1(x)| = 1. If x ∈ B
then χA(x) = 0 and we have that |h(x)| = | − f2(x)| = 1. //
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2002

1. Prove that lim
a→∞

∫ a
1

1
x sin(x)dx exists but that the function 1

x sin(x)dx is

not lebesgue integrable on [1,∞).

2. Show that if F is non-decreasing function on [a, b], then F (b) − F (a) ≥∫ b
a
F ′(t)dt. Give meaning to the difference between the two quantities when F is

right continuous by relating them to the Lebesgue decomposition of F ( or of the
associated measure ), and an example showing that equality does not always hold

3. Prove that the space Lp(X,F , µ) is complete for 1 ≤ p <∞.

4. Assume the borel set A ⊂ [0, 1] satisfies the following property: there exists
0 ≤ τ < 1 such that m(A ∩ I) ≤ τm(I) for all intervals I ⊂ [0, 1]. Prove that
m(A) = 0 ( Here m is any finite Borel measure on [0, 1] )

5. Let (X,S, µ) and (Y, T , ν) be σ−finite measure spaces, and let f : S ×T → R
be a S ⊗ T −measurable function. Let p ≥ 1. Show that if f(x, y) is in Lp(µ) for
every fixed y ∈ Y , then the integral

∫
f(x, y)dν is also in Lp(µ), even better, prove

the generalized Minkowski inequality:( ∫
X

(
∫
Y

|f(x, y)dν)pdµ)
1
p ≤

∫
Y

(
∫
X

|f(x, y)|pdµ)
1
p dν
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2002 Solutions

1. Prove that lim
a→∞

∫ a
1

1
x sin(x)dx exists but that the function 1

x sin(x)dx is

not lebesgue integrable on [1,∞).

Proof. Let f = 1
x sin(x). Consider lim

a→∞

∫ a
1
fdx. On each interval (1, a) we have

that f is bounded and Riemann-integrable, hence lebesgue integrable and that the
two integrals are the same. We have then that lim

a→∞

∫ a
1
fdx = lim

a→∞
R

∫ a
1
fdx =

R
∫ a
1
fdx. Now f is Riemann integrable on (1, a). So we show that the limit

lim
a→∞

R
∫ a
1

sin(x)
x dx converges. We integrate each by parts with u = 1

x and dv =

sin(x). Then we have that du = −dx
x2 and v = −cos(x)dx then we have that∫ a

1
sin(x)
x dx = −cos(x)

x ]a1 − R
∫ a
1
cos(x)
x2 dx = −cos(1) + cos(a)

a − R
∫ b
1
cos(x)
x2 dx. So we

evaluate lim
a→∞

(−cos(1) + cos(a)
a + R

∫ a
1
cos(x)
x2 dx) ≤ lim

a→∞

∫ a
1

1
x2 + cos(1) < ∞, thus∫ a

1
f exists. However this function is not lebesgue integrable. Consider

∫∞
1
|f | =∑∞

k=1

∫
k
π(k + 1)π|f |. Now on each set [kπ, (k + 1)π] we have that |f | is bounded

and Riemann-integable, hence it is Lebesgue-integrable with the same integral.
However on each such set we have that

∫ (k+1)π

kπ
|f | ≥

1
2π

(2k+1)π
2

= 1
2k+1 . So we have

that
∑∞
k=1

∫ (k+1)π

kπ
|f | ≥

∑∞
k=1

1
2k+1 . Now since 2k + 1 < 3k we have 1

2k+1 >
1
3k ,

so we have
∫∞
1
|f | ≥

∑∞
k=1

1
3k = ∞. Therefore f is not Lebesgue-integrable. //

2. Show that if F is non-decreasing function on [a, b], then F (b) − F (a) ≥∫ b
a
F ′(t)dt. Give meaning to the difference between the two quantities when F is

right continuous by relating them to the Lebesgue decomposition of F ( or of the
associated measure ), and an example showing that equality does not always hold

Proof. Let f be a non-decreasing function on [a, b] and let g(x) = f ′(x), and gn(x) =
n[f(x + 1

n ) − f(x)], then {gn(x)} → g. Redefine f so that f(x) = f(b) for x ≥ b.
Then gn is measurable and since f is monotone we have gn ≥ 0. This gives by Fatou,∫ b
a
g ≤ lim

∫ b
a
gn = limn

∫ b
a
(f(x+ 1

n )−f(x))dm = limn(
∫ b+ 1

n

b
fdm−

∫ a+ 1
n

a
fdm) =

lim(f(b)− n
∫ a+ 1

n

a
fdm ≤ f(b)− f(a).

This equality does not always hold, consider the function f(x) = 1 on [0, 1) and 3
at x = 1. Then f is differentiable almost everywhere and its derivative is f ′(x) = 0
almost everywhere, thus

∫ b
a
f ′ = 0 however f(1)−f(0) = 3−1 = 2 so the inequality

is strict. 8 //

3. Prove that the space Lp(X,F , µ) is complete for 1 ≤ p <∞.

Proof. It suffices to show that any absolutely summable series in Lp is summable.
Give

∑∞
k=1 fk such that {fk} ⊂ Lp, and

∑∞
k=1 ||fk||p = M < ∞, then we will

show that
∑∞
k=1 fk = g ∈ Lp is summable. Consider hn =

∑n
k=1 |fk|. Let h

be a measurable function such that hn → h µ−a.e. We have that ||hn||p ≤

8Lebesgue decomposition was not covered in depth in our class, and so we will omit this section
of the proof. If any future generations of UConn math graduate students would like to, please

add this section to the proof



60 LANCE MILLER∑n
k=1 ||fk||p < M by Minkowski’s inequality. This gives then that ||hn||pp =

∫
hpn ≤

Mp and so we have
∫
hp ≤Mp which gives that h is finite µ−a.e. Where h(x) <∞

we have that g(x) =
∑∞
k=1 fk(x). Since

∑∞
k=1 fk is absolutely summable we have

that
∑∞
k=1 |fk(x)| < ∞ and so we have that

∑∞
k=1 fk(x) is a real number. Let

g(x) = 0 where h(x) = ∞. Now let gn =
∑∞
k=1, then we have that |gn| ≤ |hn| ≤ h

which gives that |g| ≤ h and so g ∈ Lp. Now we have that gn ↗ g µ−a.e., and
since |gn − g|p ≤ 2p+1|g|p we have that

∫
|gn − g|p → 0 by dominated convergence,

and so
∑∞
k=1 fk = g is summable, whence Lp is complete. //

4. Assume the borel set A ⊂ [0, 1] satisfies the following property: there exists
0 ≤ τ < 1 such that m(A ∩ I) ≤ τm(I) for all intervals I ⊂ [0, 1]. Prove that
m(A) = 0 ( Here m is any finite Borel measure on [0, 1] )

Proof. Since A is borel, we can find an open set O =
⋃
Ik a disjoint union of open

intervals such that m(O) = m(A) + ε. This gives that A = A ∩ O = A ∩
⋃
Ik =⋃

A ∩ Ik, so we have that m(A) = m(
⋃
A ∩ Ik) =

∑
m(A ∩ Ik) ≤

∑
τm(Ik) =

τ
∑
m(Ik) = τm(0) = τ(m(A) + ε). this gives that m(A) ≤ τε

1−τ //

5. Let (X,S, µ) and (Y, T , ν) be σ−finite measure spaces, and let f : S ×T → R
be a S ⊗ T −measurable function. Let p ≥ 1. Show that if f(x, y) is in Lp(µ) for
every fixed y ∈ Y , then the integral

∫
f(x, y)dν is also in Lp(µ), even better, prove

the generalized Minkowski inequality:( ∫
X

(
∫
Y

|f(x, y)|dν)pdµ)
1
p ≤

∫
Y

(
∫
X

|f(x, y)|pdµ)
1
p dν

Proof. Consider h(y) =
∫
Y
f(x, y)dν. Let q be the conjugate index of p. Then we

have that F : Lq → R be the functional F (g) =
∫
X
g(x)(

∫
Y
|f(x, y)|dν)dµ. Then

we have that by definition ||F (g)|| = sup
||g||q=1

∫
X
g(x)(

∫
Y
|f(x, y)|dν)dµ. And so we

have that:

||F (g)|| = sup
||g||q=1

∫
X

g(x)(
∫
Y

|f(x, y)|dν)dµ

Tonelli = sup
||g||q=1

∫
Y

(
∫
X

g(x)|f(x, y)|dµ)dν

Hölder ≤ sup
||g||q=1

∫
Y

||g||q|| |f(x, y)| ||p,Xdν

≤
∫
Y

|| |f(x, y)| ||p,Xdν

This being the right hand side. We have also that
∫
Y
|| |f(x, y)| ||p,Xdν otherwise

the inequality would be trivially solved. This gives then that F is a bounded linear
functional on Lq, and so by Riesz-representation we have that ||F || = ||

∫
Y
|f(x, y)|dν||p,X ⇒

||
∫
Y
|f(x, y)|dν||p,X ≤

∫
Y
|| |f(x, y)| ||p,Xdν 9

//

9Note that this technically does not solve the problem in the case when Y is an infinite space,

as the right hand side may still be infinite, though the inequality will still hold
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1. a) Let (X,F , µ) be a measure space. Define what is meant by saying f is
F−measureable.

b) Give precise definitions of the following modes of convergences:
i The sequence {fn} converges to f µ−a.e. (AE)
ii The sequence {fn} converges to f µ−almost uniform (AU)
iii The sequence {fn} converges to f in measure (M)
iv The sequence {fn} converges to f in mean of order p.

c) Prove the two implication AU → AE and Lp → M.
d) Give a diagram for the modes of convergence in the general case where a

solid arrow means the first mode always implies the second, and a broken
arrow means convergence in the first mode implies a subsequence which
converges in the second.

2. a) Give a precise statement of Fatou’s Lemma
b) Suppose {fn} is a sequence of non-negative F−measurable functions con-

verging µ−a.e. to the function f , and suppose
∫
fndµ →

∫
fdµ < ∞.

Using only part (a) and the properties of sequences of real numbers, show
that for any A ∈ F we have

∫
A
fndµ→

∫
A
fdµ.

c) Indicate where you used the fact that
∫
fdµ <∞.

3. a) Let µ be the counting measure on ℘(N. Define g by g(n) = n
−1
p where p is

a fixed index in [1,∞). Show that g ∈ Lr iff p < r ≤ ∞. Deduce that Lr

is not a subset of Lp for p < r.
b) Now let µ(n) = 1

n2 , and define f(n) = n
1
r where r is a fixed index in (1,∞).

Show that f ∈ Lp iff 1 ≤ p < r. Deduce that Lp is not a subset of Lr for
p < r.

c) For a general X assume µ(X) <∞ and 1 ≤ p < r <∞ show Lr ⊂ Lp and
that for f ∈ Lr we have ||f |||p ≤ ||f ||rµ(X)

1
p−

1
r ( Hint: Note |f |p ∈ L

r
p

and 1 ∈ Ls for all s ≥ 1 ).

4. a) Consider two measure spaces (X,F , µ) and (Y,G, ν) where X = Y = [0, 1],
and both F = G are the σ−algebra of Borel subsets of [0, 1]. If µ is the
Lebesgue measure and ν is the counting measure and D = {(x, y)|x =
y} then D is in the product of the σ−algebras, however

∫
ν(Dx)dµ 6=∫

µ(Dy)dν. Why does this not contradict Tonelli’s Theorem?
b) Consider the reals with the Lebesgue measure and the plan with the induced

product measure. Let f be the function f(x, y) = 1 if x ≥ 0 and x ≤ y <
x + 1, f(x, y) = −1 if x ≥ 0 and x + 1 ≤ y < x + 2 and f(x, y) = 0
otherwise. Show that

∫
[
∫
f(x, y)dx]dy 6=

∫
[
∫
f(x, y)dy]dx. Why does this

not contradict Fubini’s Theorem?

5. Let λ and µ be measures on the σ−algebra F for a space X. State what it is
means for λ to be absolutely continuous with respect to µ ( λ << µ ). Define what
is meant by a Radon-Nikodym derivative dλ/dµ Let λ and µ be σ−finite measures
on (X,F), let λ << µ, and let f = dλ/dµ. If g is a non-negative F−measureable
function on X, show that

∫
gdλ =

∫
gfdµ.
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2001 Solutions
1.

a) Let (X,F , µ) be a measure space. Define what is meant by saying f is
F−measureable.

Proof. A function is F−measureable provided that for each α ∈ R, then
{x|f(x) > α} ∈ F . //

b) Give precise definitions of the following modes of convergences:
i The sequence {fn} converges to f µ−a.e. (AE)
ii The sequence {fn} converges to f µ−almost uniform (AU)
iii The sequence {fn} converges to f in measure (M)
iv The sequence {fn} converges to f in mean of order p.

Proof.

AE is µ({x|fn(x) does not converge to f(x)}) = 0
AU is ∀η > 0 there is a set A such that µ(A) < η

and fn → f uniformily on Ac.
M is ∀ε > 0 then lim

n→∞
µ({x||fn(x)− f(x)| ≥ ε}) → 0

Lp is
∫
|fn − f |p → 0

//

c) Prove the two implication AU → AE and Lp → M.

Proof. (AU → AE). Let fn converge to f AU. Then for k ∈ N we can find
Ak such that µ(Ak) < 1

k and fn → f uniformily on Ack. Let A =
⋂
Ak.

Then we have that for x ∈ Ac =
⋃
Ack then fn(x) → f(x), and since

µ(A) < 1
k∀k we have that µ(A) = 0 and so fn → f AE.

(Lp → M) Let
∫
|fn−f |p → 0. Then for any ε > 0 let En = {x| |fn(x)−

f(x)| ≥ ε}. Then we have that
∫
En
|fn − f |p ≥ εpµ(En). But since

∫
|fn −

f |p → 0 as n→∞, we have that εpµ(En) → 0 which gives that µ(En) → 0
as n→∞. //

d) Give a diagram for the modes of convergence in the general case where a
solid arrow means the first mode always implies the second, and a broken
arrow means convergence in the first mode implies a subsequence which
converges in the second.

2.
a) Give a precise statement of Fatou’s Lemma

Proof. Let {fn} be a sequence of non-negative functions converging almost
everywhere. Then for any measurable set A we have that

∫
A

lim fn ≤
lim

∫
A
fn. //

b) Suppose {fn} is a sequence of non-negative F−measurable functions con-
verging µ−a.e. to the function f , and suppose

∫
fndµ →

∫
fdµ < ∞.

Using only part (a) and the properties of sequences of real numbers, show
that for any A ∈ F we have

∫
A
fndµ→

∫
A
fdµ.
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Proof. Let {fn} be a sequence of non-negative F−measurable functions
converging almost eveywhere to f where

∫
fdµ < ∞. Let E be any

measurable set. By Fatou’s lemma we have
∫
E
f ≤ lim

∫
E
fn. Now we

consider lim
∫
E
fn = lim(

∫
fn −

∫
Ec fn) ≤ lim(

∫
fn) + lim(−

∫
Ec fn) =∫

f − lim(
∫
Ec fn). Again Fatou gives us

∫
Ec f ≤ lim(

∫
Ec fn) ⇒ −

∫
Ec f ≥

− lim(
∫
Ec fn), thus we have

∫
f − lim(

∫
Ec fn) ≤

∫
f −

∫
Ec f =

∫
E
f . Thus

lim
∫
E
fn ≤

∫
E
f ⇒

∫
E
fn →

∫
E
f . //

c) Indicate where you used the fact that
∫
fdµ <∞.

Proof. We used this when we computed the expression
∫
f − lim(

∫
Ec fn).

If
∫
f = ∞ then this expression makes no sense. //

3.

a) Let µ be the counting measure on ℘(N. Define g by g(n) = n
−1
p where p is

a fixed index in [1,∞). Show that g ∈ Lr iff p < r ≤ ∞. Deduce that Lr

is not a subset of Lp for p < r.

Proof. We compute
∫
grdµ =

∑∞
n=1

∫
n
grdµ =

∑∞
n=1 g

r(n) =
∑∞
n=1 n

−r
p

which will converge exactly when r
p > 1 or r > p. //

b) Now let µ(n) = 1
n2 , and define f(n) = n

1
r where r is a fixed index in (1,∞).

Show that f ∈ Lp iff 1 ≤ p < r. Deduce that Lp is not a subset of Lr for
p < r.

Proof. Now we compute
∫
fdµ =

∑∞
n=1

∫
n
fpdµ =

∑∞
n=1

fp(n)
n2 =

∑∞
n=1

n
p
r

n2 =∑∞
n=1 n

p
r−2 which converges exactly when p

r − 2 < −1 or p < r. //

c) For a general X assume µ(X) <∞ and 1 ≤ p < r <∞ show Lr ⊂ Lp and
that for f ∈ Lr we have ||f |||p ≤ ||f ||rµ(X)

1
p−

1
r ( Hint: Note |f |p ∈ L

r
p

and 1 ∈ Ls for all s ≥ 1

Proof. Let 1 ≤ p < r < ∞. Then we have that fp ∈ L
r
p . Let q be the

congugate index for r
p . Since our space is finite we have that 1 ∈ Lq for any

q. Thus we have that ||f ||pp =
∫
|f |p ≤ ||fp|| r

p
||1||q =

(∫
(|f |p)

r
p
) p

r
(∫

1
) 1

q =

||f ||prµ(X)
1
q . by Hölders inequality. Since p

r + 1
q = 1 we have that 1

q =
r−p
r = 1 − p

r . Now taking p−th roots of both sides we have ||f ||p ≤
||f ||rµ(X)

1
p (1− p

r ) = ||f ||rµ(X)
1
p−

1
r . //

4.

a) Consider two measure spaces (X,F , µ) and (Y,G, ν) where X = Y = [0, 1],
and both F = G are the σ−algebra of Borel subsets of [0, 1]. If µ is the
Lebesgue measure and ν is the counting measure and D = {(x, y)|x =
y} then D is in the product of the σ−algebras, however

∫
ν(Dx)dµ 6=∫

µ(Dy)dν. Why does this not contradict Tonelli’s Theorem?
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Proof. D is in the product σ−algebra. Let (x, y) ∈ X×Y such that x 6= y,
and choose rational x < q < y. Then we have that either (x, y) ∈ (q, 1) ×
(0, q) or (0, q) × (q, 1). And so we can Dc =

⋃
q∈Q(q, 1)(×(0, q) ∪ (0, q) ×

(q, 1)) ∈ F ×G, and so D is also. Now Dx = {x} and Dy = {y} which gives
that

∫
ν(Dx)dµ =

∫
ν({x})dµ =

∫
1dµ = 1 but

∫
µ(Dy)dν =

∫
µ(Dy)dν =∫

0dν = 0 so
∫
ν(Dx)dµ 6=

∫
µ(Dy)dν. This does not contradict Tonelli’s

theorem since (Y,G, ν) is not a σ−finite space. //

b) Consider the reals with the Lebesgue measure and the plan with the induced
product measure. Let f be the function f(x, y) = 1 if x ≥ 0 and x ≤ y <
x + 1, f(x, y) = −1 if x ≥ 0 and x + 1 ≤ y < x + 2 and f(x, y) = 0
otherwise. Show that

∫
[
∫
f(x, y)dx]dy 6=

∫
[
∫
f(x, y)dy]dx. Why does this

not contradict Fubini’s Theorem?

Proof. Let f be the function described. For fixed x we have that
∫
f(x, y)dy =∫ x

−∞ 0dy+
∫ x+1

x
1dy+

∫ x+2

x+1
−1dy+

∫∞
x+2

0dy = x+1−x−x−2+x+1 = 0, and
hence

∫
[
∫
f(x, y)dy]dx = 0. We have also that

∫
f(x, y)dx = 0 for y ≤ 0.

For y ≥ 2 we have
∫
f(x, y)dx =

∫ y
y−1

dx−
∫ y−1

y−2
dx = y−y+1−y+1+y−2 =

0. However for 1 < y < 2 we have
∫
f(x, y)dx =

∫ y
y−1

dx −
∫ y−1

0
dx =

y−y+1−y+2 = 2−y, and for 0 < y < 1 we have
∫
f(x, y)dx =

∫ y
0
dx = y.

This gives then that
∫

(
∫
f(x, y)dx)dy) =

∫ 1

0
ydy +

∫ 2

1
(2 − y)dy = 1

2 − 4 −
2 − 2 + 1

2 = 1 and so
∫

[
∫
f(x, y)dx]dy 6=

∫
[
∫
f(x, y)dy]dx This does not

contradict Fubini’s theorem since our function f is not lebesgue integrable∫∫
|f | = ∞. //

5. Let λ and µ be measures on the σ−algebra F for a space X. State what it is
means for λ to be absolutely continuous with respect to µ ( λ << µ ). Define what
is meant by a Radon-Nikodym derivative [dλ/dµ] Let λ and µ be σ−finite measures
on (X,F), let λ << µ, and let f = dλ/dµ. If g is a non-negative F−measureable
function on X, show that

∫
gdλ =

∫
gfdµ.

Proof. We mean by λ << µ that if µ(A) = 0 then λ(A) = 0. A Radon-Nikodym
derivative [dλ/dµ] is a unique (almost everywhere) non-negative measurable func-
tion such that λ(E) =

∫
E

[dλ/dµ]dµ. We begin by first showing the result for
the case when g is simple. Let g =

∑n
k=1 akχAk

be a simple function. Then
we have that

∫
gdλ =

∫ ∑n
k=1 akχAk

dλ =
∑n
k=1 akλ(Ak) =

∑n
k=1 ak

∫
Ak
fdµ =∫

(
∑n
k=1 akχAk

) · fdµ =
∫
g · fdµ. Now let g be a non-negative F−measurable

function. We can find a sequence of simple functions {ϕn} such that ϕn ↗ gµ−a.e,
whence λ−a.e. Now by monotone convergence we have that

∫
ϕndλ →

∫
gdλ.

However by our previous results we have also that
∫
ϕndλ =

∫
ϕn · fdµ. Since

ϕn ↗ gµ−a.e. then ϕn · f ↗ g · fµ−a.e. and so again by monotone conver-
gence we obtain

∫
ϕndλ =

∫
ϕn · fdµ →

∫
g · fdµ. Uniqueness of limit gives that∫

gdλ =
∫
g · fdµ. //



MEASURE THEORY COURSE NOTES 65

2000
Note All spaces are assumed to be σ−finite.

1. Prove or disprove:
i Every Riemann-integrable function on [0,∞) is Lebesgue-integrable.
ii Every positive Riemann-integrable function on [0,∞) is Lebesgue-integrable.
iii Every Lebesgue-integrable function on [0,∞) is Riemann-integrable

2. Suppose (X,F , µ) is a finite measure space. Prove or disprove:
i Every sequence of F−measurable functions that converges in the L1(µ)−norm

converge a.e. (µ)
ii Every sequence of F−measurable functions that converges a.e. (µ) con-

verges in measure µ.
iii Every sequence of F−measureable functions that converge in the L1(µ)−norm

converges in measure

3.
i Prove that if f ∈ L1(µ) then λ(E) =

∫
E
fdµ defines a C−measure on

(X,F).
ii What is the Radon-Nikodym derivative of λ with respect to mu?
iii Prove from first principles ( without invoking any ”big-name” theorems )

that if λ(E) = 0 for all E ∈ F then f = 0 a.e. (µ)

4.
i Prove the Generalized Minkowski inequality: If (X,F , µ) and (Y,G, λ) are

measure spaces, f a (F×G)−measurable function on X×Y and p ∈ [1,∞),
then ( ∫

X

(
∫
Y

|f(x, y)|dλ)pdµ)
1
p ≤

∫
Y

(
∫
X

|f(x, y)|pdµ)
1
p dλ

ii Explain how the inequality above generalizes the Minkowski inequality

5. Suppose that f is a C−valued measurable function on a measure space (X,µ).
i Prove that if ||f ||r <∞ for some r <∞ then ||f ||p → ||f ||∞ as p→∞.
ii Prove that if µ(X) = 110 and ||f ||r <∞ for some r > 0 then

lim
p→0

||f ||p = e
∫

x
log |f |dµ

.

6.
i Supppose {fn} is a sequence of functions in Lp with p ∈ (1,∞) which

converge a.e. (µ) to f ∈ Lp. Prove that if ||fn||p ≤ 1 for all n, then for all
g ∈ Lq ( 1

p + 1
q = 1) then∫

X

fn gdµ→
∫
fgdµ as n→∞

ii Does your proof ( of the statement in i ) extend to p = 1 and q = ∞? If it
does, then show how, if it does not , then show where the proof fails, and
produce a counterexample.

10This was added in during the prelim
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2000 Solutions

Note All spaces are assumed to be σ−finite.
1. Prove or disprove:

i Every Riemann-integrable function on [0,∞) is Lebesgue-integrable.

Proof. Disprove. Consider f(x) = sin(x)
x on [1,∞) and 0 on [0, 1]. This is

Riemann-integrable provided the limit lim
b→∞

R
∫ b
1

sin(x)
x dx converges. We

integrate each by parts with u = 1
x and dv = sin(x). Then we have

that du = −dx
x2 and v = −cos(x)dx then we have that

∫ b
1

sin(x)
x dx =

−cos(x)
x ]b1−R

∫ b
1
cos(x)
x2 dx = −cos(1)+ cos(b)

b −R
∫ b
1
cos(x)
x2 dx. So we evaluate

lim
b→∞

(−cos(1)+ cos(b)
b +R

∫ b
1
cos(x)
x2 dx) ≤ lim

b→∞

∫ b
1

1
x2 + cos(1) <∞, thus f is

Riemann-integrable. Conversly to compute
∫∞
1
|f | =

∑∞
k=1

∫
k
π(k+1)π|f |.

Now on each set [kπ, (k + 1)π] we have that |f | is bounded and Riemann-
integable, hence it is Lebesgue-integrable with the same integral. How-
ever on each such set we have that

∫ (k+1)π

kπ
|f | ≥

1
2π

(2k+1)π
2

= 1
2k+1 . So we

have that
∑∞
k=1

∫ (k+1)π

kπ
|f | ≥

∑∞
k=1

1
2k+1 . Now since 2k + 1 < 3k we

have 1
2k+1 > 1

3k , so we have
∫∞
1
|f | ≥

∑∞
k=1

1
3k = ∞. Therefore f is not

Lebesgue-integrable. //

ii Every positive Riemann-integrable function on [0,∞) is Lebesgue-integrable.

Proof. We prove this in two steps. First we show that if f is Riemann-
integrable on a set [a, b] then it is lebesgue integrable. Then we will extend
this result to be true on (0,∞). Let f be a Riemann-integrable function
on [a, b] then we will show that this is lebesgue integrable and the two
integrals are equal. Let h be any bounded measurable function h ≤ f .

Then, R
∫ b
a
h ≤ sup

ϕ≤h

∫ b
a
ϕ ≤ inf

ϕ≥h

∫ b
a
ϕ ≤ R

∫ b
a
h where ϕ are simple functions.

These are true since simple functions are step functions. Then we have

that ∀h we have that
∫ b
a
h ≤ R

∫ b
a
h ≤ R

∫ b
a
f = R

∫ b
a
f < ∞ thus we have

that
∫ b
a
f = suph ≤ f

∫ b
a
h ≤ R

∫ b
a
f < ∞. Now we have that R

∫ b
a
f =

R
∫ b
a
f = supψ ≤ fR

∫ b
a
ψ where ψ are taken to be step functions. Since

these are all bounded Riemann-integrable functions on a finite interval we
have that they are lebesgue integrable and the two integrals are equal, thus
supψ ≤ fR

∫ b
a
ψ = supψ ≤ f

∫ b
a
ψ and since every step function is also

bounded measurable we have that R
∫ b
a
f = supψ ≤ f

∫ b
a
ψ ≤ sup

h≤f

∫ b
a
h =∫ b

a
f by definition, so R

∫ b
a
f =

∫ b
a
f . Now we will extend this to (0,∞).

Let f be Riemann-integrable on (0,∞) and consider fn = fχ(0,n) then
fn ↗ f and are non-negative, thus lim

n→∞
R

∫ n
0
f = lim

n→∞

∫ n
0
f by the previous

argument. And so we have lim
n→∞

∫ n
0
f = lim

n→∞

∫
fn →

∫∞
0
f by monotone

convergence. Likewise we have lim
n→∞

R
∫ n
0
f = R

∫∞
0
f < ∞ by definition,
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and so by uniqueness of limit we have that
∫∞
0
f = R

∫∞
0
f < ∞ so f is

lebesgue integrable. //

iii Every Lebesgue-integrable function on [0,∞) is Riemann-integrable

Proof. Prove. Consider the function f(x) = χQ on [0,∞) is a function
which is not Riemann-integrable as it is discontinuous at every point in
(1,∞). However this is Lebesgue-integrable and its Lebesgue-integral is 0
as it is only non-zero on a set of zero measure. //

2. Suppose (X,F , µ) is a finite measure space. Prove or disprove:
i Every sequence of F−measurable functions that converges in the L1(µ)−norm

converge a.e. (µ)

Proof. Disprove. Consider (X,M, [0, 1]) and I0 = [0, 1], I1 = [0, 1
2 ], I2 =

[ 12 , 1], I3 = [0, 1
3 ], I4 = [ 13 ,

2
3 ], I5 = [ 23 , 0], . . .. Let fn = χIn . Then we

have that for n > m(m+1)
2 then

∫
|fn| < 1

m and so {fn} → 0 in mean or
order p namely p = 1. However {fn} does not converge to 0 a.e., and so
this sequence is a sequence which converges in mean of order p, hence in
measure, but does not converge µ−a.e. //

ii Every sequence of F−measurable functions that converges a.e. (µ) con-
verges in measure µ.

Proof. Prove. This is true by two steps. First we show that for finite
spaces convergence µ−a.e. gives convergence almost uniform. Then we
show that convergence almost uniform gives convergence in measure. Let
fn → fµ−a.e. Then given ε, δ > 0. Let A1 be the set of x ∈ X such that
{fn(x)} does not converge to f . Then µ(A1) = 0. Now let Gk = {x /∈
A1| |fk(x) − f(x)| ≥ ε}. Let En =

⋃
k≥nGk. Then X ⊃ E1 ⊃ E2 ⊃ . . ..

Further
⋂
nEn = ∅. Since µ(X) <∞ we have that limµ(En) = µ(

⋂
En) =

0. Thus we can find N large enough such that µ(EN ) < δ and ∀N ≥ n
we have |fn(x) − f(x)| < ε by definition. ∀k ∈ N let εk = 1

k and δk =
2−kη. Use the previous argument to choose sets Ak and numbers Nk such
that µ(Ak) < δk and ∀n ≥ Nk we have |fn(x) − f(x)| < εk on Ack. Let
A =

⋃
Ak. Then µ(A) ≤

∑
2−kη = η. Let ε > 0. Choose k such that

1
k < ε, then ∀x ∈ Ac ⊂ Ack and n ≥ Nk we have |fn(x) − f(x)| ≤ 1

k < ε.
Now given this we show that fn → f in measure. We have that ∀ε > 0
there is an N such that ∀n ≥ N we have |fn(x) − f(x)| < ε on Ac, thus
µ({x| |fn(x) − f(x)| ≥ ε}) ≤ µ(A) < η for n ≥ N . Therefore since η was
arbitrary, we have {fn} converges in meausure to f . //

iii Every sequence of F−measureable functions that converge in the L1(µ)−norm
converges in measure

Proof. Prove. Let {fn} be a sequence which converges in mean of order p.
Given ε > 0 let En = {x| |fn(x) − f(x)| ≥ ε} then we can write µ(En) =∫
En

1dµ. We have also that |fn(x) − f(x)| ≥ ε ⇒ |fn(x) − f(x)|p ≥ εp.
Then εpµ(En) =

∫
En
εp ≤

∫
En
|fn(x) − f(x)|p ≤

∫
|fn(x) − f(x)|p → 0 as
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n → ∞, therefore we have that εpµ(En) → 0 as n → ∞ which gives that
µ(En) → 0 as n→∞. //

3.

i Prove that if f ∈ L1(µ) then λ(E) =
∫
E
fdµ defines a C−measure on

(X,F).

Proof. We have that λ(∅) =
∫
∅ fdµ = 0 as µ is a measure. Likewise let

{Ek} be a countable disjoint family of sets. Then λ
⋃
Ek =

∫⋃
Ek
fdµ =∫ ∑∞

k=1 fχEk
dµ. Now let gn =

∑n
k=1 fχEk

. Then we have that gn →
fµ−a.e. and |gn| ≤ f ∈ L1 so we can write

∫ ∑∞
k=1 fχEk

dµ =
∫

lim gndµ =
lim

∫
gndµ = lim

∫ ∑n
k=1 fχEk

dµ = lim
∑n
k=1

∫
fχEk

dµ =
∑∞
k=1

∫
Ek
fdµ =∑∞

k=1 λ(Ek). This is finite and absolutely convergent as
∫
|f |dµ <∞, and

hence λ is a complex measure. //

ii What is the Radon-Nikodym derivative of λ with respect to mu?

Proof. The Radon-Nikodym derivative of λ with repsect to µ is only defined
when λ << µ, or when µ(E) = 0 ⇒ λ(E) = 0, which is true in our case.
In this case, the Radon-Nikodym derivative [ dλdµ ] is the unqiue ( almost
everywhere ) non-negative measurable function such that λ(E) =

∫
E

[ dλdµ ]dµ.
//

iii Prove from first principles ( without invoking any ”big-name” theorems )
that if λ(E) = 0 for all E ∈ F then f = 0 a.e. (µ)

Proof. Let f 6= 0 on a set E such that µ(E) > 0. Without loss of generality
assume f > 0 on E ( either f > 0 or f < 0 on a smaller set of positive
measure ). Then let E0 = {x ∈ E|f(x) ≥ 1}, and En = {x ∈ E| 1n >

f(x) ≥ 1
n+1}. Then if µ(En) = 0 for any n ∈ N ∪ {0}we have that E =⋃

En so µ(E) =
∑
µ(En) = 0 which is a contradiction. Let n be such

that µ(En) > 0. If n = 0, then
∫
En
fdµ ≥ 1µ(En) > 0 and otherwise∫

En
fdµ ≥ µ(En)

n > 0. //

4.

i Prove the Generalized Minkowski inequality: If (X,F , µ) and (Y,G, λ) are
measure spaces, f a (F×G)−measurable function on X×Y and p ∈ [1,∞),
then ( ∫

X

(
∫
Y

|f(x, y)|dλ)pdµ)
1
p ≤

∫
Y

(
∫
X

|f(x, y)|pdµ)
1
p dλ

Proof. Consider h(y) =
∫
Y
f(x, y)dλ. Let q be the conjugate index of p.

Then we have that F : Lq → R be the functional F (g) =
∫
X
g(x)(

∫
Y
|f(x, y)|dλ)dµ.

Then we have that by definition ||F (g)|| = sup
||g||q=1

∫
X
g(x)(

∫
Y
|f(x, y)|dλ)dµ.
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And so we have that:

||F (g)|| = sup
||g||q=1

∫
X

g(x)(
∫
Y

|f(x, y)|dλ)dµ

Tonelli = sup
||g||q=1

∫
Y

(
∫
X

g(x)|f(x, y)|dµ)dλ

Hölder ≤ sup
||g||q=1

∫
Y

||g||q|| |f(x, y)| ||p,Xdλ

≤
∫
Y

|| |f(x, y)| ||p,Xdλ

This being the right hand side. We have also that
∫
Y
|| |f(x, y)| ||p,Xdλ

otherwise the inequality would be trivially solved. This gives then that F
is a bounded linear functional on Lq, and so by Riesz-representation we
have that ||F || = ||

∫
Y
|f(x, y)|dλ||p,X ⇒( ∫

X

(
∫
Y

|f(x, y)|dλ)pdµ)
1
p ≤

∫
Y

(
∫
X

|f(x, y)|pdµ)
1
p dλ

//

ii Explain how the inequality above generalizes the usual Minkowski inequal-
ity

Proof. Let Y = N, G = ℘(N) and λ be the counting measure. Then we have
that

( ∫
X

(
∫
Y
|f(x, y)dλ)pdµ)

1
p ≤

∫
Y

(
∫
X
|f(x, y)|pdµ)

1
p dλ gives (

∫
X

(
∑
f(x, k))pdµ)

1
p ≤∑

(
∫
X
|f(x, k)|pdµ)

1
p . That is to say ||

∑
fk||p,X ≤

∑
||fk||p,X which is a

generalization of Minkowski’s inequality to infinte sums. //

5. Suppose that f is a C−valued measurable function on a measure space (X,µ).

i Prove that if ||f ||r <∞ for some r <∞ then ||f ||p → ||f ||∞ as p→∞.

Proof. Let f ∈ Lr. We have the following cases. If f ∈ L∞, let M = ||f ||∞.
Then we have that ∀ε > 0 we have that for Bε = {x| |f(x)| > M − ε}, then
we have that (

∫
|f |p)

1
p > (

∫
Bε
|f |p)

1
p > µ(Bε)

1
p (M − ε). We have that

µ(Bε) < ∞ since (
∫
|f |r) 1

r > µ(Bε)
1
r (M − ε). Therefore we have that

lim
p→∞

||f ||p ≥ ||f ||∞. Now ||f ||pp =
∫
|f |pdµ =

∫
|f |r|f |p−r. We have then

that fr ∈ L∞. And since f ∈ L∞ then fp−r ∈ L∞, thus by Hölder∫
|f |r|f |p−rdµ ≤ ||fr||1||fp−r||∞ = ||f ||rr||f ||p−r∞ . Taking p−th roots we

have ||f ||p ≤ ||f ||
r
p
r ||f ||

p−r
p

∞ , and taking limits lim
p→∞

||f ||p ≤ ||f ||∞ and so

lim
p→∞

||f ||p = ||f ||∞. Given that f /∈ L∞ then trivially lim
p→∞

||f ||p ≤ ||f ||∞.

Then we have that ∀M > 0 we have that for BM = {x| |f(x)| > M}, then
(
∫
|f |p)

1
p > (

∫
BM

|f |p)
1
p > µ(BM )

1
pM . We have that µ(BM ) < ∞ since

(
∫
|f |r) 1

r > µ(BM )
1
r (M). Therefore we have that lim

p→∞
||f ||p ≥ ||f ||∞. //
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ii Prove that if µ(X) = 1 and ||f ||r <∞ for some r > 0 then

lim
p→0

||f ||p = e
∫

x
log |f |dµ

.

Proof. Consider lim
p→0+

log ||f ||p = lim
p→0+

log((
∫
|f |p)

1
p ) = lim

p→0+

1
p log(

∫
|f |p)

Now we have an indeterminate form, and so by L’Hopitals rule we have

lim
p→0+

log ||f ||p = lim
p→0+

d
dp

∫
|f |p∫

|f |p . In the numerator since we are not differen-

tiating with respect to the variable of integration, we can pass the derivative

under the integral sign to obtain lim
p→0+

∫
d

dp |f |
p∫

|f |p = lim
p→0+

∫
|f |p log(|f |)∫

|f |p Now tak-

ing the limit we have lim
p→0+

log ||f ||p =
∫

log(|f |)∫
1

=
∫

log(|f |) by hypothesis.

Exponentiating both sides yields the result. //

6.
i Supppose {fn} is a sequence of functions in Lp with p ∈ (1,∞) which

converge a.e. (µ) to f ∈ Lp. Prove that if ||fn||p ≤ 1 for all n, then for all
g ∈ Lq ( 1

p + 1
q = 1) then∫

X

fn gdµ→
∫
fgdµ as n→∞

Proof. Let {fn} → f in Lp. We will first prove our theorem for the case
when g is simple, and then extend to the more general settings. Let g =∑k
i=1 aiχAi . Since our space is σ−finite we can make g finitely supported.

Now consider
∫
fng −

∫
fg =

∫⋃
Ai
|fn − f ||g| ≤ ||g||∞

∫⋃
Ai
|fn − f |. Let

ε > 0. then by Egoroff, we can find a subset A ⊂
⋃
Ai such that µ(A) <

ε
2||g||∞(1+||f ||p) and fn → f uniformly on E =

⋃
Ai \A. We have also that

there is N such that ∀n ≥ N then |fn(x) − f(x)| < ε
2||g||∞µ(E) . Then we

have that ||g||∞
∫⋃

Ai
|fn − f ||g| =

∫
E
|fn − f ||g|dµ +

∫
A
|fn − f ||g|dµ <

ε
2 + ||g||∞

∫
|fn − f | ≤ ε

2 + ||g||∞||fn − f ||pµ(A) by Hölder. We have then
by hypothesis that ε

2 + ||g||∞||fn − f ||pµ(A) ≤ ε
2 + ε

2 ≤ ε for n ≥ N .
So we are done for g simple. Then for the general case ε > 0 choose
ϕ a simple function such that ||g − ϕ||q < ε

2(1+||f ||p) Then we have that∫
|fn− f ||g| =

∫
|fn− f ||g−ϕ|+ϕ| =

∫
|fn− f ||g−ϕ|+

∫
|fn− f ||ϕ|. We

can make
∫
|fn − f ||ϕ| < ε

2 by the previous argument. Likewise by Hölder
we have

∫
|fn−f ||g−ϕ| ≤ ||fn−f ||p||g−ϕ||q < ε

2 and so we are done. //

ii Does your proof ( of the statement in i ) extend to p = 1 and q = ∞? If it
does, then show how, if it does not , then show where the proof fails, and
produce a counterexample.

Proof. This does not hold. Consider (R,M) and take g = 1. Then g ∈ L∞.
However given fn = nχ(0, 1n ). Then

∫
fn = 1 for all n however fn → 0 a.e.

and so
∫
f = 0. //
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1999

1. Prove that if {fn} are non-negative measurable functions that converge
a.e. on R and

∫
R fn →

∫
R f <∞. Then show:

a)
∫
E
f = lim

∫
E
fn for any measurable sets

b) Show that this needs not be the case if
∫

R f = ∞

2. f = x
−1
2 χ(0,1). Then

a) Show f is integrable on R
b) Let {rn} be an enumeration of the rationals and let g(x) =

∑∞
n=1 2−nf(x−

rn). Show g is integrable.
c) Show that g is discontinuous at every point and unbounded on every inter-

val, hence not Riemann integrable on any interval.
d) Show g2 is finite a.e. but that it is not integrable on any interval.

3. Let (X,A, µ) and (Y,B, ν) be complete σ−finite measure spaces.

a) In Lp(X,A, µ) for p ≥ 1, define d(f, g) = ||f − g||p = (
∫

(f − g)P dµ)
1
p .

Prove Lp is complete.
b) Express ( but do not prove ) ||f ||p as a supremum of integrals of the form∫

fgdµ
c) Let f be a µ×ν measurable function. Prove that ||||f ||1,µ||p,ν ≤ ||||f ||pν

||f,µ.

4. Let f(x) = x2sin( 1
x ) and g(x) = x2sin( 1

x2 ) for x 6= 0 and f(0) = g(0) = 0.
Show that

a) f and g are differentiable everywhere in R
b) f is of bounded variation on [−1, 1] and g is not of bounded variation on

[−1, 1]
c) Are f and g absolutely continuous on [−1, 1]?
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1999 Solutions
1. Prove that if {fn} are non-negative measurable functions that converge

a.e. on R and
∫

R fn →
∫

R f <∞. Then show:
a)

∫
E
f = lim

∫
E
fn for any measurable sets

Proof. Let {fn} be a sequence of non-negative F−measurable functions
converging almost eveywhere to f where

∫
fdµ < ∞. Let E be any

measurable set. By Fatou’s lemma we have
∫
E
f ≤ lim

∫
E
fn. Now we

consider lim
∫
E
fn = lim(

∫
fn −

∫
Ec fn) ≤ lim(

∫
fn) + lim(−

∫
Ec fn) =∫

f − lim(
∫
Ec fn). Again Fatou gives us

∫
Ec f ≤ lim(

∫
Ec fn) ⇒ −

∫
Ec f ≥

− lim(
∫
Ec fn), thus we have

∫
f − lim(

∫
Ec fn) ≤

∫
f −

∫
Ec f =

∫
E
f . Thus

lim
∫
E
fn ≤

∫
E
f ⇒

∫
E
fn →

∫
E
f . //

b) Show that this needs not be the case if
∫

R f = ∞

Proof. ConsiderX = (0,∞) with the lebesgue measure. Let fn = χ(R\Q)∩(0,n)

Then we have that fn → f = 1 a.e. and
∫
fn = n → ∞ =

∫
1. However

we have that
∫

Q fn = 0 for each n but
∫

Q 1 = ∞. Therefore
∫

Q fn does not
converge to

∫
Q f . //

2. f = x
−1
2 χ(0,1). Then

a) Show f is integrable on R

Proof. Let fn = fχ( 1
n ,1)

. Then fn ↗ fµ-a.e, and so by monotone conver-
gence we have

∫
fn →

∫
f . Each fn is a positive Riemann integrable

function and so its lebesgue integral is its Rieamnn integral. Further
R

∫ 1

0
f = lim

n→∞
R

∫ 1
1
n
f = lim

n→∞
(2 − ( 1

n )
1
2 ) = 2 < ∞. Hence f is inte-

grable. //

b) Let {rn} be an enumeration of the rationals and let g(x) =
∑∞
n=1 2−nf(x−

rn). Show g is integrable.

Proof. Since f is non-negative we have that
∫
g =

∑∞
n=1 2−n

∫
f(x− rn) =∑∞

n=1 2−n+1 = 2 <∞. //

c) Show that g is discontinuous at every point and unbounded on every inter-
val, hence not Riemann integrable on any interval.

Proof. Note that for any interval I and q ∈ I ∩Q then lim
x→q+

f = ∞ so f is

unbounded on I. This shows also that f is discontinuous at every point as
supopse g is continuous at some r ∈ I. Then we have that for some δ then
|g(y)− g(r)| < 1 for |y− r| < δ, at any rational q ∈ (r, r+ δ) we would have
lim
x→q

f < 1 which is a contradiction. Hence g is not Riemann-integrable on

any interval. //
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d) Show g2 is finite a.e. but that it is not integrable on any interval.

Proof. We note that since g is finite a.e. then g2 is also. However
∫
g2 =∑∞

n=1 2−n
∫
f2(x − rn). Let k be such that rk = 0, then we have that∫

g2 ≥ 2−k
∫
f2 = 2−k

∫ 1

0
dx
x = ∞. However by arguments above we have

that
∫ 1

0
dx
x = lim

n→∞
R

∫ 1
1
n

dx
x = lim

n→∞
ln(n) = ∞ So g2 is not integrable. //

3. Let (X,A, µ) and (Y,B, ν) be complete σ−finite measure spaces.

a) In Lp(X,A, µ) for p ≥ 1, define d(f, g) = ||f − g||p = (
∫

(f − g)P dµ)
1
p .

Prove Lp is complete.

Proof. It suffices to show that any absolutely summable series in Lp is
summable. Give

∑∞
k=1 fk such that {fk} ⊂ Lp, and

∑∞
k=1 ||fk||p = M <

∞, then we will show that
∑∞
k=1 fk = g ∈ Lp is summable. Consider

hn =
∑n
k=1 |fk|. Let h be a measurable function such that hn → h µ−a.e.

We have that ||hn||p ≤
∑n
k=1 ||fk||p < M by Minkowski’s inequality. This

gives then that ||hn||pp =
∫
hpn ≤Mp and so we have

∫
hp ≤Mp which gives

that h is finite µ−a.e. Where h(x) < ∞ we have that g(x) =
∑∞
k=1 fk(x).

Since
∑∞
k=1 fk is absolutely summable we have that

∑∞
k=1 |fk(x)| < ∞

and so we have that
∑∞
k=1 fk(x) is a real number. Let g(x) = 0 where

h(x) = ∞. Now let gn =
∑∞
k=1, then we have that |gn| ≤ |hn| ≤ h which

gives that |g| ≤ h and so g ∈ Lp. Now we have that gn ↗ g µ−a.e.,
and since |gn − g|p ≤ 2p+1|g|p we have that

∫
|gn − g|p → 0 by dominated

convergence, and so
∑∞
k=1 fk = g is summable, whence Lp is complete. //

b) Express ( but do not prove ) ||f ||p as a supremum of integrals of the form∫
fgdµ

Proof. Let q be the conjugate index to p. Then we have thatH(g) =
∫
gfdµ

is a linear functional, and [ provided f ∈ Lp ] we have that ||H|| =
sup

||g||q=1

∫
gfdµ ≤ ||f ||p is bounded so Riesz Representation gives that ||f ||p =

sup
||g||q=1

∫
gfdµ. //

c) Let f be a µ×ν measurable function. Prove that ||||f ||1,µ||p,ν ≤ ||||f ||p,ν ||f,µ.

Proof. Consider h(y) =
∫
X
|f(x, y)|dµ. Let q be the congugate index of p.

Then we have that F : Lq → R be the functional F (g) =
∫
Y
g(y)(

∫
X
|f(x, y)|dµ)dν.

Then we have that by definition ||F (g)|| = sup
||g||q=1

∫
Y
g(y)(

∫
X
|f(x, y)|dµ)dν.

And so we have that:

||F (g)|| = sup
||g||q=1

∫
Y

g(y)(
∫
X

|f(x, y)|dµ)dν

Tonelli = sup
||g||q=1

∫
X

(
∫
Y

g(y)|f(x, y)|dν)dµ

Hölder ≤ sup
||g||q=1

∫
X

||g||q|| |f(x, y)| ||p,Y dµ

≤
∫
X

|| |f(x, y)| ||p,Y dµ
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This being the right hand side. We have also that
∫
X
|| |f(x, y)| ||p,Y dµ <

∞ otherwise the inequality would be trivially solved. This gives then that
F is a bounded linear operator on Lq, and so by Riesz-representation we
have that ||F || = ||

∫
X
|f(x, y)|dµ||p,Y ⇒( ∫

Y

(
∫
X

|f(x, y)|dµ)pdν)
1
p ≤

∫
X

(
∫
Y

|f(x, y)|pdν)
1
p dµ

//

4. Let f(x) = x2sin( 1
x ) and g(x) = x2sin( 1

x2 ) for x 6= 0 and f(0) = g(0) = 0.
Show that

a) f and g are differentiable everywhere in R

Proof. f and g are both differentiable away from 0. So we compute
lim
4x→0

g(4x)
4x lim

4x→0
(4x)2sin( 1

(4x)2) ) = 0 by the sandwhich theorem, so f

is differentiable everywhere. Likewise we compute for f
lim
4x→0

f(4x)
4x lim

4x→0
(4x)sin( 1

(4x)) ) = 0 by the same argument. //

b) f is of bounded variation on [−1, 1] and g is not of bounded variation on
[−1, 1]

Proof. We have that f is of bounded variation on [−1, 1] since |f ′(x)| =
|2x sin( 1

x ) + cos( 1
x )| ≤ 3 away from zero, and since f ′(0) = 0 we have that

|f ′(x)| is bounded on [−1, 1] and hence must be of bounded variation. It
will suffice to show that g is not of bounded variation on [0, 1]. We first
want to consider points xk =

√
2

(kπ) . Then we have that |sin( 1
x2

k
)| ∈ {1, 0}.

We have then that T 1
−1g(x) ≥ T 1

0 g(x). Now since T 1
0 g(x) is larger than the

supremum over all partitions {0 = x0, . . . , xn = 1} where xk are taken as

above, so we have T 1
0 g(x) ≥

∑∞
k=1 |g(xk) − g(xk−1)| =

∑∞
k=1 |g(

√
2
kπ ) −

g(
√

2
(k−1)π )| ≥

∑∞
k=1 |g(

√
2

(2k+1)π )− g(
√

2
2kπ )|, as we are taking few sum-

mands. We have then that
∑∞
k=1 |g(

√
2

(2k+1)π )− g(
√

2
2kπ )| =∑∞

k=1 |
2

(2k+1)π sin( 2k+1
π )− 2

2kπ sin( 2k
π )| =

∑∞
k=1 |

2
(2k+1)π sin( 2k+1

π )| =∑∞
k=1

2
(2k+1)π = 2

2k+1

∑∞
k=1

1
2k+1 ≥

2
2k+1

∑∞
k=1

1
k which diverges, hence

g is not of bounded variation.
//

c) Are f and g absolutely continuous on [−1, 1]?

Proof. This is clear since f again has a bounded derivative on [−1, 1] and
so it is also absolutely continuous. However since we showed that g is not
of bounded variation on [−1, 1] and hence cannot be absolutely continuous.

//
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1998

1. Prove ∫ 1

0

xp

1− x
log(

1
x

) =
∞∑
k=1

1
(p+ k)2

2. Answer two of the following three questions
a) State the monotone class theorem and use it to show that if (X,A, µ) and

(Y,B, ν) are finite measure spaces, then the family of subsets E of X × Y
for which the double integrals∫

[
∫
χEdµ]dν =

∫
[
∫
χEdν]dµ

make sense and are equal is a σ−algebra that contains the product σ−algebra
A⊗ B.

b) State the Fubini-Tonelli theorem
c) Use the Fubini-Tonelli theorem to show that if µ is a finite borel measure

on R then ∫ ∞

0

xpdµ = p

∫ ∞

0

tp−1µ(x|x > t)dt

for all p > 0.

3.
a) Prove the Generalized Minkowski inequality, that is prove that if (X,A, µ)

and (Y,B, ν) are σ−finite spaces and f : X×Y → R is A⊗B−measurable,
then ||||f ||1,µ||p,ν ≤ ||||f ||p,ν ||1,µ for all p ≥ 1.

b) Show that if p > 1 and f ∈ Lp then the mean functional of f given by
F (x) = 1

x

∫ x
0
f(y)dy =

∫ 1

0
f(xt)dt is also in Lp and moreover ||F ||p ≤ q||f ||p

where q is the conjugate index of p.

4. Let T baf , P baf and N b
af be the total, positive and negative variations of f on

[a, b].

a) Show that if f is of bounded variation on [a, b], then
∫ b
a
|f ′(x)|dx ≤ T baf

b) Show that if f is absolutely continuous on [a, b] then P baf =
∫ b
a
(f ′(x) ∨ 0),

N b
af = −

∫ b
a
(f ′(x) ∧ 0)dx and T baf =

∫ b
a
|f ′(x)|dx. (Notation a ∧ b =

max(a, b) and a ∨ b = min(a, b)).
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1998 Solutions

1. Prove ∫ 1

0

xp

1− x
log(

1
x

) =
∞∑
k=1

1
(p+ k)2

Proof. We have that 1
1−x =

∑∞
k=0 x

k for |x| < 1, hence almost everywhere on [0, 1].

This gives that
∫ 1

0
xp

1−x log( 1
x ) =

∫ 1

0

∑∞
k=0 x

k+p(− log(x)) =
∫ 1

0

∑∞
k=0−xk+p log(x).

Define fk = −xk+p log(x) on (0, 1] and fk(0) = 0, then
∫ 1

0
fk =

∫ 1

0
−xk+p log(x),

and since fk ≥ 0 on [0, 1] then we have that
∫ 1

0

∑∞
k=0 fk =

∑∞
k=0

∫ 1

0
fk by mono-

tone convergence. Now take an = 1
n and bn = n

n+1 then an → 0 and bn → 1 so

we have that
∫ 1

0
xp

1−x log( 1
x ) =

∑∞
k=0 lim

n→∞

∫ bn

an
fk = lim

n→∞

∫ bn

an
−xk+p log(x). On each

(an, bn) we have that −xk+p log(x) is bounded and Riemann integrable and that
the lebesgue integral is equal to the Riemann. So we can compute

∫ bn

an
−xk+p log(x)

by parts using u = log(x) and dv = −xk+pdx giving du = dx
x and v = −1

k+p+1x
k+p+1

and so we have that
∫ bn

an
−xk+p log(x) = −xk+p+1 log(x)

k+p+1 ]bn
an

+ 1
k+p+1

∫ bn

an
xk+p =

−xk+p+1 log(x)
k+p+1 ]bn

an
+ 1

(1+k+p)2x
k+p+1]bn

an
= −bk+p+1

n log(bn)
k+p+1 + −ak+p+1

n log(an)
k+p+1 + (1 + k +

p)2bk+p+1
n − (1 + k+ p)2ak+p+1

n . Now we take limits as n increases without bound.
We have lim

n→∞
−bk+p+1

n log(bn)
k+p+1 = 0. Further lim

n→∞
(1 + k + p)2bk+p+1

n = 1
(k+p+1)2 , and

lim
n→∞

(1 + k + p)2ak+p+1
n = 0. Now we compute

lim
n→∞

−ak+p+1
n log(an)
k+p+1 . If we let c = k + p + 1 then we are trying to compute the

limit lim
n→∞

−ac
n log(an)
c = −1

k+p+1 lim
n→∞

acn log(an) = −1
k+p+1 lim

n→∞
log(an)

a−c
n

. If we attempt
to plug in we get the indeterminate form ∞

∞ and so we can use L’Hopitals rule to

obtain −1
k+p+1 lim

n→∞
a−1

n

−c·a−c−1
n

= −1
k+p+1 lim

n→∞
−1

c·a−c−1
n

= −1
k+p+1 lim

n→∞
−1
c a

c+1
n → 0. Now

putting this all together we obtain lim
n→∞

−bk+p+1
n log(bn)
k+p+1 + −ak+p+1

n log(an)
k+p+1 + (1 + k +

p)2bk+p+1
n − (1 + k + p)2ak+p+1

n = 1
(k+p+1)2 . Hence we have that

∫ 1

0
xp

1−x log( 1
x ) =∑∞

k=0 lim
n→∞

∫ bn

an
fk =

∑∞
k=0

1
(k+p+1)2 . Reorder by letting j = k + 1 we have then∫ 1

0
xp

1−x log( 1
x ) =

∑∞
j=1

1
(j+p)2

//

2. Answer two of the following three questions

a) State the monotone class theorem and use it to show that if (X,A, µ) and
(Y,B, ν) are finite measure spaces, then the family of subsets E of X × Y
for which the double integrals∫

[
∫
χEdµ]dν =

∫
[
∫
χEdν]dµ

make sense and are equal is a σ−algebra that contains the product σ−algebra
A⊗ B.
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Proof. The monotone class theorem essentially states that if a σ−algebra
contains a collection of sets C then it contains the smallest σ−algebra which
contains the collection C 11.

Now let C = {E|
∫

[
∫
χEdµ]dν =

∫
[
∫
χEdν]dµ < ∞}. First note that∫

[
∫
χX×Y dν]dµ =

∫
ν(Y )χXdµ = µ(X)ν(Y ) =

∫
µ(X)χY dν =

∫
[
∫
X
χX×Y dµ]dν.

SoX×Y ∈ C. Now if E ∈ C then we have thatX×Y = χE+χEc . This gives
that

∫
[
∫
χX×Y dµ]dν =

∫
[
∫
χEdµ]dν +

∫
[
∫
χEcdµ]dν and

∫
χX×Y dν]dµ =∫

[
∫
χEdν]dµ +

∫
[
∫
χEcdν]dµ However since X × Y and E are both in C

we have that
∫

[
∫
χEdν]dµ+

∫
[
∫
χEcdν]dµ =

∫
[
∫
χEdµ]dν +

∫
[
∫
χEcdµ]dν

which gives that
∫

[
∫
χEcdµ]dν =

∫
[
∫
χEcdν]dµ and so Ec ∈ C. Now given a

countable disjoint collection {Ei} ∈ C, we have that χ⋃
Ei

=
∑
χEi

. Then
we have that

∫
[
∫
χ⋃

Ei
dµ]dν =

∫
[
∫ ∑

χEidµ]dν =
∑∫

[
∫
χEidµ]dν =∑∫

[
∫
χEidν]dµ =

∫
[
∫ ∑

χEidν]dµ =
∫

[
∫
χ⋃

Ei
dν]dµ. By monotone con-

vergence, thus we have that C is a σ−algebra. Since for any measurable
rectangle A × B where A ∈ A and B ∈ B then we have that χA×B is
a measurable function. Tonelli’s theorem gives that

∫
[
∫
χA×Bdµ]dν =∫

[
∫
χA×Bdν]dµ and so by the monotone class theorem we have that C

contains the algebra A⊗ B.
//

b) State the Fubini-Tonelli theorem

Proof. Fubini and Tonelli are similar theorems. We will state one and note
where the other differes. Given (X,A, µ) and (Y,B, ν) are σ−finite spaces,
and f be a non-negative A ⊗ B−measurable function. Then we have the
following:
(a) fx(y) = f(x, y) is a measurable function on Y for almost all x
(b) fy(x) = f(x, y) is a measurable function on X for almost all y
(c)

∫
f(x, y)dν is a measurable function on X

(d)
∫
f(x, y)dµ is a measurable function on Y

(e)
∫

[
∫
fdν]dµ =

∫
[
∫
fdµ]dν.

Now Fubini gives essentially the same conclusion with integrable in ex-
change for measurable. This stronger version comes at the price of requir-
ing our A ⊗ B−measurable function to be integrable and we require our
spaces to become complete. //

c) Use the Fubini-Tonelli theorem to show that if µ is a finite borel measure
on R then ∫ ∞

0

xpdµ = p

∫ ∞

0

tp−1µ(x|x > t)dt

for all p > 0.

Proof. Let f(x, t) = ptp−1χx>t. Then we have that f is measurable in the
product space and so we have that p

∫∞
0
tp−1µ(x|x > t)dt =

∫∞
0

∫
R pt

p−1χx>tdµdt =∫∞
0

∫ t
0
ptp−1dtdµ, By Tonelli. The bounds on the outer integral come from

the fact that f(x, t) = 0 for x ≤ t. So we have that p
∫∞
0
tp−1µ(x|x >

t)dt =
∫∞
0

∫ t
0
ptp−1dtdµ =

∫∞
0
xpdµ. //

11This theorem was not covered in class and I understand that it is a much more far reaching

statement, but to solve the problem this will be sufficient
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3.
a) Prove the Generalized Minkowski inequality, that is prove that if (X,A, µ)

and (Y,B, ν) are σ−finite spaces and f : X×Y → R is A⊗B−measurable,
then ||||f ||1,µ||p,ν ≤ ||||f ||p,ν ||1,µ for all p ≥ 1.

Proof. Consider h(y) =
∫
X
|f(x, y)|dµ. Let q be the congugate index of p.

Then we have that F : Lq → R be the functional F (g) =
∫
Y
g(y)(

∫
X
|f(x, y)|dµ)dν.

Then we have that by definition ||F (g)|| = sup
||g||q=1

∫
Y
g(y)(

∫
X
|f(x, y)|dµ)dν.

And so we have that:

||F (g)|| = sup
||g||q=1

∫
Y

g(y)(
∫
X

|f(x, y)|dµ)dν

Tonelli = sup
||g||q=1

∫
X

(
∫
Y

g(y)|f(x, y)|dν)dµ

Hölder ≤ sup
||g||q=1

∫
X

||g||q|| |f(x, y)| ||p,Y dµ

≤
∫
X

|| |f(x, y)| ||p,Y dµ

This being the right hand side. We have also that
∫
X
|| |f(x, y)| ||p,Y dµ <

∞ otherwise the inequality would be trivially solved. This gives then that
F is a bounded linear operator on Lq, and so by Riesz-representation we
have that ||F || = ||

∫
X
|f(x, y)|dµ||p,Y ⇒( ∫

Y

(
∫
X

|f(x, y)|dµ)pdν)
1
p ≤

∫
X

(
∫
Y

|f(x, y)|pdν)
1
p dµ

//

b) Show that if p > 1 and f ∈ Lp then the mean functional of f given by
F (x) = 1

x

∫ x
0
f(y)dy =

∫ 1

0
f(xt)dt is also in Lp and moreover ||F ||p ≤ q||f ||p

where q is the conjugate index of p.

Proof. Consider ||F ||p = (
∫
X

(
∫ 1

0
f(xt)dt)pdµ)

1
p ≤

∫ 1

0
(
∫
X
f(xt)pdµ)

1
p dt by

general minkowski. By substitution u = xt we have du = tdµ. Then we
have

∫ 1

0
(
∫
X
f(xt)pdµ)

1
p dt =

∫ 1

0
(
∫
X
f(u)ptdµ)

1
p dt =

∫ 1

0
(
∫
X
f(u)ptdµ)

1
p dt =∫ 1

0
||f ||pt

1
p dt = 1

1
p +1

||f ||p = p
p+1 ||f ||p ≤

p
p−1 ||f ||p = q||f ||p

//

4. Let T baf , P baf and N b
af be the total, positive and negative variations of f on

[a, b].

a) Show that if f is of bounded variation on [a, b], then
∫ b
a
|f ′(x)|dx ≤ T baf

Proof. We have that since f is of bounded variation then we can write
f = g − h where g(x) = P xa and h(x) = Nx

a . Then we have also that f is
differentiable almost everywhere, then we have that

∫ b
a
|f ′(x)| =

∫ b
a
|g′(x)−

h′(x)| ≤
∫ b
a
|g′(x)|+

∫ b
a
|h′(x)| Now we have that

∫ b
a
|g′(x)| ≤ g(b)−g(a) and
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a
|h′(x)| ≤ h(b)−h(a) and so we have

∫ b
a
|f ′(x)| ≤ g(b)−g(a)+h(b)−h(a) =

P baf +N b
af = T baf . //

b) Show that if f is absolutely continuous on [a, b] then P baf =
∫ b
a
(f ′(x) ∨ 0),

N b
af = −

∫ b
a
(f ′(x) ∧ 0)dx and T baf =

∫ b
a
|f ′(x)|dx. (Notation a ∧ b =

max(a, b) and a ∨ b = min(a, b)).

Proof. We already have that
∫ b
a
|f ′(x)| ≤ T ba . It suffices to show the reverse

inequality. If f is absolutely continuous then we have that then we have that
T ba = sup

P partition

∑n
k=1 |f(xi) − f(xi−1)| = sup

P partition

∑n
k=1 |

∫ xi−1

xi
f ′(x)| =

sup
P partition

|
∫ b
a
f ′(x)| = |

∫ b
a
f ′(x)| ≤

∫ b
a
|f ′(x)|. It suffices to show that

P ba =
∫ b
a
(f ′(x)∨0), since T baf = P baf+N b

af . Now from part (a) we have that∫ b
a
(f ′(x)∨0) ≤ P baf . And as before we compute P ba = sup

P partition

∑n
k=1[f(xi)−

f(xi−1)]+ = sup
P partition

∑n
k=1[

∫ xi−1

xi
f ′(x)]+ = sup

P partition
[
∫ b
a
f ′(x)]+ Since

on any interval [xi−1, xi] such that
∫ xi−1

xi
f ′(x) ≤ 0 then we have that f ′ ≤ 0

almost everywhere and so [
∫ b
a
f ′(x)]+ =

∑∞
k=1[

∫ xi−1

xi
f ′(x)]+. Now we have

that sup
P partition

[
∫ b
a
f ′(x)]+ = [

∫ b
a
f ′(x)]+ ≤

∫ b
a
[f ′(x)]+ by a similar argument

and so P ba =
∫ b
a
[f ′(x)]+. //
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