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CHAPTER 1

Connections with Measure Theory

The grammar of probability theory is measure theory. We always start with

i) A measurable space (Ω,F ). Thus Ω is a set, often called the event space, and F is a sigma-algebra
of subsets of Ω. The elements of Ω are often denoted by ω, and dependence on ω is often suppressed.

ii) A measure P on (Ω,F ) for which P(Ω) = 1; this is called a probability measure.

We then call (Ω,F ,P) a probability triple. Often the existence of (Ω,F ,P) is assumed or implicit. Often, we
will assume that Ω has a topology T , and then we will let F = σ(T ), the smallest sigma-algebra containing
the open subsets of Ω1; this is called the Borel sigma algebra of subsets of Ω.

Now let’s define random variables. Let (S,S ) be a second measurable space2.

Definition 0.1 (Random variables). A random variable is a measurable mapping from (Ω,F ) to (S,S );
i.e., X−1S ∈ F for all S ∈ S .

We also can take expectations.

Definition 0.2 (Expectation). If X is an R-valued random variable, we define

E[X]
def
=

∫
ω∈Ω

X(ω)P(dω)

when the quantity on the right is defined. We say that this quantity is the expectation of X.

Note that if X is any set which contains another set A, we can define the indicator function χA : X →
{0, 1} as

χA(x)
def
=

{
1 if x ∈ A
0 if x ∈ X \A

Then for any A ∈ F ,

E[χA] = P(A).

Some other common expectations are as follows.

Definition 0.3 (Moments). The p-th moment of a R-valued random variable is defined as E[Xp], when
this expectation exists.

Definition 0.4 (Mean and variance). If X is a R-valued random variable, we define its mean to be
E[X] (if it exists) and its variance to be

E[(X − E[X])2].

Definition 0.5 (Characteristic function). If X is an Rd-valued random variable, we define its charac-
teristic function ϕ as

ϕ(θ)
def
= E [exp[i〈X, θ〉Rd ]] . θ ∈ Rd

where 〈·, ·〉Rd is the standard inner product in Rd.

1See Problem 1.
2If S = Rd, we usually endow Rd with the standard topology and then take S = B(Rd).
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1. Convergence

Now let’s consider how random variables can converge. We assume that (S,S ) is a measurable space
and that {Xn; n = 1, 2 . . . } and X be (S,S )-valued random variables. First, we assume that S has a metric
d (which generates a topology) and that S ⊃ B(S).

Definition 1.1 (Almost sure convergence). We say that Xn converges to X almost surely (written
Xn → X a.s.) if

P
{

lim
n→∞

d(Xn, X) = 0
}

= 1

(in the language of measure theory, Xn converges to X almost everywhere).

Definition 1.2 (Convergence in probability). We say that Xn converges to X in probability if

lim
n→∞

P{d(Xn, X) ≥ ε} = 0

for every ε > 0 (in the language of measure theory, Xn converges to X in measure).

Definition 1.3 (Weak convergence3). We say that Xn converges to X weakly, in law, or in distribution,
if

lim
n→∞

E[ϕ(Xn)] = E[ϕ(X)]

for all φ ∈ Cb(X), the vector space of bounded real-valued continuous functions on X. More generally, we
say that a collection {µn; n = 1, 2 . . . } on (S,S ) converges weakly to another probability measure µ on
(S,S ) if

lim
n→∞

∫
X

φ(x)µn(dx) =

∫
X

φ(x)µ(dx)

for all φ ∈ Cb(X).

Now we assume that the metric d comes from a norm ‖ · ‖.

Definition 1.4 (Convergence in Lp). Fix 1 ≤ p <∞4. We say an R-valued random variable is in Lp if

E[‖X‖p] <∞;

and we define

‖X‖Lp
def
= E[‖X‖p]1/p

for all X ∈ Lp. If the Xn’s and X are in Lp, we say that Xn converges to X in Lp if limn→∞ ‖X−Xn‖Lp = 0.

Let’s understand how these types of convergence are related. The proofs are given as exercises.

Proposition 1.5. Assume that S has metric d and that S ⊃ B(S).

• If Xn tends to X a.s., then Xn tends to X in probability.
• If Xn tends to X in probability, then Xn tends to X in law.
• If the metric d comes from a norm ‖ · ‖, then if Xn tends to X in Lp (for 1 < p < ∞), then Xn

tends to X in probability.

We also have a partial converse, whose proof is also one of the exercises.

Proposition 1.6. Assume that S has metric d and that S ⊃ B(S). If Xn tends to X in probability,
then Xnk tends to X a.s., where {Xnk} is some subsequence of {Xn}.

We will later on need to know more about the relationship between almost-sure convergence and con-
vergence in L1. We will start with

Definition 1.7 (Uniform Integrability). Let A be an index set. A collection {Xα; α ∈ A} of real-valued
random variables is said to be uniformly integrable if

lim
K→∞

sup
α∈A

E
[
|Xα|χ{|Xα|≥K}

]
= 0.

3We will take this up in more detail in Chapter 2.
4There is typically little use for L∞ in probability theory.
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A slightly easier condition which is sufficient for uniform integrability is given by the following.

Proposition 1.8. Let {Xα; α ∈ A} be a collection of random variables. Suppose that there is a function
φ : R+ → R+ such that

lim
t→∞

φ(t)

t
=∞

and such that
sup
α∈A

E[φ(|Xα|)] <∞

Then {Xα; α ∈ A} is uniformly integrable.

Proof. Fix M > 0 and K ′ > 0 such that φ(t)/t ≥M if t ≥ K ′. Then for any K > K ′,

tχ{t≥K} ≤M−1φ(t)χ{t≥K} ≤M−1φ(t).

Thus
lim
K→∞

E[|Xα|χ{|Xα|≥K}] ≤M
−1 sup

α∈A
E[φ(|Xα|)].

Now let M tend to infinity. �

It turns out that uniform integrability is exactly the condition needed to strengthen almost-sure conver-
gence to L1 convergence. The following lemma will be useful in proving this.

Lemma 1.9. If {Xn; n ∈ N} is a uniformly integrable collection of real-valued random variables, then

E
[

lim
n→∞

Xn

]
≤ lim
n→∞

E[Xn] ≤ lim
n→∞

E[Xn] ≤ E
[

lim
n→∞

Xn

]
.

Proof. By putting negative signs in the obvious places, we see that it is sufficient to prove the first
inequality.

Fix ε > 0 and K > 0 such that
sup
n∈N

E[|Xn|χ{|Xn|≥K}] < ε.

Set

Yn
def
= Xnχ{Xn≥−K} = Xn −Xnχ{Xn<−K}.

Then it is easy to see that Yn ≥ Xn and Yn ≥ −K. By these observations and Fatou’s lemma, we have that

E[ lim
n→∞

Xn] ≤ E
[

lim
n→∞

Yn

]
≤ lim
n→∞

E[Yn] ≤ lim
n→∞

E[Xn] + sup
n∈N

E[|Xn|χ{|Xn|≥K}] ≤ lim
n→∞

E[Xn] + ε.

Now let ε tend to zero. �

We can now prove that in the presence of uniform integrability, a.s. convergence implies L1 convergence.

Proposition 1.10. Suppose that {Xn; n ∈ N ∪ {∞}} ⊂ L1 and Xn → X P-a.s.. Then Xn → X∞ in
L1 if and only if {Xn; n ∈ N} is uniformly integrable.

Proof. First, assume that {Xn; n ∈ N} is uniformly integrable. Then (as it is easy to see) {|Xn −
X∞|; n ∈ N} is uniformly integrable. Since |Xn −X∞| → 0 P-a.s., the previous lemma implies that

lim
n→∞

E[|Xn −X∞|] = E
[

lim
n→∞

|Xn −X∞|
]

= 0.

Now assume that Xn → X∞ in L1. Fix ε ∈ (0, 1). Then there is an integer Nε ≥ 1 such that
E[|Xn −X∞|] ≤ ε for all n ≥ Nε. Since {Xn; 1 ≤ n ≤ Nε} is a finite subset of L1,

(1) lim
K↗∞

sup
1≤n≤Nε

E
[
|Xn|χ{|Xn|≥K}

]
= 0.

Next note that for any K > 0,

sup
n≥Nε

E
[
|Xn|χ{|Xn|≥K}

]
≤ sup
n≥Nε

E
[
|X∞|χ{|Xn|≥K}

]
+ sup
n≥Nε

E [|Xn −X∞|]

≤ sup
n≥Nε

E
[
|X∞|χ{|Xn|≥K}

]
+ sup
n≥Nε

E [|Xn −X∞|] ≤ sup
n≥Nε

E
[
|X∞|χ{|Xn|≥K}

]
+ ε.
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We also have that

lim
K↗∞

sup
n≥Nε

P{|X∞| ≥ K} ≤ lim
K↗∞

sup
n≥Nε

E[|Xn|]
K

≤ lim
K↗∞

E|X∞|]
K

+ lim
K↗∞

sup
n≥Nε

E[|Xn −X∞|]
K

≤ lim
K↗∞

E|X∞|]
K

+ lim
K↗∞

ε

K

= 0.

Since X∞ is integrable,

lim
K↗∞

sup
n≥Nε

E
[
|Xn|χ{|Xn|≥K}

]
≤ lim
K↗∞

sup
n≥Nε

E
[
|X∞|χ{|Xn|≥K}

]
+ ε = ε.

Combine this with (1) to get the claim. �

Exercises
We assume a probability triple (Ω,F ,P) on which are defined all random variables. We also assume

that (S,S ) is a second measurable space.

(1) Let S be a collection of subsets of Ω. Show that

σ(S )
def
=

⋂
S ′ a sigma-algebra

S ′⊃S

S ′

is the smallest sigma-algebra containing S .
(2) Let {An; n = 1, 2 . . . } be a collection of measurable subsets of Ω. Show that if

∞∑
n=1

P(An) <∞,

then

P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 0.

Hint: Note that

∩∞n=1 ∪∞k=n Ak ⊂ ∪∞k=NAk

for any N and use the monotonicity and subadditivity of P. This is the first half of the Borel-Cantelli
law. The second part is in Chapter 3.

(3) Fix a mapping X : Ω→ S, where (S,S ) is some measurable space. Show that if A ⊂ S , σ(A ) = S ,
and X−1A ∈ F for all A ∈ A , then X is a random variable.

(4) Let X be an S-valued random variable. Define

µ(A)
def
= P{X ∈ A}. A ∈ S

Show that µ is a probability measure on (S,S ) and that for any bounded and measurable function
ϕ : S → R,

E[ϕ(X)] =

∫
S

ϕ(z)µ(dz).

The measure µ is called the law of X and is often denoted by PX−1.
(5) Let F : R→ [0, 1] be right-continuous and nondecreasing and have the following limits:

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

We want to find a random variable X (on some probability space (Ω,F ,P)) such that P{X ≤ t} = F (t)
for all t ∈ R; then F is called the cumulative distribution function of X. Consider the probability
triple ([0, 1],B([0, 1],L1

∣∣
B([0,1])

), where L1
∣∣
B([0,1])

) is one-dimensional Lebesgue measure restricted to
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B([0, 1]). Set X(ω) = ω for all ω ∈ [0, 1]. The random variable is said to be uniformly distributed
on [0, 1]. Set

G(t)
def
= inf{s : F (s) ≥ t}. t ∈ [0, 1]

Prove that Y = G(X) has distribution F .
(6) Assume that X is a nonnegative real-valued random variable. Assume that φ : R+ → R+ is a nonde-

creasing function. Show that for any L > 0, such that φ(L) > 0,

P{X ≥ L} ≤ E[φ(X)χ{X≥L}]/φ(L) ≤ E[φ(X)]/φ(L).

This is a generalized form of the Chebychev inequality.
(7) Let X be a nonnegative real-valued random variable and fix 1 ≤ p <∞. Show that

E[Xp] = p

∫ ∞
0

tp−1P{X ≥ t}dt.

Hint: Note that xp = p
∫ x

0
tp−1dt for any x ≥ 0.

(8) Let (S1,S2) and (S2,S2) be two measurable spaces. Assume that X is an S1-measurable random

variable and that Y is an S2-measurable random variable. Show that X̃(ω)
def
= (X(ω), Y (ω)) is an

(S1 × S1,S1 ×S2)-random variable5. Hint: Consider the collection R of rectangle sets and the set

A
def
= {S ⊂ S1 × S2 : X̃−1S ∈ F}.

(9) Assume that S has metric d and that S ⊃ B(S). Show that if Xn tends to X a.s., then Xn tends to X
in probability.

(10) Assume that S has metric d and that S ⊃ B(S). Show that if Xn tends to X in probability, then Xn

tends to X in law.
(11) Assume that S has metric d and that S ⊃ B(S). Show that if Xn tends to X in probability, then Xnk

tends to X a.s., where {Xnk} is some subsequence of {Xn}. Hint: Consider the sets Ak
def
= {d(Xnk , X) ≥

1/k}, where nk is large enough that P (Ank) ≤ 2−k. Then use Borel-Cantelli
Next, assume that the metric d comes from a norm ‖ · ‖.

(12) Show that if Xn tends to X in Lp (for 1 < p < ∞), then Xn tends to X in probability. Hint: use
Chebychev’s inequality.

(13) Let (Ω,F ,P) = ([0, 1],B([0, 1],L1
∣∣
B([0,1])

), and set Xn = nχ[0,1/n) for all n ∈ N and X = 0. Show that

Xn tends to X a.s. but not in L1. Thus, neither almost-sure convergence nor convergence in probability
imply L1 convergence.

(14) Let (Ω,F ,P) = ([0, 1],B([0, 1],L1
∣∣
B([0,1])

), and set Ak,n = [k/n, (k + 1)/n) for all n ∈ N and 1 ≤ k ≤
n − 1. Let {Bn; n ∈ N} be some enumeration of the Ak,n’s and set Xn = χBn and X = 0. Show that
Xn converges to X in probability but not almost-surely.

(15) Show that if 1 ≤ p < p′ < ∞, then ‖ · ‖Lp′ is stronger than ‖ · ‖Lp ; i.e., convergence in Lp
′

implies
convergence in Lp.

(16) Show that if 1 ≤ p1 < p2 < p3 < ∞, limn ‖Xn − X‖p1 = 0, and supn ‖Xn − X‖p3 < ∞, then
limn ‖Xn−X‖p2 = 0. This ends up using a simple interpolation inequality (Hint: use Hölder’s inequality).

(17) Assume that {Xn} are identically distributed (i.e., they have the same law) square-integrable random
variables with common expectation µ and which are uncorrelated, i.e.,

E [(Xj − µ)(Xk − µ)] = 0

if j 6= k. Then show that n−1
∑n
j=1Xj tends to µ in L2. This implies the weak law of large numbers

(see Theorem 1.1).
(18) Show that the variance of a random variable X is also equal to E[X2]− (E[X])2.
(19) Show that if ϕ is the characteristic function of some random variable, then

(a) ϕ is continuous
(b) ϕ(0) = 1

5Thus d(Xn, X) is measurable in the definitions of almost-sure convergence and convergence in probability.
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(c) For any N ≥ 0, any θ1, θ2 . . . θN in R and any α1, α2 . . . αN in C,∑
1≤i,j≤N

αiα
∗
jϕ(θi − θj) ≥ 0.

(20) Show that if X is an R-valued random variable in Lp for some positive integer p, then E[Xp] =
(−i)pϕ(p)(0).

(21) Let X be an Rd-valued random variable with characteristic function ϕ. Show if f is bounded, integrable,
and continuous, then

E[f(X)] = lim
ε→0

∫
Rd
f(x)

{
1

(2π)d

∫
θ∈Rd

exp
[
−ε

2
‖θ‖2 −

√
−1〈θ, x〉Rd

]
ϕ(θ)dθ

}
dx.

Thus, characteristic functions are unique.
(22) This is Widder’s inversion formula; see [?]. Fix µ ∈P[0,∞) and f ∈ Cb(R). For each λ > 0, define

Φ(λ)
def
=

∫
t∈[0,∞)

e−λtµ(dt);

this is the Laplace transform of µ (and note that µ puts full measure on R+).
(a) For each α > 0, let Xα be Poisson with parameter α. Fix f ∈ Cb(R). Show that for each t ≥ 0,

lim
λ→∞

E
[
f

(
Xtλ

λ

)]
= f(t).

(b) Use the result of the first part to compute

lim
λ→∞

∞∑
n=0

f
(n
λ

) (−λ)n

n!
Φ(n)(λ)

where Φ(n) is the n-derivative of Φ.
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CHAPTER 2

Independence, and Conditioning

1. Independence

Next, let’s consider independence. We now assume a probability measure P on (Ω,F ) and an index set
Λ.

Definition 1.1 (Independence). Let {Gi; i ∈ Λ} be a collection of sub-sigma-fields of F . We say that
these sigma-algebras are independent if

P

(⋂
i∈λ

Ai

)
=
∏
i∈λ

P(Ai)

for all Ai ∈ Gi and for all finite subsets λ of Λ. If {Xi; i ∈ Λ} is some collection of random variables, we say
that they are independent if {σ{Xi}; i ∈ Λ} are independent

This reduces to the requirement that two sigma-fields G1 and G2 are independent if P(A ∩ B) = P(A)P(B)
for all A ∈ G1 and all B ∈ G2.

The following is an interesting consequence of having an infinite number of independent sigma-algebras:

Theorem 1.2 (Kolmogorov’s 0 − 1 Law). Let {Gn; n = 1, 2 . . . } be a collection of independent sigma-
algebras. Define

I =

∞⋂
j=1

∨
k≥j

Gk;

this is called the tail sigma-algebra. Then either P(A) = 0 or P(A) = 1 for any A ∈ I .

Proof. We will show that I is independent of itself; then P(A) = P(A∩A) = P(A)P(A), which implies
the result. Fix 1 ≤ j < j′. Then

∨
j≤k≤j′ Gk is independent of

∨
k≥j′+1 Gk ⊃ I . Now let j′ tend to infinity.

Thus
∨
k≥j Gk ⊂ I is independent of I . �

We also have the second half of the Borel-Cantelli law1

Theorem 1.3 (Borel-Cantelli, second half). Assume that {A1, A2 . . . } are independent events. Then∑∞
n=1 P(An) =∞ implies that

(2) P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= 1.

Proof. It of course suffices to show that

P

( ∞⋃
n=1

∞⋂
k=n

ACk

)
= 0.

To this end, recall that 1− x ≤ e−x for any x ≥ 0, and calculate that for any 0 ≤ n ≤ m,

P

(
m⋂
k=n

ACk

)
=

m∏
k=n

P(ACk ) =

m∏
k=n

(1− P(Ak)) ≤ exp

[
−

m∑
k=n

P(Ak)

]
.

1The first half was in one of the problems in Chapter 1.
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Let m tend to infinity to see that

P

(
m⋂
k=n

ACk

)
= 0.

This then implies (2). �

2. Conditional probability

If a random variable X is independent of a sub sigma-algebra G , then we expect that G should have no
effect on X. What happens if X and G are not independent?

Definition 2.1 (Conditional expectation). Fix G a sub sigma-algebra of F and X an integrable real-
valued random variable. We say that a second integrable real-valued random variable ξ is a version of
E[X|G ], the conditional expectation of X given G , if

(a) ξ is G -measurable.
(b) For every A ∈ G , E[χAξ] = E[χAX].

The following result answers the obvious question of existence.

Theorem 2.2 (Existence of versions of conditional expectations). For any real-valued integrable random
variable X and any sub sigma-algebra G of F , a version of E[X|G ] exists.

Proof. Define the two measures

µ±(A)
def
= E[χAX

±] A ∈ G

where X+ def
= max{X, 0} and X−

def
= max{−X, 0}. Then µ± is a measure on (Ω,G ) which is absolutely

continuous with respect to P
∣∣
G

(if A ∈ G and P(A) = 0, then µ±(A) = 0). Thus applying the Radon-

Nikodym theorem to measures on (Ω,G ), we get the existence of two G -measurable integrable random
variables ξ+ and ξ− such that

E[χAξ±] = µ±(A) = E[χAX
±]

for all A ∈ G . Since X = X+ −X− and since expectations are linear, we get that ξ
def
= ξ+ − ξ− is a version

of E[X|G ]. �

One of the problems tells us that all versions of E[X|G ] differ only on a set of measure zero, so we can
safely refer to E[X|G ] as an equivalence class of integrable functions.

Definition 2.3 (Conditional probability). For any A ∈ F and any sub sigma-algebra G of F , we define

P(A|G )
def
= E[χA|G ].

Exercises
As usual, we consider an underlying probability triple (Ω,F ,P). We also assume an index set I ⊂ R

and a filtration {Ft; t ∈ I}.
(1) Suppose if X is a random variable taking values in a measurable space (S,S ). We define σ{X} as the

smallest sub-sigma-algebra of F with respect to which X is measurable. Prove that σ{X} = X−1(S )
def
=

{X−1(A) : A ∈ S }. The point of this is that the definition of σ{X} relied upon a generated sigma-field,
whereas we can also define it directly as X−1S .

(2) Prove Halmos’ monotone class theorem. A collection F0 of subsets of Ω is called a field if it
contains Ω, is closed under complementation and (finite) unions. A collection M of subsets of Ω is called
a monotone class if it is closed under monotone limits (i.e., if {An} ⊂ M and if An ↗ A or An ↘ A,
then A ∈M ). Show that if F0 ⊂M , then σ(F0) ⊂M . Hints:
(a) Define

m(F0)
def
=

⋂
M ′ a monotone class

M ′⊃F0

M ′.
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Show that m(F0) is a monotone class and that if it is a field, then it is a sigma-algebra (and hence
σ(F0) ⊂ m(F0)).

(b) Show that Ω ∈ m(F0).
(c) Show that m(F0) is closed under complementation by showing that

m(F0) ⊂ {A ⊂ Ω : Ac ∈ m(F0)} .

(d) Show that m(F0) is closed under (finite) unions by showing that

m(F0) ⊂ {A ⊂ Ω : A ∪B ∈ m(F0) for all B ∈ F0}
m(F0) ⊂ {A ⊂ Ω : A ∪B ∈ m(F0) for all B ∈ m(F0)} .

(3) Prove Dynkin’s π − λ theorem. A collection P of subsets of Ω is called a π-system if it is closed
under (finite) intersections. A collection L of subsets of Ω is called a λ-system if it contains Ω, is closed
under complementation and countable disjoint unions (i.e., if {An} ⊂ L are disjoint, then ∪nAn ∈ L ).
Show that if P ⊂ L , then σ(P) ⊂ L . Hints:
(a) Define

l(P)
def
=

⋂
L ′ a λ-system

L ′⊃P

L ′.

Show that l(P) is a λ-system and that if it is a π-system, then it is a sigma-algebra (and hence
σ(P) ⊂ l(P)).

(b) Show that l(P) is a π-system by showing that

l(P) ⊂ {A ⊂ Ω : A ∩B ∈ l(P) for all B ∈P}
l(P) ⊂ {A ⊂ Ω : A ∩B ∈ l(P) for all B ∈ l(P)} .

To show that the collections on the right are closed under complementation, note that (Ac ∩B)c =
A ∪Bc = (A ∩B) ∪Bc.

(4) Let X be a metric space and let µ be a probability measure on (X,B(X)). Show that µ is regular; i.e.,
that for all A ∈ B(X),

µ(A) = µ∗(A) = µ∗(A),

where

µ∗(A)
def
= inf{µ(O) : O ⊃ A is open}

µ∗(A)
def
= sup{µ(F ) : F ⊂ A is closed}

for all A ∈ B(X). Hint: consider the collection

G
def
= {A ∈ B(X) : µ∗(A) = µ(A) = µ∗(A)}

of subsets of X.

(5) Let E be a metric space and T > 0 and consider the measurable space (Ω,F ), where Ω
def
= C([0, T ];E),

this being endowed with the topology generated by the supremum norm, and F
def
= B(C([0, T ];E)). For

each 0 ≤ t ≤ T , let Xt(ω) = ω(t) for all ω ∈ Ω. Show that the Xt’s are E-valued random variables and
that B(C([0, T ];E)) = σ{Xt; t ∈ [0, T ]}.

(6) Fix A and B in F , and set G1
def
= {∅,Ω, A,Ac} and G2

def
= {∅,Ω, B,Bc}. Show that A and B are

independent if and only if G1 and G2 are independent. This reduces the general definition of independence
to the most elementary one.

(7) Let Λ be an index set and let {Gi; i ∈ Λ} be a collection of sub sigma-algebras of F . We define∨
t∈Λ

Gt
def
= σ

{⋃
t∈Λ

Gt

}
.

Show that ∨
t∈Λ

Gt = σ {∩t∈λAt : λ ⊂ Λ is countable and At ∈ Gt for all t ∈ λ} .
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(8) Assume that A1 and A2 are either π-systems or fields, and that all of the sets in A1 are independent of
all of the sets in A2. Show that σ(A1) is independent of σ(A2).

(9) Let (Ωi,Gi,Pi) be a probability triple for i = 1, 2 . . . n. Define Ω
def
= ×ni=1Ωi, G

def
= ×ni=1Gi, and P def

=
×ni=1Pi. For each 1 ≤ i ≤ n, define

G̃i
def
= {(x1, x2 . . . xn) ∈ Ω; xi ∈ Ai : Ai ∈ Gi}.

Show that the G̃i’s are independent. This proves that independent random variables give rise to product
measures.

(10) Assume that X and Y are independent random variables taking values, respectively, in two measurable
spaces (S1,S1) and (S2,S2) with laws, respectively, of µ1 and µ2. Define the (S1×S2,S1×S2)-valued

random variable Z
def
= (X,Y ). Let µ be the law of Z. Show that µ = µ1×µ2. Hint: start with rectangle

sets. This proves that product measures give rise to independence.
(11) Assume that {X1, X2 . . . } are independent real-valued random variables. Show that

P

 lim
n→∞

n−1
n∑
j=1

Xj exists

 ∈ {0, 1}.
Hint: show that the existence of the limit does not depend on any finite number of terms.
Now let X be a real-valued integrable random variable and let G be a sub sigma-algebra of F .

(12) Any two versions of E[X|G ] differ only on a set of measure zero.
(13) The mapping X 7→ E[X|G ] is a linear mapping from L1 into itself of norm 1.
(14) If ϕ : R → R is any convex function such that ϕ(X) is integrable, then ϕ(E[X|G ]) ≤ E[ϕ(X)|G ]. Hint:

write ϕ as the supremum of all linear minorants.
(15) If X ≥ 0, then E[X|G ] ≥ 0.
(16) If X is G -measurable, then E[X|G ] = X.
(17) If G ′ is a second sub sigma-algebra of F such that G ⊂ G ′, then E[E[X|G ′]|G ] = E[X|G ]. This is iterated

conditioning.
(18) Let X and Y be random variables which take values in measurable spaces (S1,S1) and (S2,S2) respec-

tively. Suppose that Y is measurable with respect to some sigma-algebra G but that X is independent of

G . Let ϕ : S1 × S2 → R be a bounded function. Then E[ϕ(X,Y )|G ] = Φ(Y ), where Φ(y)
def
= E[φ(X, y)]

for all y ∈ S2. Hint: first consider functions which are indicators of rectangle sets.
(19) Suppose that X is independent of G . Use the previous question to compute E[X|G ].

(20) Let G
def
= σ{A1, A2 . . . An}, where {Ai} ⊂ F are disjoint and ∪ni=1Ai = Ω. Let X be an integrable

random variable. Find E[X|G ].
(21) Let X be a bounded or nonnegative random variable, and let G be a sub sigma-algebra of F . Let P′ be

a second probability measure on (Ω,F ) which is absolutely continuous with respect to P, and let E′ be
the expecation operator associated with P′. Show that

E′[X|G ] =
E
[
X dP′

dP
∣∣G ]

E
[
dP′
dP
∣∣G ] .

Make sure to prove that P′-a.s., E
[
dP′
dP
∣∣G ] > 0. This is a form of Bayes’ rule.

(22) Let X be an Rd-valued random variable and let G be a sub-sigma-algebra of F . Suppose that

E
[
exp

[√
−1〈θ,X〉Rd

] ∣∣G ] = E
[
exp

[√
−1〈θ,X〉Rd

]]
for all θ ∈ R. Show that X is independent of G .
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CHAPTER 3

Asymptotics: Limit theorems

We now take up some asymptotic questions. Throughout this section, we will let {ξ1, ξ2 . . . } be an
independent and identically distributed (i.i.d.) collection of R-valued random variables with common law µ.
Also define

Sn
def
=

n∑
j=1

ξj

for all n.

1. The weak law of large numbers

First, let’s assume that

(3)

∫
R
|x|µ(dx) <∞ and

∫
R
xµ(dx) = 0

(if the second condition is not true, we translate).

Theorem 1.1 (Weak Law of Large Numbers for L2 random variables). Assume that∫
x∈R

x2µ(dx) <∞.

Then we have that

lim
n→∞

Sn
n

= 0

in probability.

Proof. We use problem 15 in chapter 1. Since the ξi’s are independent, they are uncorrelated. Problem
15 in chapter 1 implies that n−1Sn tends to zero in L2. Since L2 convergence implies convergence in
probability, we have the desired result. �

We can fairly easily remove the requirement of square-integrability.

Theorem 1.2 (Weak Law of Large Numbers). Under the assumptions of (3) we have the weak law of
large numbers.

Proof. Fix δ > 0; we want to bound

P
{∣∣∣∣ 1nSn

∣∣∣∣ ≥ δ} .
Fix next L > 0 (to be determined in a moment) and truncate the ξi’; define

ξLj
def
= ξjχ[−L,L](ξj)

ξ̂Lj
def
= ξLj − E

[
ξLj
]

ξ̃Lj
def
= ξj − ξLj

for all j ∈ N. Then we have that

Sn
def
= SL,1n + SL,2n + SL,3n
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where

SL,1n
def
=

n∑
j=1

ξ̂Lj SL,2n
def
=

n∑
j=1

E[ξLj ] and SL,3n
def
=

n∑
j=1

ξ̃Lj

We first note that SL,2n is in fact not random;

1

n
SL,2n = 0µ{[−L,L]c}+

∫
|z|≤L

zµ(dz);

by dominated convergence,

lim
L↗∞

∫
|z|≤L

zµ(dz) = 0,

so there is an L̄ such that ∣∣∣∣∣
∫
|z|≤L

zµ(dz)

∣∣∣∣∣ < δ

3

if L ≥ L̄. We next note that

P
{∣∣∣∣ 1nSL,3n

∣∣∣∣ ≥ δ

3

}
≤ 3

δ
E[| 1

n
SL,3n |] ≤

3

δn

n∑
j=1

E[|ξ̃Lj |]

≤ 3

δ

{
0µ{[−L,L]}+

∫
|z|>L

zµ(dz)

}
=

3

δ

∫
|z|>L

zµ(dz).

By the weak law of large numbers for L2 random variables, we have that

lim
n→∞

P
{∣∣∣∣ 1nSL,1n

∣∣∣∣ ≥ δ

3

}
= 0,

so for L > L̄,

P
{∣∣∣∣ 1nSn

∣∣∣∣ ≥ δ} ≤ 3

δ

∫
|z|>L

zµ(dz).

By dominated convergence,

lim
L→∞

∫
|z|>L

zµ(dz) = 0,

so we have the claimed result. �

We will later use martingale theory to prove the strong law of large numbers, which gives almost-sure
convergence if µ is integrable.

2. The Central Limit Theorem

We now consider the central limit theorem for the ξj ’s. Let us begin by defining

Definition 2.1 (Gaussian Random Variables). Define

G(A)
def
=

∫
A

1√
2π

exp

[
−x

2

2

]
dx. A ∈ B(R)

For any m ∈ R and σ ≥ 0, we say that an R-valued random variable η (defined on some probability triple
(Ω,F ,P)) is N(m,σ2) if

P{η ∈ A} = G({x ∈ R : σx+m ∈ A}). A ∈ B(R)

We now assume that

(4)

∫
R
xµ(dx) = 0 and

∫
R
x2µ(dx) = 1;

i.e., the ξ’s have mean zero and standard deviation 11. Then we have

1This is not really a big restriction; as long as the standard deviation σ of the ξj ’s is positive, we can get (4) by replacing

ξj by (ξj − ξ̄)/σ.
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Theorem 2.2 (Central Limit Theorem). Let νn be the law of Sn/
√
n; i.e.,

νn(A)
def
= P

{
n−1/2Sn ∈ A

}
; A ∈ B(R)

then limn→∞ µn = G in the Prohorov topology. Equivalently,

lim
n→∞

E
[
ϕ
(
n−1/2Sn

)]
=

∫
R
ϕ(x)G(dx)

for all ϕ ∈ Cb(R).

Proof. The key observation is that the result is identically true for all n if the ξj ’s are Gaussian. To
make this precise, enlarge (Ω,F ,P) as necessary to include a collection {ηj ; j = 1, 2 . . . } of independent

N(0, 1)-random variable which are also independent of the ξj ’s. Then n−1/2
∑n
j=1 ηj is N(0, 1) for all n. We

want to sequentially replace the ξj ’s by the ηj ’s. For each n, define

S̄kn
def
=

∑
j∈{1,2...n}

j≤k

ξj +
∑

j∈{1,2...n}
j>k

ηj .

Then S̄nn = Sn and that S̄0
n/
√
n is N(0, 1).

Fix now ϕ ∈ C3
b (R) (i.e., ϕ and its first three derivatives are bounded. Thus

E
[
ϕ(n−1/2Sn)

]
−
∫
R
ϕ(x)G(dx) = E

[
ϕ(n−1/2S̄nn)

]
− E

[
ϕ(n−1/2S̄0

n)
]

=

n−1∑
k=0

{
E
[
ϕ(n−1/2S̄nk )

]
− E

[
ϕ(n−1/2S̄k+1

n )
]}

.

To take full advantage of independence, define

Ukn
def
=

∑
j∈{1,2...n}

j<k

ξj +
∑

j∈{1,2...n}
j>k

ηj .

then for each k = 1, 2 . . . n,

Skn = Ukn + ξk and Sk−1
n = Ukn + ηk

and ξk and ηk are independent of Ukn . Define now

R(x; δ)
def
= ϕ(x+ δ)− ϕ(x)− ϕ̇(x)δ − 1

2
ϕ̈(x)δ2

for all x and y in R. Then for any k = 1, 2 . . . n,

E
[
ϕ(n−1/2S̄kn)

]
= E

[
ϕ(n−1/2Ukn)

]
+

1√
n
E
[
ϕ̇(n−1/2Ukn)ξk

]
+

1

2n
E
[
ϕ̈(n−1/2Ukn)(ξk)2

]
+ E

[
R(n−1/2Ukn ; ξk/

√
n)
]

= E
[
ϕ(n−1/2Ukn)

]
+

1

2n
E
[
ϕ̈(n−1/2Ukn)

]
+ E

[
R(Ukn/

√
n; ξk/

√
n)
]

E
[
ϕ(n−1/2S̄k+1

n )
]

= E
[
ϕ(n−1/2Ukn)

]
+

1√
n
E
[
ϕ̇(n−1/2Ukn)ηk

]
+

1

2n
E
[
ϕ̈(n−1/2Ukn)(ηk)2

]
+ E

[
R(n−1/2Ukn ; ηk/

√
n)
]

= E
[
ϕ(n−1/2Ukn)

]
+

1

2n
E
[
ϕ̈(n−1/2Ukn)

]
+ E

[
R(n−1/2Ukn ; ηk/

√
n)
]

Thus ∣∣∣∣E [ϕ(n−1/2Sn)
]
−
∫
R
ϕ(x)G(dx)

∣∣∣∣ ≤ n∑
k=1

{
E
[
|R(n−1/2Ukn ; ξk/

√
n)
]

+ E
[
|R(n−1/2Ukn ; ηk/

√
n)
]}

.
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We will now bound R(x; y) in two ways, for large y and then for small y. We have that

R(x; δ) =
δ3

2

∫ 1

s=0

(1− s)2ϕ(3)(x+ sδ)ds = δ2

∫ 1

s=0

(1− s){ϕ̈(x+ sδ)− ϕ̈(x)}ds

for all x and y. Thus

|R(x; δ)| ≤ min

{
|δ|3

3
‖ϕ‖C3(R),

δ2

2
‖ϕ‖C2(R)

}
≤ κmin{|δ|3, |δ|2}

where

κ
def
=

1

2
‖ϕ‖C3(R).

Thus,∣∣∣∣E [ϕ(Sn/
√
n)
]
−
∫
R
ϕ(x)G(dx)

∣∣∣∣
≤ κ

n∑
k=1

{
E
[
min

{
|ξj |2

n
,
|ξj |3

n3/2

}]
+ E

[
min

{
|ηj |2

n
,
|ηj |3

n3/2

}]}

=
κ

n

n∑
k=1

{
E
[
min

{
|ξj |, n−1/2|ξj |3

}]
+ E

[
min

{
|ηj |, n−1/2|ηj |3

}]}
= κ

{∫
x∈R

min
{
|x|, n−1/2|x|3

}
µ(dx) +

∫
x∈R

min
{
|x|, n−1/2|x|3

}
G(dx)

}
.

By dominated convergence,

lim
n→∞

{∫
R
|z|2(1 ∧ |z/

√
n|µ(dz) +

∫
R
|z|2(1 ∧ |z/

√
n|G(dz)

}
= 0,

which completes the proof if ϕ ∈ C3
b (R).

Assume now that ϕ ∈ Cb(R). For each δ > 0, define

ϕδ(x)
def
=

∫
y∈R

ϕ(y)(2πδ)−1/2 exp

[
− (y − x)

2δ

]
dy.

Then ϕδ ∈ C3
b (R). We also have that

lim
δ→0

sup
|x|≤L

|ϕδ(x)− ϕ(x)| = 0.

for each L > 0. We write that∣∣∣∣E [ϕ(Sn/
√
n)
]
−
∫
R
ϕ(x)G(dx)

∣∣∣∣ ≤ E
[∣∣ϕ(Sn/

√
n)− ϕδ(Sn/

√
n)
∣∣]

+

∣∣∣∣E [ϕδ(Sn/√n)
]
−
∫
R
ϕδ(x)G(dx)

∣∣∣∣+

∫
R
|ϕδ(x)− ϕ(x)|G(dx).

From the above, we have that

lim
n→∞

∣∣∣∣E [ϕδ(Sn/√n)
]
−
∫
R
ϕδ(x)G(dx)

∣∣∣∣ = 0

for each δ > 0. We then have that∫
R
|ϕδ(x)− ϕ(x)|G(dx) ≤ 2‖ϕ‖C(R)G(R \ [−L,L]) + sup

|x|≤L
|ϕδ(x)− ϕ(x)|

E
[∣∣ϕ(Sn/

√
n)− ϕδ(Sn/

√
n)
∣∣] ≤ 2‖ϕ‖C(R)P

{
|Sn/
√
n| ≥ L

}
+ sup
|x|≤L

|ϕδ(x)− ϕ(x)|.

We thus have that

lim
n→∞

∣∣∣∣E [ϕ(Sn/
√
n)
]
−
∫
R
ϕ(x)G(dx)

∣∣∣∣ ≤ 2 sup
|x|≤L

|ϕδ(x) − ϕ(x)| + 2‖ϕ‖C(R)

{
G(R \ [−L,L]) +

1

L2

}
.
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Let δ ↘ 0 and L→∞. �

3. Large Deviations

Let’s now go back to the weak law of large numbers, and study how quickly does convergence occurs.
This is the subject of large deviations.

Let’s first carry out a Gaussian calculation, just because we can. Let {ηi; i ∈ N} be an independent
collection of identically-distributed N(0, 1) random variables. Define

S̃n
def
=

n∑
j=1

ηj

Then n−1S̃n is N(0, 1/n). We have

Lemma 3.1. For any L > 0,

(5) lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} = −L

2

2
.

Proof. First, we note that

P{|S̃n/n| ≥ L} =

∫
|z|≥L

1√
2π/n

exp
[
−nz2/2

]
dz.

For any δ > 0, we thus have that

P{|S̃n/n| ≥ L} ≥
∫
L≤|z|≤L+δ

1√
2π/n

exp
[
−nz2/2

]
dz ≥ exp

[
−1

2
(L+ δ)2

]
2δ√
2π/n

.

Thus

lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} ≥ −

(L+ δ)2

2
.

so in fact we have the lower bound

lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} ≥ −

L2

2
.

We also have that for each δ > 0

P{|S̃n/n| ≥ L} ≤
∫
|z|≥L

1√
2π/n

exp
[
−n(1− δ)z2/2

]
exp

[
−nδz2/2

]
dz

≤ exp
[
−n(1− δ)L2/2

] ∫
|z|≥L

1√
2π/n

exp
[
−nδz2/2

]
dz

≤ exp
[
−n(1− δ)L2/2

] ∫
z∈R

1√
2π/n

exp
[
−nδz2/2

]
dz =

√
n

δ
exp

[
−n(1− δ)L2/2

]
.

Thus

lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} ≥ −

L2(1− δ)2

2
so in fact we have the upper bound

lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} ≥ −

L2

2
.

�

If we define IG(z)
def
= z2

2 for all z ∈ R, we thus can rewrite (5) as

lim
n→∞

1

n
logP{|n−1S̃n| ≥ L} = − inf

|z|≥L
IG(z).

Definition 3.2 (Large deviations). A collection {Xn} of random variables taking values in some Polish
space X has a large deviations principle with rate function I : X → [0,∞] if
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(a) For every s ≥ 0, the set

Φ(s)
def
= {x ∈ X : I(x) ≤ s}

is compact.
(b) For every F ⊂ R closed,

lim
n→∞

n−1 logP{Sn/n ∈ F} ≤ − inf
x∈F

I(x).

(c) For every G ⊂ R open,

lim
n→∞

n−1 logP{Sn/n ∈ G} ≥ − inf
x∈G

I(x).

Heuristically, we can write that

P{Xn ∈ A} � exp

[
−n inf

x∈A
I(x)

]
To return to our setting, assume now that

M(θ)
def
=

∫
R
eθxµ(dx) <∞

for all θ ∈ R. We want to show that under this assumption, Sn/n has a large deviations principle. To guess
what the action functional is, let’s first observe a certain way to use the exponential Chebychev inequality.

Lemma 3.3. For any L > 0 and any θ ∈ R,

P {θSn/n > L} ≤ exp [−n(L− logM(θ))]

for all n.

Proof. We have that

P {θSn > nL} ≤ e−nLE [exp [nθXn]] .

Note that

E [exp [nθXn]] = E

[
n∏
i=1

eθξi

]
= M(θ)n.

�

From this we can immediately see that for any L > 0 and any θ > 0,

P{Sn/n ≥ L} = P{θSn/n ≥ θL} ≤ exp [−n(Lθ − logM(θ))]

Thus

lim
n→∞

n−1 logP{Sn/n ≥ L} ≤ inf
θ>0
{−θx+ logM(θ)} = − sup

θ>0
{θx logM(θ)}.

Define now

I(x)
def
= sup

θ∈R
{θx− logM(θ)} θ ∈ R

(I is the Legendre-Fenchel transform of logM). We will show that Xn
def
= Sn/n has a large deviations

principle (in R) with rate function I.

Lemma 3.4. For every s ≥ 0, Φ(s) is compact.

Proof. For convenience, define

fθ(x)
def
= θx− logM(θ) x ∈ R

for each θ ∈ R. Then {
x ∈ R : sup

θ∈R
fθ(x) ≤ s

}
=
⋂
θ∈R
{x ∈ R : fθ(x) ≤ s} .

Since fθ is continuous for each θ, we have written Φ(s) as an intersection of closed sets. Thus Φ(s) is clearly
closed. We also note that

Φ(s) ⊂ {x ∈ R : f1(x) ≤ s} ∩ {x ∈ R : f−1(x) ≤ s} .
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If f1(x) ≤ s and f−1(x) ≤ s, then x ≤ s+ logM(1) and −x ≤ s+ logM(−1), so

Φ(s) ⊂ [−s− logM(−1), s+ logM(1)]

so Φ(s) is also bounded. Thus Φ(s) is compact. �

We now want to prove the large deviations upper bound. We begin with compact sets.

Lemma 3.5. For every K ⊂⊂ R,

(6) lim
n→∞

n−1 logP{Sn/n ∈ K} ≤ − inf
x∈K

I(x).

Proof. First fix s < infx∈K I(x), and note that

K ⊂ {x ∈ R : I(x) > s} =
⋃
θ∈R
{x ∈ R : θx− logM(θ) > s}

Since we thus cover K by a collection of open sets, we can extract a finite subcover; there is a finite subset
Θ of R such that

K ⊂
⋃
θ∈Θ

{x ∈ R : θx > s+ logM(θ)}

Now note that for any θ ∈ Θ, Lemma 3.3 implies that

P{θSn/n > s+ logM(θ)} ≤ e−sn.
Thus, P{Sn/n ∈ K} ≤ |Θ|e−sn for all n, and hence

P{Sn/n ∈ K} ≤ |Θ|e−sn,
so

lim
n→∞

n−1 logP{Sn/n ∈ K} ≤ −s

and thus (6) holds. �

Now we prove exponential tightness;

Lemma 3.6. We have that

(7) lim
L→∞

lim
n→∞

n−1 logP{|Sn/n| ≥ L} = −∞.

Proof. This is an easy consequence of Lemma 3.3. Take θ = ±1 and any L > 0. Then

lim
n→∞

n−1 logP{Sn/n ≥ L} ≤ −(L− logM(1))

lim
n→∞

logP{Sn/n ≤ −L} ≤ −(L− logM(−1))

and this proves (7). �

We now have the full upper bound

Proposition 3.7. For every closed subset F of R,

(8) lim
n→∞

n−1 logP{Sn/n ∈ F} ≤ − inf
x∈F

I(x).

Proof. For any L > 0, we thus have that F ⊂ (F ∩ [−L,L]) ∪ (−L,L)c, so

lim
n→∞

n−1 logP{Sn/n ∈ F} ≤ lim
n→∞

n−1 log {P{Sn/n ∈ F ∩ [−L,L]}+ P{|Sn/n| ≥ L}}

≤ max

{
− inf
z∈F∩[−L,L]

I(z), ω(L)

}
where

ω(L)
def
= lim

n→∞
n−1 logP{|Sn/n| ≥ L};

we have from (7) that limL→∞ ω(L) = −∞. We also have that

lim
L→∞

inf
z∈F∩[−L,L]

I(z) = inf
z∈F

I(z).

Thus we have the desired upper bound (8). �
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To prove the lower bound, let’s first study I a bit more closely under a regularity assumption.

Lemma 3.8. Assume that µ((α, β)) > 0 for all α < β (i.e., suppµ = R). Then

I(x) = max
θ∈R
{θx− logM(θ)} .

Proof. For each x ∈ R, define

f̃x(θ)
def
= θx− logM(θ) = − log

∫
z∈R

eθ(z−x)µ(dz) θ ∈ R

Each f̃x is continuous. We also note that x 7→ − log x is decreasing on (0,∞). If θ > 0, then

f̃x(θ) ≤ − log

∫
z>x+1

eθ(z−x)µ(dz) ≤ − log

∫
z>x+1

eθµ(dz) = −θ − logµ((x+ 1,∞))

so limθ→∞ f̃x(θ) = −∞, and if θ < 0, then

f̃x(θ) ≤ − log

∫
z<x−1

eθ(z−x)µ(dz) ≤ − log

∫
z<x+1

e−θµ(dz) = θ − logµ((−∞, x+ 1))

so limθ→−∞ f̃x(θ) = −∞. Thus the claim follows. �

This allows us to prove the lower bound under the above regularity assumption.

Lemma 3.9. Assume that suppµ = R. Then for every G ⊂ R open,

lim
n→∞

n−1 logP{Sn/n ∈ G} ≤ − inf
x∈G

I(x).

Proof. It is sufficient to prove that for any x ∈ G,

(9) lim
δ→0

lim
n→∞

n−1 logP {Sn/n ∈ G} ≥ −I(x).

This is trivial if I(x) =∞, so we further assume that I(x) <∞.
Fix θ ∈ R such that

I(x) = θx− logM(θ).

Note that the first-order condition of optimality for θ is that

(10)
Ṁ(θ)

M(θ)
= x;

we will use this later. Now fix any δ > 0 such that (x − δ, x + δ) ⊂ G (possible since G is open). We now
write that

P{Sn/n ∈ G} ≥ P {|Sn/n− x| < δ}
= E

[
χ{|Sn/n−x|<δ} exp [θSn − n logM(θ)] exp [−n (θSn/n− logM(θ))]

]
Note that

P′n,θ(A)
def
= E [χA exp [θSn − n logM(θ)]] =

E
[
χA
∏n
i=1 e

θξi
]

E [
∏n
i=1 e

θξi ]
A ∈ F

is a probability measure on (Ω,F ). Also note that if |Sn/n− x| < δ, then by our choice of θ,

θSn/n− logM(θ) ≤ I(x) + ‖θ‖δ.
Thus

P {|Sn/n− x| < δ} ≥ P′n,θ {|Sn/n− x| < δ} exp [−n (I(x) + ‖θ‖δ)] .
Let’s next look at the statistics of the ξi’s under P′n,θ. For any {Ai; i = 1, 2 . . . n} in B(R),

P′n,θ

(
n⋂
i=1

{ξi ∈ Ai}

)
=

E
[∏n

i=1 χAi(ξi)
∏n
i=1 e

θξi
]

E [
∏n
i=1 e

θξi ]
=

n∏
i=1

E
[
χAi(ξi)e

θξi
]

E [eθξi ]
=

n∏
i=1

µθ(Ai)

where

µθ(A)
def
=

∫
z∈A e

θzµ(dz)

M(θ)
. A ∈ B(R)

22



Thus, under P′θ,n, the ξ1, ξ2 . . . ξn are i.i.d. with law µθ. Note that the expected value of the ξi’s (for

1 ≤ i ≤ n) under P′n,θ is exactly∫
z∈R

zµθ(dz) =

∫
z∈R ze

θzµ(dz)

M(θ)
=
Ṁ(θ)

M(θ)
= x

by (10). Note also that ∫
z∈R

z2µθ(dz) =

∫
z∈R z

2eθzµ(dz)

M(θ)
=
M̈(θ)

M(θ)
,

so the variance of the ξi’s (for 1 ≤ i ≤ n) is

M̈(θ)

M(θ)
− Ṁ(θ)

M(θ)

which is finite. By Chebychev’s inequality,

P′n,θ {|Sn/n− x| < δ} ≥ 1− P′n,θ {|Sn/n− x| ≥ δ} ≥ 1− n−1

(
M̈(θ)

M(θ)
− Ṁ(θ)

M(θ)

)
.

Thus

lim
n→∞

n−1 logP {|Sn/n− x| < δ} ≥ −n(I(x) + ‖θ‖δ).

Now let δ tend to zero; we get (9). �

Let’s now prove the full lower bound.

Lemma 3.10. For every G ⊂ R open,

lim
n→∞

n−1 logP{Sn/n ∈ G} ≤ − inf
x∈G

I(x).

This holds even if suppµ 6= R.

Proof. Enlarge (Ω,F ,P) as necessary to support a independent collection {η1, η2 . . . } of N(0, 1) ran-
dom variables which are independent of the ξj ’s. For each ε > 0, define

ξεj
def
= ξj + εηj j ∈ N

Sεn
def
=

n∑
j=1

ξεj = Sn + ε

n∑
j=1

ηj . n ∈ N

Then the ξεj ’s are independent and identically distributed with common law

µε(A)
def
=

∫
z∈A

fε(z)dz A ∈ B(R)

where

fε(x)
def
=

∫
z∈R

(2πε2)−1/2 exp

[
− x2

2ε2

]
µ(dz) x ∈ R

Thus suppµε = R. We furthermore have that

Mε(θ)
def
=

∫
z∈R

eθzµε(dz) = M(θ)e−ε
2θ2/2

for all θ ∈ R and we define

Iε(x)
def
= sup

θ∈R
{θx− logMε(θ)} = sup

θ∈R

{
θx− logM(θ)− θ2ε2

2

}
≤ I(x).

Fix now δ > 0 and x∗ ∈ G such that I(x∗) < infx∈G I(x)+δ. Fix next δ′ > 0 such that (x∗−δ′, x∗+δ′) ⊂
G. Then by Lemma 3.9

(11) lim
n→∞

1

n
logP

{∣∣∣∣Sεnn − x∗
∣∣∣∣ < δ′/2

}
≥ − inf

|z−z∗|<δ′/2
Iε(z) ≥ −Iε(x∗) ≥ −I(x∗) + δ ≥ − inf

z∈G
I(z) + δ.
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We now compute that

P
{∣∣∣∣Snn − x∗

∣∣∣∣ < δ′/2

}
≤ P

{∣∣∣∣Snn − x∗
∣∣∣∣ < δ′

}
+ P

{∣∣∣∣Sn − Sεnn

∣∣∣∣ ≥ δ′/2} .
and thus

(12) lim
n→∞

1

n
logP {Sn/n ∈ G} ≥ lim

n→∞

1

n
logP

{∣∣∣∣Snn − x∗
∣∣∣∣ < δ′

}
≥ lim
n→∞

1

n
log

{
P
{∣∣∣∣Sεnn − x∗

∣∣∣∣ < δ′/2

}
− P

{∣∣∣∣Sn − Sεnn

∣∣∣∣ ≥ δ′/2}} .
From Lemma L:GaussLDP we have that

lim
ε↘0

lim
n→∞

1

n
logP

{∣∣∣∣Sn − Sεnn

∣∣∣∣ ≥ δ′/2} = −∞

and combining this and (11) in (12), we get the desired result. �

Exercises
(1) Show that if M is finite on a region (a, b), it is infinitely differentiable on (a, b).
(2) Fix f ∈ C(R) is such that lim|x|→∞ f(x) = −∞ and

∫
R e

f(x)dx < ∞. Show (directly) that for any
measurable subset A of R,

lim
n→∞

n−1 log

∫
x∈A

enf(x)dx ≥ sup
x∈A◦

f(x)

lim
n→∞

n−1 log

∫
x∈A

enf(x)dx ≤ sup
x∈Ā

f(x)

(3) Let µ = λδa + (1− λ)δb, for fixed λ ∈ [0, 1] and a and b in R such that a < b. Compute M(θ) and I(x).

(4) Show that I(ξ̄) = 0, where ξ̄
def
=
∫
R xµ(dx).

(5) Show that η is N(m,σ2) if and only if E[eiθη] = e−σ
2θ2/2+mθ for all θ ∈ R.

(6) Show that if η is N(m,σ2), then its mean is m and its variance is σ2. Hint: use the characteristic
function.

(7) Show that if σ > 0, then η is N(m,σ2) if and only if

P{η ∈ A} =

∫
A

1√
2πσ2

exp

[
− (x−m)2

2σ2

]
dx. A ∈ B(R)

Show that the law of a N(m, 0) random variable is δm.
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CHAPTER 4

Martingales

As usual, we assume the existence of an underlying measurable space (Ω,F ); note that for the moment,
we are not requiring a probability measure on (Ω,F ). Throughout, we fix an index set I ⊂ R.

Definition 0.11 (Filtration). A collection {Ft; t ∈ I} of sub-sigma-algebras of F is called a filtration
of F if Fs ⊂ Ft for all s and t in I such that s ≤ t.

Definition 0.12 (Stochastic process). Fix a measurable space (S,S ). Then a collection {Xt; t ∈ I} of
S-valued random variables is called a stochastic process.

In practice, filtrations are often related to stochastic processes. We can ask that a stochastic process “follow”
a filtration

Definition 0.13 (Adapted process). If we have a filtration {Ft; t ∈ I} and a stochastic process {Xt; t ∈
I}, then the stochastic process is said to be adapted to the filtration if Xt is Ft-measurable for each t ∈ I;
i.e., if σ{Xt} ⊂ Ft for all t ∈ I.

We can also generate a filtration by a stochastic process. To so so, let’s first make a definition.

Definition 0.14 (Filtration defined by a process). Let {Xt; t ∈ I} be a stochastic process. We then
define

FX
t

def
= σ{Xs; s ≤ t}.

Often it is useful to stop based upon current knowledge.

Definition 0.15 (Stopping time). Let {Ft; t ∈ I} be a filtration. An I-valued random variable τ is a
called stopping time if {τ ≤ t} ∈ Ft for all t ∈ I.

We can then randomly “stop” the filtration

Definition 0.16 (Stopped filtration). Let {Ft; t ∈ I} be a filtration and let τ be a stopping time. We
define

Fτ
def
= {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ I} .

We will have a lot more to say about stopping times when we consider martingales.
Let’s now consider the following setup. Let {Fn; n ∈ N} be a filtration of (Ω,F ). We then define

Definition 0.17 (Martingale). An adapted collection X = {Xn; n ∈ N} of integrable random variables
is a martingale if

E[Xn+1|Fn] = Xn

for all n ∈ N.

Definition 0.18 (Supermartingale). An adapted collection X = {Xn; n ∈ N} of integrable random
variables is a supermartingale if

E[Xn+1|Fn] ≤ Xn

for all n ∈ N.

Definition 0.19 (Submartingale). An adapted collection X = {Xn; n ∈ N} of integrable random
variables is a submartingale if

E[Xn+1|Fn] ≥ Xn

for all n ∈ N.
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Note, of course that the negative of a submartingale is a supermartingale and vice versa, and that a
process is a martingale if and only if it is a supermartingale and submartingale.

We will study martingale inequalities and convergence. It turns out that this topic has connections to
a lot of probability theory. One may look at the above setup as a general framework for considering the
evolution of information. This is important in itself, and it is also important for the characterization of
Markov processes (which we shall not touch upon in this course).

First of all, let’s extend the above properties from fixed times to stopping times.

Proposition 0.20 (Optional Sampling Theorem (Doob)). Suppose that X is a supermartingale and ρ
and τ are bounded stopping times with ρ ≤ τ . Then

(13) E[Xτ |Fρ] ≤ Xρ.

Proof. We will prove the result via three steps
Step 1. First, assume that ρ ≡ k and k ≤ τ ≤ k + 1 (i.e., ρ is constant and τ can vary at most by 1. Then

E[Xτ |Fρ] = E[Xτ |Fk] = E[Xτχ{τ>k}|Fk] + E[Xτχ{τ≤k}|Fk]

= E[Xk+1|Fk]χ{τ>k} +Xkχ{τ≤k} ≤ Xkχ{τ>k} +Xkχ{τ≤k} = Xk = Xρ

The third equality comes from the fact that if τ > k, then τ = k + 1 and if τ ≤ k, then τ = k, and that
{τ > k}, {τ ≤ k}, and Xk are Fk-measurable.
Step 2. Now assume that ρ is simply a bounded stopping time (assume M is an upper bound for ρ and that
ρ ≤ τ ≤ ρ+ 1). To show (13), we will show that for any A ∈ Fρ,

E[XτχA] ≤ E[XρχX ].

Define the stopping time τ̃k
def
= min{max{τ, k}, k + 1} for each k ≥ 0; then if ρ = k, τ = τ̃k. We calculate

that

E[XτχA] =

M∑
k=0

E[XτχAχ{ρ=k}] =

M∑
k=0

E[E[XτχA∩{ρ=k}|Fk]]

=

M∑
k=0

E[E[Xτ̃k |Fk]χA∩{ρ=k}] ≤
M∑
k=0

E[XkχA∩{ρ=k}] = E[XρχA].

The third equality uses several facts. First, note that A ∩ {ρ = k} = (A ∩ {ρ ≤ k}) \ (A ∩ {ρ ≤ k − 1}) and
that A ∩ {ρ ≤ k} ∈ Fk and A ∩ {ρ ≤ k − 1} ∈ Fk−1 ⊂ Fk; thus A ∩ {ρ = k} is Fk measurable. Also, note
that τ = τ̃k on ρ = k. The first inequality stems from Step 1 (since k ≤ τ̃k ≤ k + 1).
Step 3. Now assume that ρ and τ are simply bounded stopping times and ρ ≤ τ . For each j ≥ 0,

define the stopping time τ̂j
def
= min{τ, ρ + j}. Then the τ̂j ’s are stopping times, τ̂0 = ρ and τ̂M = τ , and

τj ≤ τj+1 ≤ τj + 1. Thus for every 0 ≤ j ≤M − 1,

E[Xτ̂j+1 |Fρ] = E[E[Xτ̂j+1 |Fτ̂j ]|Fρ] ≤ E[Xτ̂j |Fρ].

By induction, we then get (13) in full generality. �

Note that if X is a submartingale, then E[Xn+1] ≥ E[Xn], so X is in some sense “increasing”. Let’s
investigate this. Note that an increasing function has two obvious properties: that it is bounded from above
on any interval by its value at the end of that interval, and it is not increasing.

Proposition 0.21 (Doob’s Maximal Inequality). Suppose that X is either a martingale or a nonnegative
submartingale. Then for any n and any L,

P
{

max
0≤k≤n

|Xk| ≥ L
}
≤

E
[
|Xn|χ{max0≤k≤n |Xk|≥L}

]
L

.

Proof. Set

τ
def
= min{k ≥ 0 : |Xk| ≥ L}.
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Then {
max

0≤k≤n
|Xk| ≥ L

}
= {|Xτ∧n| ≥ L} = {τ ≤ n} ∈ Fτ ∩Fn = Fτ∧n.

By Chebychev’s inequality,

(14) P
{

max
0≤k≤n

|Xk| ≥ L
}

= P{|Xτ∧n| ≥ L} ≤
E
[
|Xτ∧n|χ{|Xτ∧n|≥L}

]
L

.

By Optional Sampling (and Jensen’s inequality if X is a martingale),

E[|Xn||Fτ∧n] ≥ |Xτ∧n|.

Thus

E
[
|Xn|χ{|Xτ∧n|≥L}

]
≤ E

[
E[|Xn||Fτ∧n]χ{τ≤n}

]
= E

[
E[|Xn|χ{τ≤n}|Fτ∧n]

]
= E[|Xn|χ{τ≤n}].

Use this in (14) to complete the proof. �

Let’s use this to get

Corollary 0.22. Under the same assumptions as in Doob’s maximal inequality,

E
[

max
0≤k≤n

|Xk|p
]1/p

≤
(

p

p− 1

)
E[|Xn|p]1/p

for any 1 < p <∞.

Proof. For convenience, define the maximal function

X∗n
def
= max

0≤k≤n
|Xk|.

If X∗n = 0, the result is trivial, so we assume that X∗n > 0. Let q = p/(p− 1) (i.e., p−1 + q−1 = 1). We now
calculate that

E[(X∗n)p] = p

∫ ∞
0

tp−1P{X∗n ≥ t}dt ≤ p
∫ ∞

0

tp−2E[|Xn|χ{X∗n≥t}]dt = pE

[
|Xn|

∫ X∗n

0

tp−2dt

]
=

p

p− 1
E
[
|Xn|(X∗n)p−1

]
≤ p

p− 1
E[|Xn|p]1/pE

[
(X∗n)p−1q

]1/q
.

We use Doob’s maximal inequality to get the first inequality and we use Hölder’s inequality to get the last
inequality. Noting that (p− 1)q = p and rearranging, we get the desired result. �

Now note that if a function is “increasing”, it crosses any interval at most once. We can also generalize
this to submartingales.

Proposition 0.23 (Doob’s Upcrossing Inequality). Let X be a submartingale and fix a < b. Define

σ1
def
= min{n ≥ 0 : Xn ≤ a}

τ1
def
= min{n ≥ σ1 : Xn ≥ b}

σk
def
= min{n ≥ τk−1 : Xn ≤ a} k ≥ 2

τk
def
= min{n ≥ σk−1 : Xn ≥ b} k ≥ 2

For each n, define now

Ua,bn
def
= |{k ≥ 1 : τk ≤ n}|.

(Ua,bn is the number of upcrossings of (a, b) by X by the time n). Then Ua,bn is measurable and

(15) E[Ua,bn ] ≤ E[(Xn − a)+]

(b− a)
.
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Proof. First, note that for any L,

{Ua,bn ≥ L} = {τdLe ≤ n},

so Ua,bn is indeed measurable.
Define now

Yn
def
= (Xn − a)+; n ∈ N

since x 7→ (x − a)+ is nondecreasing, convex, and nonnegative, Y is a nonnegative submartingale (this
reduces our original problem to a simpler one). We first claim that for any k ≤ n,

Yτk∧n − Yσk∧n ≥ (b− a)χ{τk≤n}.

If σk ≥ n, this is clearly true since then both sides are zero. If τk ≤ n, it is also true since then Yτk∧n =
Yτk = (b − a) and Yσk∧n = Yσk = 0. Finally, if σk < n < τk, then Yτk∧n = Yn ≥ 0 and Yσk∧n = Yσk = 0.
Thus

n∑
k=1

(Yτk∧n − Yσk∧n) ≥ (b− a)Ua,bn .

Thus

(b−a)E[Ua,bn ] ≤
n∑
k=1

{E[Yτk∧n]− E[Yσk∧n]} = E[Yτn∧n]−E[Yσn∧n]−
n−1∑
k=1

{
E[Yσk+1∧n]− E[Yτk∧n]

}
≤ E[Yτn∧n].

To get the first equality, we simply rearranged terms. To get the second inequality, we used the fact that
Y is nonnegative (hence E[Yσn∧n] ≥ 0) and Doob’s optional sampling theorem (to show that the sum is
nonnegative). Finally, note that τn ≥ 2n, so τn ∧ n = n, and this gives us (15). �

Now note that limits exist if and only if there is no oscillation. We now have

Proposition 0.24 (Submartingale Convergence Theorem). Suppose that X is a submartingale and

supn≥0 E[X+
n ] <∞. Then X

def
= limn→∞Xn exists P-a.s. and E[|X|] <∞.

Proof. For any a < b,

E[ lim
n→∞

Ua,bn ] = lim
n→∞

E[Ua,bn ] ≤ (b− a)−1 sup
n≥0

E[(Xn − a)+] ≤ (b− a)+

{
sup
n≥0

E[X+
n ] + |a|

}
<∞.

The first equality comes from monotone convergence and the last inequality comes from the fact that (x−
a)+ ≤ |x|+ a for all x ∈ R. Thus

P
{

lim
n→∞

Xn ≤ a and lim
n→∞

Xn ≥ b
}

= 0.

But

P
{

lim
n→∞

Xn does not exist
}
≤

⋃
a<b

a, b rational

P
{

lim
n→∞

Xn ≤ a and lim
n→∞

Xn ≥ b
}

= 0.

Now note that by Fatou’s lemma,

E[X+] ≤ lim
n→∞

E[X+
n ] ≤ sup

n≥0
E[X+

n ] <∞

and also
E[X−] ≤ lim

n→∞
E[X−n ] ≤ sup

n≥0
E[X+

n ]− lim
n→∞

E[Xn] ≤ sup
n≥0

E[X+
n ]− E[X0].

The second inequality comes from the fact that x = x+ − x− and the third comes from the fact that X is a
submartingale. �

From the submartingale convergence theorem, we see that martingales want to converge. Let’s follow
this thought for a while.

Proposition 0.25. Let X be a martingale such that Xn converges to X in L1. Then

Xn = E[X|Fn] n ∈ N
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Proof. By the definition of conditional expectation, it suffices to show that for any n and any A ∈ Fn,

E[XχA] = E[XnχA].

Fix any m ≥ n. Then

|E[XχA]− E[XnχA]| = |E[XχA]− E[E[Xm|Fn]χA]|
= |E[XχA]− E[XmχA]| = |E[(X −Xm)χA]| ≤ ‖X −Xm‖L1

.

Let m tend to infinity. �

We have already understood how to strengthen almost-sure convergence to convergence in L1—the
criterion is uniform integrability; see Proposition 1.10. Thus we have

Corollary 0.26. If X is a uniformly integrable martingale, then X = limn→∞Xn exists P-a.s. and in
L1, and Xn = E[X|Fn] for all n.

We also have

Theorem 0.27 (Martingale continuity theorem). Fix X ∈ L1 and {Fn; n ∈ N} a filtration. Set F∞
def
=∨

n∈N Fn. Then limn→∞ E[X|Fn] = E[X|F∞] P-a.s. and in L1.

Proof. First, consider the martingale

Yn
def
= E[X|Fn]. n ∈ N

We claim that Y is uniformly integrable. Note that for any n ∈ N and K > 0,

(16) E[|Yn|χ{|Yn|≥K}] = E[|E[X|Fn]|χ{|Yn|≥K}] ≤ E[E[|X||Fn]χ{|Yn|≥K}] = E|X|χ{|Yn|≥K}].

Note that

P{|Yn| ≥ K} ≤ K−1E[|Yn|] ≤ K−1E[|X|].

Since X is integrable, this means that

lim
K→∞

sup
n∈N

P{|Yn| ≥ K} = 0,

which, since X is integrable, allows us to see that Y is uniformly integrable from (16).
Thus Y = limn→∞ Yn exists P-a.s. and in L1 and Yn = E[Y |Fn]. It remains only to show that

Y = E[X|F∞]. For any n ∈ N and any A ∈ Fn,

E[XχA] = E[E[X|Fn]χA] = E[Y χA].

Thus E[XχA] = E[Y χA] for any A ∈ ∪n∈NFn and thus for any A ∈ F∞ (use the monotone class theorem).
Thus

E[X|F∞] = E[Y |F∞] = Y,

the last equality holding since Y , which is the P-a.s. limit of a sequence of F∞-measurable functions, is
itself F∞-measurable. �

Finally, let’s prove an alternate characterization for submartingales.

Theorem 0.28 (Doob-Meyer decomposition). An adapted stochastic process X is a submartingale if and
only if

(17) Xn = Mn +An, n ∈ N

where M is a martingale and A is a nondecreasing integrable process such that An is Fn−1-measurable for
each n ≥ 1. If A0 (or alternately M0) is specified, then this decomposition is unique.
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Proof. First, assume that we have (17). Then for any n ≥ 1,

E[Xn+1|Fn] = E[Mn+1|Fn] + E[An+1|Fn] ≥Mn + E[An|Fn] = Mn +An = Xn.

Assume now that X is a submartingale. Set

(18)
An

def
=

{∑n
j=1 (E[Xj |Fj−1]−Xj−1) if n ≥ 1

0 if n = 0

Mn
def
= Xn −An.

n ∈ N

Then A is clearly nondecreasing (by the submartingale property of X) and integrable and An is Fn−1-
measurable for each n ≥ 1. Also X is integrable and adapted and for any n ≥ 0,

E[Mn+1|Fn] = E[Xn+1|Fn]− E[An+1|Fn] = E[Xn+1|Fn]− (E[Xn+1|Fn]−Xn)−An = Mn

Finally, consider any decomposition X = M ′ +A′ as in (17). Then for any n ≥ 0,

E[Xn+1|Fn] = E[M ′n+1|Fn] + E[A′n+1|Fn] = M ′n +A′n+1 = Xn + (A′n+1 −A′n).

Thus

A′n+1 = A′n + E[Xn+1|Fn]−Xn, n ∈ N
and so

A′n = An +A′0 n ∈ N
where A is as in (18). �

We simply note for future reference the following definition

Definition 0.29 (Bracket). Let M be a square-integrable martingale. Then 〈M〉 is the increasing part
of the Doob-Meyer decomposition of the submartingale M2.; i.e., 〈M〉 is the unique process such that

• 〈M〉n is Fn−1-measurable,
• 〈M〉0 = 0
• M2 − 〈M〉 is a martingale.

Finally, let’s discuss some issues of backward martingales. The essential difference is that before we were
interested in convergence as n tended to ∞; now we are interested in convergence as n tends to −∞. We
will

Proposition 0.30 (Backward submartingale convergence theorem1). Let {Gn; n ∈ −N} be a filtration

and let X be a submartingale with respect to {Gn; n ∈ −N}. Then X−∞
def
= limn→−∞Xn exists P-a.s. If

supn E[|Xn|] < ∞, then X is uniformly integrable, X−∞ = limn→−∞Xn, the limit now being both P-a.s.

and in L1, and X−∞ ≤ E[Xn|G−∞] for all n ∈ −N, where G−∞
def
= ∩n∈−NGn.

Proof. Since X0 is assumed to be integrable, Doob’s Upcrossing Inequality implies that for every
(a, b) ⊂ R,

E[|{upcrossings of (a, b) by X in between times n and 0}|] ≤ E[(X0 − a)+]

(b− a)
<∞

for all n ∈ −N. This implies that X−∞ exists P-a.s., just as for the regular submartingale convergence
theorem.

Now assume that supn∈−N E[|Xn|] < ∞; then supn∈−N |E[Xn]| < ∞. Since n 7→ E[Xn] is increasing,
limn→−∞ E[Xn] exists and is finite. Fix ε > 0; then there is an N0 ∈ −N such that E[Xn] > E[XN ] − ε if
n ≤ N . For any K > 0, we calculate that for any n ≤ N ,

E
[
|Xn|χ{|Xn|≥K}

]
= E

[
Xnχ{Xn≥K}

]
− E

[
Xnχ{Xn≤−K}

]
= E

[
Xn

(
χ{Xn≥K} + χ{Xn>−K}

)]
− E[Xn]

≤ E
[
XN

(
χ{Xn≥K} + χ{Xn>−K}

)]
− E[XN ] + ε/2 = E

[
|XN |χ{|Xn|≥K}

]
+ ε/2

1Taken from Revuz and Yor
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In the last inequality, the first term comes from the submartingale inequality, and the last term comes from
the choice of N . By Markov’s inequality,

sup
n∈−N

P{|Xn| ≥ K} ≤ K−1 sup
n∈−N

E[|Xn|].

Since XN is integrable, we have that

lim
K→∞

sup
n≤N

E
[
|Xn|χ{|Xn|≥K}

]
≤ ε;

since all of the Xn’s are integrable, we also have that

lim
K→∞

sup
N<n≤0

E
[
|Xn|χ{|Xn|≥K}

]
≤ ε;

putting these two together, we have that the Xn’s are uniformly integrable. Hence, the P-a.s. convergence
of Xn to X−∞ also holds in L1. For any A ∈ G−∞ and any n, we thus have

E[X−∞χA] = lim
m→−∞

E[XmχA] ≤ E[XnχA].

The last inequality follows from the submartingale inequality. Thus we get the final claim. �

We can use this result to easily prove the Strong Law of Large Numbers

Theorem 0.31 (Strong Law of Large Numbers). Let {ξ1, ξ2 . . . } be a collection of independent and
identically distributed integrable random variables with common law µ. Then

lim
n→∞

n−1
n∑
k=1

ξk =

∫
R
xµ(dx),

this limit being both almost-sure and in L1.

Proof. Set

Sn
def
=

n∑
k=1

ξk n ∈ N

For each n ∈ N, define

G−n
def
= σ{Sk; k ≥ n}.

Set

Xn
def
= E[ξ1|Gn]. n ∈ −N

Then X is a martingale. Clearly

sup
n∈−N

E[|Xn|] ≤ E[|ξ1|],

so X−∞
def
= limn→−∞Xn exists both in L1 and P-a.s. Note that for any n ≥ 1 and any 1 ≤ k ≤ n,

E[ξk|G−n] = E[ξ1|G−n];

thus
n∑
k=1

X−n =

n∑
k=1

E[ξ1|G−n] =

n∑
k=1

E[ξk|G−n] = E[Sn|G−n] = Sn

so in fact

X−n =
1

n
Sn

for all n ≥ 1. Thus Sn = X−n for all n ∈ N. Hence

X−∞ = lim
n→∞

Sn
n

this limit being both P-a.s. and in L1. We thus only need show that X−∞ =
∫
R xµ(dx). Note that for every

k,

X−∞ = lim
n→∞

Sn
n

= lim
n→∞

∑n
j=1 ξk+j

n
.
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so by Kolmogorov’s zero-one law, X−∞ is almost-surely constant. Hence

X−∞ = E[X−∞] = lim
n→∞

n−1E[Sn] =

∫
R
xµ(dx)

This completes the proof. �

Exercises
(1) Show that for any stopping time τ , Fτ is indeed a sigma-algebra.
(2) Show that for any stopping time τ , τ is itself Fτ -measurable.
(3) Show that for any fixed t ∈ I, the mapping τ : Ω 7→ t is a stopping time. Show that Fτ = Ft.
(4) Let {τ1, τ2 . . . } be a countable collection of stopping times. Show that supn≥1 τn is also a stopping time.

Show that if {τ1, τ2 . . . , τn} is a finite collection of stopping times, then min1≤k≤n τk is also a stopping
time. stopping times.

(5) Let τ be a stopping time and s a nonnegative number. Show that τ + s is a stopping time.
(6) Suppose that I is discrete, X is an adapted process taking values in a measurable space (S,S ), A ∈ S ,

and τ is a stopping time. Define

τ ′
def
= min{t ∈ I : t ≥ τ and Xt ∈ A}

and show that τ ′ is a stopping time.
(7) Suppose that I = R+, X is a continuous process taking values in a topological space S, and F ⊂ S is

closed. Define

τ
def
= inf{t ≥ 0 : Xt ∈ F}

and show that τ is a stopping time.
(8) Suppose that τ1 and τ2 are stopping times. Show that

(a) If τ1 ≤ τ2, then Fτ1 ⊂ Fτ2 .
(b) If A ∈ Fτ1 , then A ∩ {τ1 ≤ τ2} ∈ Fτ2 . Hint:

{τ1 ≤ t} ∩ {τ2 ≤ t} ∩ {τ1 ≤ τ2} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∩ {τ1 ∧ t ≤ τ2 ∧ t}.

(c) Fτ1∧τ2 = Fτ1 ∩Fτ2 .
(d) {τ1 ≤ τ2} ∈ Fτ1 ∩Fτ2 (and thus {τ1iτ2} ∈ Fτ1 ∩Fτ2 where i is any inequality or equality.

(9) Let τ be a stopping time and that the I = [0,∞). For each n, define τn
def
= dτne/n. Show that each τn

is also a stopping time.
(10) If I ⊂ Z, X is an adapted process, and τ is a stopping time, then Xτ is Fτ -measurable. Hint: partition

the space according to the values of τ .
(11) Let {ξn; n ∈ N} be a collection of independent and identically distributed integrable random variables.

Define

Fn
def
= σ{ξk; k ≤ n}

and show that Xn
def
=
∑n
k=1 ξk is a martingale with respect to {Fn; n ∈ N}. Show that {Xn; n ∈ N} is

a martingale, submartingale, or supermartingale, respectively, if the mean of the ξ’s is zero, positive, or
negative.

(12) Let X be a martingale with respect to a filtration, and suppose that {Yn; n ∈ N} is a collection of
integrable random variables such that Yn is Fn−1-measurable for all n. Show that

Zn
def
=

{∑n
k=1 Yk(Xk −Xk−1) if n ≥ 1

0 if n = 0

is also a martingale (with respect to the same filtration). This new process is called a martingale
transform of X and is a simple case of a stochastic integral.

(13) Let X be a martingale and ϕ : R → R be convex and such that E[ϕ(Xn)] < ∞ for all n. Show that

Zn
def
= ϕ(Xn) is a submartingale.
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(14) Let X be a martingale, submartingale, or supermartingale (respectively), and let τ be a stopping time.

Show that Zn
def
= Xτ∧n is also a martingale, submartingale, or supermartingale, respectively (with

respect to the original filtration {Fn}). Also show that (assuming that X0 = 0) Z can be written as a
martingale transform of X.
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CHAPTER 5

Weak convergence

1. The topology of weak convergence

It turns out that the notion of weak convergence, defined in Chapter 1, is an important one. In this
chapter, we will assume that X is Polish, i.e., that it has a metric d under which it is complete and separable.
We let T denote the collection of open subsets of X defined by d. Our goal is to study P(X), the collection
of probability measures on (X,B(X)). As a first simple observation, note that P(X) is convex. Note that
we can also topologize it as a dual of Cb(X). In other words, this topology, the weak topology on P(X), is
the smallest topology on P(X) with respect to which all of the mappings Iϕ : P(X)→ R defined by

(19) Iϕ(µ)
def
=

∫
X

ϕ(x)µ(dx) µ ∈P(X)

are continuous, as ϕ varies over Cb(X). It turns out that P(X), endowed with this topology, is itself Polish,
and that we can characterize its compact sets.

2. The Prohorov metric

To begin, let’s write down the Prohorov metric. Let C be the collection of closed subsets of X, and for
any subset A of X and any ε > 0, define

Aε
def
= {x ∈ X : dist(x,A) < ε},

where dist(x,A)
def
= infy∈A d(x, y) for all x ∈ X. We define

ρ(µ, ν)
def
= inf {ε > 0 : µ(F ) ≤ ν(F ε) + ε for all F ∈ C }

for all µ and ν in P(X).
We have the following theorem which connects the Prohorov metric and different definitions of weak

convergence. For future reference, we now define the open balls

B(x, ε)
def
= {x′ ∈ X : d(x′, x) < ε}

for each x ∈ X and ε > 0.

Proposition 2.1. Fix {µ1, µ2 . . . } and µ in P(X). The following are equivalent.

(a) limn→∞ ρ(µn, µ) = 0.
(b) limn→∞ µn(F ) ≤ µ(F ) for all F ⊂ X closed.
(c) limn→∞ µn(G) ≥ µ(G) for all G ⊂ X open.
(d) limn→∞

∫
X
ϕ(x)µn(dx) =

∫
X
ϕ(x)µ(dx) for all ϕ ∈ Cb(X).

Proof. Most of the work is done in the problems; namely that (a) implies (b) and that (b) and (c) are
equivalent and are in turn equivalent to (d). The only remaining part is that (b) implies (a).

Since X is separable and metric, we can find {x1, x2 . . . } a countable dense subset of X. Fix ε > 0 and

define E0
def
= B(x1, ε/4) and En

def
= B(xn, ε/4) \ ∪nj=1Ej for all n ≥ 2. Then the En’s are disjoint and the

diameter of each of them is ε/2 or less. Let L be an integer large enough that

(20) µ
((
∪Lj=1Ej

)c)
< ε/2.
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Thus by assumption, for n sufficiently large

(21) µn

((
(∪Lj=1Ej

)c)
< ε/2.

Also, by assumption, for n sufficiently large

µn
(
∪i∈IEi

)
≤ µ

(
∪i∈IEi

)
+ ε/2

for all subsets I of the finite set {1, 2 . . . L}. Fix now n large enough that (20) and (21) hold. Fix any closed
subset F of X. It is easy to see that

F ⊂ ∪ 1≤i≤L
Ei∩F 6=∅

Ei ∪
(
∪Li=1Ei

)c
∪ 1≤i≤L
Ei∩F 6=∅

Ei ⊂ F ε.

Then

µn(F ) ≤ µ
(
∪ 1≤i≤L
Ei∩F 6=∅

Ei

)
+ ε ≤ µ(F ε) + ε.

Vary F to get that ρ(µn, µ) ≤ ε for all n large. Let n tend to infinity, and then ε tend to zero to see that
limn→∞ ρ(µn, µ) = 0. �

3. Tightness and compactness in the Prohorov topology

A natural next question is: what do the compact subsets of P(X) look like? It turns out that the
following has a lot to do with compactness.

Definition 3.1 (Tightness). A subset M of P(X) is tight if for each ε > 0 there is a compact subset
K of X (denoted by K ⊂⊂ X) such that µ(Kc) < ε for all µ ∈M .

Below we will conclude that M ⊂ P(X) is tight if and only if M is compact. First we will show that

if M ⊂ P(X) is compact, it must be tight. Then we will show that if M ⊂ P(X) is tight, then M is
compact.

Let’s start by showing that the simplest possible compact subsets of P(X) are tight.

Lemma 3.2. Any µ ∈P(X) is tight.

Proof. Fix ε > 0. Since X is separable, it contains a countable dense subset {x1, x2 . . . }. For each n,
let Ln be such that

µ

(
Ln⋃
i=1

B(xi, 1/n)

)
≥ 1− ε/2n+1.

Set

K
def
=
∞⋂
n=1

Ln⋃
i=1

B(xi, 1/n).

Then K is closed and totally bounded and is thus compact. Note that

µ(K) ≥ µ

( ∞⋂
n=1

Ln⋃
i=1

B(xi, 1/n)

)
= 1− µ

( ∞⋃
n=1

Ln⋂
i=1

B(xi, 1/n)c

)

≥ 1−
∞∑
n=1

µ

(
Ln⋂
i=1

B(xi, 1/n)c

)
≥ 1−

∞∑
n=1

(
1− µ

(
Ln⋃
i=1

B(xi, 1/n)

))
≥ 1−

∞∑
n=1

ε/2n+1 = 1− ε.

Thus µ is tight. �

From here, we can show that compactness implies tightness.

Proposition 3.3. If M ⊂P(X) is compact, then it is tight.
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Proof. Fix ε > 0. Since M is compact, it is totally bounded, so we can for each n, find a finite subset
Nn or M such that

M ⊂
⋃

µ̃∈Nn

{
µ ∈P(X) : ρ(µ, µ̃) < ε/2n+1

}
.

By Lemma 2, each of the µ̃’s in each of the Nn’s are tight, so for each n, we can find a Kn ⊂⊂ X such that
µ̃(KC) < ε/2n+1 for all µ̃ ∈ Nn. Thus, for all n and all µ ∈P(X) and µ̃ ∈ Nn such that ρ(µ, µ̃) < ε/2n+1,

1− ε/2n+1 ≤ µ̃(Kn) ≤ µ
(
Kε/2n+1

n

)
+ ε/2n+1

so µ
(
K
ε/2n+1

n

)
≥ 1− ε/2n for all µ ∈M . Set now

K
def
=

∞⋂
n=1

K
ε/2n+1

n .

Then K is compact and µ(K) ≥ 1− ε, by a calculation similar to that of Lemma 2. �

The other direction is a bit more complicated. We will show that if M ⊂ P(X) is tight, then it is
totally bounded. Secondly, we will show that if M is tight, its closure is complete.

Proposition 3.4. If M ⊂P(X) is tight, then it is totally bounded.

Proof. Since X is separable, we can find a countable dense subset {x1, x2 . . . } of X. For each N and
m, define the finite subset

NN,m
def
=

{
N+1∑
k=1

akδxk ∈P(X) : ak ∈ Z+/m for all 1 ≤ k ≤ N + 1

}
of P(X). For any ε, we will show that for sufficiently large N and m, any element of M is within ε (in
the ρ metric) of some element of NN,m. Indeed, fix ε > 0 and then K ⊂⊂ X such that µ(Kc) < ε/2 for all
µ ∈M . Since K ⊂ ∪∞k=1B(xk, ε) and K ⊂⊂ X, we can let N be any number such that K ⊂ ∪Nk=1B(xk, ε),
and we then fix m ≥ 2N/ε. Consider any µ ∈M . Set

E1
def
= B(x1, ε)

En
def
= B(xn, 2ε) \ ∪n−1

k=1B(xk, ε) n = 1, 2 . . .

ai
def
= bµ(Ei)mc/m 1 ≤ i ≤ N

aN+1
def
= 1−

N∑
i=1

ai.

Define µ̃ ∈ NN,m by

µ̃
def
=

N+1∑
k=1

akδxk .

Note that

1− aN+1 =

N∑
i=1

ai ≥
N∑
i=1

µ(Ei)m− 1

m
= µ

(
∪Ni=1Ei

)
−N/m ≥ µ(K)−N/m ≥ 1− ε/2−N/m.

From here we get that aN+1 ≤ ε/2 +N/m < ε. Fix now any F ⊂ X closed. Then

µ̃(F ) ≤
∑

1≤i≤N
xi∈F

ai + aN+1 ≤
∑

1≤i≤N
xi∈F

µ(Ei) + ε ≤ µ

 ⋃
1≤i≤N
xi∈F

Ei

+ ε
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Note that ⋃
1≤i≤N
xi∈F

Ei ⊂ F ε;

Thus µ̃(F ) ≤ µ(F ε) + ε for all closed F ⊂ X and thus ρ(µ, µ̃) ≤ ε, which completes the proof. �

Next, we start to prove that if M is tight, it is complete. We start with

Proposition 3.5. If M ⊂P(X) is tight and {µn} ⊂M is Cauchy, then

Λ(ϕ)
def
= lim

n→∞

∫
X

ϕ(x)µn(dx)

exists for all ϕ ∈ Cb(X). Furthermore, if {ϕn} ⊂ Cb(X) is such that ϕn ↘ 0, then limn→∞ Λ(ϕn) = 0.

Proof. For µ ∈P(X) and ϕ ∈ Cb(X), define

‖ϕ‖ def
= sup

x∈X
|ϕ(x)|

Λµ(ϕ)
def
=

∫
X

ϕ(x)µ(dx).

Noting that ϕ+ ‖ϕ‖ is nonnegative, we can arguments similar to those of Problem 1.7 to see that

(22) Λµ(ϕ) =

∫ ‖ϕ‖
−‖ϕ‖

µ{x ∈ X : ϕ(x) ≥ t}dt− ‖ϕ‖

for all ϕ ∈ Cb(X) and all µ ∈P(X). Fix now K ⊂⊂ X and set

ωK(δ)
def
= sup

x,y∈K
d(x,y)≤δ

|ϕ(x)− ϕ(y)|;

i.e., ωK is the modulus of continuity of ϕ restricted to K. For any t ∈ R and δ > 0,

µ{x ∈ X : ϕ(x) ≥ t} ≤ µ(Kc) + µ{x ∈ K : ϕ(x) ≥ t}

{x ∈ K : ϕ(x) ≥ t}δ ⊂ Kc ∪ {x ∈ X : ϕ(x) ≥ t− ωK(δ)}.

Thus, for any ν ∈P(X) and any t ∈ R,

µ{x ∈ X : ϕ(x) ≥ t} ≤ µ(Kc) + ν(Kc) + ν{x ∈ X : ϕ(x) ≥ t− ωK(ρ(µ, ν))}+ ρ(µ, ν)

so

Λµ(ϕ) ≤
∫ ‖ϕ‖
−‖ϕ‖

ν{x ∈ X : ϕ(x) ≥ t− ωK(ρ(µ, ν))}dt− ‖ϕ‖+ 2‖ϕ‖ (µ(Kc) + ν(Kc) + ρ(µ, ν))

≤
∫ ‖ϕ‖
−‖ϕ‖

ν{x ∈ X : ϕ(x) ≥ t}dt− ‖ϕ‖+ 2‖ϕ‖ (µ(Kc) + ν(Kc) + ρ(µ, ν)) + ωK(ρ(µ, ν))

= Λν(ϕ) + 2‖ϕ‖ (µ(Kc) + ν(Kc) + ρ(µ, ν)) + ωK(ρ(µ, ν)).

Thus

|Λν(ϕ)− Λµ(ϕ)| ≤ 2‖ϕ‖ (µ(Kc) + ν(Kc) + ρ(µ, ν)) + ωK(ρ(µ, ν))

for any µ and ν in P(X) and any K ⊂⊂ X. In particular, for {µn} ⊂ M which is tight and Cauchy, we
can fix ε > 0 and then find K ⊂⊂ X such that µn(Kc) ≤ ε for all n. Then

lim
m,n→∞

|Λµn(ϕ)− Λµm(ϕ)| ≤ 4‖ϕ‖ε.

Now let ε tend to zero to see that {Λµn(ϕ)} is Cauchy and thus convergent.
Now assume that {ϕn} ⊂ Cb(X) is such that ϕn ↘ 0. Clearly limn→∞ Λ(ϕn) ≥ 0. Fix next any ε > 0

and then K ⊂⊂ X such that µ(Kc) ≤ ε for all µ ∈M . Then

Λ(ϕn) ≤ lim
n→∞

sup
x∈K

ϕn(x) + ‖ϕn‖ sup
µ∈M

µ(Kc) ≤ ‖ϕ1‖ε.
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Here we have used Dini’s theorem to see that limn→∞ supx∈K ϕn(x) = 0. Now let ε tend to zero to see that

limn→∞ Λ(ϕn) ≤ 0. �

From here, we could directly appeal to Daniell’s theory of linear functionals. In the interest of complete-
ness, however, we will write out a proof. Let’s define

µ∗(O)
def
= sup {Λ(ϕ) : ϕ ∈ Cc(X; [0, 1]) and suppϕ ⊂ O} O open

µ̄(A)
def
= inf {µ∗(O) : O ⊃ A is open} . A ∈ B(X)

Here Cc(X : [0, 1]) is the collection of continuous mappings from X into [0, 1] of compact support. The idea
here is to approximate indicators of open sets from below by continuous functions to get µ∗ and to use the
notion of regularity to define the measure of any measurable set.

Lemma 3.6. The set function µ∗ is an inner content which agrees with µ̄ on open sets and such that
µ∗(∅) = 0 and µ∗(X) = 1. By an inner content, we mean

(a) If O1 ⊂ O2 are open subsets of X, then µ∗(O1) ≤ µ∗(O2).
(b) If O ⊂ ∪∞i=1Oi, where O and the Oi’s are open subsets of X, then µ∗(O) ≤

∑∞
i=1 µ

∗(Oi).
(c) If O1 and O2 are two disjoint open subsets of X, then µ(O1 ∪O2) ≥ µ(O1) + µ(O2).
(d) For any open subset O of X,

µ∗(O) ≤ sup
{
µ∗(G) : G is open, Ḡ is compact, and Ḡ ⊂ O

}
.

Proof. The facts that µ∗ agrees with µ on open sets and that µ∗(∅) = 0 and µ∗(X) = 1 are obvious.
For convenience, define

%(x)
def
=


0 if x ≤ 1/3

3x− 1 if 1/3 < x ≤ 2/3

1 if x > 2/3.

Proof of (a) Obvious.
Proof of (b) Fix ϕ ∈ Cc(X : [0, 1]) such that suppϕ ⊂ O. Then since suppϕ is compact, suppϕ ⊂ ∪Ni=1Oi

for some N , and then

η
def
= dist

(
suppϕ,

(
∪Ni=1Oi

)c)
> 0.

Define

ϕi(x)
def
=

%(η−1 dist(x,Oci ))∑N
j=1 %(η−1 dist(x,Ocj))

ϕ(x). x ∈ X, 1 ≤ i ≤ N

Then for each i, ϕi is a well-defined element of Cc(X; [0, 1]) and suppϕi ⊂ Oi, and
∑N
i=1 ϕi = ϕ. Thus

Λ(ϕ) =

N∑
i=1

Λ(ϕi) ≤
N∑
i=1

µ∗(Oi) ≤
∞∑
i=1

µ∗(Oi).

Now vary ϕ to get (a).

Proof of (c) Fix ϕ1 and ϕ2 in Cc(X : [0, 1]) such that suppϕ1 ⊂ O1 and suppϕ2 ⊂ O2. Then ϕ
def
= ϕ1+ϕ2

is in Cc(X : [0, 1]) and suppϕ ⊂ O1 ⊂ O2. Thus

Λ(ϕ1) + Λ(ϕ2) = Λ(ϕ) ≤ µ∗(O1 ∪O2).

Vary ϕ1 and ϕ2 to get (b).
Proof of (d) Here is where we use the continuity of Λ. Fix ϕ ∈ Cc(X : [0, 1]) such that suppϕ ⊂ O. Set

G
def
= {x ∈ X : ϕ(x) > 0}

ϕn(x)
def
= %(dist(x,Gc)/n)ϕ(x). x ∈ X, n = 1, 2 . . .

Then Ḡ = suppϕ ⊂⊂ X and G ⊂ O is open. Furthermore, ϕn ∈ Cc(X : [0, 1]) for all n, suppϕn ⊂ G, and
ϕn ↗ ϕ. Thus ϕ− ϕn ↘ 0, so

Λ(ϕ) = lim
n→∞

Λ(ϕn) ≤ µ∗(G) ≤ sup
{
µ∗(G) : G is open, Ḡ is compact, and Ḡ ⊂ O

}
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Vary ϕ to get (c). �

Next, let’s consider µ̄.

Lemma 3.7. For A ⊂ B in B(X), µ̄(A) ≤ µ̄(B). For any {An} ⊂ B(X) which are disjoint,

µ̄ (∪∞n=1An) ≤
∞∑
n=1

µ̄(An).

Secondly,

(a) If O1 ⊂ X and O2 ⊂ are open subsets of X, then µ̄(O1) ≥ µ̄(O1 ∩O2) + µ̄(O1 \O2).
(b) If O is an open subset of X and A ∈ B(X), µ̄(A) ≥ µ̄(A ∩O) + µ̄(A \O).
(c) For A and B in B(X), µ̄(A) ≥ µ̄(A ∩B) + µ̄(A \B).

Then for any {Ai} ⊂ B(X) which are disjoint,

(23) µ̄ (∪∞i=1Ai) ≥
∞∑
i=1

µ̄(Ai).

Thus µ̄ ∈P(X).

Proof. The monotonicity of µ̄ is obviously inherited from the monotonicity of µ∗.
To prove subadditivity, fix ε > 0. For each n, let On ⊃ An be open and such that µ∗(On) ≤ µ̄(On)+ε/2n.

Then

µ̄ (∪n=1An) ≤ µ∗ (∪n=1On) ≤
∞∑
n=1

µ∗(On) ≤
∞∑
n=1

(µ̄(An) + ε/2n) ≤
∞∑
n=1

µ̄(An) + ε

Let ε tend to zero.
Proof of (a) Fix G open such that Ḡ ⊂⊂ X and Ḡ ⊂ O1 ∩ O2. Note that G and O1 \ Ḡ are disjoint,

that G ∪ (O1 \ Ḡ) ⊂ O1, and that O1 \ Ḡ ⊃ O1 \O2. Thus

µ̄(O1) = µ∗(O1) ≥ µ∗(G) + µ∗(O1 \ Ḡ) ≥ µ∗(G) + µ̄(O1 \O2).

Vary now G.
Proof of (b) Fix G ⊃ A open. Then

µ∗(G) = µ̄(G) ≥ µ̄(G ∩O) + µ̄(G \O) ≥ µ̄(A ∩O) + µ̄(A \O).

Now vary G.
Proof of (c) Define

G
def
= {A ∈ B(X) : µ̄(S) ≥ µ̄(S ∩A) + µ̄(S \A) for all S ∈ B(X)} .

We claim that G is a sub sigma-algebra of B(X), much like the collection of Lebesgue-measurable subsets
of R is a sigma-algebra. It is clear that G contains X and is closed under complementation. Next, fix any
A and B in G . Then for any S ∈ B(X),

(24)
µ̄(S) ≥ µ̄(S ∩A) + µ̄(S \A) ≥ µ̄(S ∩A ∩B) + µ̄(S ∩A \B) + µ̄(S \A)

≥ µ̄(S ∩ (A ∩B)) + µ̄(S \ (A ∩B))

The first inequality comes from the fact that A ∈ G and the second from the fact that B ∈ G . The last line
comes from the fact that

(A ∩B)c = Ac ∪Bc = Ac ∪ (Bc \Ac) = Ac ∪ (A \B);

this implies that S \ (A ∩ B) = (S \ A) ∪ (S ∩ A \ B), and the subadditivity of µ̄ then gives us the last
line of (24). Thus G is closed under finite intersections and complements, and thus G is a field. Finally, fix

{An} ⊂ G , and set B1
def
= A1 and Bn

def
= An \ ∪n−1

j=1Aj for all n ≥ 1. Then the Bn’s are in G , are disjoint,

and ∪∞n=1Bn = ∪∞n=1An. For any n and any S ∈ B(X),

µ̄(S) ≥ µ̄
(
S ∩

(
∪nj=1Bj

))
+ µ̄(S \ ∪nj=1Bj) ≥

n∑
j=1

µ̄(S ∩Bj) + µ̄(S \ ∪∞j=1Aj).
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The first inequality comes from the fact that ∪nj=1Bj ∈ G . The second inequality comes from the fact that
the Bj ’s are in G and that (

∪nj=1Bj
)
c =

(
∪nj=1Aj

)c ⊃ (∪nj=1Aj
)c
.

Now let n tend to infinity and use the subadditivity of µ̄ to see that
∞∑
j=1

µ̄(S ∩Bj) ≥ µ̄
(
∪∞j=1S ∩Bj

)
= µ̄

(
S ∩ (∪∞j=1Aj)

)
.

Thus ∪∞j=1Aj ∈ G , so G is a sigma-algebra. Since the open subsets are in G by part (b), we have that
B(X) ⊂ G . This implies (c).

Now we can prove (23). From a repeated application of (c), we get that

µ̄
(
∪∞j=1Aj

)
≥ µ̄

(
∪nj=1Aj

)
=

n∑
j=1

µ̄(Aj).

Let n tend to infinity.
Finally, we claim that µ̄ ∈ P(X). From Lemma 6, we see that µ̄(∅) = 0 and µ̄(X) = 1. From the

subadditivity and (23), we see that µ̄ is indeed additive, implying that µ̄ ∈P(X). �

Lemma 3.8. We have that limn→∞ µn = µ̄.

Proof. it suffices to show that

(25) lim
n→∞

µn(O) ≥ µ∗(O)

for any open subset O of X. Fix ϕ ∈ Cc(X : [0, 1]) with suppϕ ⊂ O. Then

lim
n→∞

µn(O) ≥ µ∗(O) ≥ lim
n→∞

∫
X

ϕ(x)µn(dx) = Λ(ϕ).

Vary ϕ to get (25). �

Finally, we can get

Proposition 3.9. If M ⊂P(X) is tight, its closure is complete.

Proof. If M is tight, so is its closure M (one of the problems). From the above, we know that if

{µn} ⊂M is Cauchy, it has a limit point µ̄ ∈M . �

This give us

Theorem 3.10 (Prohorov). M ⊂P(X) is tight if and only if M is compact.

Proof. Compactness of M implies tightness by Propositidon 3. Tightness of M implies compactness
by Propositions 4 and 9. �

Finally, we can complete the proof that P(X) is itself Polish

Theorem 3.11. The space P(X), endowed with the weak topology, is Polish with metric ρ.

Proof. Theorem 1 tells us that P(X) with the topology of weak convergence is metric. Separability
is in one of the questions. To prove completeness, fix a Cauchy sequence {µn} in P(X). We claim that
{µn; n = 1, 2 . . . } is tight. Fix ε > 0, and for every l, let a number ml and a Kl ⊂⊂ X such that

sup
n≥ml

ρ(µn, µnl) < ε/2l+1

min
1≤n≤ml

µn(Kl) ≥ 1− ε/2l+1.

Then for n > ml,

1− ε/2l+1 ≤ µml(Kl) ≤ µn
(
K
ε/2l+1

l

)
+ ε/2l+1,
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which implies that νn

(
K
ε/2l+1

l

)
≥ 1− ε/2l. Thus

inf
n
µn

(
K
ε/2l+1

l

)
≥ 1− ε/2l.

Set

K
def
= ∩∞l=1K

ε/2l+1

l .

Then µn(Kc) ≤ ε for all n, so {µn; n = 1, 2 . . . } is indeed tight, so its closure is compact, so limn µn must
exist. �

Exercises
(1) Show that the Prohorov metric is a metric.
(2) Show that P(X) is separable. Hint: consider probability measures of the form

∑
x∈I axδx, where I is a

finite subset of a dense subset of X and where the a(x)’s are nonnegative rationals.

(3) Show that if M is tight, then so is M .
(4) Let {xn} be a collection of points in X and fix some x ∈ X. Consider the probability measures δxn .

Show that δxn converges to δx in the Prohorov metric if and only if xn converges to x.
(5) Consider {µn} ⊂P(X). Show that

(a) if ρ(µn, µ)→ 0, then limn µn(F ) ≤ µ(F ) for all closed F ⊂ X.
(b) limn µn(F ) ≤ µ(F ) for all closed F ⊂ X if and only if limn µn(G) ≥ µ(G) for all open G ⊂ X.

(c) if limn µn(F ) ≤ µ(F ) for all closed F ⊂ X (and consequently limn µn(G) ≥ µ(G) for all open
G ⊂ X), then

lim
n

∫
X

ϕ(x)µn(dx) =

∫
X

ϕ(x)µ(dx)

for ϕ ∈ Cb(X). Hint: use (22).
(d) if limn

∫
X
ϕ(x)µn(dx) =

∫
X
ϕ(x)µ(dx) for all bounded and continuous ϕ : X → R, then limn µn(F ) ≤

µ(F ) for all closed F ⊂ X. Hint: consider functions of the form ϕε(x)
def
= 1− (ε−1 dist(x, F ) ∧ 1).

(6) Fix k ≥ 0. Show that {µn} ⊂ P(Rd) converges to µ ∈ P(Rd) if and only if limn→∞ Iϕ(µn) = Iϕ(µ)
(using the notation of (19)) for all ϕ ∈ Cb which are k-differentiable and for which all k derivatives are
bounded.

(7) Fix T > 0 and two probability measures P1 and P2 in P(C([0, T ];Rd)), where C([0, T ];Rd)) is endowed
with the standard supremum-norm topology (and is thus Polish). Show that if

P1

(⋂
t∈I
{ω ∈ C([0, T ];Rd) : ω(t) ∈ At}

)
= P2

(⋂
t∈I
{ω ∈ C([0, T ];Rd) : ω(t) ∈ At}

)
for all finite subsets I of [0, T ] and {At; t ∈ I} ⊂ B(Rd), then P1 = P2.

(8) Fix T > 0 and consider the set C0([0, T ];Rd), which is collection of elements ω of C([0, T ];Rd) for
which ω(0) = 0. Then C0([0, T ];Rd) inherits a Polish structure from C([0, T ];Rd). Show that M ⊂
P(C0([0, T ];Rd)) is tight if

lim
δ→0

sup
µ∈M

µ

 sup
|t−s|≤δ
s,t∈[0,T ]

|ω(t)− ω(s)| ≥ ε

 = 0.

(9) Let X be a Polish space with metric ρ. Assume that for each n ∈ N (where N is the set of positive
integers), we have a µn ∈ P(Xn) (Xn is the n-fold product of X, which is Polish with the product
topology). Assume furthermore that these µn’s are consistent ; that for any n ∈ N and any A ∈ B(Xn),

µn+1{(x1, x2 . . . xn+1) ∈ Xn+1 : (x1, x2 . . . xn) ∈ A} = µn(A).

We will show that the µn’s have a limit in the proper sense. If the µn’s are themselves product measures
(i.e., the law of independent random variables), this means that we can find a probability triple on which
is defined a countably infinite collection of independent random variables). We can also use this to show
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that, given a discrete-time Markov transition function (which we will not discuss in this course), we can
find a probability space on which is defined a Markov process for all (discrete) time.

(a) Set X∞
def
= ×n∈NX and endow it with its natural product topology. For each n ∈ N, define

πn : X∞ → X as the natural projection operator (i.e., πn gives the n-th coordinate). Show that
X∞ is metrizable with metric

ρ∞(x, y)
def
=
∑
n∈N

2−n
ρ(πn(x), πn(y))

1 + ρ(πn(x), πn(y))
. x, y ∈ X∞

(b) Fix x∗ ∈ X, and for each n ∈ N, define Φn : Xn → X∞ as

Φn(x1, x2 . . . xn)
def
= (x1, x2 . . . xn, x

∗, x∗ . . . ).

In other words,

πmΦn(x1, x2 . . . xn) =

{
xm if m ≤ n
x∗ else

For each n ∈ N, define

µ̃n(A)
def
= µn{(x1, x2 . . . xn) ∈ Xn : Φn(x1, x2 . . . xn) ∈ A}.

A ∈ B(X∞)

Show that µn ∈P(X∞) by showing that each of the Φn’s is measurable.
(c) Show that {µ̃n} is tight. Note that by Tychonoff’s theorem

K
def
=
⋂
n∈N

π−1
n (Kn)

is compact for any collection {Kn} of compact subsets of X.
(d) Let µ∞ be a limit point of the µ̃n’s (in P(X∞)). Show that for any n ∈ N and any A ∈ B(Xn),

µ∞{(x(1), x(2) . . . ) ∈ X∞ : (x(1), x(2) . . . x(n)) ∈ A} = µn(A).

Hint: first, note that if ϕ ∈ Cb(Xn), then the mapping

ϕ̃n(x(1), x(2) . . . )
def
= ϕ(x(1), x(2) . . . x(n))

is an element of Cb(X
∞).

(e) Show that µ∞ is unique. Hint: use problem 1.
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CHAPTER 6

Construction of Wiener Measure

Let’s now use a number of the tools we have developed to construct Wiener measure.
We will start out with a collection {ξk; k = 1, 2 . . . } of independent and indentically distributed random

variables with common law µ. We assume that

K4
def
=

∫
R
x4µ(dx) <∞

∫
R
xµ(dx) = 0

∫
R
x2µ(dx) = 1.

Set

Sn
def
=

{∑n
j=1 ξj if n ≥ 1

0 if n = 0
n ∈ N

and for each n, define a C([0, 1])-valued random variable Xn by

(26) Xn
t

def
=

1√
n

(
Sbntc + (tn− btnc)ξbntc+1

)
t ≥ 0

(note that Xn can be represented as a continuous mapping of the Sn’s, so Xn is indeed measurable).
We are interested in the behavior of the law of Xn as n tends to infinity. To be more specific, define for

each n ∈ N an element µn ∈ P(C([0, 1])) (where C([0, 1])) is endowed with the standard supremum-norm
topology) by

µn(A)
def
= P {Xn ∈ A} . A ∈ B(C([0, 1]))

We are interested in the limit of the µn’s in the sense of weak convergence.
First of all, let’s use a simple martingale inequality;

Lemma 0.12. For every m ∈ N and L > 0,

(27) P
{

max
0≤j≤m

|Sj | ≥ L
}
≤ (4/3)4(K4 + 1)

m2

L4
.

Proof. By Doob’s maximal inequality,

P
{

max
0≤j≤m

|Sj | ≥ L
}
≤ (4/3)4E[|Sm|4]

L4
.

Now note that for any n ≥ 0,

E[S4
m] =

m∑
i=1

E[ξ4
i ] +

∑
1≤i,j≤m
i 6=j

E[ξ2
i ξ

2
j ] = mK4 +

(
m

2

)
≤ m2(K4 + 1).

This gives us the proof. �

We can translate this into

Lemma 0.13. For every n ∈ N, m ∈ N, and L > 0,

P

 max
0≤j,k≤n
|j−k|≤m

|Sj − Sk| ≥ L

 ≤ (4/3)4(K4 + 1)
nm

L4
.
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Proof. We break n up into intervals of length m. Note that for any 0 ≤ j, k ≤ n with |j − k| ≤ m,

|Sk − Sj | ≤ |Sk − Sbk/mcm|+ |Sj − Sbj/mcm|+ |Sbk/mcm − Sbj/mcm| ≤ 3 max
0≤l≤bn/mc

max
0≤j≤m

|Slm+j − Slm|.

Thus

P

 max
0≤j,k≤n
|j−k|≤m

|Sj − Sk| ≥ L

 ≤
bn/mc∑
l=0

P
{

max
0≤j≤m

|Slm+j − Slm| ≥ L/3
}

= bn/mcP
{

max
0≤j≤m

|Sj | ≥ L/3
}
≤ (4/3)4(K4 + 1)bn/mc m2

(L/3)4
.

This yields the desired bound. �

From here we note

Proposition 0.14. For any δ > 0, any n ∈ N, and any L > 0,

P

 sup
0≤s,t≤1
|t−s|≤δ

|Xn
t −Xn

s | ≥ L

 ≤ 44(3 +K4)
δ + n−1

L4

Proof. First, for any s and t in [0, 1] with |t− s| ≤ δ,

|Xn
t −Xn

s | ≤ |Xn
btnc/n −X

n
t |+ |Xn

bsnc/n −X
n
s |+ |Xn

btnc/n −X
n
bsnc/n| ≤ 3n−1/2 max

0≤j,k≤n
|j−k|≤δn+1

|Sj − Sk|

Now use Lemma 2 with m = bnδ + 1c ≤ nδ + 1. �

From here we get

Proposition 0.15. The collection {µn; n ∈ N} is tight.

Proof. First, we obviously get that

lim
δ→0

lim
n→∞

P

 sup
0≤s,t≤1
|t−s|≤δ

|Xn
t −Xn

s | ≥ ε

 = 0

for each ε > 0. Fix now η > 0. For each k ∈ N, fix δ1,k and then nk such that

sup
n≥nk

P

 sup
0≤s,t≤1
|t−s|≤δ1,k

|Xn
t −Xn

s | ≥ 1/k

 ≤ η/2k.
Since

lim
δ→0

sup
1≤n≤nk

P

 sup
0≤s,t≤1
|t−s|≤δ1,k

|Xn
t −Xn

s | ≥ 1/k

 = 0,

we can find a δ2,k such that

sup
1≤n≤nk

P

 sup
0≤s,t≤1
|t−s|≤δ2,k

|Xn
t −Xn

s | ≥ 1/k

 ≤ η/2k.
Thus, upon setting δk

def
= min{δ1,k, δ2,k}, we have that

sup
n∈N

P

 sup
0≤s,t≤1
|t−s|≤δk

|Xn
t −Xn

s | ≥ 1/k

 ≤ η/2k.
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From this, we set

Ck
def
=

ϕ ∈ C([0, 1]) : ϕ(0) = 0, sup
0≤s,t≤1
|t−s|≤δk

|ϕ(t)− ϕ(s)| ≤ 1/k

 k ∈ N

K
def
=
∞⋂
k=1

Ck

Thus

sup
n∈N

µn(Kc) ≤ η,

so the claimed result is true. �

Let’s now define what will turn out to be the limit point. As usual, we define the coordinate random
variables

Xt(ω)
def
= ω(t). t ∈ [0, 1], ω ∈ C([0, 1])

Definition 0.16 (Wiener measure). A measure µ ∈P(C([0, 1]) is said to be Wiener measure on C([0, 1])
if

• X0 = 0 µ-a.s.
• For any 0 = t0 < t1 < t2 . . . tK ≤ 1 {Xt1 − Xt0 , Xt2 − Xt1 . . . XtK − XtK−1

} are jointly Gaussian and
independent and Xtj −Xtj−1

is N(0, tj − tj−1).

Let’s first show that Wiener measure, if it exists, is unique.

Proposition 0.17. Wiener measure, if it exists, is unique.

Proof. Let µ1 and µ2 in P(C([0, 1]) be Wiener measures. Fix 0 = t0 < t1 · · · < tK ≤ 1 and
{A0, A1 . . . AK} ∈ B(R). Then for i ∈ {1, 2},

µi
(
∩Ki=1{Xti −Xti−1

∈ Ai} ∩ {Xt0 ∈ A0}
)

= δ0(A0)

K∏
i=1

∫
zi∈Ai

exp
[
− z2i

2(ti−ti−1)

]
√

2π(ti − ti−1)
dz

By the Dynkin π − λ theorem, we thus have that

µ1

{(
Xt0 , Xt1 −Xt0 . . . XtK −XtK−1

)
∈ A

}
= µ2

{(
Xt0 , Xt1 −Xt0 . . . XtK −XtK−1

)
∈ A

}
for all A ∈ B(RK+1). Define now T : RK+1 → RK+1 as

T (x0, x1 . . . xK)
def
= (x0, x1 − x0 . . . xK − xK−1). (x0, x1 . . . xK) ∈ RK+1

Note that T is invertible with

T−1(z0, z1 . . . zK)
def
= (z0, z1 + z0 · · ·

K∑
j=1

zj) (z0, z1 . . . zK) ∈ RK+1

and that both T and T−1 are measurable from B(RK+1) to itself. Thus

µ1 {(Xt0 , Xt1 . . . XtK ) ∈ A} = µ2 {(Xt0 , Xt1 . . . XtK ) ∈ A}

for all A ∈ B(RK+1). Thus by one of the problems in Chapter 2, we know that µ1 = µ2. �

Finally, we claim that any limit points of the µn’s of (26) is Wiener measure.

Proposition 0.18. µ
def
= limn→∞ µn exists and is Wiener measure.
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Proof. First of all, Proposition 4 ensures that all subsequences of {µn; n ∈ N} have convergent
subsequences. It suffices to show that all convergent subsequences converge to Wiener measure. Let
µ = limm→∞ µnm . First, since µ ∈P(C([0, 1]), we clearly have that t 7→ Xt is µ-a.s. continuous. Secondly,
for any ε > 0, the set

Fε
def
= {ϕ ∈ C([0, 1]) : |ϕ(0)| ≥ ε}

is a closed subset of C([0, 1]). Thus by weak convergence

µ{|X0| ≥ ε} = µ(Fε) ≤ lim
m→∞

µmn(Fε) ≤ lim
m→∞

P{|Xnm
0 | ≥ ε} = 0.

Thus, by taking ε to zero, we get that X0 = 0 µ-a.s. Thirdly, fix 0 = t0 < t1 · · · < tK ≤ 1 and
{ϕ1, ϕ2 . . . ϕK} ⊂ Cb(R) and define

Φ(ω)
def
=

K∏
i=1

ϕi(ω(ti)− ω(ti−1)); ω ∈ C([0, 1])

then Φ ∈ Cb(C([0, 1]). Thus∫
C([0,1])

Φ(ω)µ(dω) = lim
m→∞

E

[
K∏
i=1

ϕi(X
nm
ti −X

nm
ti−1

)

]
= lim
m→∞

E

[
K∏
i=1

ϕi(X
nm
btinmc/nm −X

nm
bti−1nmc/nm)

]

=

K∏
i=1

lim
m→∞

E
[
ϕi(X

nm
btinmc/nm −X

nm
bti−1nmc/nm)

]
=

K∏
i=1

lim
m→∞

∫
R
ϕi(z)(2π(ti − ti−1))−1/2 exp

[
− z2

2(tk − tk−1)

]
dz.

The second equality holds because the ϕi’s are in Cb(C([0, 1]) and since for any L > 0,

lim
n→∞

P
{

sup
0≤s,t≤1

∣∣∣(Xn
t −Xn

s )− (Xn
btnc/n −X

n
bsnc/n)

∣∣∣ ≥ L} ≤ lim
n→∞

P
{

sup
0≤t≤1

|Xn
t −Xn

btnc/n| ≥ L/2
}

≤ lim
n→∞

P

 sup
0≤s,t≤1
|t−s|≤1/n

|Xn
t −Xn

btnc/n| ≥ L/2

 = 0

by using Proposition 3. The third equality comes from independence. The last equality comes from the
central limit theorem. �
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CHAPTER 7

References

Most of the material and questions in these notes come from Stroock’s [?] and Billingsley’s [?] books on
probability. Some of the real analysis used comes from Royden [?].
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