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CHAPTER 1

Connections with Measure Theory

The grammar of probability theory is measure theory. We always start with

i) A measurable space (§2,.7). Thus Q is a set, often called the event space, and .7 is a sigma-algebra
of subsets of 2. The elements of 2 are often denoted by w, and dependence on w is often suppressed.
ii) A measure P on (Q2,.%#) for which P(Q2) = 1; this is called a probability measure.

We then call (Q, . #,P) a probability triple. Often the existence of (2, .#,P) is assumed or implicit. Often, we
will assume that €2 has a topology 7, and then we will let .# = ¢(.7), the smallest sigma-algebra containing
the open subsets of Q' this is called the Borel sigma algebra of subsets of €.

Now let’s define random variables. Let (S,.#) be a second measurable space?.

DEFINITION 0.1 (Random variables). A random variable is a measurable mapping from (€2, .%) to (S, .%);
ie, X 1SecZ forall Se.Z.

We also can take expectations.

DEFINITION 0.2 (Expectation). If X is an R-valued random variable, we define

def

E[X] = X (w)P(dw)

weN

when the quantity on the right is defined. We say that this quantity is the expectation of X.

Note that if X is any set which contains another set A, we can define the indicator function y 4 : X —

{0,1} as
def |1 fxeA
xa(@) = {0 ifreX\A
Then for any A € %,
Elxa] =P(A).
Some other common expectations are as follows.

DEFINITION 0.3 (Moments). The p-th moment of a R-valued random variable is defined as E[X?], when
this expectation exists.

DEFINITION 0.4 (Mean and variance). If X is a R-valued random variable, we define its mean to be
E[X] (if it exists) and its variance to be

E[(X - E[X])?].

DEFINITION 0.5 (Characteristic function). If X is an R%valued random variable, we define its charac-
teristic function ¢ as

0(0) Y E [expli(X,0)ga]]. 0 €R?

where (-, -)ga is the standard inner product in RY.

1See Problem 1.
21f § = R?, we usually endow R? with the standard topology and then take . = %(Rd).
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1. Convergence

Now let’s consider how random variables can converge. We assume that (S5,.7) is a measurable space
and that {X,,; n=1,2...} and X be (S5, .)-valued random variables. First, we assume that S has a metric
d (which generates a topology) and that . D Z(S).

DEFINITION 1.1 (Almost sure convergence). We say that X,, converges to X almost surely (written
X, = X as.) if
P{ lim d(X,,X) = o} =1

n—roo

(in the language of measure theory, X,, converges to X almost everywhere).

DEFINITION 1.2 (Convergence in probability). We say that X,, converges to X in probability if
lim P{d(X,,X)>¢e}=0

n—0o0

for every € > 0 (in the language of measure theory, X,, converges to X in measure).

DEFINITION 1.3 (Weak convergence®). We say that X,, converges to X weakly, in law, or in distribution,
if
lim E[p(X,)] = E[p(X)]

n—oo
for all ¢ € Cy(X), the vector space of bounded real-valued continuous functions on X. More generally, we
say that a collection {pn,; n = 1,2...} on (S5,.) converges weakly to another probability measure y on
(S,.7) it
tim [ (@ (do) = [ oan(do)

for all ¢ € Cp(X).
Now we assume that the metric d comes from a norm || - ||.

DEFINITION 1.4 (Convergence in LP). Fix 1 < p < oco?. We say an R-valued random variable is in L? if

E[J| X["] < oo;

and we define ot
(5}
1X L = E[IX|P)H?
for all X € LP. If the X,,’s and X are in L?, we say that X, converges to X in L? if lim,,_, o || X — X, | z» = 0.

Let’s understand how these types of convergence are related. The proofs are given as exercises.

PROPOSITION 1.5. Assume that S has metric d and that ¥ D B(S).

o If X, tends to X a.s., then X,, tends to X in probability.

o If X, tends to X in probability, then X, tends to X in law.

e If the metric d comes from a norm || - ||, then if X,, tends to X in LP (for 1 < p < 00), then X,
tends to X in probability.

We also have a partial converse, whose proof is also one of the exercises.

PROPOSITION 1.6. Assume that S has metric d and that . D B(S). If X,, tends to X in probability,
then X, tends to X a.s., where {X,,} is some subsequence of {X,}.

We will later on need to know more about the relationship between almost-sure convergence and con-
vergence in L'. We will start with

DEFINITION 1.7 (Uniform Integrability). Let A be an index set. A collection {X,; a € A} of real-valued
random variables is said to be uniformly integrable if

m SUBE [|Xa|X{\XQ\2K}} =0.

K—00 ¢

3We will take this up in more detail in Chapter 2.
AThere is typically little use for L°° in probability theory.
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A slightly easier condition which is sufficient for uniform integrability is given by the following.

PROPOSITION 1.8. Let {X,; o € A} be a collection of random variables. Suppose that there is a function
¢ : Ry — Ry such that
el
im —= = o0

t—oo ¢

and such that

sup E[¢(| X4|)] < 00
acA

Then {X.; a € A} is uniformly integrable.
PrROOF. Fix M > 0 and K’ > 0 such that ¢(¢)/t > M if ¢ > K’'. Then for any K > K’,

txpsry <M o)X sy < M lo(t).
Thus

T B[ Xalx(x, 2] < M~ sup E[6(|Xal)].
—00 acA

Now let M tend to infinity. O

It turns out that uniform integrability is exactly the condition needed to strengthen almost-sure conver-
gence to L' convergence. The following lemma will be useful in proving this.

LEMMA 1.9. If {X,; n € N} is a uniformly integrable collection of real-valued random variables, then

n— 00 n—00 n—00 n—+00

PRrROOF. By putting negative signs in the obvious places, we see that it is sufficient to prove the first
inequality.

Fix € > 0 and K > 0 such that

neN
Set
def
Yo = Xox{x,>-k} = Xn — XoX{X,<-K}-
Then it is easy to see that Y,, > X, and Y,, > —K. By these observations and Fatou’s lemma, we have that
E[lim X,] <E [ lim Yn] < lim E[Y,] < lim E[X,] + sup B[ X, [xqx,>x] < lim E[X,] +e.
n—00 n—o0o n—o00 n—o00 neN - n— 00

Now let € tend to zero. (]
We can now prove that in the presence of uniform integrability, a.s. convergence implies L' convergence.
PROPOSITION 1.10. Suppose that {X,;n € NU{oo}} C L' and X,, — X P-a.s.. Then X,, — X in

L' if and only if {X,; n € N} is uniformly integrable.

PRrROOF. First, assume that {X,; n € N} is uniformly integrable. Then (as it is easy to see) {|X, —

Xool; n € N} is uniformly integrable. Since |X,, — Xo| — 0 P-a.s., the previous lemma implies that

lim E[|X, — Xoo|] = E [ lim | X, — Xoo@ =0.
n— o0

n—oo

Now assume that X, — X in L'. Fix ¢ € (0,1). Then there is an integer N. > 1 such that
E[| X, — Xsl|] < e for all n > N.. Since {X,,; 1 <n < N.} is a finite subset of L,

1 lim sup E||X, =0.
(1) A s E[Xlxx =]

Next note that for any K > 0,

sup E [|Xo|xqx,2k}] < sup E[[Xoo|x(x,1>x}] + sup E[| X, — Xoo|]
n>N, n>N. n>Ne

< sup E [|Xoo|X{\Xn|zK}] + sup E[|X,, — X|] < sup E UXOO‘XHXMZK}] +e.
n>Ng n>N, n>Ne
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We also have that

E[| Xn|]
lim sup P{|Xo|> K} < lim sup ———1=
K /oo L>J€ {| ‘ } /Oon>1€ K
< lim LXOOH + lim sup 7[|XH_XOOH
“ K K K /00 n> . K
< i 2l o f
i im —
T K oo K K oo K
=0.

Since X, is integrable,

]g‘n sup E“X |X{|X |>K}] < hm Sup EHX |X{|X \>K}] +e=c¢.

n

Combine this with (1) to get the claim. O

Exercises

We assume a probability triple (€2,.%,P) on which are defined all random variables. We also assume

that (S, ) is a second measurable space.

(1)

Let . be a collection of subsets of 2. Show that
o() € N 7

&' a sigma-algebra
F'DS

is the smallest sigma-algebra containing .&.
Let {A,; n=1,2...} be a collection of measurable subsets of 2. Show that if

o0

D P(4,) < oo,

then

Hint: Note that

m%o=1 Ul?;n Ay C U?):NAk
for any N and use the monotonicity and subadditivity of P. This is the first half of the Borel-Cantelli
law. The second part is in Chapter 3.
Fix a mapping X : Q — S, where (S,.7) is some measurable space. Show that if & C .77, o(«) = .7,
and X 'A € .Z for all A€ 7, then X is a random variable.
Let X be an S-valued random variable. Define

def

uw(A) = P{X € A}. Aes
Show that p is a probability measure on (5,.%) and that for any bounded and measurable function
p: 95 =R,
Ble(¥)] = [ eleln(dz).

The measure y is called the law of X and is often denoted by PX ~1.
Let F': R — [0,1] be right-continuous and nondecreasing and have the following limits:

zgr_nooF(x) =0 and mlirrol0 F(z) =

We want to find a random variable X (on some probability space (§2,.%,P)) such that P{X < ¢} = F(t)
for all ¢t € R; then F is called the cumulative distribution function of X. Consider the probability

triple ([0, 1], 4([0,1] S)l]@ 0, 1])), where £1|@([o 1])) is one-dimensional Lebesgue measure restricted to
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A([0,1]). Set X (w) = w for all w € [0,1]. The random variable is said to be uniformly distributed
on [0,1]. Set

Gt) Yinf{s: F(s) >t}. tel0,1]
Prove that Y = G(X) has distribution F'.

Assume that X is a nonnegative real-valued random variable. Assume that ¢ : R, — R, is a nonde-
creasing function. Show that for any L > 0, such that ¢(L) > 0,

P{X > L} < E[p(X)xix>r3]/¢(L) < E[p(X)]/p(L).

This is a generalized form of the Chebychev inequality.
Let X be a nonnegative real-valued random variable and fix 1 < p < co. Show that

E[X?] :p/ tP7IP{X > t}dt.
0

Hint: Note that zP = pfoz tP~1dt for any = > 0.

Let (S1,%%) and (Ss, %) be two measurable spaces. Assume that X is an Sj-measurable random

variable and that Y is an Sy-measurable random variable. Show that X (w) Lof (X(w),Y(w)) is an

(S1 x S1,S1 X S)-random variable®. Hint: Consider the collection % of rectangle sets and the set

7 LS C S xSy XTIS e F).
Assume that S has metric d and that . D Z(S). Show that if X, tends to X a.s., then X,, tends to X
in probability.
Assume that S has metric d and that ¥ D £(S). Show that if X,, tends to X in probability, then X,
tends to X in law.

Assume that S has metric d and that . D %(S). Show that if X,, tends to X in probability, then X,

tends to X a.s., where {X,,, } is some subsequence of {X,,}. Hint: Consider the sets Ay 2 {d(Xn,,, X) >

1/k}, where ny is large enough that P (A,, ) < 27%. Then use Borel-Cantelli

Next, assume that the metric d comes from a norm || - ||.

Show that if X,, tends to X in L? (for 1 < p < o0), then X,, tends to X in probability. Hint: use
Chebychev’s inequality.

Let (Q, #,P) = ([0, 1], B([0, 1],81}1@([0,1}))7 and set X,, = nx[o,1/n) for all n € N and X = 0. Show that
X, tends to X a.s. but not in L'. Thus, neither almost-sure convergence nor convergence in probability
imply L' convergence.

Let (2, %#,P) = ([0, 1], %(]0, 1],21"@([01”), and set Ay, = [k/n,(k+1)/n) for all n € Nand 1 <k <
n—1. Let {B,; n € N} be some enumeration of the Ay ,’s and set X,, = xp, and X = 0. Show that
X, converges to X in probability but not almost-surely.

Show that if 1 < p < p/ < oo, then || - ||;, is stronger than || - ||1»; i.e., convergence in L?" implies
convergence in LP.

Show that if 1 < p; < p2 < ps < oo, lim, | X, — X||,, = 0, and sup, || X,, — X|p; < oo, then
lim,, || X, —X]||p, = 0. This ends up using a simple interpolation inequality (Hint: use Holder’s inequality).
Assume that {X,,} are identically distributed (i.e., they have the same law) square-integrable random
variables with common expectation p and which are uncorrelated, i.e.,

E[(X; — )Xk —p)] =0
if j # k. Then show that n~' 37| X tends to p in L?. This implies the weak law of large numbers
(see Theorem 1.1).
Show that the variance of a random variable X is also equal to E[X?] — (E[X])?.

Show that if ¢ is the characteristic function of some random variable, then
(a) ¢ is continuous

(b) ¢(0) =1

5Thus d(Xn, X) is measurable in the definitions of almost-sure convergence and convergence in probability.
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(¢) For any N >0, any 61,05 ...0y5 in R and any aq,as...ay in C,
> a8 —6;) > 0.
1<i,j<N

(20) Show that if X is an R-valued random variable in L? for some positive integer p, then E[X?] =
(—0)P¢®(0).

(21) Let X be an R%valued random variable with characteristic function . Show if f is bounded, integrable,
and continuous, then

Bl 0] = lin, [ 5@ { g [ ex0 [<5061° = VT0.0)e] (008 f

e—0 (27T)d
Thus, characteristic functions are unique.
(22) This is Widder’s inversion formula; see [?]. Fix p € £2[0,00) and f € Cy(R). For each A > 0, define

e [ M
t€[0,00)

this is the Laplace transform of x4 (and note that p puts full measure on R).
(a) For each a > 0, let X,, be Poisson with parameter «. Fix f € Cp(R). Show that for each ¢t > 0,

,\ILH;oE {f <X)TA>] = /).

(b) Use the result of the first part to compute
: = ny (=A)" (n)
Jim 27 (5) =™

where ®(™ is the n-derivative of ®.
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CHAPTER 2

Independence, and Conditioning

1. Independence

Next, let’s consider independence. We now assume a probability measure P on (£2,.%#) and an index set
A.

DEFINITION 1.1 (Independence). Let {¥;; i € A} be a collection of sub-sigma-fields of .%. We say that
these sigma-algebras are independent if

P (ﬂ Ai> =[P4

i€ i€
for all A; € ¢; and for all finite subsets A of A. If {X;; i € A} is some collection of random variables, we say
that they are independent if {c{X;}; ¢ € A} are independent

This reduces to the requirement that two sigma-fields 4 and % are independent if P(A N B) = P(A)P(B)
forall A € 4 and all B € %,.
The following is an interesting consequence of having an infinite number of independent sigma-algebras:

THEOREM 1.2 (Kolmogorov’s 0 — 1 Law). Let {¢4,; n =1,2...} be a collection of independent sigma-
algebras. Define

D)

I = Gies

>j
=0 orP(A)=1 forany A€ 7.
PrOOF. We will show that . is independent of itself; then P(A) = P(ANA) = P(A)P(A), which implies

the result. Fix 1 <j < j". Then V) % is independent of \/, -, % D #. Now let j' tend to infinity.
Thus V> ;% C % is independent of .7 O

J
this is called the tail sigma-algebra. Then either P(A

Il
—_
>

~—

We also have the second half of the Borel-Cantelli law®

THEOREM 1.3 (Borel-Cantelli, second half). Assume that {A1, A2 ...} are independent events. Then
S [ P(Ay) = oo implies that

n=1
(2) P(ﬂ UAk>:1.
n=1k=n
PRrOOF. It of course suffices to show that
P (U N A,S) =0.
n=1k=n

To this end, recall that 1 — z < e™* for any x > 0, and calculate that for any 0 < n < m,

m

P (ﬂ AE) = [[Paf) = J] (1 = P(Ay)) <exp [ > P(A)
k=n k=n k=n

k=n

IThe first half was in one of the problems in Chapter 1.
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Let m tend to infinity to see that

P (;ﬁ A,S) =0.

This then implies (2). O

2. Conditional probability

If a random variable X is independent of a sub sigma-algebra ¢, then we expect that ¢ should have no
effect on X. What happens if X and ¢ are not independent?

DEFINITION 2.1 (Conditional expectation). Fix & a sub sigma-algebra of % and X an integrable real-
valued random variable. We say that a second integrable real-valued random variable £ is a wversion of
E[X|¥], the conditional expectation of X given ¥, if

(a) € is Y-measurable.
(b) For every A € 4, E[xa&] = E[xaX].

The following result answers the obvious question of existence.

THEOREM 2.2 (Existence of versions of conditional expectations). For any real-valued integrable random
variable X and any sub sigma-algebra G of F, a version of E[X|¥] exists.

PROOF. Define the two measures

pe(A) CENaXE]  Aew

where X+ &' max{X,0} and X~ ef max{—X,0}. Then py is a measure on (£2,%) which is absolutely

continuous with respect to P|, (if A € 4 and P(A) = 0, then ui(A) = 0). Thus applying the Radon-
Nikodym theorem to measures on (2,%), we get the existence of two ¥-measurable integrable random
variables ¢4 and £_ such that

Elxaés] = ps(A) = E[xaX¥]

for all A € ¢. Since X = X — X_ and since expectations are linear, we get that £ ef T — &7 is a version
of E[X¥]. O

One of the problems tells us that all versions of E[X|¥¢] differ only on a set of measure zero, so we can
safely refer to E[X|¥] as an equivalence class of integrable functions.

DEFINITION 2.3 (Conditional probability). For any A € .% and any sub sigma-algebra ¢ of %, we define

P(Al¥) € E[xal9].

Exercises
As usual, we consider an underlying probability triple (2, .%#,P). We also assume an index set I C R

and a filtration {#; t € I}.

(1) Suppose if X is a random variable taking values in a measurable space (5,.7). We define o{X} as the
smallest sub-sigma-algebra of . with respect to which X is measurable. Prove that o{X} = X (%) e
{X~Y(A): A e .7} The point of this is that the definition of o{X} relied upon a generated sigma-field,
whereas we can also define it directly as X ~1.7.

(2) Prove Halmos’ monotone class theorem. A collection .%; of subsets of Q is called a field if it
contains (2, is closed under complementation and (finite) unions. A collection .# of subsets of 2 is called
a monotone class if it is closed under monotone limits (i.e., if {A,} C 4 and if A, /A or A, \( A,
then A € .#). Show that if %y C ., then o(%) C .#. Hints:

(a) Define

m(Fo) & N M

.%l a IIlOPOtOne class
M D Fo

12



Show that m(.%) is a monotone class and that if it is a field, then it is a sigma-algebra (and hence
U(yo) C m(ﬁo))

(b) Show that Q € m(%).

(c) Show that m(.%y) is closed under complementation by showing that

m(Fy) C{ACQ: A°em(F)}.
(d) Show that m(.%y) is closed under (finite) unions by showing that
m(Fy) C{ACQ: AUB e m(%) for all B € %}
m(F) C{ACQ: AUB e m(%) for all B € m(%)}.

(3) Prove Dynkin’s 7 — A theorem. A collection & of subsets of € is called a w-system if it is closed
under (finite) intersections. A collection . of subsets of € is called a A-system if it contains €2, is closed
under complementation and countable disjoint unions (i.e., if {A,} C £ are disjoint, then U, A,, € .Z£).
Show that if & C £, then o(&#) C .£. Hints:

(a) Define
(7 N 2
£ a A-system
L'>p

Show that [(£?) is a A-system and that if it is a w-system, then it is a sigma-algebra (and hence

o(Z) C ().
(b) Show that I(Z?) is a m-system by showing that

(Z)c{ACQ: AnNBel(Z) for all Be 2}
(Z)c{ACQ: ANBel(Z) forall Bel(Z)}.

To show that the collections on the right are closed under complementation, note that (A°N B)¢ =
AUB®=(ANB)UB".
(4) Let X be a metric space and let u be a probability measure on (X, %(X)). Show that u is regular; i.e.,
that for all A € A(X),
u(A) = p(A) = ps(A4),
where
w*(A) &of inf{u(0): O D A is open}

i (A) 2o sup{pu(F): F C A is closed}
for all A € #(X). Hint: consider the collection
def

9 ={AecB(X): p(A)=p(4) = p.(A)}
of subsets of X. '
(5) Let E be a metric space and T > 0 and consider the measurable space (£2,.%), where f C([0,T); B),

this being endowed with the topology generated by the supremum norm, and .% L'z (C([0,T]; E)). For
each 0 <t < T, let Xi(w) =w(t) for all w € Q. Show that the X;’s are E-valued random variables and
that Z(C([0,T]; E)) = o{Xy; t € [0,T]}.

(6) Fix A and B in .Z, and set 4 def {0,9, A, A} and % def {0,9, B, B¢}. Show that A and B are
independent if and only if ¢ and %, are independent. This reduces the general definition of independence
to the most elementary one.

(7) Let A be an index set and let {%4;; i € A} be a collection of sub sigma-algebras of .%. We define

\/gtd:efa{U%}.

teA teEA

Show that
\/ 4, = o {NterAs : A C A is countable and A; € ¥ for all t € A}.
teA

13



(8)
9)

(12)
(13)
(14)

(15)
(16)
(17)

(18)

(22)

Assume that o/ and % are either m-systems or fields, and that all of the sets in &/ are independent of
all of the sets in @%. Show that o(«#) is independent of o(%4).

Let (2;,%;,P;) be a probability triple for ¢ = 1,2...n. Define def XD Qi 9 def X 1%, and P def
x?_,P;. For each 1 < i < n, define

%;d:ef{(:vl,xg...xn) e €A A €Y}

Show that the %;’s are independent. This proves that independent random variables give rise to product
measures.

Assume that X and Y are independent random variables taking values, respectively, in two measurable
spaces (S1,-71) and (S, %) with laws, respectively, of p; and ps. Define the (S X Sy, ) X S)-valued

random variable Z % (X,Y). Let u be the law of Z. Show that p = u1 X po. Hint: start with rectangle
sets. This proves that product measures give rise to independence.
Assume that {X7,X5...} are independent real-valued random variables. Show that

n

P nh_}n;O nt ZXj exists p € {0, 1}.
j=1

Hint: show that the existence of the limit does not depend on any finite number of terms.

Now let X be a real-valued integrable random variable and let 4 be a sub sigma-algebra of .#.

Any two versions of E[X|¥] differ only on a set of measure zero.

The mapping X — E[X|¥] is a linear mapping from L' into itself of norm 1.

If ¢ : R — R is any convex function such that ¢(X) is integrable, then ¢(E[X|¥4]) < E[p(X)|¥]. Hint:

write ¢ as the supremum of all linear minorants.

If X >0, then E[X|¥¢] > 0.

If X is 4-measurable, then E[X|¥] = X.

If 4’ is a second sub sigma-algebra of .7 such that ¢ C ¢’, then E[E[X|¥¢’]|¢] = E[X|¥]. This is iterated

conditioning.

Let X and Y be random variables which take values in measurable spaces (S1,.7) and (S, .%) respec-

tively. Suppose that Y is measurable with respect to some sigma-algebra ¢ but that X is independent of

4. Let ¢ : S1 X S2 — R be a bounded function. Then E[p(X,Y)|¥4] = ®(Y), where ®(y) d:efE[qS(X, Y)]

for all y € S;. Hint: first consider functions which are indicators of rectangle sets.

Suppose that X is independent of 4. Use the previous question to compute E[X|¥].

Let @ % o{A1,As... Ay}, where {A;} C F are disjoint and U ;A4; = Q. Let X be an integrable

random variable. Find E[X|¥].

Let X be a bounded or nonnegative random variable, and let ¢ be a sub sigma-algebra of .%. Let P’ be
a second probability measure on (£2,.%) which is absolutely continuous with respect to P, and let E’ be
the expecation operator associated with P’. Show that

E|[x%|9]

ElFl9]

E'[X|¥] =

Make sure to prove that P'-a.s., E [’%|%} > 0. This is a form of Bayes’ rule.
Let X be an R%valued random variable and let & be a sub-sigma-algebra of .%. Suppose that

E [exp [\/71<97X>Rd] |§€] =E [exp [\/71<67X>Rd]]
for all # € R. Show that X is independent of ¢.

14



CHAPTER 3

Asymptotics: Limit theorems

We now take up some asymptotic questions. Throughout this section, we will let {&1,&>...} be an
independent and identically distributed (i.i.d.) collection of R-valued random variables with common law pu.

Also define
def
S =6
j=1

for all n.

1. The weak law of large numbers

First, let’s assume that

(3) / |z|p(dr) < oo and /xu(d;ﬂ) =0
R R
(if the second condition is not true, we translate).

THEOREM 1.1 (Weak Law of Large Numbers for L? random variables). Assume that

/ z?p(dr) < oc.
z€R

Then we have that 5
lim =2 =0
n—oo N

in probability.

PROOF. We use problem 15 in chapter 1. Since the &;’s are independent, they are uncorrelated. Problem
15 in chapter 1 implies that n~1S, tends to zero in L2 Since L? convergence implies convergence in
probability, we have the desired result. O

We can fairly easily remove the requirement of square-integrability.

THEOREM 1.2 (Weak Law of Large Numbers). Under the assumptions of (3) we have the weak law of

large numbers.
P{‘lsn > 5}.
n

Fix next L > 0 (to be determined in a moment) and truncate the &;’; define
def

ij = €jX[—L,L}(€j)
§=g-Elg]

§Eg-¢f

Proor. Fix § > 0; we want to bound

for all j € N. Then we have that

def

S, = Skt gh2 4 gL3

15



where . . .
SESE SEYE wa s
j=1 j=1 j=1

We first note that SZ+2 is in fact not random;

1

5P =Ou([-L D]} + [ ande)

n |21<L
by dominated convergence,

lim zu(dz) = 0,
LA Jizi<t ()

[ et
[z|<L
if L > L. We next note that

o) _3 3 N gl
p{|nsts| 2 3} < SElnsron < 2 Y me

n

so there is an L such that

20
3

lsL,Zﬂ
non

j=1

<

| w

{OM{[—LL]}"’ /| » Zu(dZ)} =3 /| )

By the weak law of large numbers for L? random variables, we have that

1
lim P{‘Sﬁvl > 5} =0,
n—o0 n 3
sofor L > L,
1 3
PI=S,| >0, <= zu(dz).
n 0 Jiz>L
By dominated convergence,
lim zu(dz) =0,
L—oo |z\>L
so we have the claimed result. O

We will later use martingale theory to prove the strong law of large numbers, which gives almost-sure
convergence if p is integrable.

2. The Central Limit Theorem

We now consider the central limit theorem for the £;’s. Let us begin by defining

DEFINITION 2.1 (Gaussian Random Variables). Define
2

B (A) /A 127r exp {‘"”2} de.  Ac BR)

For any m € R and o > 0, we say that an R-valued random variable 7 (defined on some probability triple
(Q, Z,P)) is N(m,o?) if

P{ne A} =&({z eR: ox +m e A}). A e BR)

We now assume that
(4) / zu(dr) =0 and / 22 u(dr) = 1;
R R
i.e., the &’s have mean zero and standard deviation 1'. Then we have

LThis is not really a big restriction; as long as the standard deviation o of the £;’s is positive, we can get (4) by replacing

& by (& —€)/o.

16



THEOREM 2.2 (Central Limit Theorem). Let v, be the law of Sn/\/n; i.e.,
Un(A) d:efﬂm{nflﬂsn € A} . Ac B[R)

then lim, oo i, = & in the Prohorov topology. Equivalently,

lim E [go (n_l/QSnﬂ = / o(x)B(dx)
n— o0 R
for all p € Cp(R).
Proor. The key observation is that the result is identically true for all n if the £;’s are Gaussian. To
make this precise, enlarge (£2,.%,P) as necessary to include a collection {n;; j = 1,2...} of independent

91(0, 1)-random variable which are also independent of the &;’s. Then n~'/2 >y is ‘ﬁ(() 1) for all n. We
want to sequentially replace the &;’s by the n;’s. For each n, define

S YL+ D>

j€{1,2..n} j€{1,2..n}
i<k i>k

Then S” = S,, and that S°/\/n is 91(0, 1).
Fix now ¢ € C(R) (i.e.,  and its first three derivatives are bounded. Thus

E[p(n125,)] - [ e(@)8(de) = E [¢(n287)] - B [pln~/250)]

|
—

n

= > {E e 28] —E [p(n 285 }.

0

=~
Il

To take full advantage of independence, define

U,’f def Z fj + Z ;-

je{1,2..n} je{1,2..n}
J<k >k

then for each kK =1,2...n
SF=UF4+¢ and S1=UF4n
and & and 7 are independent of UF. Define now

R(z;0) 2 ol +6) — pla) — $(x)6 — 3¢ (x)0”

for all x and y in R. Then for any k =1,2...n

E [p(n/28%)] = E [p(n20%)] + —=E [s(n 2006,

+ 5 [0 208 @)?] +E [R2UR 6/v)

=B [p(n™2U)] + 5B [$(n208)] + B [RWE /v &/ V)]

~1/2G [ 1 L
E |o(n™ /255 =B [p(n™ 20| + = [oln 20

+ 5B (B0 PUD )] + B[R 20/ )]

2n
=B [¢(n U] + 5B [¢(n208)] + B[RO 20k )|

\/

o) < 3 {E IR 1208 €0/ vi) + B [|Re 208 v ).

k=1

17



We will now bound R(x;y) in two ways, for large y and then for small y. We have that

R(z;9) = 623/ (1 — )20 (2 + s0)ds = 62 /:0 (1 =) {p(x + sd) — $(x)}ds

5=0
for all x and y. Thus
o[?

[R(x;0)| < min{ lelles @), ||<P||02(R>} < wmin{|]?, |5]*}

where
def 1
K = *||90||CS(R)

Thus,

E [0(S,/v)] - / ()6 (dz)

IN
=

&1 161° I Inyl?
(i o {4 e {2
{E [min {J¢;1,n="721¢; }| +E [min {Ins], =21, } ] }
/ min{\m|,n_1/2|x|3}u(dw)—|—/ min{|x|,n_1/2|x|3}(’5(dx)}.
z€R zeR
By dominated convergence,

dm [P + [P0 v ) <o,

which completes the proof if ¢ € C3(R).
Assume now that ¢ € Cy(R). For each § > 0, define

ps(z) & /ye]R o (y)(2m6) /2 exp {(y%:p)} dy.

Then s € C3(R). We also have that

M- IM-

K
n

Il
_

I
=
—

lim sup [ps(z) — (z)| = 0.
=0 |z|1<L

for each L > 0. We write that

E [o(S,/v)] - / ()6 (dx)

< E [Je(Sa/ V) = ¢5(Sa/ V)]

+ [ lostsu/vi] - [ wstetan)]+ [ losto) - ot o(aa).
From the above, we have that
T ' [es(Su/ V)] - [ este)e(an)| =0
for each § > 0. We then have that
[ est@) — )l 0() < 2eloqO®\ =L L + s los(e) - (x)

E [|(Sn/vn) — ¢5(Sn/vn)|] < 2llellcmP {|Sa/vnl > L} + sup, lps(x) — @(x)].
We thus have that

E [p(S/ V)] / ()6 (d)

lim
n— o0

1
< 2|:|11§le%(3:) — o(@)| + 2llellem {ﬁ(R\ (=L, L]) + L2}
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Let 6 (0 and L — oo. O

3. Large Deviations

Let’s now go back to the weak law of large numbers, and study how quickly does convergence occurs.
This is the subject of large deviations.

Let’s first carry out a Gaussian calculation, just because we can. Let {n;; ¢ € N} be an independent
collection of identically-distributed 91(0,1) random variables. Define

& def =
S = om
j=1
Then 7S, is 9(0,1/n). We have
LemMmA 3.1. For any L > 0,
1 ~ L?
lim —logP{|n"'S,| > L} = ——.
(5) Jim —logP{|n™"5n| 2 L} = —
PRrooF. First, we note that

P{|S,/n| = L} =

1 2
— 2| dz.
o1 VT exp [—nz”/2] dz

For any § > 0, we thus have that

~ 1 1 20
P{|S,,/n| > L 2/ ————exp —n222dz>exp{—L+52] .
(Sufal 2Ly [ e [0t/ 0P| e
Thus )
lim LlogP{jn 15, > 1} > ~ L0
n—oo T 2

so in fact we have the lower bound

1 ~ L?
lim —logP{|n"'S,| > L} > -5
n

n—roo

We also have that for each 6 > 0
1

2[>L /27 /n

<exp [-n(1—6)L?/2]

P{|S,/n| > L} < exp [—n(1 — 6)2°/2] exp [-ndz*/2] dz

1

21=L /21 /n
<exp [-n(1—6§)L?/2] / ! exp [-ndz?/2] dz = \/?exp [-n(1—6)L?/2].

2€R \/ 2T/

exp [—ndz*/2] dz

Thus
L2(1 - §)?

_ 1 -
m —logP{|n"'S,| > L} > —
im —log P{jn™" 5[ > L} > 5

n— oo
so in fact we have the upper bound

L logP{n—18,| > L} > -
im —lo n_ S, > > .
e g 2

]
If we define I5(2) ef % for all z € R, we thus can rewrite (5) as
1 _
lim —logP{|n~'S,|> L} =— inf I .
i 2 log PAn S| 2 L} = — inf Ia(2)

DEFINITION 3.2 (Large deviations). A collection {X,,} of random variables taking values in some Polish
space X has a large deviations principle with rate function I : X — [0, oo] if

19



(a) For every s > 0, the set
®(s) € {w e X : I(2) < s}
is compact.
(b) For every F' C R closed,
lim n~'logP{S,/n € F} < — in%[(:z:).
n—00 BAS

(¢) For every G C R open,
lim n~'logP{S,/n € G} > — uelgl(x)

n—oo

Heuristically, we can write that
P{X, € A} < exp {—n inf I(J;)]
z€A
To return to our setting, assume now that

M(6) & / e’ p(dr) < oo
R

for all § € R. We want to show that under this assumption, S, /n has a large deviations principle. To guess
what the action functional is, let’s first observe a certain way to use the exponential Chebychev inequality.
LEMMA 3.3. For any L >0 and any 0 € R,
P{6S,/n > L} <exp[-n(L —log M (6))]
for all n.

PROOF. We have that
P{0S, > nL} < e "FE[exp [n6X,]].

&[T - ar

Note that
E [exp [n6X,,]

From this we can immediately see that for any L > 0 and any 6 > 0,
P{Sn/n = L} =P{0S,/n = 0L} < exp [-n(L6 — log M (0))]

Thus
lim n~'logP{S,/n > L} < inf{—0x + log M(0)} = — sup{fxlog M (0)}.
n— 00 6>0 0>0
Define now
I(z) ¥ sup {0z —log M(0)} 0€R
0cR

(I is the Legendre-Fenchel transform of log M). We will show that X, Lof

principle (in R) with rate function I.

Sp/n has a large deviations

LEMMA 3.4. For every s > 0, ®(s) is compact.

PROOF. For convenience, define

folz) 0z —logM(6) xeR

for each # € R. Then
{xER sup fo(z) } ({z €R: folx) < s}.

OER 9cR

Since fp is continuous for each 6, we have written ®(s) as an intersection of closed sets. Thus ®(s) is clearly
closed. We also note that

(s)Cc{reR: fi(x) <s}n{zeR: f1(z) <s}.
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If fi(z) <sand f_i(x) < s, then 2 < s+ log M (1) and —z < s+ log M(—1), so
O(s) C [-s—logM(—1),s+ log M(1)]
so ®(s) is also bounded. Thus ®(s) is compact. O
We now want to prove the large deviations upper bound. We begin with compact sets.
LEMMA 3.5. For every K CC R,
(6) nh_)rr;o n"tlogP{S,/n € K} < —xlgjf( I(x).

PRrROOF. First fix s < inf,cx I(z), and note that

Kcf{zeR: I(x)>s}=|J{z eR: 0z —log M(0) > s}
6cR
Since we thus cover K by a collection of open sets, we can extract a finite subcover; there is a finite subset
© of R such that
Kc |J{zeR: 0z > s+logM(0)}
0O
Now note that for any 6§ € ©, Lemma 3.3 implies that

P{0S,/n > s+logM(0)} < e *".
Thus, P{S,/n € K} < |B]e~*" for all n, and hence
P{S,/n € K} <|Ole°",

0
lim n~'logP{S,/n € K} < —s
n—oo

and thus (6) holds. O

Now we prove exponential tightness;
LEMMA 3.6. We have that
(7) lim lim n~'logP{|S,/n| > L} = —c0.
L—o0 n—o0

PROOF. This is an easy consequence of Lemma 3.3. Take § = +1 and any L > 0. Then
lim n~'logP{S,/n > L} < —(L —log M(1))
n—oo

Iim logP{Sn/n < —L} < —(L — log M (1))
and this proves (7). O
We now have the full upper bound
PROPOSITION 3.7. For every closed subset F' of R,
(8) R@Onfl logP{S,,/n € F} < fmnelgl(:z:)
PRrROOF. For any L > 0, we thus have that F C (F N [-L,L]) U (=L, L)¢, so
Tim. n~!logP{S,/n € F} < Tim. n~'log {P{S,/n € FN[~L, L]} +P{|S,/n| > L}}

< .
< max { ZeF%r[lfL7L} I(z),w(L)}

where
w(L) = Tm 0t log P{|Sy/n| > L};
we have from (7) that limy_,o w(L) = —co. We also have that

lim inf I(z) = inf I(2).
L—oo ze FN[—L,L] z€F

Thus we have the desired upper bound (8). O
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To prove the lower bound, let’s first study I a bit more closely under a regularity assumption.

LEMMA 3.8. Assume that p((a, 8)) > 0 for all a« < 8 (i.e., supppu = R). Then
I(x) = max {0z —log M(6)}.

PROOF. For each = € R, define

f=(0) oy — log M(0) = — log/ =) u(dz) feR
z€R

Each fz is continuous. We also note that z — —log z is decreasing on (0,00). If § > 0, then

RO) <-tog [ @) < —tog [ eulds) = ~0~logu((w -+ 1,0)
>z+1 >x+1
so limg_, e fm(ﬁ) = —o00, and if # < 0, then
RO) <-tog [ M) < —tog [ e (dz) =6~ log (0,2 + 1)
z<x—1 <z+1

so limg_, oo fm(Q) = —o0. Thus the claim follows. O
This allows us to prove the lower bound under the above regularity assumption.

LEMMA 3.9. Assume that supp p = R. Then for every G C R open,
T 1 s
nlbn;on logP{S,/n € G} < xlggf(l‘)

ProOF. It is sufficient to prove that for any = € G,
(9) lim lim n~ 'logP{S,/n € G} > —I(z).

§—0n—oo

This is trivial if I(z) = oo, so we further assume that I(x) < occ.
Fix 6 € R such that

I(z) = 0z —log M (6).

Note that the first-order condition of optimality for 6 is that
M (9)
10 20

we will use this later. Now fix any 6 > 0 such that (z — J,z + J) C G (possible since G is open). We now
write that

P{S,/n € G} > P{|S,/n—z| < 0}
= E [X{15, /n—a|<s} €xp [0S, — nlog M(0)] exp [-n (65, /n — log M (0))]]

[XA Hz 1 ef ]
E [T, %]

K2

Note that

no(4) i E [xaexp [0S, — nlog M(0)]] = Ae F

is a probability measure on (£2,.%). Also note that if |S,,/n — x| < d, then by our choice of 6,
0S,/n —log M(0) < I(x) + ||0]|0.

Thus
P{|Sn/n =z <3} 2P, 6 {|Sn/n — x| < 6} exp[—n (I(z) +[|60]|9)] -
Let’s next look at the statistics of the &;’s under P}, ,. For any {A;;i=1,2...n} in Z(R),

~ ” (EDTTE, e n y n
o () O] ERO.

i=1

where .
ZGA € Zp’(dz)
M(0)
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Thus, under I%W the &,&;...&, are i.i.d. with law up. Note that the expected value of the &’s (for
1 <4 < n) under IP’;Lﬂ is exactly

o #e”uldz) M)
/ oldz) = =gy are)

by (10). Note also that
/ Ppo(dz) = er T M) _ M)
2€R M(6) M(6)’

so the variance of the &’s (for 1 <i < n) is

M(0) _ M(0)
M(0)  M(0)
which is finite. By Chebychev’s inequality,
_ [ M(6) M)
! — >1-—P —z| >0 >1—-nt | —L - L.
Thus
lim n~'logP{[S,/n — x| <8} > —n(I(z) +|0]5).
n—oo
Now let 0 tend to zero; we get (9). O

Let’s now prove the full lower bound.
LEMMA 3.10. For every G C R open,
e | s
nl;ngon logP{S,/n € G} < muelgl(x)
This holds even if supp u # R.

ProOF. Enlarge (Q,.%,P) as necessary to support a independent collection {n1,72 ...} of 9(0, 1) ran-
dom variables which are independent of the {;’s. For each € > 0, define

def .
§ =& +en; jeN
S5EY =S8, +ey n.  neN
j=1 j=1

Then the ;’s are independent and identically distributed with common law

e (4) / [ Aea®

where
2

Fe(x) d:ef/ R(zmz)*l/?exp {212] w(dz) xeR
zE

Thus supp pu° = R. We furthermore have that
M.(0) = / €% e (dz) = M(0)e=="""/?
z€R

for all € R and we define
I.(z) e sup{fx — log M.(0)} = sup {933 —log M(6) — } < I(x).
feR feR 2
Fix now ¢ > 0 and z* € G such that I(2*) < infzeq I(z)+4. Fix next 6’ > 0 such that (x*—¢§", 2*+0") C
G. Then by Lemma 3.9

n—oo 1

1 €
(11) lim log]P’{‘S"—:c*
n

< 5'/2} >—  inf  I(2)>—I(z") > —I(z*)+6 > — ingI(z) + 6.
z€E



We now compute that

P{’S"—a:* <6’/2}§P{‘Sn—x* <6’}+P{’H”26’/2}.
n n n
and thus
(12)  lim —logP{S,/n € G} > lim —logP<|— —a™| <4
n—oo N n—soo N n

1 €
> lim log{]P’{’S"—x*
n

n—oo N

<5//2}_P{’5n—5n
n

onl)

From Lemma L:GaussLDP we have that

| e
lim lim logIP’{ n 25’/2} =—0
eN0On—oon

and combining this and (11) in (12), we get the desired result. O

Sn— S,
n

Exercises

(1) Show that if M is finite on a region (a,b), it is infinitely differentiable on (a, b).

(2) Fix f € C(R) is such that limj;|e f(z) = —0o and [;ef/®dz < co. Show (directly) that for any
measurable subset A of R,

lim n_llog/ e @ dy > sup f(x)
n—oo €A reA°

lim n~! log/ e @ dy < sup f(x)
n—oo xEA fL'EA

3)

(4) Show that I(€) = 0, where £ &' Jp zp(d). .

(5) Show that 7 is M(m, ¢2) if and only if E[e?7] = e~ 0" /24m0 for all § € R,
(6)

6) Show that if 1 is 91(m,o?), then its mean is m and its variance is o?. Hint: use the characteristic

function.
(7) Show that if o > 0, then 7 is 9(m, 0?) if and only if

Piy c A} = /A \/227 exp {_ (= 2‘072”)2] de.  Ac BR)

Show that the law of a 91(m,0) random variable is d,y,.
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CHAPTER 4

Martingales

As usual, we assume the existence of an underlying measurable space (2, % ); note that for the moment,
we are not requiring a probability measure on (€2,.%). Throughout, we fix an index set I C R.

DEFINITION 0.11 (Filtration). A collection {#; t € I} of sub-sigma-algebras of .# is called a filtration
of # if #, C % for all s and ¢ in I such that s <.

DEFINITION 0.12 (Stochastic process). Fix a measurable space (S,.7). Then a collection {X;; t € I} of
S-valued random variables is called a stochastic process.

In practice, filtrations are often related to stochastic processes. We can ask that a stochastic process “follow”
a filtration

DEFINITION 0.13 (Adapted process). If we have a filtration {%;; t € I'} and a stochastic process {Xy; ¢ €
I}, then the stochastic process is said to be adapted to the filtration if X; is .%#;-measurable for each t € I;
ie,if o{X;} C # forallt el

We can also generate a filtration by a stochastic process. To so so, let’s first make a definition.

DEFINITION 0.14 (Filtration defined by a process). Let {Xy; ¢t € I} be a stochastic process. We then
define .
FX L o(X, s <t}

Often it is useful to stop based upon current knowledge.

DEFINITION 0.15 (Stopping time). Let {%;; t € I} be a filtration. An I-valued random variable 7 is a
called stopping time if {7 <t} € % for all ¢t € I.

We can then randomly “stop” the filtration

DEFINITION 0.16 (Stopped filtration). Let {&;; t € I'} be a filtration and let 7 be a stopping time. We
define
F, Y {AeF: An{r<t}e F foralltI}.
We will have a lot more to say about stopping times when we consider martingales.
Let’s now consider the following setup. Let {.%#,; n € N} be a filtration of (2,.%#). We then define

DEFINITION 0.17 (Martingale). An adapted collection X = {X,,; n € N} of integrable random variables
is a martingale if

E[X,+1|Fn] = Xn
for all n € N.

DEFINITION 0.18 (Supermartingale). An adapted collection X = {X,,; n € N} of integrable random
variables is a supermartingale if

for all n € N.

DEFINITION 0.19 (Submartingale). An adapted collection X = {X,; n € N} of integrable random

variables is a submartingale if
for all n € N.
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Note, of course that the negative of a submartingale is a supermartingale and vice versa, and that a
process is a martingale if and only if it is a supermartingale and submartingale.

We will study martingale inequalities and convergence. It turns out that this topic has connections to
a lot of probability theory. One may look at the above setup as a general framework for considering the
evolution of information. This is important in itself, and it is also important for the characterization of
Markov processes (which we shall not touch upon in this course).

First of all, let’s extend the above properties from fixed times to stopping times.

PROPOSITION 0.20 (Optional Sampling Theorem (Doob)). Suppose that X is a supermartingale and p
and T are bounded stopping times with p < 7. Then

(13) E[X.|7,] < X,
PRrROOF. We will prove the result via three steps
Step 1. First, assume that p =k and k <7 <k +1 (i.e., p is constant and 7 can vary at most by 1. Then
E[X:|Z,] = E[X;|Zk] = E[Xr X {7513 [ Fr] + B[ XX (r<iy | ]
= E[Xp 1| ZrIx(r>ry + Xexgr<ky < XiXgrsky + XaXir<ky = Xe = X,

The third equality comes from the fact that if 7 > k, then 7 = k + 1 and if 7 < k, then 7 = k, and that
{r >k}, {7 <k}, and X}, are .Fi-measurable.

Step 2. Now assume that p is simply a bounded stopping time (assume M is an upper bound for p and that
p <1 <p+1). To show (13), we will show that for any A € .%,,

E[X:xa] < E[XPXX]-

Define the stopping time 7 <f min{max{7, k},k + 1} for each k > 0; then if p = k, 7 = 7. We calculate
that

M M
E[Xxa) = Y EX:xax(p—r}] = > EE[X,xan (ot} Fi]]
k=0 k=0

M M
= ZE[E[X%k | Z kX An{p=k}] < Z]E[XkXAm{p:k}} = E[X,x4].
k=0 k=0

The third equality uses several facts. First, note that AN{p =k} = (AN{p <kH\(AN{p<k—-1}) and
that AN{p <k} e Frand An{p<k—1} € Fp_1 C Fy; thus AN {p =k} is F#, measurable. Also, note
that 7 = 7 on p = k. The first inequality stems from Step 1 (since k < 7 < k + 1).

Step 3. Now assume that p and 7 are simply bounded stopping times and p < 7. For each j > 0,
define the stopping time 7; def min{7, p + j}. Then the 7;’s are stopping times, 7y = p and 7ay = 7, and
Tj < Tj41 < 75 + 1. Thus for every 0 < j < M —1,

]E[Xf'j+1|yp] = E[E[X7A'j+1|yﬂ]|yp] < E[Xﬂ‘ﬁp}'
By induction, we then get (13) in full generality. O

Note that if X is a submartingale, then E[X,, 1] > E[X,], so X is in some sense “increasing”. Let’s
investigate this. Note that an increasing function has two obvious properties: that it is bounded from above
on any interval by its value at the end of that interval, and it is not increasing.

PROPOSITION 0.21 (Doob’s Maximal Inequality). Suppose that X is either a martingale or a nonnegative
submartingale. Then for any n and any L,

}P’{ max |Xy| > L

< E “X"‘X{ma’(ogkgn \XkIEL}}
0<k<n =

L

PROOF. Set
< min{k > 0: |X,| > L}.
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Then
{OI<I’1kaé( | X%| > L} ={|Xsan| = L} ={r <n} € F NF, = Frprn.
By Chebychev’s inequality,

[|XT/\n‘X{|XTAn\ZLﬂ
7 .

(14) p{ 13 L = P(Xopnl 2 I} <
By Optional Sampling (and Jensen’s inequality if X is a martingale),
E[|Xn|[Fran] = [X7anl-
Thus
E [ Xnlx (X, pni>L}] < E[EIXnl|ZranlXir<nt] = B [E[XnlX(r<n} | Fran]] = Bl Xnlx(r<n}]-

Use this in (14) to complete the proof. O

Let’s use this to get

COROLLARY 0.22. Under the same assumptions as in Doob’s mazximal inequality,

1/p »
IE[me|ka] < ()megwrﬁ
0<k<n p—1

forany 1 <p < oo.

PROOF. For convenience, define the maximal function

o def

n = gmax [

If X =0, the result is trivial, so we assume that X} > 0. Let ¢=p/(p — 1) (i.e., p ' + ¢+ =1). We now

calculate that
00 00 X
BIOGY ] =p [ 07PG 2 e <p [ 0B g saldt = B | 1] tHdt]
0 0 0

p - p syp—1 11
= LB [1X.|(x;77] < EoEX PR [ )
p—1 p—1
We use Doob’s maximal inequality to get the first inequality and we use Holder’s inequality to get the last
inequality. Noting that (p — 1)g = p and rearranging, we get the desired result. O

Now note that if a function is “increasing”, it crosses any interval at most once. We can also generalize
this to submartingales.

PROPOSITION 0.23 (Doob’s Upcrossing Inequality). Let X be a submartingale and fix a < b. Define

o1 d:efmin{n >0: X, <a}
T1 d:efmin{n >o01: X, >0b}
Ok d:efmin{n > Tp—1: X <a} k>2
Tk d:efmin{n > o0p—1: Xpn > b} k>2

For each n, define now

Ut Yk >1: 7 <ndl.
(U2 is the number of upcrossings of (a,b) by X by the time n). Then UMY is measurable and

E[(X, —a)]

(15) B < s
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PROOF. First, note that for any L,
{Up? > L} = {71y <n},

so U2 is indeed measurable.

Define now

Y, Y (X,-a)t; neN

since  — (2 — a)T is nondecreasing, convex, and nonnegative, Y is a nonnegative submartingale (this
reduces our original problem to a simpler one). We first claim that for any k& < n,

YTkAn - Yok/\n > (b - a)X{TkSn}-
If o, > n, this is clearly true since then both sides are zero. If 7, < n, it is also true since then Y, Ap, =
Y;, = (b—a)and Y, an =Y, = 0. Finally, if o, <n < 73, then Y, pp, =Y, > 0 and Y, rp = Y,, = 0.
Thus

n

S Vronn = Younn) = (b— a)USP.
k=1
Thus

(b_a')E[U’;?b] < Z {E[Ym/\n] - E[ng/\n]} = ]E[Yv'n/\n} _E[YanAn]_i {]E[Yo'k+1/\n] - E[Ym/\n]} < E[Y'rn/\n]~
k=1 k=1

To get the first equality, we simply rearranged terms. To get the second inequality, we used the fact that
Y is nonnegative (hence E[Y, An] > 0) and Doob’s optional sampling theorem (to show that the sum is
nonnegative). Finally, note that 7,, > 2n, so 7, An = n, and this gives us (15). |

Now note that limits exist if and only if there is no oscillation. We now have

PROPOSITION 0.24 (Submartingale Convergence Theorem). Suppose that X is a submartingale and
sup,,>o E[X,] < co. Then X glzeflimn_mO X, exists P-a.s. and E[|X]] < co.

PROOF. For any a < b,

E[ lim U*’] = lim E[U2*] < (b—a) *supE[(X, —a)T] < (b—a)" {supE[X:[] + |a} < 00.

The first equality comes from monotone convergence and the last inequality comes from the fact that (z —
a)T < |z| + a for all z € R. Thus

}P’{lianSaand lianZb}ZO.

n—o00 n—roo

But
}P’{ lim X,, does not eXist} < U ]P’{ lim X,, <aand lim X, > b} =0.
n—oo

n—roo
a<b n—oo

a, b rational

Now note that by Fatou’s lemma,
EX'] < Iim E[X'] <supE[X;]] <

T n—oo n>0

and also o
E[X~] < lim E[X;] < supE[X;] — lm E[X,] < sup E[X;}] - E[X].

n—oo n>0 n—00 n>0

The second inequality comes from the fact that z = 2™ — 2~ and the third comes from the fact that X is a
submartingale. |

From the submartingale convergence theorem, we see that martingales want to converge. Let’s follow
this thought for a while.

PROPOSITION 0.25. Let X be a martingale such that X,, converges to X in L*. Then
X, =E[X|.Z,] neN
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PROOF. By the definition of conditional expectation, it suffices to show that for any n and any A € .%,,
E[Xxa] = E[Xnxal.
Fix any m > n. Then
IE[X xa] — E[Xnxall = [E[X xa] — E[E[Xpn|Zn]xall
= |[E[Xxa] = E[Xmxa]| = [E[(X — Xm)xall < X = X1, -

Let m tend to infinity. O

We have already understood how to strengthen almost-sure convergence to convergence in L'-—the
criterion is uniform integrability; see Proposition 1.10. Thus we have

COROLLARY 0.26. If X is a uniformly integrable martingale, then X = lim,, ., X, ezists P-a.s. and in
L', and X,, = E[X|.Z,] for all n.

We also have

THEOREM 0.27 (Martingale continuity theorem). Fiz X € L' and {Z,; n € N} a filtration. Set F., 1o
Voyen Fn- Then lim, o E[X|.7,] = E[X|Z.] P-a.s. and in L*.

PROOF. First, consider the martingale

Y, ¥E[X|#,]. neN

We claim that Y is uniformly integrable. Note that for any n € N and K > 0,

(16) E[lYn|xq v, 1> k3] = E|EX|Z0]Ixqy, > k] < EE[X]|Flxqy, >x1] = EIX Xy, >k}
Note that
P{|Y,| > K} < K7'E[|Y,[] < K'E[| X]].

Since X is integrable, this means that

lim supP{|Y,| > K} =0,

K—00 peN

which, since X is integrable, allows us to see that Y is uniformly integrable from (16).
Thus Y = lim, o Y, exists P-a.s. and in L' and Y,, = E[Y|.%,]. It remains only to show that
Y =E[X|%]. For any n € N and any A € .%,,

E[Xxa] = E[E[X|Zn]xa] = E[Y xa].

Thus E[X xa] = E[Y x4] for any A € Upen.%, and thus for any A € % (use the monotone class theorem).
Thus

E[X|Zo] = E[Y|F] =Y,

the last equality holding since Y, which is the P-a.s. limit of a sequence of .%..-measurable functions, is
itself .%,.-measurable. O

Finally, let’s prove an alternate characterization for submartingales.

THEOREM 0.28 (Doob-Meyer decomposition). An adapted stochastic process X is a submartingale if and
only if

(17) X, =M, + A,, neN

where M is a martingale and A is a nondecreasing integrable process such that A, is %, _1-measurable for
each n > 1. If Ag (or alternately My) is specified, then this decomposition is unique.
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ProoF. First, assume that we have (17). Then for any n > 1,
E[X 11| 0] = E[Myy1|-Z0] + E[An41|Fn] > M, + E[A, %] = M, + A, = X,,.
Assume now that X is a submartingale. Set

A d:ef {Z?—l (E[Xj‘yj_l] — Xj—l) if n >1

(18) 0 ifn=0 neN
Mn d:ef Xn - An-

Then A is clearly nondecreasing (by the submartingale property of X) and integrable and A, is %, _1-
measurable for each n > 1. Also X is integrable and adapted and for any n > 0,

E[Mn—&-l‘gzn] = ]E[Xn+1|g\n] - E[An—&-l‘ﬁn] = ]E[Xn—&-1|§n] - (]E[Xn—&-ﬂgn] - Xn) - An = M,
Finally, consider any decomposition X = M’ 4+ A’ as in (17). Then for any n > 0,
E[Xni1|Fn] = EIM;, 1 [ F0] + E[A] 1| Fn] = My, + Aj g = X + (A7 — A7)

Thus
Al = AL+ E[X 1| Fn] — Xa, neN
and so
A=A, +A; neN
where A is as in (18). O

We simply note for future reference the following definition

DEFINITION 0.29 (Bracket). Let M be a square-integrable martingale. Then (M) is the increasing part
of the Doob-Meyer decomposition of the submartingale M?2.; i.e., (M) is the unique process such that
o (M), is #,_1-measurable,
o (M)o=0
e M? — (M) is a martingale.
Finally, let’s discuss some issues of backward martingales. The essential difference is that before we were

interested in convergence as n tended to co; now we are interested in convergence as n tends to —oo. We
will

PROPOSITION 0.30 (Backward submartingale convergence theorem!). Let {¢,; n € —N} be a filtration

and let X be a submartingale with respect to {&,; n € —N}. Then X_ def lim,_, o X, ezists P-a.s. If
sup,, E[| X,|] < oo, then X is uniformly integrable, X _o = lim,_,_oo Xy, the limit now being both P-a.s.
and in L', and X_o < E[X,|9 o] for all n € =N, where 9, def Nne-NY,.

PROOF. Since X is assumed to be integrable, Doob’s Upcrossing Inequality implies that for every
(a,b) C R,

E[(Xo —a)T
E[|{upcrossings of (a,b) by X in between times n and 0}|] < [((bo()l)] < oo
—a

for all n € —N. This implies that X_. exists P-a.s., just as for the regular submartingale convergence
theorem.

Now assume that sup,c_ynE[|X,|] < co; then sup,_y |[E[X,]| < co. Since n — E[X,,] is increasing,
lim,,—, o E[X,,] exists and is finite. Fix € > 0; then there is an Ny € —N such that E[X,] > E[Xy] — ¢ if
n < N. For any K > 0, we calculate that for any n < N,

E[|Xalxqx,>x3] = E [Xax(x,>r] = E [Xax(x,<-ry] = E [Xo (X(x,25) + X(x2>-x1)] — E[X0]
<E XN (\{x.2K} T X{x.>-K})] —E[XN]+&/2 = E[| XnIx{x,2K}] +€/2

ITaken from Revuz and Yor
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In the last inequality, the first term comes from the submartingale inequality, and the last term comes from
the choice of N. By Markov’s inequality,

sup P{|X,,| > K} < K~! sup E[X,]].
ne—N ne—N

Since X is integrable, we have that

lim supE [Xnlx(x,253] <

K—o0 .,
since all of the X,,’s are integrable, we also have that

— <
Klgx})ONiupO]EUX nlX(x, 2] S &

putting these two together, we have that the X,,’s are uniformly integrable. Hence, the P-a.s. convergence
of X, to X_o, also holds in L'. For any A € 4_, and any n, we thus have

]E[XfooXA] = mE)IEOOE[XmXA] < E[XnXA]
The last inequality follows from the submartingale inequality. Thus we get the final claim. O

We can use this result to easily prove the Strong Law of Large Numbers

THEOREM 0.31 (Strong Law of Large Numbers). Let {{1,&2...} be a collection of independent and
identically distributed integrable random variables with common law p. Then

this limit being both almost-sure and in L.

PROOF. Set

For each n € N, define
G o {Se k> n).
Set
X, ¥El¢9,). ne-N
Then X is a martingale. Clearly
sup E[| X, ] < E[&]],

ne—N
so X _oo def lim,,_, _ oo X,, exists both in L' and P-a.s. Note that for any n > 1 and any 1 < k < n,
E[§k|g—n] = ]E[gl‘g—nh
thus
X n=> E&l9-n ZE [k Z-n] = E[Su|9-0] = S,
k=1 k=1
so in fact )
X n=-5,
n
for all n > 1. Thus S,, = X_,, for all n € N. Hence
X_o = lim &
n—oo N

this limit being both P-a.s. and in L'. We thus only need show that X_., = fR zp(dz). Note that for every
k,



so by Kolmogorov’s zero-one law, X_ ., is almost-surely constant. Hence

X o =E[X_o]= lim n 'E[S,] = /Rm(dx)

n—0o0

This completes the proof. O

Exercises

(1) Show that for any stopping time 7, %, is indeed a sigma-algebra.

(2) Show that for any stopping time 7, 7 is itself .%, -measurable.

(3) Show that for any fixed ¢ € I, the mapping 7 : Q — ¢ is a stopping time. Show that .#, = %,.

(4) Let {r1,72 ...} be a countable collection of stopping times. Show that sup,,~ 7, is also a stopping time.
Show that if {m, ..., 7,} is a finite collection of stopping times, then minj<y<, 7% is also a stopping
time. stopping times.

(5) Let 7 be a stopping time and s a nonnegative number. Show that 7 + s is a stopping time.

(6) Suppose that I is discrete, X is an adapted process taking values in a measurable space (5,.%), A € .7,
and 7 is a stopping time. Define

7 min{teI:t>7and X, € A}
and show that 7/ is a stopping time.
(7) Suppose that I = Ry, X is a continuous process taking values in a topological space S, and F' C S is
closed. Define

TdZEfinf{tEO: X, € F}

and show that 7 is a stopping time.

(8) Suppose that 71 and 75 are stopping times. Show that
(a) If ; < 19, then F#,, C Z,,.
(b) If A€ %, then AN{m <7} e .%,. Hint:

{n<tn{n<tin{n<nt={n <t}In{n<tin{nAt<m At}

(C) Frine, = Fr N Fr,.
(d) {n <} e Z#, NF, (and thus {min} € %, N.%,, where i is any inequality or equality.
(9) Let 7 be a stopping time and that the I = [0,00). For each n, define 7, & [tn]/n. Show that each 7,
is also a stopping time.
(10) If I C Z, X is an adapted process, and 7 is a stopping time, then X, is %, -measurable. Hint: partition
the space according to the values of 7.
(11) Let {&,; n € N} be a collection of independent and identically distributed integrable random variables.

Define

F def o{&k; k <n}

and show that X, %' >or_; & is a martingale with respect to {%,; n € N}. Show that {X,; n € N} is

a martingale, submartingale, or supermartingale, respectively, if the mean of the &’s is zero, positive, or
negative.

(12) Let X be a martingale with respect to a filtration, and suppose that {Y,; n € N} is a collection of
integrable random variables such that Y,, is .%,,_1-measurable for all n. Show that

g def Sro Ve (Xp — X)) ifn>1
" 0 ifn=0

is also a martingale (with respect to the same filtration). This new process is called a martingale
transform of X and is a simple case of a stochastic integral.

(13) Let X be a martingale and ¢ : R — R be convex and such that E[p(X,)] < oo for all n. Show that

Z, ©(X,) is a submartingale.
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(14) Let X be a martingale, submartingale, or supermartingale (respectively), and let 7 be a stopping time.

Show that Z, <f an 1S also a martingale, submartingale, or supermartingale, respectively (with

respect to the original filtration {.#,}). Also show that (assuming that Xo = 0) Z can be written as a
martingale transform of X.
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CHAPTER 5

Weak convergence

1. The topology of weak convergence

It turns out that the notion of weak convergence, defined in Chapter 1, is an important one. In this
chapter, we will assume that X is Polish, i.e., that it has a metric d under which it is complete and separable.
We let 7 denote the collection of open subsets of X defined by d. Our goal is to study Z?(X), the collection
of probability measures on (X, Z(X)). As a first simple observation, note that &(X) is convex. Note that
we can also topologize it as a dual of C,(X). In other words, this topology, the weak topology on P (X), is
the smallest topology on Z?(X) with respect to which all of the mappings I, : Z(X) — R defined by

(19) 0™ [ p@utdn) e 2(X)

are continuous, as ¢ varies over Cp(X). It turns out that #(X), endowed with this topology, is itself Polish,
and that we can characterize its compact sets.

2. The Prohorov metric

To begin, let’s write down the Prohorov metric. Let € be the collection of closed subsets of X, and for
any subset A of X and any ¢ > 0, define

As {z € X : dist(z,A) < e},

where dist(z, A) def infyecad(z,y) for all x € X. We define

p(u,v) L inf {e>0: w(F) <v(F*)+eforal Fe%}
for all 4 and v in Z(X).
We have the following theorem which connects the Prohorov metric and different definitions of weak
convergence. For future reference, we now define the open balls

def

B(z,e) = {2’ € X : d(2',z) < e}

for each x € X and € > 0.

PROPOSITION 2.1. Fiz {p1, p2...} and p in P (X). The following are equivalent.

(a) limy, o0 p(tin, ) = 0.

(b) limp o0 pin(F) < p(F) for all F C X closed.

(¢) im, . 1n(G) > p(G) for all G C X open.

(d) limy oo [ @(@)pn(dz) = [ @(x)p(dz) for all p € Cy(X).

PROOF. Most of the work is done in the problems; namely that (a) implies (b) and that (b) and (c) are
equivalent and are in turn equivalent to (d). The only remaining part is that (b) implies (a).

Since X is separable and metric, we can find {x1,2z2 ...} a countable dense subset of X. Fix ¢ > 0 and

define Ey < B(z1,¢/4) and E, o B(zn,e/4) \ Uj_  E; for all n > 2. Then the E,’s are disjoint and the

diameter of each of them is /2 or less. Let L be an integer large enough that

(20) i (UL Ey)7) <2/
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Thus by assumption, for n sufficiently large
(21) fin (((UJLZIEJ-)C> <e/2.
Also, by assumption, for n sufficiently large

pin (Uie1 Ei) < p (Uier E;) +€/2

for all subsets I of the finite set {1,2...L}. Fix now n large enough that (20) and (21) hold. Fix any closed
subset F' of X. It is easy to see that

F CUi<i<r B U (Uf’ZlEi)c

E,NF#0
Ui<i<r By C Fe.
E,NF#0
Then
pn(F) < p (U 1<i<L E@) +e < pu(Fe) +e.
E,ﬂF;ﬁ@
Vary F to get that p(u,, n) < e for all n large. Let n tend to infinity, and then ¢ tend to zero to see that
limy, s 00 p(ftn, ) = 0. O

3. Tightness and compactness in the Prohorov topology

A natural next question is: what do the compact subsets of &?(X) look like? It turns out that the
following has a lot to do with compactness.

DEFINITION 3.1 (Tightness). A subset .# of Z(X) is tight if for each € > 0 there is a compact subset
K of X (denoted by K CC X) such that p(K°¢) < e for all u € .

Below we will conclude that .# C 2(X) is tight if and only if # is compact. First we will show that
if #/ C 2(X) is compact, it must be tight. Then we will show that if .# C 2(X) is tight, then .Z is
compact.

Let’s start by showing that the simplest possible compact subsets of 22(X) are tight.

LEMMA 3.2. Any p € P(X) is tight.

PRrROOF. Fix ¢ > 0. Since X is separable, it contains a countable dense subset {1, s ...}. For each n,
let L,, be such that

Ln
I ( B(x;, 1/n)> >1—¢g/2nth

=1
Set
oo Ly
K< | B(ai,1/n)
n=11i=1

Then K is closed and totally bounded and is thus compact. Note that

co Ln L,
02 (Y Uteao) = 1 (U (o
1i=1

n=11i=1

00 L, 0o L, 0o
>1-> p (ﬂB(mi,l/n)c> >1-> (1_u (U B(xi,l/n)>> >1-> g/ =1-e
n=1 =1 i=1

n=1 n=1

8

n

Thus p is tight. (]
From here, we can show that compactness implies tightness.

PROPOSITION 3.3. If 4 C P(X) is compact, then it is tight.
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PROOF. Fix ¢ > 0. Since .# is compact, it is totally bounded, so we can for each n, find a finite subset
Ny, or A such that

M | {pe2(X): plu i) <e/2"t.
AEN
By Lemma 2, each of the fi’s in each of the .4;,’s are tight, so for each n, we can find a K,, CC X such that
A(KY) < g/2"+! for all fi € A;,. Thus, for all n and all u € 2(X) and ji € A;, such that p(u, ji) < /2"

L e/2m < (K) < (K2 ) et

SO u( 5/2n+1) >1—¢/2" for all p € 4. Set now

O —

n=1
Then K is compact and u(K) > 1 — €, by a calculation similar to that of Lemma 2. |

The other direction is a bit more complicated. We will show that if .# C Z(X) is tight, then it is
totally bounded. Secondly, we will show that if .# is tight, its closure is complete.

PROPOSITION 3.4. If # C P(X) is tight, then it is totally bounded.

PROOF. Since X is separable, we can find a countable dense subset {z1,22...} of X. For each N and
m, define the finite subset

N+1
NNom d:ef{z a0z, € P(X): ar, €Zy/mforall 1 <k < N—l—l}
k=1

of Z(X). For any e, we will show that for sufficiently large N and m, any element of .# is within ¢ (in
the p metric) of some element of A% ,,. Indeed, fix € > 0 and then K CC X such that p(K°) < /2 for all
w € M. Since K C U B(zy,e) and K CC X, we can let N be any number such that K C UY_, B(zy, €),
and we then fix m > 2N/e. Consider any pu € 4. Set

El dzEf B(xh 5)

Ep % B(an,26) \ U Blag,e) n=1,2...

def
a; =

lu(E;)ym|/m 1<i<N
N

aAN+1 d:ef 1-— Zai.
i=1

Define i € Ay,m by

Note that
al N w(E)m -1
l—anp1 =) a;i> Z“’T =u(UN E) — N/m>u(K)~ N/m>1-¢/2— N/m.
=1 =1

From here we get that ayy1 <e/2+ N/m < e. Fix now any F C X closed. Then

a(F) < Z a; tany1 < Z p(E) +e<p U Ei | +¢
1<i<N 1<i<N 1<i<N
x,EF z;,EF z;, EF
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Note that

U EicFs
1<i<N
z;€F

Thus a(F) < pu(F€) + ¢ for all closed F C X and thus p(u, ii) < &, which completes the proof. O
Next, we start to prove that if .# is tight, it is complete. We start with
PROPOSITION 3.5. If # C P(X) is tight and {pun} C A is Cauchy, then

M) Y lim | (@) (de)

n—0oo X

exists for all p € Cy(X). Furthermore, if {pn} C Cy(X) is such that v, \, 0, then lim, . A(p,) = 0.
PROOF. For € #(X) and ¢ € Cp(X), define

def
ol = sup [ ()]
zeX

Aulp) /X (@) ().

Noting that ¢ + ||¢|| is nonnegative, we can arguments similar to those of Problem 1.7 to see that

[lell
(22) A(o) = / e X ple) 2 e = Il

for all p € Cp(X) and all p € Z(X). Fix now K CC X and set
wic(8) € sup (@) — o(y);

z,yeK

d(z,y)<é
i.e., wg is the modulus of continuity of ¢ restricted to K. For any t € R and ¢ > 0,

plr € X p(x) 2t} < p(K°) + p{z € K = p(x) >t}
{reK:p)>t’ cKU{zeX: o) >t—wg(d)}
Thus, for any v € &(X) and any ¢ € R,
p{r e X o p(x) 2t} < u(K) +v(K°) +v{z € X : p(x) =t —wi(p(p,v))} + p(p,v)

SO

llell
Au(p) < /l ” v{z e X p(a) 2t —wi(p(p, V)t = [l + 2l|l| (1(K°) + v(K®) + p(p, v))

llell
= /| I v{z € X1 p(x) > t}dt — ||| + 2[|l| (L(K°) + v(K) + p(p,v)) + wi (p(i, )

= Ao () + 2l el (u(K°) + v(K®) + p(p, v)) + wi (p(p, )
Thus
1A (p) = Au)] < 2ol (u(K) + v (K°) + p(p, v)) + wie (p(p, )
for any p and v in &Z(X) and any K CC X. In particular, for {g,} C .# which is tight and Cauchy, we
can fix £ > 0 and then find K CC X such that p,(K°) < ¢ for all n. Then

lim_ Ay, () = A, (9)] < 4lle]e.

m,n— oo

Now let € tend to zero to see that {A,, ()} is Cauchy and thus convergent.
Now assume that {p,} C Cy(X) is such that ¢, \, 0. Clearly lim
and then K CC X such that pu(K°) < e for all p € .#. Then

A(ppn) > 0. Fix next any € > 0

s de ]

Alpn) < Tim sup n(z) + [[onl| sup p(KS) < [l@1]e.
=X zeK neM
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Here we have used Dini’s theorem to see that lim, . SUp,c x ¢n(x) = 0. Now let & tend to zero to see that
lim,, 00 A(prn) < 0. |

From here, we could directly appeal to Daniell’s theory of linear functionals. In the interest of complete-
ness, however, we will write out a proof. Let’s define
w (0) L Sup {A(p) : v € C.(X;]0,1]) and suppp C O} O open
A(A) Linf {u*(0): 0> Aisopen}. A€ B(X)

Here C.(X :[0,1]) is the collection of continuous mappings from X into [0, 1] of compact support. The idea
here is to approximate indicators of open sets from below by continuous functions to get u* and to use the
notion of regularity to define the measure of any measurable set.

LEMMA 3.6. The set function p* is an inner content which agrees with i1 on open sets and such that
w*(0) =0 and p*(X) = 1. By an inner content, we mean
(a) If O1 C O3 are open subsets of X, then p*(O1) < p*(02).
(b) If O C U2, 0;, where O and the O;’s are open subsets of X, then p*(0) < 3", n*(0;).
(¢) If O1 and O3 are two disjoint open subsets of X, then u(O1 U Os2) > u(01) + u(O0s).
(d) For any open subset O of X,

1*(0) < sup {,u*(G) . G is open, G is compact, and G C O}.

PROOF. The facts that pu* agrees with u on open sets and that p*(@) = 0 and p*(X) = 1 are obvious.
For convenience, define

0 if 2 <1/3
o(z) €80 —1 if1/3 <2 <2/3
1 if 2 > 2/3.

Proof of (a) Obvious.
Proof of (b) Fix ¢ € C.(X : [0, 1]) such that supp ¢ C O. Then since supp ¢ is compact, supp ¢ C UY_,0;
for some N, and then

n ef dist (supp P, (Uf\LlOi)C) > 0.

Define
def Q(Ufl diSt(l‘, Of))

pi(z) = .
Sy e(n~ dist(z, 0%))
Then for each i, ¢; is a well-defined element of C.(X;[0,1]) and supp ¢; C O;, and Zf\il w; = . Thus

(z). reX, 1<i<N

N N oo
Ap) = ZA(%) < Zﬂ*(Oi) < Zu*(Oi)

Now vary ¢ to get (a).
Proof of (¢) Fix 1 and s in C.(X : [0,1]) such that supp ¢1 C O; and supp p2 C Oz. Then ¢ def 01+
is in C.(X : [0,1]) and supp ¢ C O1 C Os. Thus
A1) + Alp2) = A(p) < (01U O2).

Vary o1 and @2 to get (b).
Proof of (d) Here is where we use the continuity of A. Fix ¢ € C.(X : [0, 1]) such that suppp C O. Set
Gd:Cf{:EEX: o(x) > 0}
on(z) ¥ o(dist(z, GO /n)p(z). ze€X,n=1,2...

Then G = suppp CC X and G C O is open. Furthermore, ¢, € C.(X : [0,1]) for all n, supp ¢,, C G, and
(pn/(QO ThUSSO—SDn\Oa SO

Alp) = lim A(p,) < p*(G) < sup {u*(G) : G is open, G is compact, and G C O}
n—oo
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Vary ¢ to get (c). O
Next, let’s consider ji.

LEMMA 3.7. For AC B in B(X), i(A) < i(B). For any {A,} C B(X) which are disjoint,

<Y (A

Secondly,

(a) If O1 C X and O C are open subsets of X, then fa(Oq)
(b) If O is an open subset of X and A € B(X), p(A) > a(A
(¢) For A and B in B(X), i(A) > G(ANB)+ (A \ B).

Then for any {A;} C B(X) which are disjoint,
(23) AU A) > > (A,

Thus i € Z(X).

(01N O2) + (01 \ O2).

>
NO)+ a(A\ O).

PROOF. The monotonicity of i is obviously inherited from the monotonicity of p*.
To prove subadditivity, fix € > 0. For each n, let O,, D A,, be open and such that p*(0,,) < @(O0,)+¢e/2".

Then . .
A (Un=14n) < p* (Un=10n) Zu Z n) +e/2%) sz

Let € tend to zero.
Proof of (a) Fix G open such that _G' CC X and G C O; N Oy. Note that G and O; \ G are disjoint,
that G U (01 \G) C O4q, and that O \G D Oq \02 Thus
i(01) = (O1) = p(G) + (01 \ G) = p*(G) + (01 \ O2).

Vary now G.
Proof of (b) Fix G D A open. Then

p(G) = p(G) 2 p(GNO)+ (G O) = p(AN O) + a(A\ O).
Now vary G.
Proof of (¢) Define
g A e BX): @(S) > a(SNA)+ a(S\ A) for all S € B(X)}.

We claim that ¢ is a sub sigma-algebra of Z(X), much like the collection of Lebesgue-measurable subsets
of R is a sigma-algebra. It is clear that ¢ contains X and is closed under complementation. Next, fix any
A and B in 4. Then for any S € #(X),

A(S) > (S N A) + (S \ A) > A(SNANB)+ (SN A\ B) + (S \ 4)
> (SN (AN B)) + S\ (AN B))

The first inequality comes from the fact that A € ¢ and the second from the fact that B € ¢. The last line
comes from the fact that

(24)

(ANB)*=A°UB°=A°U(B°\ A°) = A°U (A\ B);

this implies that S\ (AN B) = (S\ A) U (SN A\ B), and the subadditivity of i then gives us the last

line of (24). Thus ¥ is closed under finite intersections and complements, and thus ¢ is a field. Finally, fix

{4,} C ¥, and set By ¥ A, and B, ¥ 4, \ Uiz LA; for all n > 1. Then the B,’s are in ¢, are disjoint,

and US2 1 B, = UX | A,,. ForanynandanySE%’( )
AlS) = i (SN (Uj=yB))) + (S \ Uj—, B Z (SN By) + (S \ UjZ,145).
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The first inequality comes from the fact that U_; B; € 4. The second inequality comes from the fact that
the B;’s are in ¢ and that

(Uj=1B)) e = (Uj=14;)" D (U1 4;)"
Now let n tend to infinity and use the subadditivity of & to see that

DS NB;) = (U2, SNB;) =i (SN (U,4;)) -
=1

Thus U2 A5 € ¢, so 9 is a sigma-algebra. Since the open subsets are in & by part (b), we have that
PA(X) C ¥. This implies (c).
Now we can prove (23). From a repeated application of (c), we get that

i (U2 45) > (Ul A;) = > fi(A;).

j=1
Let n tend to infinity.

Finally, we claim that i € £(X). From Lemma 6, we see that () = 0 and (X) = 1. From the
subadditivity and (23), we see that i is indeed additive, implying that g € 2(X). O

LEMMA 3.8. We have that limy, o0 i, = [

PROOF. it suffices to show that
(25) lm 1,(0) = 4*(0)

n—oo

for any open subset O of X. Fix ¢ € C.(X : [0, 1]) with supp¢ C O. Then

lim f1,(0) > p*(0) > lim [ (@)pn(dz) = A(p).

n—oo n—ooJX
Vary ¢ to get (25). O
Finally, we can get
PROPOSITION 3.9. If 4 C P(X) is tight, its closure is complete.

Proor. If .# is tight, so is its closure %(one of the problems). From the above, we know that if
{pn} C A is Cauchy, it has a limit point g € .#. O
This give us

THEOREM 3.10 (Prohorov). .# C P(X) is tight if and only if .4 is compact.

ProOF. Compactness of .# implies tightness by Propositidon 3. Tightness of .# implies compactness
by Propositions 4 and 9. ]

Finally, we can complete the proof that &(X) is itself Polish
THEOREM 3.11. The space P(X), endowed with the weak topology, is Polish with metric p.

PROOF. Theorem 1 tells us that Z(X) with the topology of weak convergence is metric. Separability
is in one of the questions. To prove completeness, fix a Cauchy sequence {u,} in Z(X). We claim that
{pn; n=1,2...} is tight. Fix £ > 0, and for every [, let a number m; and a K; CC X such that

SUp p(fin, fn,) < /271

n>mg

min i, (K;) > 1—¢/2!71

1<n<my
Then for n > my,
l
1— 5/21+1 < iy (K1) < i (Kla/2 +1) +€/2l+17
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which implies that v, (Kls/QHl) >1— 5/21. Thus

1nf,un< 5/2 ) >1-—¢/2.

Set

K% nee Kk
Then p,(K°¢) < e for all n, so {n; n =1,2...} is indeed tight, so its closure is compact, so lim,, u, must
exist. O
Exercises

(1) Show that the Prohorov metric is a metric.
(2) Show that &(X) is separable. Hint: consider probability measures of the form ) ;
finite subset of a dense subset of X and where the a(z)’s are nonnegative rationals.
(3) Show that if ./ is tight, then so is .Z.
(4) Let {z,} be a collection of points in X and fix some & € X. Consider the probability measures ¢, .
Show that J,, converges to §, in the Prohorov metric if and only if x,, converges to x.
(5) Consider {p,} C Z(X). Show that
(a) if p(pin, ) — 0, then lim,, p, (F) < p(F) for all closed F' C X.
(b) limy, pn(F) < pu(F) for all closed F C X if and only if lim,, 4,,(G) > pu(G) for all open G C X.
() if limy, p, (F) < p(F) for all closed F C X (and consequently lim,, y1,(G) > pu(G) for all open

G C X), then
lim / )i (d2) / o(z)u(de)
X

for p € Cp(X ) Hint: use (22 o

(d) iflim,, [y @(@)pn(dz) = [y ¢(x)pu(dz) for all bounded and continuous ¢ : X — R, then lim,, p, (F)) <
1)
(

a0z, where I is a

wu(F) for all closed F' C X. Hint: consider functions of the form ¢, (z) Ly - (e~ L dist(z, F) A 1).
6) Fix k > 0. Show that {u,} C Z(R?) converges to u € Z(R?) if and only if lim,, o0 I, (ptn) = I, (1
® ®

(using the notation of (19)) for all ¢ € C% which are k-differentiable and for which all k derivatives are

bounded.
7) Fix T > 0 and two probability measures P; and Py in Z(C(]0, T];: R?)), where C([0, T]; R%)) is endowed
( y

with the standard supremum-norm topology (and is thus Polish). Show that if

P, (ﬂ{w € C([0,T;RY) = w(t) e At}> =P, (ﬂ{w e C([0,T;RY) = w(t) e At}>

tel tel
for all finite subsets I of [0,7] and {A; t € I} C B(R?), then Py = Py.

(8) Fix T > 0 and consider the set Cy([0,7T];R?), which is collection of elements w of C([0,T];R?) for
which w(0) = 0. Then Cy([0,7]); R?) inherits a Polish structure from C([0,7];R¢). Show that .# C
P(Co([0,T); RY)) is tight if

lim sup u{ sup |w(t) —w(s)|>ep =0.
60 e [t—s|<8
s,t€10,T)
(9) Let X be a Polish space with metric p. Assume that for each n € N (where N is the set of positive
integers), we have a u, € Z(X"™) (X™ is the n-fold product of X, which is Polish with the product
topology). Assume furthermore that these u,’s are consistent; that for any n € N and any A € Z(X"),

pnr{(x, o Tg1) € XM (21,20 .. 2) € A} = pn(A).

We will show that the p,,’s have a limit in the proper sense. If the p,,’s are themselves product measures
(i.e., the law of independent random variables), this means that we can find a probability triple on which
is defined a countably infinite collection of independent random variables). We can also use this to show
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that, given a discrete-time Markov transition function (which we will not discuss in this course), we can

find a probability space on which is defined a Markov process for all (discrete) time.

(a) Set X def XnenX and endow it with its natural product topology. For each n € N, define

T+ X — X as the natural projection operator (i.e., m, gives the n-th coordinate). Show that
X is metrizable with metric
def —n_ Pmn(), T (y))
poc(@,y) = ) 27" :
~ % 1+ p(mn(2), 7 (y))

(b) Fix z* € X, and for each n € N, define ®,, : X™ — X as

def
D, (z1,22...2) = (1,29 .. Ty, ™ 2% 0.

x,y € X

In other words,
Ty m<n

T*  else

Tm@n (21,2 ... xy) = {

For each n € N, define

fin(A) E (21,20 20) € X" Bp(1, 2 ... 70) € A}

Ae B(X™)
Show that p,, € Z(X°°) by showing that each of the ®,,’s is measurable.
(c) Show that {fi,} is tight. Note that by Tychonoft’s theorem

K () ) (5
neN
is compact for any collection {K,} of compact subsets of X.

(d) Let pice be a limit point of the fi,’s (in (X °°)). Show that for any n € N and any A € Z(X"),
oo{(x(1),2(2)...) € X*°: ((1),2(2)...2(n)) € A} = p,(A).
Hint: first, note that if ¢ € Cp(X™), then the mapping
def

On(2(1),2(2)...) = o(x(1),2(2)...2(n))
is an element of Cp(X ).
(e) Show that po is unique. Hint: use problem 1.
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CHAPTER 6

Construction of Wiener Measure

Let’s now use a number of the tools we have developed to construct Wiener measure.
We will start out with a collection {&; k = 1,2...} of independent and indentically distributed random
variables with common law pu. We assume that

K, & /Rx4u(da:) < 00 /qu(da:) =0 /Ra:Q/A(dx) =1.

Set
Sndzef Zj:lgj %fnZl neN
0 ifn=0
and for each n, define a C([0, 1])-valued random variable X" by
5 det 1
(26) Xy = ﬁ (SLntj + (tn — LmJ)ﬁLntHl) t>0

(note that X™ can be represented as a continuous mapping of the S,’s, so X™ is indeed measurable).
We are interested in the behavior of the law of X™ as n tends to infinity. To be more specific, define for
each n € N an element pu,, € 2(C([0,1])) (where C(]0,1])) is endowed with the standard supremum-norm

topology) by
p(A) EP{X" € A}, Aez(C([0,1])
We are interested in the limit of the p,’s in the sense of weak convergence.
First of all, let’s use a simple martingale inequality;

LEMMA 0.12. For every m € N and L > 0,
2

4 m
(27) P {og;agﬁ |S;] > L} < (4/3)* (K4 + 1)F'
Proor. By Doob’s maximal inequality,
E[|Sm|']
) < 4zZleml |
P{Og;;ixm 1S = L} < (4/3) i
Now note that for any n > 0,
s m
Blshl = B+ Y B —mit () < w4 )
i=1 1<i,j<m
i
This gives us the proof. ]

We can translate this into

LEMMA 0.13. For everyn € N, me N, and L > 0,

4 nm
B3 max |S;—Si| > Lo < (4/3) (Ki+ 1)
|7—k|<m
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PROOF. We break n up into intervals of length m. Note that for any 0 < j, k < n with |j — k| < m,

ISk — Si| < [Sk = S\k/m)m| + S5 — S5 /mml + [Sk/mjm — S|j/m)m| < 3o<zg1ﬁ§mj oax, |Stm+s — Sim-

Thus

[n/m]
P{ max |S; —Skg|>L, < Z IP’{ max |Sim+j — Sim| > L/S}

Eéjkfgﬁrz =0 0<;5<
2
_ 4 m
= Ln/mJP{ng%xm|Sj| > L/3} < (4/3)* (K4 + I)Ln/mJW
This yields the desired bound. O

From here we note

PrOPOSITION 0.14. For any § > 0, any n € N, and any L > 0,

" " §+n"t
PS sup |XP— X7 >Lp <4'3+Ky) 1
0<s,t<1
|t—s|<s

PRrROOF. First, for any s and ¢ in [0, 1] with [t — s| < 4,
|j—k|<on+1

Now use Lemma 2 with m = [nd + 1| < nd + 1. O
From here we get
PROPOSITION 0.15. The collection {un; n € N} is tight.

PROOF. First, we obviously get that

lim lim PS sup |XP'—X7P|>ep,=0
6—0n—o0 0<s,t<1
[ENES

for each € > 0. Fix now 7 > 0. For each k € N, fix §; , and then nj such that

sup P sup [XP — X[ > 1/k o <n/2".
n>ng 0<s,t<1
[t—s|<d1,k

Since

lim sup P sup |X;—-X7|>1/k =0,
=0 1<n<ny 0<s,t<1
[t—s]<d1,k

we can find a d3  such that

sup P sup [XP - XT| > 1/k p <2k
1<n<ng 0<s,t<1
[t—s5]|<d2,k

Thus, upon setting d; def min{dy ,d2,% }, we have that
supP{ sup |XP - X[ >1/k o <n/2".
neN 0<s,t<1
[t—s| <ok
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From this, we set

def

CL & e e Cl0.1): pl0) =0, sup [plt) —p(s)| <1k keN
s,t<
[t—s|<8
K= NG
k=1
Thus
sup i, (K) <,
neN
so the claimed result is true. O

Let’s now define what will turn out to be the limit point. As usual, we define the coordinate random

variables

X,(w) Lwt).  tel0,1],weC(0,1])

DEFINITION 0.16 (Wiener measure). A measure u € Z2(C([0,1]) is said to be Wiener measure on C([0, 1])
if
o Xy =0 p-as.
e Forany 0 = tg < t1 < ta...tx <1 {Xy, — Xy, X1, — Xty - Xtye — Xt)_, } are jointly Gaussian and
independent and X;, — Xy, , is M(0,t; —t;_1).

Let’s first show that Wiener measure, if it exists, is unique.
ProPOSITION 0.17. Wiener measure, if it exists, is unique.

PROOF. Let py and po in &(C([0,1]) be Wiener measures. Fix 0 = t9 < t1--- < txg < 1 and
{Ag,A1... A} € Z(R). Then for i € {1, 2},

22
eXp {7 2(t; _1“/7',—1):| d

K
C(NE Xy, — Xi,, € Adn{Xy, € Ag}) = o(A / z
:u’t( 71{ t; ti—1 l} { to 0}) 0( 0)};[1 iy \/m
By the Dynkin m — A theorem, we thus have that
M1 {(Xtontl — th . ~XtK - XtK,1> S A} = U2 {(Xtoath — th . ~XtK - XtK—l) S A}

for all A € Z(RE+!). Define now T : RE+L — RE+L a5

def
T(xo,xl . J)K) = (.130,1‘1 —20...TK — xK_l). (xo,l‘l .. .QL‘K) S RK+1
Note that T is invertible with
def i
T_l(zo, 21...2K) = (z0,21 + 20"~ sz) (z0,21...2K) € REA+L
j=1

and that both T and T~ are measurable from Z(RE+1) to itself. Thus
H1 {(XtoaXh .- 'XtK) € A} = M2 {(Xt()?th . 'XtK) € A}
for all A € Z(RE*1). Thus by one of the problems in Chapter 2, we know that p; = ps. O

Finally, we claim that any limit points of the p,’s of (26) is Wiener measure.

def . ) . .
ProprosIiTION 0.18. 1 def limy, o pn exists and is Wiener measure.
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PROOF. First of all, Proposition 4 ensures that all subsequences of {u,; n € N} have convergent
subsequences. It suffices to show that all convergent subsequences converge to Wiener measure. Let
o= lim, 00 fin,, . First, since p € Z(C([0,1]), we clearly have that t — X} is p-a.s. continuous. Secondly,

for any € > 0, the set

F. € {p e C((0,1]) : |o(0)] > &}

is a closed subset of C([0,1]). Thus by weak convergence
M{‘X0| > 5} = N(Fs) < @ ,Ufmn(FE) < @ ]P){|X(§lm| > 5} =0.

Thus, by taking ¢ to zero, we get that Xy = 0 p-a.s. Thirdly, fix 0 = tg < t;--- < tg < 1 and
{o1,02... 0K} C Cp(R) and define

(w) = [[oiwlt) —wlti):  we(0,1)

then ® € C,(C([0,1]). Thus

K K
/ O (w)p(dw) = mlgnoo]E H%’(XZ’" — XZ’_"I)] = W}gnooIE H%(X@anj/nm - Xﬁ;’ilnmj/nm)]
c((o,1]) i=1 i=1
K
B HlmlﬂnooE X = XE st )]
= lim (2)2n(t —tio1)) Y2 ex [—} dz.
ILjim, [ @ttt e | 52—

The second equality holds because the ¢;’s are in Cy(C([0, 1]) and since for any L > 0,

i P { s [0 = XD) = (g0 = Koy

n—00 0<s,t<1

> L} < lim ]P’{ sup X' — X[i)/nl > L/2}

n—oo 0<t<1

Sn@oﬁ” sup [ X" = X[j ml = L/2 =0
0<s,t<1
[t—s|<1/n
by using Proposition 3. The third equality comes from independence. The last equality comes from the
central limit theorem. ]
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CHAPTER 7

References

Most of the material and questions in these notes come from Stroock’s [?] and Billingsley’s [?] books on
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