
Math 611 Probability

Instructor: Ionut Florescu
Office: Kidde 227
Phone: (201) 216-5452

Email: ifloresc@stevens.edu
Office hours: M 4:00pm -6:00pm and by appt.

website: http://www.math.stevens.edu/˜ifloresc/Teaching/2009-2010/index611.html

Some Topics to be presented:

Elements of Probability Measure, Conditional Probability and Independence,
Random Variables and Distributions, Conditional Distribution and Conditional
Expectation, The Poisson Process, Generating Functions and their applications,
Characteristic Function, Convergence of random variates, The Central Limit
Theorem, Markov Chains1, Random Walks2.

Textbook(s):

This semester we will use as the main textbook:

• Introduction to Probability Models, 9th edition, by Sheldon M. Ross, Aca-
demic Press, 2006, ISBN-10: 0125980620 ISBN-13: 978-0125980623.

I choose this book mainly for the examples and exercises it contains.
However, the material which we cover goes beyond this book. On the course

website (link above) I will post several chapters that detail the specific material
covered in this class. Eventually, they will make a book but for now I only have
these draft chapters. I am going to ask that if you find mistakes or missprints
to mark them on the notes and give them to me at the end of the semester.

The following books are given as reference. They are on the list of reserved
books in the library:

• Probability: Theory and Examples, by Richard Durrett, Thomson Learn-
ing 2004

• Probability and Measure, by Patrick Billingsley, Wiley series in probability
and mathematical statistics 1995
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• A course in probability theory, by Kai Lai Chung, Academic Press 2000

• Probability with Martingales, by David Williams, Cambridge University
Press 1991

• Probability and Random Processes by Geoffrey Grimmett and David Stirza-
ker, Oxford University Press 2001.

Homework, Exams and Grading:

We will have one midterm and a final exam. Their dates will be agreed on
during the semester. We will have assignments during the semester. They will
be graded and counting for the final grade. However, the most weight for the
final grade will be coming from the final examination.
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Chapter 1
Elements of Probability Measure

The axiomatic approach of Kolmogorov is followed by most Probability Theory
books. This is the approach of choice for most graduate levelprobability courses.
However, the immediate applicability of the theory learnedas such is questionable
and many years of study are required to understand and unleash its full power.

On the other hand the Applied probability books completely disregard this ap-
proach and they go more or less directly into presenting applications, thus leaving
gaps into the reader’s knowledge. At a cursory glance this approach appears to be
very useful (the presented problems are all very real and most are difficult), how-
ever I question the utility of this approach when confrontedwith problems that are
slightly different from the ones presented in such books.

Unfortunately, there is no middle ground between these two,hence the necessity
of the present lecture notes. I will start with the axiomaticapproach and present as
much as I feel is going to be necessary for a complete understanding of the Theory
of Probabilities. I will skip proofs which I consider will not bring something new to
the development of the student’s understanding.

1.1 Probability Spaces

Let Ω be an abstract set. This is sometimes denoted withS and is called the sam-
ple space. It is a set containing all the possible outcomes orresults of a random
experiment or phenomenon. I called it abstract because it could contain anything.
For example if the experiment consists in tossing a coin oncethe spaceΩ could
be represented as{Head,Tail}. However, it could just as well be represented as
{Cap,Pa jura}, these being the romanian equivalents ofHeadandTail. The space
Ω could just as well contain an infinite number of elements. Forexample measur-
ing the diameter of a doughnut could result in all possible numbers inside a whole
range. Furthermore, measuring in inches or in centimeters would produce different
albeit equivalent spaces.

We will useω ∈Ω to denote a generic outcome or a sample point.
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8 1 Elements of Probability Measure

Any collection of outcomes is called an event. That is, any subset ofΩ is an event.
We shall use capital letters from the beginning of the alphabetA,B,C to denote these
events.

So far so good. The proper definition ofΩ is one of the most important issues
when treating a problem probabilistically. However, this is not enough. We have to
make sure that we can calculate the probability of all the items of interest.

Think of the following possible situation: Poles of varioussizes are painted in
all the possible nuances of colors. In other words the poles have two characteris-
tics of interest size and color. Suppose that in this model wehave to calculate the
probability of things like the next pole would be shorter than 15 inches and painted
a nuance of red or blue. In order to answer such questions we have to define prop-
erly the sample spaceΩ and furthermore give a definition of probability that will
be consistent. Specifically, we need to give a definition of the elements ofΩ which
can bemeasured.

To this end we have to group these events into some way that would allow us
to say: yes we can calculate the probability of all the eventsin this group. In other
words, we need to talk about the notion of collection of events.

We will introduce the notion ofσ -algebra (orσ -field) to deal with the problem of
the proper domain of definition for the probability. Before we do that, we introduce
a special collection of events:

P(Ω) = The collection of all possible subsets ofΩ (1.1)

We could define probability on this very large set. However, this would mean that
we would have to define probability for every single element of P(Ω). This will
prove impossible except on the case whenΩ is finite. However, even in this case
we have to do it consistently. For example if say the set{1,2,3} is in Ω and has
probability 0.2, how do we define the probability of{1,2}? How about probability
of {1,2,5}? A much better approach would be to define probability only onthe
generators of the collectionP(Ω) or on the generators of a collection of sets as
close as we can possibly make toP(Ω).

How do we do this? Fortunately, algebra comes to the rescue. The elements of a
collection of events are the events. So first we define operations with them:union,
intersection, complementand slightly less importantdifference and symmetric dif-
ference.





A∪B = set of elements that areeither inA or in B

A∩B = AB= set of elements that areboth in A and in B

Ac = Ā = set of elements that are inΩ butnot in A

(1.2)

{
A\B= set of elements that are inA butnot in B

A△B = (A\B)∪ (B\A)
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We can of course express every operation in terms of union andintersection.
There are important relations between these operations, I will stop here to mention
the De Morgan laws: {

(A∪B)c = Ac∩Bc

(A∩B)c = Ac∪Bc (1.3)

There is much more to be found out about set operations but forour purpose this
is enough. Look atBillingsley (1995) or Chung(2000) for a wealth of more details.

Definition 1.1 (Algebra onΩ ). A collectionF of events inΩ is called an algebra
(or field) onΩ iff:

1. Ω ∈F

2. Closed under complementarity: IfA⊆F thenAc⊆F

3. Closed under finite union: IfA,B⊆F thenA∪B⊆F

Remark 1.1.The first two properties imply that∅ ∈F . The third is equivalent with
A∩B⊆F by the second property and the de Morgan laws (1.3).

Definition 1.2 (σ -Algebra on Ω ). If F is an algebra onΩ and in addition it is
closed under countable unions then it is aσ -algebra (orσ -field) onΩ

Note: Closed under countable unions means that the third propertyin Definition
1.1 is replaced with: Ifn∈ N is a natural number andAn⊆F for all n then

⋃

n∈N

An⊆F

Theσ -algebra provides an appropriate domain of definition for the probability func-
tion. However, it is such an abstract thing that it will be hard to work with it. This
is the reason for the next definition, it will be much easier towork on the generators
of asigma-algebra.This will be a recurring theme in probability, in order to show a
property for a big class we show the property for a small generating set of the class
and then use standard arguments to extend to the whole class.

Definition 1.3 (σ algebra generated by a classC of sets inΩ ).
Let C be a collection (class) of subsets ofΩ . Thenσ(C ) is the smallestσ -

algebra onΩ that containsC .
Mathematically:

1. C ⊆ σ(C )
2. σ(C ) is aσ -field
3. If C ⊆ G andG is aσ -field thenσ(C )⊆ G

The idea of this definition is to verify a statement on the setC . Then, due to the
properties that would be presented later the same statementwill be valid for all the
sets inσ(C ).
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Proposition 1.1.Properties ofσ -algebras:

• P(Ω) is a σ -algebra, the largest possibleσ -algebra onΩ
• If C is already aσ -algebra thenσ(C ) = C

• If C = {∅} or C = {Ω} thenσ(C ) = {∅,Ω}, the smallest possibleσ -algebra
onΩ

• If C ⊆ C ′ thenσ(C )⊆ σ(C ′)
• If C ⊆ C ′ ⊆ σ(C ) thenσ(C ′) = σ(C )

In general listing the elements of a sigma algebra explicitly is hard. It is only in
simple cases that this is done.

Remark 1.2 (Finite spaceΩ ). When the sample space is finite, we can and typically
will take the sigma algebra to beP(Ω). Indeed, any event of a finite space can
be trivially expressed in terms of individual outcomes. In fact, if the finite spaceΩ
containsM possible outcomes, then the number of possible events is finite and is
equal with 2M.

Example 1.1.Suppose a setA⊂ Ω . Let us calculateσ(A). Clearly, by definitionΩ
is in σ(A). Using the complementarity property we clearly see thatAc and /0 are also
in σ(A). We only need to take unions of these sets and see that there are no more
new sets. Thus:

σ(A) = {Ω , /0,A,Ac}.
⊓⊔

Proposition 1.2 (Intersection and union ofσ -algebras).Suppose thatF1 andF2

are twoσ -algebras onΩ . Then:

1. F1∩F2 is a sigma algebra.
2. F1∪F2 is not a sigma algebra. The smallestσ algebra that contains both of

them is:σ(F1∪F2) and is denotedF1∨F2

Proof. For part 2 there is nothing to show. Perhaps a counterexample. Take for in-
stance two setsA,B⊂Ω such thatA∩B 6= /0. Then takeF1 = σ(A) andF2 = σ(B).
Use the previous example and Exercise1.2, partc.

For part 1 we just need to verify the definition of the sigma algebra. For example,
takeA in F1∩F2. SoA belongs to both collections of sets. SinceF1 is a sigma
algebra by definitionAc ∈F1. Similarly Ac ∈F2. Therefore,Ac ∈F1∩F2. The
rest of the definition is verified in a similar manner. ⊓⊔

An example: Borelσ -algebra

Let Ω be a topological space (think geometry is defined in this space and this assures
us that the open subsets exist in this space).
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Definition 1.4. We define:

B(Ω) = The Borelσ -algebra (1.4)

= σ -algebra generated by the class of open subsets ofΩ

In the special case whenΩ = R we denoteB = B(R), the Borel sets ofR. This
B is the most importantσ -algebra. The reason for this fact is that most experiments
can be brought to equivalence withR (as we shall see when we will talk about
random variables). Thus, if we define a probability measure on B, we have a way
to calculate probabilities for most experiments. ⊓⊔

Most subsets ofR are inB. However, it is possible (though very difficult) to
explicitly construct a subset ofR which is not inB. See (Billingsley, 1995, page
45) for such a construction in the caseΩ = (0,1].

There is nothing special about the open sets, except for the fact that they can be
defined in any topological space. InR we have alternate definitions which you will
have to show are equivalent with the one given above in problem 1.7.

Probability measure

We are finally in the position to give the domain for the probability measure.

Definition 1.5 (Measurable Space.).A pair (Ω ,F ), whereΩ is a set andF is a
σ -algebra onΩ is called ameasurable space.

Definition 1.6 (Probability measure. Probability space).Given a measurable space
(Ω ,F ), a probability measure is any functionP : F → [0,1] with the following
properties:

i) P(Ω) = 1
ii) (countable additivity) For any sequence{An}n∈N of disjoint events inF (i.e.
Ai ∩A j = ∅, for all i 6= j):

P

(
∞⋃

n=1

An

)
=

∞

∑
n=1

P(An)

The triple(Ω ,F ,P) is called a Probability Space.

Note that the probability measure is a set function (i.e., a function defined on sets).

The next two definitions are given for completeness only. However, we will use
them later in this class. They are both presenting more general notions than a prob-
ability measure and they will be used later in hypotheses of some theorems to show
that the results apply to even more general measures than probability measures.

Definition 1.7 (Finite Measure).Given a measurable space(Ω ,F ), a finite mea-
sure is a set functionµ : F → [0,1] with the same countable additivity property as
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defined above and the measure of the space finite instead of one. More specifically
the first property above is replaced with:

µ(Ω) < ∞

Definition 1.8 (σ -finite Measure). A measureµ defined on a measurable space
(Ω ,F ) is calledσ -finite if it is countably additive and there exist a partition1 of the
spaceΩ , {Ωi}i∈I , andµ(Ωi) < ∞ for all i ∈ I . Note that the index setI is allowed
to be countable.

Example 1.2 (Discrete Probability Space).
Let Ω be a countable space. LetF = P(Ω). Let p : Ω → [0,N) be a function

on Ω such that∑ω∈Ω p(ω) = N < ∞, whereN is a finite constant. Define:

P(A) =
1
N ∑

ω∈A

p(ω)

We can show that(Ω ,F ,P) is a Probability Space. Indeed, from the definition:

P(Ω) =
1
N ∑

ω∈Ω
p(ω) =

1
N

N = 1.

To show the countable additivity property letA a set inΩ such thatA=
⋃∞

i=1Ai , with
Ai disjoint sets inΩ . Since the space is countable we may writeAi = {ω i

1,ω
i
2, . . .},

where any of the sets may be finite, butω i
j 6= ωk

l for all i, j,k, l where eitheri 6= k or
j 6= l . Then using the definition we have:

P(A) =
1
N ∑

ω∈⋃∞
i=1Ai

p(ω) =
1
N ∑

i≥1, j≥1

p(ω i
j)

=
1
N ∑

i≥1

(
p(ω i

1)+ p(ω i
2)+ . . .

)
= ∑

i≥1

P(Ai)

⊓⊔

This is a very simple example but it shows the basic probability reasoning.

Remark 1.3.The previous exercise gives a way to construct discrete probability
measures (distributions). For example takeΩ = N the natural numbers and take
N = 1 in the definition of probability of an event. Then:

• p(ω) =






1− p , if ω = 0

p , if ω = 1

0 , otherwise

, gives the Bernoulli(p) distribution.

• p(ω) =

{(n
ω
)
pω(1− p)n−ω , if ω ≤ n

0 , otherwise
, gives the Binomial(n,p) distribution.

1 a partition of the set A is a collection of setsAi , disjoint (Ai ∩A j = /0, if i 6= j) such that∪iAi = A
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• p(ω) =

{(ω−1
r−1

)
pr(1− p)ω−r , if ω ≥ r

0 , otherwise
, gives the Negative Binomial(r,p)

distribution.
• p(ω) = λ ω

ω! e−λ , gives the Poisson (λ ) distribution.

Example 1.3 (Uniform Distribution on (0,1)).As another example letΩ = (0,1) and
F = B((0,1)) the Borel sigma algebra. Define a probability measureU as follows:
for any open interval(a,b)⊆ (0,1) let U((a,b)) = b−a the length of the interval.
For any other open intervalO defineU(O) = U(O∩ (0,1)).

Note that we did not specifyU(A) for all Borel setsA, rather only for the gener-
ators of the Borelσ -field. This illustrates the probabilistic concept presented above.
In our specific situation, under very mild conditions on the generators of theσ -
algebra any probability measure defined only on the generators can be uniquely
extended to a probability measure on the wholeσ -algebra (Carathèodory extension
theorem). In particular when the generators are open sets these conditions are true
and we can restrict the definition to the open sets alone. Thisexample is going to be
extended in Section1.5.

Proposition 1.3 (Elementary properties of Probability Measure).Let(Ω ,F ,P)
be a Probability Space. Then:

1. ∀A,B∈F with A⊆ B thenP(A)≤ P(B)
2. P(A∪B) = P(A)+P(B)−P(A∩B), ∀A,B∈F

3. (General Inclusion-Exclusion formula, also named Poincaré formula):

P(A1∪A2∪·· ·∪An) =
n

∑
i=1

P(Ai)− ∑
i< j≤n

P(Ai ∩A j) (1.5)

+ ∑
i< j<k≤n

P(Ai ∩A j ∩Ak)−·· ·+(−1)nP(A1∩A2 · · · ∩An)

Note that successive partial sums are alternating between over-and-under esti-
mating.

4. (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

P(Ai), ∀A1,A2, . . . ,An ∈F

1.1.1 Null element ofF . Almost sure (a.s.) statements. Indicator of
a set.

An eventN ∈F is called a null event ifP(N) = 0.
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Definition 1.9. A statementS about pointsω ∈ Ω is said to be truealmost
surely(a.s.), almost everywhere (a.e.) or with probability 1 (w.p.1) if the set
M defined as:

M := {ω ∈Ω |S(ω) is true} ,
is in F andP(M) = 1, (or, equivalentlyMc is a null set).

We will use the notions a.s., a.e., and w.p.1. to denote the same thing – the defi-
nition above. For example we will sayX ≥ 0 a.s. and mean:P{ω |X(ω)≥ 0}= 1 or
equivalentlyP{ω |X(ω)< 0}= 0. The notion of almost sure is a fundamental one in
probability. Unlike in deterministic cases where something has to always be true no
matter what, in probability we care about “the majority of the truth”. In other words
probability recognizes that some phenomena may have extreme outcomes, but if
they are extremely improbable then we do not care about them.Fundamentally, it is
mathematics applied to reality.

Definition 1.10.We define the indicator function of an eventA as the (simple)
function1A : Ω → {0,1},

1A(ω) =

{
1 , if ω ∈ A

0 , if ω /∈ A

Sometimes this function is denoted withIA.

Note that the indicator function is a regular function (not aset function). Indicator
functions are very useful in probability theory. Here are some useful relationships:

1A∩B(·) = 1A(·)1B(·)

If {Bi} form a partition ofΩ (i.e. the setsAi are disjoint andΩ =
⋃n

i=1Ai):

1A(·) = ∑
i

1A∩Bi (·)

1.2 Conditional Probability

Let (Ω ,F ,P) be a Probability Space. Then forA,B∈F we define the conditional
probability ofA givenB as usual by:
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P(A|B) =
P(A∩B)

P(B)
.

We can immediately rewrite the formula above to obtain themultiplicative rule:

P(A∩B) = P(A|B)P(B),

P(A∩B∩C) = P(A|B∩C)P(B|C)P(C), etc.

Total probability formula: GivenA1,A2, . . . ,An a partition ofΩ (i.e. the setsAi

are disjoint andΩ =
⋃n

i=1Ai), then:

P(B) =
n

∑
i=1

P(B|Ai)P(Ai), ∀B∈F (1.6)

Bayes Formula: If A1,A2, . . . ,An form a partition ofΩ :

P(A j |B) =
P(B|A j)P(A j)

∑n
i=1P(B|Ai)P(Ai)

, ∀B∈F . (1.7)

Example 1.4.A biker leaves the point O in the figure below. At each crossroad the
biker chooses a road at random. What is the probability that he arrives at pointA ?

Let Bk, k = 1,2,3,4 be the event that the biker passes through point Bk. These
four events are mutually exclusive and they form a partitionof the space. Moreover,
they are equiprobable(P(Bk) = 1/4,∀k∈ {1,2,3,4}). Let A denote the event “the
biker reaches the destination point A”. Conditioned on eachof the possible points
B1-B4 of passing we have:

P(A|B1) = 1/4

P(A|B2) = 1/2

P(A|B3) = 1

At B4 is slightly more complex. We have to use the multiplicative rule:

P(A|B4) = 1/4+P(A∩B5|B4)+P(A∩B6∩B5|B4)

= 1/4+P(A|B5∩B4)P(B5|B4)+P(A|B6∩B5∩B4)P(B6|B5∩B4)P(B5|B4)

= 1/4+1/3(1/4)+1(1/3)(1/4)= 3/12+2/12= 5/12

Finally, by the law of total probability:

P(A) = P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4)

= 1/4(1/4)+1/2(1/4)+1/4(1)+5/12(1/4)= 13/24

⊓⊔

Example 1.5 (De Ḿere’s Paradox).As a result of extensive observation of dice
games the French gambler Chevaliér De Mére noticed that the total number of spots
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B1 B2 B3

B4

B5

B6

A

O

Fig. 1.1 The possible trajectories of the biker. O is the origin pointand A is the arrival point.Bk’s
are intermediate points. Note that not all the ways lead to Rome, i.e. the probability of reaching
Rome is less than 1.

showing on 3 dice thrown simultaneously turn out to be 11 moreoften than 12.
However, from his point of view this is not possible since 11 occurs in six ways :

(6 : 4 : 1);(6 : 3 : 2);(5 : 5 : 1);(5 : 4 : 2);(5 : 3 : 3);(4 : 4 : 3),
while 12 also in six ways:

(6 : 5 : 1);(6 : 4 : 2);(6 : 3 : 3);(5 : 5 : 2);(5 : 4 : 3);(4 : 4 : 4)
What is the fallacy in the argument?

Solution 1.1 (Solution due to Pascal).The argument would be correct if these
“ways” would have the same probability. However this is not true. For example:
(6:4:1) occurs in 3! ways, (5:5:1) occurs in 3 ways and (4:4:4) occurs in 1 way.

As a result we can easily calculate:P(11) = 27/216 ;P(12) = 25/216, and in-
deed his observation is correct and he should bet on 11 ratherthan on 12 if they have
the same game payoff. ⊓⊔

Example 1.6 (Another De Ḿere’s Paradox:).What is more probable?

1. Throw 4 dice and obtain at least one 6
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2. Throw 2 dice 24 time and obtain at least once a double 6

Solution 1.2.For option 1: 1−P(No 6)= 1− (5/6)4 = 0.517747.
For option 2: 1−P(None of the 24 trials has a double 6)= 1− (35/36)24 =

0.491404

Example 1.7 (Monty Hall problem).This is a problem named after the host of the
American television show “Let’s make a deal”. Simply put at the end of a game
you are left to chose between 3 closed doors. Two of them have nothing behind and
one contains a prize. You chose one door but the door is not opened automatically.
Instead, the presenter opens another door that contains nothing. He then gives you
the choice of changing the door or sticking with the initial choice.

Most people would say that it does not matter what you do at this time, but that
is not true. In fact everything depends on the host behavior.For example, if the host
knows in advance where the prize is and always reveals at random some other door
that does not contain anything then it is always better to switch.

Solution 1.3.This problem generated a lot of controversy since its publication (in
1970’s) since the solution seems so counterintuitive. Articles talking about this prob-
lem in more detailMorgan et al.(1991), Mueser and Granberg(1991). We are pre-
senting it here since it exemplifies the conditional probability reasoning. The key in
any such problem is the sample space which has to be complete enough to be able
to answer the questions asked.

Let Di be the event that the price is behind doori. Let SW be the event that
switching wins the price2.

It does not matter which door we chose initially the reasoning is identical with
all the three doors. So, we assume that initially we pick door1.

Fig. 1.2 The tree diagram
of conditional probabilities.
Note that the presenter has
two choices in caseD1 neither
of which results in winning if
switching the door.

D1

D2

D3

1/3

1/3

1/3

SW

SW0

0

SW

SW

1

1

2 As a side note this event is the same as the event ”not switching loses”
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EventsDi i = 1,2,3 are mutually exclusive and we can write:

P(SW) = P(SW|D1)P(D1)+P(SW|D2)P(D2)+P(SW|D3)P(D3).

When the prize is behind door 1 since we chose door 1 the presenter has two
choices for the door to show us. However, neither would contain the prize and in
either case switching does not result in winning the prize, thereforeP(SW|D1) = 0.
If the car is behind door 2 since our choice is door 1 the presenter has no alternative
but to show us the other door 3 which contains nothing. Thus switching in this case
results in winning the price. The same reasoning works if theprize is behind door
3. Therefore:

P(SW) = 1
1
3

+1
1
3

+0
1
3

=
2
3

Thus switching has a higher probability of winning than not switching.
A generalization ton doors shows that it still is advantageous to switch but the

advantage decreases asn→∞. Specifically, in this caseP(Di) = 1/n; P(SW|D1) = 0
still, but P(SW|Di) = 1/(n−2) if i 6= 1. Which gives:

P(SW) =
n

∑
i=2

1
n

1
n−2

=
n−1
n−2

1
n

>
1
n

Furthermore, different presenter strategies produce different answers. For exam-
ple, if the presenter offers the option to switch only when the player chooses the
right door then switching is always bad. If the presenter offers switching only when
the player has chosen incorrectly then switching always wins. These and other cases
can be analyzed inRosenthal(2008).

Example 1.8 (Bertrand’s box paradox).This problem was first formulated by Joseph
Louis François Bertrand in his Calcul de Probabilités (Bertrand, 1889). In some
sense this problem is related to the previous problem but it does not depend on any
presenter strategy and the solution is much more clear. Solving this problem is an
exercise in Bayes formula.

Suppose that we know that three boxes contain respectively:one box contains
two gold coins, a second box with two silver coins, and a thirdbox with one of
each. We chose a box at random and from that box we chose a coin also at random.
Then we look at the coin chosen. Given that the coin chosen wasgold what is the
probability that the other coin in the box chosen is also gold. At a first glance it may
seem that this probability is 1/2 but after calculation this probability turns out to be
2/3.

Solution 1.4.We plot the sample space in Figure1.3. Using this tree we can calcu-
late the probability:

P(Second coin isG|First coin isG) =
P(Second coin isG and First coin isG)

P(First coin isG)
.

Now, using the probabilities from the tree we continue:
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Fig. 1.3 The tree diagram of
conditional probabilities.
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=
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.

Now that we have seen the solution we can recognize a logical solution to the
problem as well. Given that the coin seen is gold we can throw away the middle
box. Then if this would be box 1 then we have two possibilitiesthat the other coin is
gold (depending on which we have chosen in the first place). Ifthis is the box 2 then
there is one possibility (the remaining coin is silver). Thus the probability should be
2/3 since we have two out of three chances. Of course this “logical” argument does
not work if we do not choose the boxes with the same probability. ⊓⊔

Example 1.9.A blood test is 95% effective in detecting a certain disease when it is in
fact present. However, the test yields also a false positiveresult for 1% of the people
tested. If 0.5% of the population actually has the disease, what is the probability that
the person is diseased given that the test is positive?

Solution 1.5.This problem illustrates once again the application of the Bayes rule.
I do not like to use the rule literally instead work from first principles one will
also obtain the Bayes rule without memorizing anything. We start by describing the
sample space. Refer to the Figure1.4for this purpose.

So given that the test is positive means that we have to calculate a conditional
probability. We may write:

P(D|+) =
P(D∩+)

P(+)
=

P(+|D)P(D)

P(+)
=

0.95(0.005)
0.95(0.005)+0.01(0.995)

= 0.323

How about if only 0.05% (i.e. 0.0005) of the population has the disease?
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Fig. 1.4 Blood test probabil-
ity diagram
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P(D|+) =
0.95(0.0005)

0.95(0.0005)+0.01(0.9995)
= 0.0454

This problem is an exercise in thinking. It is the same test device. In the first case the
disease is relatively common and thus the test device is moreor less reliable (though
32% right is very low). In the second case however the diseaseis very rare and thus
the precision of the device goes way down. ⊓⊔

Example 1.10 (Gambler’s Ruin Problem).We conclude this section with an exam-
ple which we shall see many times throughout this book. I do not know who to
credit with the invention of the problem since it is so mentioned so often in every
probability treaties3.

The formulation is simple. A game of heads or tails with a faircoin. Player wins
1 dollar if he successfully calls the side of the coin which lands upwards and loses
$1 otherwise. Suppose the initial capital isX dollars and he intends to play until
he winsm dollars but no longer. What is the probability that the gambler will be
ruined?

Solution 1.6.We will display what is called as a first step analysis.
Let p(x) denote the probability that the player is going to be eventually ruined if

he starts withx dollars.
If he wins the next game then he will have $x+ 1 and he is ruined from this

position with probp(x+1).
If he loses the next game then he will have $x− 1 so he is ruined from this

position with probp(x−1).
Let R be the event he is eventually ruined. LetW be the event he wins the next

trial. Let L be the event he loses this trial. Using the total prob. formula we get:

P(R) = P(R|W)P(W)+P(R|L)P(L)⇒ p(x) = p(x+1)(1/2)+ p(x−1)(1/2)

3 The formalization may be due to Huygens (1629-1695) in the XVII-th century
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Is this true for allx? No. This is true forx≥ 1 andx≤ w−1. In the rest of cases
we obviously havep(0) = 1 andp(m) = 0 which give the boundary conditions for
the equation above.

This is a linear difference equation with constant coefficients. Please look at the
general methodology in the following subsection on how to solve such equations.

Applying the method in our case gives the characteristic equation:

y =
1
2

y2 +
1
2
⇒ y2−2y+1= 0⇒ (y−1)2 = 0⇒ y1 = y2 = 1

In our case the two solutions are equal thus we seek a solutionof the formp(x) =
(C+ Dx)1n = C+ Dx. Using the initial conditions we get:p(0) = 1⇒C = 1 and
p(m) = 0⇒C+ Dm= 0⇒ D = −C/m= −1/m, thus the general probability of
ruin starting with wealthx is:

p(x) = 1−x/m.

⊓⊔

Solving difference equations with constant coefficients

This methodology is given for second order difference equations but higher order
equations are solved in a very similar way. Suppose we are given an equation of the
form:

an = Aan−1+Ban−2,

with some boundary conditions.
The idea is to look for solutions of the forman = cyn, with c some constant and

y needs to be determined. Note that if we have two solutions of this form (sayc1yn
1

andc2yn
2), then any linear combination of them is also a solution. We substitute this

proposed form and obtain:

yn = Ayn−1+Byn−2.

Dividing by yn−2 we obtain the characteristic equation:

y2 = Ay+B.

Next, we solve this equation and obtain real solutionsy1 andy2 (if they exist). It
may be possible that the characteristic equation does not have solutions inR in
which case the difference equation does not have solutions either. Now we have two
cases:

1. If y1 andy2 are distinct then the solution isan = Cyn
1 +Dyn

2 whereC,D are con-
stants that are going to be determined from the initial conditions.
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2. If y1 = y2 the solution isan = Cyn
1 +Dnyn

1. Again,C andD are determined from
the initial conditions.

In the case when the difference equation containsp terms the procedure is iden-
tical even replicating the multiplicity issues. For more information one can consult
any book on Ordinary Differential Equations such asBoyce and DiPrima(2004).

1.3 Independence

Definition 1.11.Two eventsA andB are called independent if and only if

P(A∩B) = P(A)P(B)

.
The eventsA1,A2,A3, . . . are calledmutually independent(or sometimes simply

independent) if for every subsetJ of {1,2,3, . . .} we have:

P

(
⋃

j∈J

A j

)
= ∏

j∈J
P(A j)

The eventsA1,A2,A3, . . . are calledpairwise independent(sometimes jointly in-
dependent) if:

P(Ai ∪A j) = P(Ai)P(A j), ∀i, j.

Note that jointly independent does not imply independence.
Two sigma fieldsG ,H ∈F are P–independentif:

P(G∩H) = P(G)P(H), ∀G∈ G ,∀H ∈H .

SeeBillingsley (1995) for the definition of independence ofk≥ 2 sigma-algebras.

1.4 Monotone Convergence properties of probability

Let us take a step back for a minute and comment on what we have seen thus far. The
σ -algebra differs from the regular algebra in that it allows us to deal with countable
(not finite) number of sets. In fact this is a recurrent theme in probability, learning
to deal with infinity. On finite spaces things are more or less simple. One has to
define the probability of each individual outcome and everything proceeds from
there. However, even in these simple cases imagine that one repeats an experiment
over and over. Then again we are forced to cope with infinity. This section introduces
a way to deal with this infinity problem.

Let (Ω ,F ,P) be a Probability Space.
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Lemma 1.1.The following are true:

1. If An,A ∈F and An ↑ A (i.e., A1 ⊆ A2 ⊆ . . .An ⊆ . . . and A=
⋃

n≥1An), then:
P(An) ↑ P(A) as a sequence of numbers.

2. If An,A ∈F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . .An ⊇ . . . and A=
⋂

n≥1An), then:
P(An) ↓ P(A) as a sequence of numbers.

3. (Countable subadditivity) If A1,A2, . . . , and
⋃∞

i=1An ∈F , with Ai ’s not neces-
sarily disjoint then:

P

(
∞⋃

n=1

An

)
≤

∞

∑
n=1

P(An)

Proof. 1. Let B1 = A1,B2 = A2 \A1, . . . ,Bn = An \An−1. Because the sequence is
increasing we have that theBi ’s are disjoint thus:

P(An) = P(B1∪B2∪·· ·∪Bn) =
n

∑
i=1

P(Bi).

Thus using countable additivity:

P

(
⋃

n≥1

An

)
= P

(
⋃

n≥1

Bn

)
=

∞

∑
i=1

P(Bi) = lim
n→∞

n

∑
i=1

P(Bi) = lim
n→∞

P(An)

2. Note thatAn ↓A ⇔ An
c ↑Ac and from part 1 this means 1−P(An) ↑ 1−P(A).

3. Let B1 = A1,B2 = A1∪A2, . . . ,Bn = A1∪ ·· · ∪An, . . . . From the finite sub-
additivity property in Proposition1.3 we have thatP(Bn) = P(A1 ∪ ·· · ∪An) ≤
P(A1)+ · · ·+P(An).
{Bn}n≥1 is an increasing sequence of events, thus from part 1 we get that

P(
⋃∞

n=1Bn) = limn→∞ P(Bn). Combining the two relations above we obtain:

P(
∞⋃

n=1

An) = P(
∞⋃

n=1

Bn)≤ lim
n→∞

(P(A1)+ · · ·+P(An)) =
∞

∑
n=1

P(An)

⊓⊔

Lemma 1.2.The union of a countable number ofP-null sets is aP-null set

This Lemma is a direct consequence of the countable subadditivity.

Recall from analysis:For a sequence of numbers{xn}n limsup and liminf are
defined:

limsupxn = inf
m
{sup

n≥m
xn}= lim

m→∞
(sup
n≥m

xn)

lim inf xn = sup
m
{ inf

n≥m
xn}= lim

m→∞
( inf
n≥m

xn),

and they represent the highest (respectively lowest) limiting point of a subsequence
included in{xn}n.
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Note that ifz is a number such thatz> limsupxn thenxn < zeventually4.
Likewise, if z< limsupxn thenxn > z infinitely often5.
These notions are translated to probability in the following way.

Definition 1.12.LetA1,A2, . . . be an infinite sequence of events, in some probability
space(Ω ,F ,P). We define the events:

limsup
n→∞

An =
⋂

n≥1

∞⋃

m=n

Am = {ω : ω ∈ An for infinitely many n}= {An i.o.}

lim inf
n→∞

An =
⋃

n≥1

∞⋂

m=n

Am = {ω : ω ∈ An for all n large enough}= {An eventually}

Let us clarify the notions of “infinitely often” and “eventually” a bit more. We
say that an outcomeω happens infinitely often for the sequenceA1,A2, . . . ,An, . . .
if ω is in the set

⋂∞
n=1

⋃
m≥nAm. This means that for anyn (no matter how big) there

exist anm≥ n andω ∈ Am.
We say that an outcomeω happens eventually for the sequenceA1,A2, . . . ,An, . . .

if ω is in the set
⋃∞

n=1
⋂

m≥nAm. This means that there exist ann such that for any
m≥ n, ω ∈ Am, so from this particularn and upω is in all the sets.

Why so complicate definitions? The basic intuition is the following: say you roll
a die infinitely many times, then it is obvious what it means for the outcome 1 to
appear infinitely often. Also, we can say the average of the rolls will eventually be
arbitrarily close to 3.5 (this will be shown later). It is notso clear cut in general. The
framework above provides a generalization to these notions.

The Borel Cantelli lemmas

With this definitions we are now capable to give two importantlemmas.

Lemma 1.3 (First Borel-Cantelli). If A1,A2, . . . is any infinite sequence of events
with the property∑n≥1P(An) < ∞ then

P

(
∞⋂

n=1

⋃

m≥n

Am

)
= P(An events are true infinitely often) = 0

This lemma essentially says that if the probabilities of events go to zero and the
sum is convergent then necessarilyAn will stop occurring. However, the reverse of
the statement is not true. To make it hold we need a very strongcondition (indepen-
dence).

4 i.e., there is somen0 very large so thatxn < z, for all n≥ n0
5 i.e., for anyn there exists anm≥ n such thatxm > z
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Lemma 1.4 (Second Borel-Cantelli).If A1,A2, . . . is an infinite sequence ofinde-
pendentevents then:

∑
n≥1

P(An) = ∞ ⇔ P(An i.o.) = 1.

Proof. First Borel-Cantelli.

P(An i.o.) = P

(
⋂

n≥1

∞⋃

m=n

Am

)
≤ P

(
∞⋃

n=m

Am

)
≤

∞

∑
m=n

P(Am),∀n

where we used the definition and countable subadditivity. Bythe hypothesis the
sum on the right is the tail end of a convergent series, therefore converges to zero as
n→ ∞. Thus we are done. ⊓⊔

Proof. Second Borel-Cantelli:

“⇒” Clearly, showing thatP(An i.o.) = P(limsupAn) = 1 is the same as showing
thatP((limsupAn)

c) = 0.
By the definition of limsup and the DeMorgan’s laws,

(limsupAn)
c =

(
⋂

n≥1

∞⋃

m=n

Am

)c

=
⋃

n≥1

∞⋂

m=n

Ac
m.

Therefore, it is enough to show thatP(
⋂∞

m=nAc
m) = 0 for all n (recall that a countable

union of null sets is a null set). However,

P

(
∞⋂

m=n

Ac
m

)
= lim

r→∞
P

(
r⋂

m=n

Ac
m

)
= lim

r→∞

∞

∏
m=n

P(Ac
m)

︸ ︷︷ ︸
by independence

= lim
r→∞

r

∏
m=n

(1−P(Am))≤ lim
r→∞

r

∏
m=n

e−P(Am)

︸ ︷︷ ︸
1−x≤e−x if x≥0

= lim
r→∞

e−∑r
m=nP(Am) = e−∑∞

m=nP(Am) = 0

The last equality follows since∑P(An) = ∞.
Note that we have used the following inequality: 1− x≤ e−x which is true ifx ∈
[0,∞). One can prove this inequality with elementary analysis.
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“⇐” This implication is the same as the first lemma. Indeed, assume by absurd that
∑P(An) < ∞. By the First Borel-Cantelli Lemma this implies thatP(An i.o.) = 0, a
contradiction with the hypothesis. ⊓⊔

The Fatou lemmas

Again assume thatA1,A2, . . . is a sequence of events.

Lemma 1.5 (Fatou lemma for sets).Given any measure (not necessarily finite)µ
we have:

µ(An eventually) = µ(lim inf
n→∞

An)≤ lim inf
n→∞

µ(An)

Proof. Recall that liminfn→∞ An =
⋃

n≥1
⋂∞

m=nAm, and denote this set withA. Let
Bn =

⋂∞
m=nAm, which is an increasing sequence (less intersections as n increases)

and Bn ↑ A =. By the monotone convergence property of measure (Lemma1.1)
µ(Bn)→ µ(A). However,

µ(Bn) = µ(
∞⋂

m=n

Am)≤ µ(Am),∀m≥ n,

thusµ(Bn)≤ infm≥n µ(Am). Therefore:

µ(A)≤ limn→∞ inf
m≥n

µ(Am) = lim inf
n→∞

µ(An)

⊓⊔
Lemma 1.6 (The reverse of the Fatou lemma).If P is a finite measure (e.g., prob-
ability measure) then:

P(An i.o.) = P(limsup
n→∞

An)≥ limsup
n→∞

P(An)

.

Proof. This proof is entirely similar. Recall that limsupn→∞ An =
⋂

n≥1
⋃∞

m=nAm,
and denote this set withA. Let Bn =

⋃∞
m=nAm. Then clearlyBn is a decreasing

sequence andBn ↓A=. By the monotone convergence property of measure (Lemma
1.1) and since the measure is finiteP(B1) < ∞ soP(Bn)→ P(A). However,

P(Bn) = P(
∞⋃

m=n

Am)≥ P(Am),∀m≥ n,

thusP(Bn)≥ supm≥nP(Am), again since the measure is finite . Therefore:

P(A)≥ limn→∞ sup
m≥n

P(Am) = limsup
n→∞

P(An)

⊓⊔
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Kolmogorov zero-one law

I like to present this theorem since it introduces the concept of a sequence ofσ -
algebras, a notion essential for stochastic processes.

For a sequenceA1,A2, . . . of events in the probability space(Ω ,F ,P) consider
the generated sigma algebrasTn = σ(An,An+1, . . .) and their intersection

T =
∞⋂

n=1

Tn =
∞⋂

n=1

σ(An,An+1, . . . ),

called the tailσ -field.

Theorem 1.1 (Kolmogorov’s 0-1 Law).If A1,A2, . . . are independent then for ev-
ery event A in the tailσ field (A∈ T ) its probabilityP(A) is either0 or 1.

Proof. Skipped. The idea is to show thatA is independent of itself thusP(A∩A) =
P(A)P(A)⇒ P(A) = P(A)2⇒ P(A) is either 0 or 1. The steps of this proof are as
follows:

1. First defineAn = σ(A1, . . . ,An) and show that is independent ofTn+1 for all n.
2. SinceT ⊆Tn+1 andAn is independent ofTn+1, thenAn andT are independent

for all n.
3. DefineA∞ = σ(A1,A2, . . .). Then from the previous step we deduce thatA∞ and

T are independent.
4. Finally sinceT ⊆ A∞ by the previous stepT is independent of itself and the

result follows.

Note that limsupAn and liminfAn are tail events. However, it is only in the case
when the original events are independent that we can apply Kolmogorov’s theorem.
Thus in that caseP{An i.o.} is either 0 or 1.

1.5 Lebesgue measure on the unit interval (0,1]

We conclude this chapter with the most important measure available. This is the
unique measure that makes things behave in a normal way (e.g., the interval
(0.2,0.5) has measure 0.3).

Let Ω = (0,1]. LetF0=class of semiopen subintervals (a,b] ofΩ . For an interval
I = (a,b] ∈F0 defineλ (I) = |I | = b−a. Let ∅ ∈F0 the element of length 0. Let
B0=the algebra of finite disjoint unions of intervals in (0,1].Note that the problem
1.3shows that this algebra is not aσ -algebra.

If A = ∑n
i=1 In ∈B0 with In disjointF0 sets; then

λ (A) =
n

∑
i=1

λ (Ii) =
n

∑
i=1
|Ii|
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The goal is to show thatλ is countably additive on the algebraB0. This will
allow us to construct a measure (actually a prob. measure since we are working on
(0,1]) using the next result (Caratheodory’s theorem). Theconstructed measure is
well defined and will be called the Lebesgue Measure.

Theorem 1.2 (Theorem for the length of intervals:).Let I = (a,b]⊆ (0,1] and Ik
of the form(ak,bk] bounded but not necessarily in(0,1].

(i) If
⋃

k Ik ⊆ I and Ik are disjoint then∑k |Ik| ≤ |I |
(ii) If I ⊆⋃k Ik (with the Ik not necessarily disjoint) then|I | ≤ ∑k |Ik|.
(iii) If I =

⋃
k Ik and Ik disjoint then|I |= ∑k |Ik|.

Proof. Exercise (Hint: use induction)

Note: Part (iii) shows that the functionλ is well defined.

Theorem 1.3.λ is a (countably additive) probability measure on the fieldB0. λ is
called the Lebesgue measure restricted to the algebraB0

Proof. Let A =
⋃∞

k=1Ak, whereAk are disjointB0 sets. By definition ofB0,

Ak =
mk⋃

j=1

Jkj , A =
n⋃

i=1

Ii,

where theJkj are disjoint. Then,

λ (A) =
n

∑
i=1
|Ii |=

n

∑
i=1

(
∞

∑
k=1

mk

∑
j=1
|Ii ∩Jkj |) =

∞

∑
k=1

mk

∑
j=1

(
n

∑
i=1
|Ii ∩Jkj |)

and sinceA∩Jkj = Jkj ⇒ |A∩Jkj |= ∑n
i=1 |Ii ∩Jkj |= |Jkj |, the above is continued:

=
∞

∑
k=1

mk

∑
j=1

|Jkj |
︸ ︷︷ ︸

=|Ak|

=
∞

∑
k=1

λ (Ak)

⊓⊔
The next theorem will extend the Lebesgue measure to the whole (0,1], thus we

define the probability space((0,1],B((0,1]),λ ). The same construction with minor
modifications works in(R,B(R),λ ) case.

Theorem 1.4 (Caratheodory’s Extension Theorem).A probability measure on an
algebra has a unique extension to the generatedσ -algebra.

Note: The Caratheodory Theorem practically constructs all the interesting prob-
ability models. However, once we construct our models we have no further need of
the theorem. It also reminds us of the central idea in the theory of probabilities: If
one wants to prove something for a big set one needs to look first at the generators
of that set.
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Proof. (skipped), in the exercises.

Definition 1.13 (Monotone Class).A classM of subsets inΩ is monotoneif it is
closed under the formation of monotone unions and intersections, i.e.:

(i) A1,A2, · · · ∈M andAn⊂ An+1,
⋃

nAn = A⇒ A∈M

(ii) A1,A2, · · · ∈M andAn⊃ An+1⇒
⋂

n An ∈M

The next theorem is only needed for the proof of the Caratheodory theorem.
However, the proof is interesting and that is why is presented here.

Theorem 1.5.If F0 is an algebra andM is a monotone class, thenF0 ⊆M ⇒
σ(F0)⊆M .

Proof. Let m(F0) = minimal monotone class overF0 = the intersection of all
monotone classes containingF0

We will prove thatσ(F0)⊆m(F0).
To show this it is enough to prove thatm(F0) is an algebra. Then exercise1.11

will show thatm(F0) is a σ algebra. Sinceσ(F0) is the smallest the conclusion
follows.

To this end, letG = {A : Ac ∈m(F0)}.

(i) Sincem(F0) is a monotone class so isG .
(ii) SinceF0 is an algebra its elements are inG ⇒F0⊂ G

(i) and (ii)⇒m(F0)⊆ G . Thusm(F0) is closed under complementarity.

Now defineG1 = {A : A∪B∈m(F0),∀B∈F0}.
We show thatG1 is a monotone class:
Let Anր an increasing sequence of sets,An ∈ G1. By definition ofG1, for all n

An∪B∈m(F0),∀B∈F0.
But An∪B⊇ An−1∪B and thus the definition ofm(F0) implies:

⋃

n

(An∪B) ∈m(F0),∀B∈F0⇒
(
⋃

n

An

)
∪B∈m(F0),∀B,

and thus
⋃

nAn ∈ G1.
This shows thatG1 is a monotone class. But sinceF0 is an algebra its elements

(the contained sets) are inG1
6, thusF0⊂ G1. Sincem(F0) is the smallest monotone

class containingF0 we immediately havem(F0)⊆ G1.

Let G2 = {B : A∪B∈m(F0),∀A∈m(F0)}
G2 is a monotone class.(identical proof- see problem1.10)
Let B∈F0. Sincem(F0)⊆ G1 for any setA∈m(F0)⇒ A∪B∈m(F0). Thus,

by the definition ofG2⇒ B∈ G2⇒F0⊆ G2.
The previous implication and the fact thatG2 is a monotone class implies that

m(F0)⊆ G2.
Therefore,∀A,B∈m(F0)⇒ A∪B∈m(F0)⇒m(F0) is an algebra. ⊓⊔

6 one can just verify the definition ofG1 for this.
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Problems

1.1.Roll a die. ThenΩ = {1,2,3,4,5,6}. An example of a event isA= { Roll an even number}=
{2,4,6}. Find the cardinality (number of elements) ofP(Ω) in this case.

1.2.Suppose two eventsA andB are in some spaceΩ . List the elements of the
generatedσ algebraσ(A,B) in the following cases:
a)A∩B = /0
b) A⊂ B
c) A∩B 6= /0; A\B 6= /0 andB\A 6= /0

1.3. An algebra which is not aσ -algebra
Let B0 be the collection of sets of the form:(a1,a′1]∪ (a2,a′2]∪ ·· · ∪ (am,a′m], for
anym∈ N∗ = {1,2. . .} and alla1 < a′1 < a2 < a′2 < · · ·< am < a′m in Ω = (0,1]
Verify thatB0 is an algebra. Show thatB0 is not aσ -algebra.

1.4.Let F = {A⊆Ω |A finite or Ac is finite}.
a) Show thatF is an algebra
b) Show that ifΩ is finite thenF is aσ -algebra
c) Show that ifΩ is infinite thenF is not a σ -algebra

1.5. A σ -Algebra does not necessarily contain all the events inΩ
Let F = {A⊆Ω |A countableor Ac is countable}. Show thatF is aσ -algebra.
Note that ifΩ is uncountable implies that it contains a setA such that bothA andAc

are uncountable thusA /∈F .

1.6.Show that the Borel sets ofR B = σ ({(−∞,x]|x∈ R}).
Hint: show that the generating set is the same i.e., show that any set of the form

(−∞,x] can be written as countable union (or intersection) of open intervals and
viceversa that any open interval inR can be written as countable union (or intersec-
tion) of sets of the form(−∞,x].

1.7.Show that the following classes all generate the Borelσ -algebra, or put differ-
ently show the equality of the following collections of sets:

σ ((a,b) : a < b∈R) = σ ([a,b] : a < b∈R) = σ ((−∞,b) : b∈ R)

= σ ((−∞,b) : b∈Q) ,

whereQ is the set of rational numbers.

1.8. Properties of probability measures
Prove properties 1-4 in the Proposition1.3on page13.

Hint: You only have to use the definition of probability. The only thing non-trivial
in the definition is the countable additivity property.

1.9. No mater how many zeros do not add to more than zero
Prove the Lemma1.2on page23.
Hint: You may use countable subadditivity.
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1.10.If F0 is an algebra,m(F0) is the minimal monotone class overF0 andG2 is
defined as:

G2 = {B : A∪B∈m(F0),∀A∈m(F0)}
Then show thatG2 is a monotone class.
Hint: Look at the proof of theorem1.5on page29, and repeat the arguments therein.

1.11. A monotone algebra is aσ -algebra
Let F be an algebra that is also a monotone class. Show thatF is aσ -algebra.

1.12.Prove thetotal probability formulaequation (1.6) and theBayes Formula
equation1.7.

1.13.If two events are suchA∩B= /0 areA andB independent? Justify.

1.14.Show thatP(A|B) = P(A) is the same as independence of the eventsA andB.

1.15.Prove that if two eventsA andB are independent then so are their comple-
ments.

1.16.Generalize the previous problem ton sets using induction.

1.17.One urn containsw1 white balls andb1 black balls. Another urn containsw2

white balls andb2 black balls. A ball is drawn at random from each urn, then one of
the two such chose are selected at random.
a) What is the probability that the final ball selected is white?
b) Given that the final ball selected was white what is the probability that in fact it
came from the first urn (withw1 andb1 balls).

1.18.At the end of a well known course the final grade is decided withthe help of
an oral examination. There are a total ofm possible subjects listed on some pieces
of paper. Of themn are generally considered “easy”.

Each student enrolled in the class, one after another, drawsa subject at random
then presents it. Of the first two students who has the better chance of drawing a
“favorable” subject?

1.19.Suppose an eventA has probability 0.3. How many independent trials must be
performed to assert with probability 0.9 that the relative frequency ofA differs from
0.3 by no more than 0.1.

1.20.Show using the Cantelli lemma that when you roll a die the outcome{1} will
appear infinitely often. Also show that eventually the average of all rolls up to rolln
will be within ε of 3.5 whereε > 0 is any arbitrary real number.

1.21.Andre Agassi and Pete Sampras decide to play a number of gamestogether.
They play non-stop and at the end it turns out that Sampras wonn games while
Agassim wheren > m. Assume that in fact any possible sequence of games was
possible to reach this result. LetPn,m denote the probability that from the first game
until the last Sampras is always in the lead. Find:
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1. P2,1; P3,1; Pn,1

2. P3,2; P4,2; Pn,2

3. P4,3; P5,3; P5,4

4. Make a conjecture about a formula forPn,m.

1.22.My friend Andrei has designed a system to win at the roulette.He likes to bet
on red, but he waits until there have been 6 previous black spins and only then he bets
on red. He reasons that the chance of winning is quite large since the probability of
7 consecutive back spins is quite small. What do you think of his system. Calculate
the probability the he wins using this strategy.

Actually, Andrei plays his strategy 4 times and he actually wins three times out
of the 4 he played. Calculate what was the probability of the event that just occurred.

1.23.Ali Baba is caught by the sultan while stealing his daughter.The sultan is be-
ing gentle with him and he offers Ali Baba a chance to regain his liberty.
There are 2 urns andmwhite balls andn black balls. Ali Baba has to put the balls in
the 2 urns however he likes with the only condition that no urnis empty. After that
the sultan will chose an urn at random then pick a ball from that urn. If the chosen
ball is white Ali Baba is free to go, otherwise Ali Baba’s headwill be at the same
level as his legs.
How should Ali Baba divide the balls to maximize his chance ofsurvival?
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Chapter 2
Random Variables

All the definitions with sets presented in Chapter1 are consistent, however if we
wish to calculate and compute numerical values related to abstract spaces we need
to standardize the spaces. The first step is to give the following definition.

Definition 2.1 (Measurable Function (m.f.)).Let (Ω1,F1), (Ω2,F2) be two mea-
surable spaces. Letf : Ω1 −→ Ω2 be a function.f is called a measurable function
if and only if for any setB ∈F2 we havef−1(B) ∈F1. The inverse function is a
set function defined in terms of the pre-image. Explicitly, for a given setB∈F2,

f−1(B) = {ω1 ∈Ω1 : f (ω1) ∈ B}

Note: This definition makes it possible to extend probability measures to other
spaces. For instance, letf be a measurable function and assume that there exists a
probability measureP1 on the first space(Ω1,F1). Then we can construct a proba-
bility measure on the second space(Ω2,F2) by (Ω2,F2,P1◦ f−1). Note that since
f is measurablef−1(B) is in F1, thusP1◦ f−1(B) = P1( f−1(B)) is well defined.

Reduction toR. Random variables

Definition 2.2. Any measurable function with codomain(Ω2,F2) = (R,B(R)) is
called a random variable.

Consequence:Since the Borel sets inR are generated by(−∞,x] then we can
have the definition of a random variable directly by:

f : Ω1−→ R such thatf−1(−∞,x] ∈F or {ω : f (ω)≤ x} ∈F ,∀x∈R.

We shall sometimes usef (ω) ≤ x to denote f−1(−∞,x). Traditionally, the
random variables are denoted with capital letters from the end of the alphabet
X,Y,Z, . . . and their values are denoted with corresponding small lettersx,y,z, . . . .

35
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Definition 2.3 (Distribution of Random Variable). Assume that on the measur-
able space(Ω ,F ) we define a probability measureP so that it becomes a proba-
bility space(Ω ,F ,P). If a random variableX : Ω → R is defined then we call its
distribution, the set functionµ defined on the Borel sets ofR: B(R), with values in
[0,1]:

µ(B) = P({ω : X(ω) ∈ B}) = P
(
X−1(B)

)
= P◦X−1(B)

Remark 2.1.First note that the measureµ is defined on sets inR and takes val-
ues in the interval[0,1]. Therefore, the random variableX allows us to apparently
eliminate the abstract spaceΩ . However, this is not the case since we still have to
calculate probabilities usingP in the definition ofµ above.

However, there is one simplification we can make. If we recallthe result of the
exercises1.6 and1.7, we know that all Borel sets are generated by the same type
of sets. Using the same idea as before it is enough to describehow to calculate
µ for the generators. We could of course specify any type of generating sets we
wish (open sets, closed sets, etc) but it turns out the simplest way is to use sets of
the form(−∞,x], since we only need to specify one end of the interval (the other is
always−∞). With this observation we only need to specify the measureµ = P◦X−1

directly on the generators to completely characterize the probability measure.

Definition 2.4. [The distribution function of a random variable] The distribution
function of a random variableX is F : R→ [0,1] with:

F(x) = µ(−∞,x] = P({ω : X(ω) ∈ (−∞,x]}) = P({ω : X(ω)≤ x})

But wait a minute, this is exactly the definition of the cumulative distribution
function (cdf) which you can find in any lower level probability classes. It is ex-
actly the same thing except that in an effort to dumb down (in whomever opinion
it was to teach the class that way) the meaning is lost and we cannot proceed with
more complicated things. From the definition above we can deduce all the elemen-
tary properties of the cdf that you have learned (right-continuity, increasing, taking
values between 0 and 1). In fact let me ask you to prove this in exercise .

Proposition 2.1.The distribution function for any random variable X has the fol-
lowing properties:

(i) F is increasing (i.e. if x≤ y then F(x)≤ F(y))1

(ii) F is right continuous (i.e.limh↓0F(x+h) = F(x))
(iii) limx→−∞ F(x) = 0 andlimx→∞ F(x) = 1

Example 2.1 (Indicator random variable).Recall the indicator function from Def-
inition 1.10. Let 1A be the indicator function of a setA ⊆ Ω . This is a function

1 In other math books a function with this property is called non-decreasing. I do not like the
negation and I prefer to call a function like this increasingwith the distinction that a function
with the following propertyx < y impliesF(x) < F(y) is going to be called astrictly increasing
function
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defined onΩ with values inR. Therefore, it may be a random variable. According
to the definition it is a random variable if the function is measurable. It is simple
to show that this happens if and only ifA ∈F the σ -algebra associated with the
probability space. Assuming thatA ∈ F , what is the distribution function of this
random variable?

According to the definition we have to calculateP◦1−1
A ((−∞,x]) for anyx. How-

ever, the function 1A only takes two values 0 and 1. We can calculate immediately:

1−1
A ((−∞,x]) =





/0 , if x < 0

Ac , if x∈ [0,1)

Ω , if x > 1

.

Therefore,

F(x) =





0 , if x < 0

P(Ac) , if x∈ [0,1)

1 , if x≥ 1

.

Proving the following lemma is elementary using the properties of the probability
measure (Proposition1.3) and is left as an exercise.

Lemma 2.1.Let F be the distribution function of X. Then:

(i) P(X ≥ x) = 1−F(x)
(ii) P(x < X ≤ y) = F(x)−F(y)
(iii) P(X = x) = F(x)−F(x−), where F(x−) = limyրx F(y) the left limit of F
at x.

Above, we define a random variable as a measurable function with codomain
(R,B(R)). A more specific case is obtained when the random variable hasthe do-
main also equal to(R,B(R)). In this case the random variable is called a Borel
function.

Definition 2.5 (Borel measurable function).A functiong : R→ R is called Borel
(measurable) function ifg is a measurable function from(R,B(R)) into (R,B(R)).

Example 2.2.Show that any continuous functiong : R→R is Borel measurable.

Solution 2.1.This is very simple. Recall that the Borel sets are generatedby open
sets. So it is enough to see what happens to the pre-image of a open setB. But g
is a continuous function thereforeg−1(B) is an open set and thusg−1(B) ∈B(R).
Therefore by definitiong is Borel measurable.

2.1 Discrete and Continuous Random Variables

Definition 2.6 (pdf pmf and all that). Note that the distribution functionF always
exists. In general the distribution functionF is not necessarily derivable. However,
if it is, we call its derivativef (x) theprobability density function(pdf):
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F(x) =

∫ x

−∞
f (z)dz

Traditionally, a variable X with this property is calleda continuous random variable.
Furthermore ifF is piecewise constant (i.e., constant almost everywhere),or in

other words there exist a countable sequence{a1,a2, . . .} such that the functionF
is constant for every point except theseai ’s and we denotepi = F(ai)−F(ai−),
then the collection ofpi ’s is the traditionalprobability mass function(pmf) that
characterizes adiscrete random variable2.

Remark 2.2.Traditional undergraduate textbooks segregate between discrete and
continuous random variables. Because of this segregation they are the only vari-
ables presented and it appears that all the random variablesare either discrete or
continuous. In reality these are the only types that can be presented without follow-
ing the general approach we take here. The definitions we presented here cover any
random variable. Furthermore, the treatment of random variables is the same, no
more segregation.

Important. So what is the point of all this? What did we just accomplish here?

The answer is: we successfully moved from the abstract space(Ω ,F ,P) to some-
thing perfectly equivalent but defined on(R,B(R)). Because of this we only need
to define probability measures onR and show that anything coming from the orig-
inal abstract space is equivalent with one of these distributions onR. We have just
constructed our first model.

Example 2.3 (Indicator r.v. (continued)).This indicator variable is also called the
Bernoulli random variable. Notice that the variable only takes values 0 and 1 and
the probability that the variable takes the value 1 may be easily calculated using the
previous definitions:

P◦1−1
A ({1}) = P{ω : 1A(ω) = 1}= P(A).

Therefore the variable is distributed as a Bernoulli randomvariable with parame-
ter p = P(A). Alternately, we may obtain this probability using the previously com-
puted distribution function:

P{ω : 1A(ω) = 1}= F(1)−F(1−) = 1−P(Ac) = P(A)

Example 2.4.Roll a six sided fair die. SayX(ω) = 1 if the die shows 1 (ω = 1),
X = 2 if the die shows 2, etc. FindF(x) = P(X ≤ x).

Solution 2.2 (Solution).

If x < 1 thenP(X ≤ x) = 0

2 Again we used the notationF(x−) for the left limit of functionF at x or in a more traditional
notation limz→x,z<x F(z).
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If x∈ [1,2) thenP(X ≤ x) = P(X = 1) = 1/6
If x∈ [2,3) thenP(X ≤ x) = P(X(ω) ∈ {1,2}) = 2/6

We continue this way to get:

F(x) =






0 if x < 1
i/6 if x∈ [i, i +1) with i = 1, · · · ,5

1 if x≥ 6

Exercise 2.1 (Mixture of continuous and discrete random variable).Say a game
asks you to toss a coin. If the coin lands Tail you lose 1$, if Head then you draw a
number from[1,2] at random and gain that number. Furthermore, suppose that the
coins lands a Head with probabilityp. Let X be the amount of money won or lost
after 1 game. Find the distribution of X.

Solution 2.3 (Solution).Let ω = (ω1,ω2) whereω1 ∈ {Head,Tail} andω2 in the
defining experiment space for the Uniform distribution. Newdefine a random vari-
ableY(ω2) on the uniform[1,2] space. Then the random variableX is defined as:

X(ω) =

{
−1 , if ω1 = Tail

Y(ω2) if ω1 = Head

If x∈ [−1,1) we get :

P(X ≤ x) = P(X =−1) = P(ω1 = Tail) = 1− p

If x∈ [1,2) we get:

P(X ≤ x) = P(X =−1 orX ∈ [1,x))︸ ︷︷ ︸
the two events are disjoint

= 1− p+P(ω1 = heads,Y ≤ x)

= 1− p+ pP(Y ∈ [1,x))︸ ︷︷ ︸
Uniform[1,2]

= 1− p+ p
∫ x

1
1dy= 1− p+ p(x−1)

= 1−2p+ px.

Note that if the two parts of the game are not independent of each-other we cannot
calculate this distribution.

Finally, we obtain:

F(x) =






0 if x <−1
1− p if x∈ [−1,1)

1−2p+ px if x∈ [1,2)
1 if x≥ 2
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Checking that our calculation is correctIt is always a good idea to check the re-
sult. We can verify the distribution function properties, and we can plot the function
to confirm this.

Examples of commonly encountered Random Variables:

Discrete random variables

For discrete random variables we give the probability mass function and it will de-
scribe completely the distribution (recall that the distribution function is piecewise
linear).

(i) Bernoulli Distribution, the random variable only takes two values:

X =

{
1 with P(X = 1) = p
0 with P(X = 0) = 1− p

We denote a random variableX with this distribution withX ∼ Bernoulli(p).
(ii) Binomial(n, p) distribution, the random variable takes values inN with:

P(X = k) =

{(n
k

)
pk(1− p)n−k for anyk∈ {0,1,2, . . . ,n}

0 otherwise

Note:X has the same distribution asY1 + · · ·Yn whereYi ∼ Bernoulli(p)
We denote a random variableX with this distribution withX ∼ Binom(n, p).

(iii) Geometric(p) distribution:

P(X = k) =

{
(1− p)k−1p for anyk∈ {1,2· · ·}

0 otherwise

This is sometimes called Geometric “number of trials” distribution. We can also
talk about Geometric “number of failures distribution” distribution, defined:

P(Y = k−1) =

{
(1− p)k−1p for anyk∈ {1,2· · ·}

0 otherwise

Most of the time when we writeX ∼Geometric(p) we mean thatX has a Geo-
metric number of trials distribution. In the rare cases whenwe use the other one
we will specify very clearly.

(iv) Negative Binomial(r, p) distribution

P(X = k) =

{(k−1
r−1

)
(1− p)r−kpr for anyk∈ {r, r +1, . . .}

0 otherwise
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Similarly with theGeometric(p) distribution we can talk about “number of fail-
ures” distribution, but I will not give that definition.

Let us stop for a moment and see where these distributions arecoming from.
Suppose we do a simple experiment, we repeat an experiment many times. This ex-
periment only has two possible outcomes “success” with probability p and “failure”
with probability 1− p.

• The variableX that takes value 1 if the experiment is a success and 0 otherwise
has aBernoulli(p) distribution.

• Repeat the experimentn times in such a way that no experiment influences the
outcome of any other experiment3 and we count how many of then repetition
actually resulted in success. LetY be the variable denoting this number. Then
Y ∼ Binom(n, p).

• If instead of repeating the experiment a fixed number of timeswe repeat the
experiment as many times as are needed to see the first success, then the number
of trials needed is going to be distributed as aGeometric(p) random variable. If
we count failures until the first success we obtain theGeometric(p) “number of
failures” distribution.

• If we repeat the experiment until we seer successes, the number of trials needed
is aNegativeBinomial(r, p)

(v) Hypergeometric distribution(N,m,n,p),

P(X = k) =

(m
k

)(N−m
n−k

)
(N

n

) k∈ {0,1· · ·m}

This may be thought of as drawingn balls from an urn containingmwhite balls
and N−m black balls, whereX represents the number of white balls in the
sample.

(vi) Poisson Distribution, the random variable takes values inN,

P(X = k) =
λ k

k!
e−k, k = 0,1,2, . . .

Continuous Random Variables.

In this case every random variable has a pdf and we will specify this function di-
rectly.

(i) Uniform Distribution[a,b], the random variable represents the position of a
point taken at random (without any preference) within the interval[a,b].

3 this is the idea of independence which we will discuss a bit later
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f (x) =

{ 1
b−a , if x∈ [a,b]

0 ,otherwise

(ii) Exponential Distribution(θ )

f (x) =
1
θ

e−x/θ , x≥ 0

(iii) Normal Distribution(µ ,σ )

f (x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , x∈ R

There are many more distributions, for our purpose the few presented will suffice.

A special random variable: Diraç Delta distribution

For a fixeda real number, consider the following distribution function:

Fδ (x) =

{
0 if x < a

1 if x≥ a

Fig. 2.1 A distribution func-
tion.

a

[

)

1

This function is plotted in Figure2.1. Note that the function has all the proper-
ties of a distribution function (increasing, right continuous and limited by 0 and 1).
However, the function is not derivable (the distribution does not have a pdf).

The random variable with this distribution is called a Dirac¸ impulse function at
a. It can only be described using measures. We will come back tothis function
when we develop the integration theory but for now let us say that if we define the
associated set function:

δ{a}(A) =

{
1 if a∈ A
0 otherwise
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this is in fact a probability measure with the property:
∫ ∞

−∞
f (x)dδ{a}(x) = f (a), for all continuous functionsf

This will be written later asEδ{a} [ f ] = f (a). (In other sciences:δ{a}( f ) = f (a)).
Also note thatδ{a}(A) is a set function (a is fixed) and has the same value as the

indicator1A(a) which is a regular function (A is fixed).

2.2 Existence of random variables with prescribed distribution.
Skorohod representation of a random variable

In the previous section we have seen that any random variablehas a distribution
functionF , what is called in other classes the c.d.f. Recall the essential properties
of this function from Proposition2.1 on page36: right-continuity, increasing, tak-
ing values between 0 and 1. An obvious question is given a function F with these
properties can we construct a random variable with the desired distribution?

In fact yes we can and this is the first step in a very important theorem we shall
see later in this course: the Skorohod representation theorem. However, recall that
a random variable has to have as domain some probability space. It actually is true
that we can construct random variables with the prescribed distribution on any space
but recall that the purpose of creating random variables wasto have a uniform way
of treating probability. It is actually enough to give the Skorohod’s construction on
the probability space([0,1],B([0,1]),λ ), whereλ is the Lebesque measure.

On this space define the following random variables:

X+(ω) = inf{z∈ R : F(z) > ω}
X−(ω) = inf{z∈ R : F(z)≥ ω}

Note that in statisticsX− would be called theω-quantile of the distributionF .
For most of the outcomesω the two random variables are identical. Indeed, if

at z with ω = F(z) the functionF is non-constant then the two variables take the
same valuesX+(ω) = X−(ω) = z. The two important cases when the variables take
different values are depicted in Figure2.2.

We need to show that the two variables have the desired distribution. To this end
let x∈ R. Then we have:

{ω ∈ [0,1] : X−(ω)≤ x}= [0,F(x)]

Indeed, if ω is in the left set thenX−(ω) ≤ x. By the definition ofX− then
ω ≤ F(x) and we have the inclusion⊆. If on the other handω ∈ [0,F(x)] then
ω ≤ F(x) and again by definition and right continuity ofF , X−(ω) ≤ x, thus we
obtain⊇. Therefore, the distribution is:
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X +(ϖ) X (ϖ)
_

=

ϖ

0

1

(a) A point of discontinuity forF

X +(ϖ)X (ϖ)
_

ϖ

0

1

z

(b) An interval where the functionF is constant

Fig. 2.2 Points where the two variablesX± may have different outcomes

λ ({ω ∈ [0,1] : X−(ω)≤ x}) = λ ([0,F(x)]) = F(x)−0 = F(x).

Finally, X+ also has distribution functionF and furthermore:

λ (X+ 6= X−) = 0.

By definition ofX+:

{ω ∈ [0,1] : X−(ω)≤ x} ⊇ [0,F(x)),

and soλ (X+ ≤ x)≥ F(x). Furthermore, sinceX− ≤ X+ we have:

{ω ∈ R : X−(ω) 6= X+(ω)}=
⋃

x∈Q

{ω ∈ R : X−(ω)≤ x < X+(ω)}

But for every suchx∈Q:

λ ({ω ∈R : X−(ω)≤ x< X+(ω)}) = λ ({X− ≤ x}\{X+≤ x})≤ F(x)−F(x) = 0

SinceQ is countable and any countable union of null sets is a null setthe result
follows.

2.3 Independence

In this section we extend the idea of independence originally defined for events to
random variables. In order to do this we have to explain the joint distribution of
several variables.
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Example 2.5 (The idea of joint distribution).Suppose 2 pointsξ1,ξ2 are tossed at
random and independently onto a line segment of lengthL (ξ1, ξ2 are i.i.d.). What
is the probability that the distance between the 2 points does not exceed 1?

Solution 2.4 (Solution).If L≤ 1 then the probability is trivially equal to 1.
Assume thatL > 1 (the following also works if 1 is substituted by al ≤ L). What

is the distribution ofξ1 and ξ2? They are bothUni f [0,L]. We want to calculate
P(|ξ1− ξ2| ≤ 1).

Fig. 2.3 The area we need to
calculate. The blue parts need
to be deleted.
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1

1 L

L−1

L−1

We plot the surface we need to calculate in Figure2.3. The area within the rect-
angle and not shaded is exactly the area we need. If we pick anypoint from within
this area it will have the property that|ξ1− ξ2| ≤ 1. Since the points are chosen
uniformly from within the rectangle the chance of a point being chosen is the ratio
between the “good” area and the total area.

The unshaded area from within the rectangle is:L2− (L−1)2

2 − (L−1)2

2 = 2L−1.
Therefore, the desired probability is:

P(|ξ1− ξ2| ≤ 1) =
2L−1

L2 .

⊓⊔

This geometrical proof works because the distribution is uniform and furthermore
the points are chosen independently of each other. However if the distribution is
anything else we need to go through the whole calculation. Weshall see how to
do this after we define joint probability. We need this to define the independence
concept.
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2.3.1 Joint distribution

We talked aboutσ -algebras in Chapter1. Let us come back to them. If there is
any hope of rigorous introduction into probability and stochastic processes, they are
unavoidable. Later, when we will talk about stochastic processes we willfind out
the crucial role they play in quantifying the information available up to a certain
time. For now let us play a bit with them.

Definition 2.7 (σ -algebra generated by a random variable).For a r.v.X we de-
fine theσ -algebra generated by X, denotedσ(X) or sometimeFX , the smallest
σ -field G such thatX is measurable on(Ω ,G ). It is the σ -algebra generated by
the pre-images of Borel sets throughX (recall that we have already presented this
concept earlier in definition1.3on page9). Because of this we can easily show4:

σ(X) = σ({ω |X(ω)≤ x}, asx varies inR).

Similarly, given X1,X2, . . . ,Xn random variables, we define the sigma algebra
generated by them as the smallest sigma algebra such that allare measurable with
respect to it. It turns out we can show easily that it is the sigma algebra generated by
the union of the individual sigma algebras or put more specifically σ(Xi , i ≤ n) is the
smallest sigma algebra containing allσ(Xi), for i = 1,2, . . . ,n, or σ(X1)∨σ(X2)∨
·· ·∨σ(Xn), again recall proposition1.2on page10.

In Chapter1 we defined Borel sigma algebras corresponding to any spaceΩ .
We consider the special case whenΩ = Rn. This allows us to define a random
vector on(Rn,B(Rn),P) as (X1,X2, . . . ,Xn) where eachXi is a random variable.
The probabilityP is defined onB(Rn).

We can talk about its distribution (the”joint distribution” of the variables
(X1,X2, . . . ,Xn)) as the function:

F(x1,x2, . . . ,xn) = P◦ (X1,X2, . . . ,Xn)
−1 ((−∞,x1]×·· ·× (−∞,xn])

= P(X1≤ x1,X2≤ x2, . . . ,Xn≤ xn),

which is well defined for anyx = (x1,x2, . . . ,xn) ∈Rn

In the special case whenF can be written as:

F(x1,x2, . . . ,xn) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
fX(t1, · · · ,tn)dt1 · · ·dtn,

we say that the vectorX has ajoint densityand fX is the joint probability density
function of the random vectorX.

4 Remember that the Borel sets are generated by intervals of the type(−∞,x]
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Definition 2.8 (Marginal Distribution). Given the joint distribution of a random
vectorX = (X1,X2, . . . ,Xn) we define the marginal distribution ofX1:

FX1(x1) = lim
x2→∞

...
xn→∞

FX(x1 · · ·xn)

and similarly for all the other variables.5

2.3.2 Independence of random variables

We can now introduce the notions of independence and joint independence using
the definition in Section1.3, the probability measure= P◦ (X1,X2, . . . ,Xn)

−1 and
any Borel sets. Writing more specifically that definition is transformed here:

Definition 2.9. The variables(X1,X2, . . . ,Xn, . . .) are independent if for every subset
J = { j1, j2, . . . , jk} of {1,2,3, . . .} we have:

P
(
Xj1 ≤ x j1,Xj2 ≤ x j2, . . . ,Xjk ≤ x jk

)
= ∏

j∈J
P(Xj ≤ x j)

Remark 2.3.The formula in the Definition2.8allows to obtain the marginal distri-
butions from the joint distribution. The converse is generally false meaning that if
we know the marginal distributions we cannot regain the joint.

However, there is one case when this is possible: whenXi are independent. In
this caseFX(x) = ∏n

i=1FXi (xi). That is why the i.i.d case is the most important in
probability (we can regain the joint from the marginals without any other special
knowledge).

Independence (specialized cases)

(i) If X andY are discrete r.v.’s with joint probability mass functionpX,Y(·, ·) then
they are independent if and only if

pX,Y(x,y) = pX(x)pY(y), ∀x,y

(ii) If X andY are continuous r.v.’s with joint probability density function f then
they are independent if and only if

fX,Y(x,y) = fX(x) fY(y), ∀x,y

where we used obvious notations for marginal distributions. The above definition
can be extended ton dimensional vectors in an obvious way.

5 We can also define it simpler as
∫ x1
−∞
∫ ∞
−∞· · ·

∫ ∞
−∞ fX(t1, · · · , tn)dt1 · · ·dtn if the joint pdf exists.
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I.I.D. r.v. ’s: (Independent Identically Distributed Random Variables). Many of
the central ideas in probability involve sequences of random variables which
are independent and identically distributed. That is a sequence of random vari-
ables{Xn} such thatXn are independent and all have the same distribution
function sayF(x).

Finally, we answer the question we asked in the earlier example: What to do if
the variablesξ1, ξ2 are not uniformly distributed?

Suppose thatξ1 had distributionFξ1
andξ2 had distributionFξ2

. Assuming that
the two variables are independent we obtain the joint distribution:

Fξ1ξ2
(x1,x2) = Fξ1

(x1)Fξ2
(x2)

(If they are not independent we have to be given or infer the joint distribution).
The probability we are looking for is the area of the surface

{(ξ1,ξ2)|ξ1 ∈ [0,L],ξ2 ∈ [0,L],ξ1−1≤ ξ2≤ ξ1 +1} .

We shall find out how to calculate this probability using general distribution func-
tionsFξ1

andFξ2
in the next chapter. For now let us assume that the two variables

have densitiesf1 and f2. Then, the desired probability is:

∫ L

0

∫ L

0
1{x1−1≤x2≤x1+1}(x1,x2) fξ1

(x1) fξ2
(x2)dx1dx2

which can be further calculated:

• WhenL−1 < 1 or 1< L < 2:
∫ L−1

0

∫ x1+1

0
fξ1

(x1) fξ2
(x2)dx2dx1 +(2−L)L+

∫ L

1

∫ L

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

• WhenL−1 > 1 orL > 2:

∫ 1

0

∫ x1+1

0
fξ1

(x1) fξ2
(x2)dx2dx1 +

∫ L−1

1

∫ x1+1

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

+
∫ L

L−1

∫ L

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

Above is given to remind about the calculation of a two dimensional integral.
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2.4 Functions of random variables. Calculating distributions

Measurable functions allow us to construct new random variables. These new ran-
dom variables possess their own distribution. This sectionis dedicated to calculating
this new distribution. At this time it is not possible to workwith abstract spaces (for
that we will give a general theorem - the Transport formula inthe next chapter) so
all our calculations will be done inRn.

One dimensional functions

Let X be a random variable defined on some probability space(Ω ,F ,P). Let g :
R −→ R be a Borel measurable function. LetY = g(X) which is a new random
variable. Its distribution is deduced as:

P(Y ≤ y) = P(g(X)≤ y) = P(g(X) ∈ (−∞,y]) = P
(
X ∈ g−1((−∞,y])

)

= P
(
{ω : X(ω) ∈ g−1((−∞,y])}

)

whereg−1((−∞,y]) is the preimage of(−∞,y] through the functiong, i.e.,:

{x∈R : g(x)≤ y}.

If the random variableX has p.d.ff then the probability has a simpler formula:

P(Y ≤ y) =

∫

g−1(−∞,y]
f (x)dx

Example 2.6.Let X be a random variable distributed as a Normal (Gaussian) with
mean zero and variance 1,X ∼ N(0,1). Let g(x) = x2, and takeY = g(X) = X2.
Then:

P(Y ≤ y) = P(X2≤ y) =

{
0 if y < 0
P(−√y≤ X ≤√y) if y≥ 0

Note that the preimage of(−∞,y] through the functiong(x) = x2 is either /0 if
y < 0 or [−√y,

√
y] if y≥ 0. This is how we obtain above. In the nontrivial case

y≥ 0 we get:

P(Y ≤ y) = Φ(
√

y)−Φ(−√y) = Φ(
√

y)− [1−Φ(
√

y)] = 2Φ(
√

y)−1,

whereΦ is the c.d.f ofX, aN(0,1) random variable. In this caseΦ(x)=
∫ x
−∞

1√
2π

e−t2/2dt.
Since the functionΦ is derivableY has a p.d.f. which can be obtained:



50 2 Random Variables

fY(y) =
d
dy

[2Φ(
√

y)] = 2Φ ′(
√

y)
1

2
√

y

=
1√
y

Φ ′(
√

y) =
1√
y

1√
2π

e−y/2

=
1√
2πy

e−y/2

⊓⊔

We note that a random variableY with the p.d.f. described above is said to have
a chi-squared distribution with one degree of freedom (the notation isχ2

1).

Two and more dimensional functions

If the variableX does not have a p.m.f or a p.d.f there is not much we can do. The
same relationship holds as in the 1 dimensional case. Specifically, if X is a n-dim
random vector andg : Rn −→ Rn is a measurable function which defines a new
random vectorY = g(X) then its distribution is determined using:

P(Y ≤ y) = P(g(X)≤ y) = P
(
{ω : X(ω) ∈ g−1((−∞,y])}

)

and this is the same relationship as before.
In the case when the vectorX has a density then things become more specific.

We will exemplify usingR2 but the same calculation works inn dimensions with no
modification (other than the dimension of course). Suppose that a two dimensional
random vector(X1,X2) has joint densityf . Let g : R2−→R2 be a measurable func-
tion:

g(x1,x2) = (g1(x1,x2),g2(x1,x2))

Suppose first that the functiong is one-to-one6

Define a random vectorY = (Y1,Y2) = g(X1,X2). First we find the support set of
Y (i.e. the points whereY has nonzero probability). To this end let

A= {(x1,x2) : f (x1,x2) > 0}
B = {(y1,y2) : y1 = g1(x1,x2) andy2 = g2(x1,x2), for some(x1,x2) ∈A}

ThisB is the image ofA throughg, it is also the support set ofY. Sinceg is one-
to-one, when restricted tog :A→B it is also surjective, therefore forms a bijection
betweenA andB. Thus, the inverse functiong−1(y1,y2) = (g−1

1 (y1,y2),g
−1
2 (y1,y2))

is a unique, well defined function.

6 this is why we use the same dimensionn for bothX andY vectors
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To calculate the density ofY we need the derivative of thisg−1 and that role
is played by the Jacobian of the transformation (the determinant of the matrix of
partial derivatives):

J = Jg−1(y1,y2) =

∣∣∣∣∣∣

∂g−1
1

∂y1
(y1,y2)

∂g−1
2

∂y1
(y1,y2)

∂g−1
1

∂y2
(y1,y2)

∂g−1
2

∂y2
(y1,y2)

∣∣∣∣∣∣

Then, the joint p.d.f. of the vectorY is given by:

fY(y1,y2) = f
(
g−1

1 (y1,y2),g
−1
2 (y1,y2)

)
|J| 1B(y1,y2)

where we used the indicator notation and|J| is the absolute value of the Jacobian.

Suppose that the functiong is not one-to-one

In this case we recover the previous one-to-one case by restricting the func-
tion. Specifically, define the setsA andB as before. Now, the restricted function
g : A→ B is surjective. We partitionA into A0,A1,A2, . . . ,Ak. The setA0 may
contain several points which are difficult to deal with, the only condition is that
P((X1,X2) ∈ A0) = 0 (it is a null set). Furthermore, for alli 6= 0, each restric-
tion g : Ai → B is one-to one. Thus, for each suchi ≥ 1, an inverse can be found
g−1

i (y1,y2) = (g−1
i1 (y1,y2),g

−1
i2 (y1,y2)). This i-th inverse gives for any(y1,y2) ∈B a

unique(x1,x2) ∈ Ai such that(y1,y2) = g(x1,x2). Let Ji be the Jacobian associated
with the i-th inverse transformation. Then the joint p.d.f. ofY is:

fY(y1,y2) =
k

∑
i=1

f
(
g−1

i1 (y1,y2),g
−1
i2 (y1,y2)

)
|Ji | 1B(y1,y2)

Example 2.7.Let (X1,X2) have some joint p.d.f.f (·, ·). Calculate the density of
X1X2.

Let us takeY1 = X1X2 andY2 = X1 i.e. g(x1,x2) = (x1x2, x1) = (y1,y2). The
function thus constructedg : R2→R2 is bijective soB= R2. To calculate its inverse:

x1 = y2

x2 =
y1

x1
=

y1

y2
,

which gives:

g−1(y1,y2) =

(
y2,

y1

y2

)

We then get the Jacobian:
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Jg−1(y1,y2) =

∣∣∣∣∣
0 1

y2

1 − y1
y2
2

∣∣∣∣∣= 0− 1
y2

=− 1
y2

Thus, the joint p.d.f ofY = (Y1,Y2) is:

fY(y1,y2) = f

(
y2,

y1

y2

)∣∣∣∣
1
y2

∣∣∣∣ ,

where f is the given p.d.f. ofX. To obtain the distribution ofX1X2 = Y1 we simply
need the marginal p.d.f. obtained immediately by integrating outY2:

fY1(y1) =
∫ ∞

−∞
f

(
y2,

1
y2

)
· 1
|y2|

dy2

⊓⊔

Example 2.8 (A more specific example).Let X1, X2 be independent Exp(λ ). Find the
joint density ofY1 = X1+X2 andY2 = X1

X2
. Also show that the variablesY1 andY2 are

independent.

Let g(x1,x2) =
(

x1 +x2,
x1
x2

)
= (y1,y2). Let us calculate the domain of the trans-

formation.
Remember that the p.d.f of the exponential distribution is:

f (x) = λe−λ x1(0,∞)(x),

thusA = (0,∞)× (0,∞). Sincex1,x2 > 0 we get thatx1 + x2 > 0 and x1
x2

> 0, and

soB = (0,∞)2 as well. The functiong restricted to this sets is bijective as we can
easily show by solving the equations:y1 = x1 +x2 andy2 = x1

x2
. We obtain:

x1 = x2y2⇒ y1 = x2y2 +x2

⇒ x2 =
y1

1+y2

⇒ x1 =
y1y2

1+y2

Since the solution is unique the functiong is one-to-one. Since the solution exists
for all (y1,y2) ∈ (0.∞)2 the function is surjective. Its inverse is precisely:

g−1(y1,y2) =

(
y1y2

1+y2
,

y1

1+y2

)

Furthermore, the Jacobian is:

Jg−1(y1,y2) =

∣∣∣∣∣

y2
1+y2

1
1+y2y1

(1+y2)2 − y1
(1+y2)2

∣∣∣∣∣=−
y1y2

(1+y2)3 −
y1

(1+y2)3 =− y1

(1+y2)2
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Thus the desired p.d.f is:

fY(y1,y2) = f

(
y1y2

1+y2
,

y1

1+y2

)∣∣∣∣−
y1

(1+y2)2

∣∣∣∣1(y1,y2)∈(0,∞)2

= λe
−λ y1y2

1+y2 λe
− y1

1+y2
y1

(1+y2)2 1{y1,y2>0}

= λ 2e−λ y1
y1

(1+y2)2 1{y1,y2>0}

Finally, to end the example it is enough to recognize that thep.d.f. of Y can be
decomposed into a product of two functions, one of them only in the variabley1 and
the other only a function of the variabley2. Thus, if we apply the next lemma the
example is solved. ⊓⊔

Lemma 2.2.If the joint distribution f of a random vector(X,Y) factors as a product
of functions of only x and y, i.e., there exist g,h : R→R such that f(x,y) = g(x)h(y)
then the variables X,Y are independent.

Proof. Problem2.12.

Example 2.9.Let X, Y be two random variables with joint p.d.f.f (·, ·). Calculate
the density ofX +Y.

Let (U,V) = (X +Y,Y). We can easily calculate the domain and the inverse
g−1(u,v) = (u−v,v). The Jacobian is:

Jg−1(u,v) =

∣∣∣∣
1 −1
0 1

∣∣∣∣= 1

As a result the desired p.d.f. is:

fU(u) =

∫ ∞

−∞
f (u−v,v)dv

We will observe this particular example later when we talk about convolutions.

Example 2.10.Let X1 andX2 be i.i.d.N(0,1) random variables. Consider the func-

tion g(x1,x2) =
(

x1
x2

, |x2|
)

. Calculate the joint distribution ofY = g(X) and the dis-

tribution of the ratio of the two normals:X1/X2.

First,A = R2 andB = R× (0,∞). Second, note that the transformation is not
one-to-one. Also note that we have a problem whenx2 = 07. Fortunately, we know

7 0 is inA since fX2(0) > 0
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how to deal with this situation. Take a partition ofA as follows:

A0 = {(x1,0) : x1 ∈ R}, A1 = {(x1,x2) : x2 < 0}, A1 = {(x1,x2) : x2 > 0}.

A0 has the desired property sinceP((X1,X2) ∈ A0) = P(X2 = 0) = 0 (X2 is a
continuous random variable). Restricted to eachAi the functiong is bijective and
we can calculate its inverse in both cases:

g−1
1 (y1,y2) = (−y1y2,−y2)

g−1
2 (y1,y2) = (y1y2,y2)

In either case the Jacobian is identicalJ1 = J2 = y2. Using the p.d.f. of a normal with
mean zero and variance 1 (f (x) = 1√

2π e−x2/2), and thatX1 andX2 being independent
the joint p.d.f. is the product of marginals we obtain:

fY(y1,y2) =

(
1

2π
e−(−y1y2)

2/2e−(−y2)
2/2|y2|+

1
2π

e−(y1y2)2/2e−(y2)
2/2|y2|

)
1{y2>0}

=
y2

π
e−

(y2
1+1)y2

2
2 1{y2>0}, y1 ∈ R,

and this is the desired joint distribution. To calculate thedistribution ofX1/X2 we
calculate the marginal ofY1 by integrating outy2:

fY1(y1) =

∫ ∞

0

y2

π
e−

(y2
1+1)y2

2
2 dy2 ( Change of variablesy2

2 = t)

=

∫ ∞

0

1
2π

e−
(y2

1+1)

2 tdt =
1

2π
2

y2
1 +1

=
1

π(y2
1+1)

, y1 ∈R

But this is the distribution of a Cauchy random variable. Thus we have just proven
that the ratio of two independentN(0,1) rv’s has a Cauchy distribution. ⊓⊔

We conclude this chapter with a non-trivial application of the Borel-Cantelli lem-
mas. We have postponed this example until this point since weneeded to learn about
independent random variables first.

Example 2.11.Let {Xn} a sequence of i.i.d. random variables, each exponentially
distributed with rate 1, i.e.:

P(Xn > x) = e−x, x > 0.

We wish to study how large are these variables whenn→ ∞. To this end take
x = α logn, for someα > 0 and for anyn≥ 1. Substitute into the probability above
to obtain:
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P(Xn > α logn) = e−α logn = n−α =
1

nα .

But we know that the sum∑n
1

nα is divergent for the exponentα ≤ 1 and convergent
for α > 1. So we can apply the Borel-Cantelli lemmas since the eventsin question
are independent. Thus,

If α ≤ 1 the sum is divergent and so∑nP(Xn > α logn) = ∞, thus:

P
(

Xn

logn
> α i.o.

)
= 1

If α > 1 the sum is convergent, and∑nP(Xn > α logn) < ∞, thus:

P
(

Xn

logn
> α i.o.

)
= 0

We can express the same thing in terms of limsup like so:

P
(

limsup
n

Xn

logn
> α

)
=

{
0 , if α > 1

1 , if α ≤ 1

Since for allα ≤ 1 we have thatP
(

limsupn
Xn

logn > α
)

= 1, then we necessarily

have:

P
(

limsup
n

Xn

logn
≥ 1

)
= 1

Takeα = 1+ 1
k and look at the other implication:P

(
limsupn

Xn
logn > 1+ 1

k

)
= 0,

and this happens for allk∈ N, . But we can write:
{

limsup
n

Xn

logn
> 1

}
=
⋃

k∈N

{
limsup

n

Xn

logn
> 1+

1
k

}
,

and since any countable union of null sets is itself a null set, the probability of the
event on the left must be zero. Therefore, limsupn

Xn
logn ≤ 1 a.s. and combining with

the finding above:

limsup
n

Xn

logn
= 1, a.s.

This is very interesting since as we will see in the chapter dedicated to the Poisson
process, theseXn are the inter-arrival times of this process. The example above tells
us that if we look at the realizations of such a process then they form a sequence of
numbers that has the upper limiting point equal to 1, or put differently there is no
subsequence of inter-arrival times that in the limit is greater than the logn.
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Problems

2.1.Prove the Proposition2.1. That is prove that the functionF in Definition 2.4
is increasing, right continuous and taking values in the interval [0,1], using only
proposition1.3on page13.

2.2.Show that any piecewise constant function is Borel measurable. (see description
of piecewise constant functions in Definition2.6

2.3.Give an example of two distinct random variables with the same distribution
function.

2.4. Buffon’s needle problem.
Suppose that a needle is tossed at random onto a plane ruled with parallel lines a
distanceL apart, where by a “needle” we mean a line segment of lengthl ≤ L.
What is the probability of the needle intersecting one of theparallel lines?

Hint: Consider the angle that is made by the needle with the parallel lines as a
random variableα uniformly distributed in the interval[0,2π ] and the position of
the midpoint of the needle as another random variableξ also uniform on the interval
[0,L]. Then express the condition “needle intersects the parallel lines” in terms of
the position of the midpoint of the needle and the angleα. Do a calculation similar
with example2.5.

2.5.A random variableX has distribution function

F(x) = a+barctan
x
2

,−∞ < x < ∞

Find:
a) The constantsa andb
b) The probability density function ofX

2.6.What is the probability that two randomly chosen numbers between 0 and 1
will have a sum no greater than 1 and a product no greater than15

64?

2.7.We know that the random variablesX andY have joint densityf (x,y). Assume
thatP(Y = 0) = 0. Find the densities of the following variables:
a)X +Y
b) X−Y
c) XY
d) X

Y

2.8.Choose a pointA at random in the interval[0,1]. Let L1 (respectivelyL2) be
the length of the bigger (respectively smaller) segment determined by A on[0,1].
Calculate:
a)P(L1 ≤ x) for x∈ R.
b) P(L2 ≤ x) for x∈R.
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2.9.Two friends decide to meet at the Castle gate of Stevens Institute. They each
arrive at that spot at some random time betweena anda+ T. They each wait for
15 minutes then leave if the other did not appear. What is the probability that they
meet?

2.10.LetX1,X2, . . . ,Xn be independentU(0,1) random variables. LetM = max1≤i≤nXi .
Calculate the distribution function ofM.

2.11.The random variable whose probability density function is given by:

f (x) =

{
1
2λeλ x , if x≤ 0
1
2λe−λ x , if x > 0,

is said to have a Laplace, sometimes called adouble exponential, distribution.
a) Verify that the density above defines a proper probabilitydistribution.
b) Find the distribution functionF(x) for a Laplace random variable.

Now, let X andY be independent exponential random variables with parameter λ .
Let I be independent ofX andY and equally likely to be 1 or−1.

c) Show thatX−Y is a Laplace random variable.
d) Show thatIX is a Laplace random variable.
e) Show thatW is a Laplace random variable where:

W =

{
X , if I = 1

−Y , if I =−1.

2.12.Give a proof of the lemma2.2on page53.



Chapter 3
Integration Theory

In the previous chapter we learned about random variables and their distributions.
This distribution completely characterizes a random variable. But in general dis-
tributions are very complex functions. The human brain cannot comprehend such
things easily. So the human brain wants to talk about one typical value. For exam-
ple, one can give a distribution for the random variable representing player salaries
in the NBA. Here the variability (probability space) is represented by the specific
player chosen. However, probably one is not interested in such a distribution. One
simply wants to know what is the typical salary in the NBA. Theperson probably
contemplates a career in sports and wants to find out if as an athlete should go for
basketball or baseball, therefore he is much better serve bycomparing only two
numbers. Calculating such a number is hard (which number?).In this chapter we
create a theory to calculate any numbers that the person wishes. Paradoxically, to
calculate a simple number we need to understand a very complex theory.

3.1 Integral of measurable functions

Recall that the random variables are nothing more than measurable functions. Let
(Ω ,F ,P) be a probability space. We wish to define for any measurable function f
an integral off with respect to the measureP.

Notation. We shall use the following notations for this integral:
∫

Ω
f (ω)P(dω) =

∫
f dP

for A∈F we have
∫

A
f (ω)P(dω) =

∫

A
f dP =

∫
f 1AdP

Recall the Dirac Delta we have defined previously? With its help summation is
another kind of integral. Let{an} be a sequence of real numbers. LetΩ = R,F =
B(R) and the measure on this set isδ (A) = ∑∞

i=1 δi(A).

59
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Then the functioni 7→ ai is integrable if and only if∑ai < ∞ and in this case we
have:

∞

∑
n=1

an =
∞

∑
n=1

∫ ∞

−∞
axdδn(x) =

∫ ∞

−∞
ax

∞

∑
n=1

dδn(x) =

∫ ∞

−∞
axdδ (x)

What is the point of this? The simple argument above shows that any “discrete” ran-
dom variable (in the undergraduate text definition) may be treated as a “continuous”
random variable. Not that there was any doubt after all the big fuss we made about
it in the previous chapter.

Integral of Simple (Elementary) Functions

If A ∈ F we know that we can define a measurable function by its indicator 1A.
We define the integral of this measurable function

∫
1AdP = P(A). We note that

this variable has the same distribution as that of the Bernoulli random variable. The
variable takes values 0 and 1 and we can easily calculate the probability that the
variable is 1 as:

P◦1−1
A ({1}) = P{ω : 1A(ω) = 1}= P(A).

Therefore the variable is distributed as a Bernoulli randomvariable with parameter
p = P(A).

Definition 3.1 (Simple function). f is called asimple(elementary) function if and
only if f can be written as a finite linear combination of indicators or, more specif-
ically there exist setsA1,A2, . . . ,An all in F and constantsa1,a2, . . . ,an in R such
that:

f (ω) =
n

∑
k=1

ak1Ak(ω)

If the constantsak are all positive, thenf is a positive simple function.

Note that the setsAi do not have to be disjoint but an easy exercise (Problem3.1)
shows thatf could be written in terms of disjoint sets.

For any simple functionf we define its integral:

∫
f dP =

n

∑
k=1

akP(Ak) < ∞

We adopt the conventions 0∗∞ = 0 and∞∗0 = 0 in the above summation.
We need to check that the above definition is proper. For thereexist many repre-

sentations of a simple function and we need to make sure that any such representa-
tion produces the same integral value. Furthermore, the linearity and monotonicity
properties of the integral may be proven. We skip these results since they are simple
to prove and do not bring any additional insight.
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Integral of positive measurable functions

For everyf positive measurable functionf : Ω −→ [0,∞) we define:

∫
f dP = sup

{∫
hdP : h is a simple function, h≤ f

}

For a given positive measurable function can we find a sequence of simple func-
tions that converge to it? The answer is yes and is provided bythe next simple
exercise:

Exercise 3.1.Let f : Ω → [0,∞] be a positive, measurable function. For alln≥ 1,
we define:

fn(ω) :=
n2n−1

∑
k=0

k
2n1{ k

2n≤ f (ω)< k+1
2n }(ω)+n1{ f (ω)≥n} (3.1)

1. Show thatfn is a simple function on(Ω ,F ), for all n≥ 1.
2. Show that the sets present in the indicators in equation (3.1) form a partition of

Ω , for all n≥ 1.
3. Show that the sequence of simple functions is increasinggn ≤ gn+1 ≤ f , for all

n≥ 1.
4. Show thatgn ↑ f asn→∞. Note that this is not an a.s. statement, it is true for all

ω ∈Ω .

The solution to this exercise is not complicated and in fact it is an assigned problem
(Problem3.3).

The following lemma is a very easy to understand and useful tool.

Lemma 3.1.If f is a positive measurable function and
∫

f dP= 0 thenP{ f > 0}= 0
(or f = 0 a.s.).

Proof. We have{ f > 0} =
⋃

n≥0{ f > 1
n}. Since the events are increasing by the

monotone convergenceproperty of measure we must haveP{ f > 0}= limn→∞ P{ f >
1
n}. If we assume by absurd thatP{ f > 0} > 0 then there must exist ann such that
P{ f > 1

n} > 0. However, in this case by the definition of the integral of positive
measurable functions:

∫
f dP≥

∫
1
n

1{ f> 1
n}

dP > 0,

contradiction. ⊓⊔

The next theorem is one of the most useful in probability theory. In our immediate
context it tells us that the integral for positive measurable functions is well defined.

Theorem 3.1 (Monotone Convergence Theorem).If f is a sequence of measur-
able positive functions such that fn ↑ f then:

∫

Ω
fn(ω)P(dω) ↑

∫

Ω
f (ω)P(dω)
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Note: This is all there is to integration theory. The proof of the monotone con-
vergence theorem is not difficult, you may want to look at it.

Proof. Ion: Write the proof

Integral of measurable functions

Let f be any measurable function. Then we writef = f +− f− where:

f +(s) = max{ f (s),0}
f−(s) = max{− f (s),0}

Then f + and f− are positive measurable functions and| f |= f + + f−. Since they
are positive measurable their integrals are well defined by the previous part.

Definition 3.2. We defineL1(Ω ,F ,P) as being the space of all functionsf such
that: ∫

| f |dP =

∫
f +dP+

∫
f−dP < ∞

For any f in this space which we will shorten toL1(Ω) or even simpler toL1 we
define: ∫

f dP =

∫
f +dP−

∫
f−dP

Note: With the above it is trivial to show that|∫ f dP| ≤ ∫| f |dP

Linearity:

If f ,g∈ L1(Ω) with a,b∈R , then:

a f +bg∈ L1(Ω)
∫

(a f +bg)dP= a
∫

f dP+b
∫

gdP

Lemma 3.2 (Fatou’s Lemma for measurable functions).If one of the following is
true:

a) { fn}n is a sequence of positive measurable functions or
b) { fn} ⊂ L1(Ω)

then: ∫
lim inf

n
fndP≤ lim inf

n

∫
fndP

Proof. Note that liminfn fn = limm→∞ infn≥m fn, where limm→∞ infn≥m fn is an in-
creasing sequence.

Let gm = infn≥m fn, andn≥m :
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fn ≥ inf
n≥m

fm = gm⇒
∫

fndP≥
∫

gdP⇒
∫

gmdP≤ inf
n≥m

∫
fndP

Now gm increases so we may use the Monotone Convergence Theorem andwe get:
∫

lim
m→∞

gmdP= lim
m→∞

∫
gmdP≤ lim

m→∞
inf
n≥m

∫
fndP = lim inf

n

∫
fndP

Theorem 3.2 (Dominated Convergence Theorem).If fn, f are measurable, fn(ω)→
f (ω) for all ω ∈Ω and the sequence fn is dominated by g∈ L1(Ω) :

| fn(ω)| ≤ g(ω), ∀ω ∈Ω ,∀n∈ N

then:

fn→ f in L1(Ω)

(
i.e.

∫
| fn− f |dP→ 0

)

Thus
∫

fndP→
∫

f dP and f ∈ L1(Ω).

The Standard Argument:

This argument is the most important argument in the probability theory. Suppose
that we want to prove that some property holds for all functions h in some space
such asL1(Ω) or the space of measurable functions.

1. Show that the result is true for all indicator functions.
2. Use linearity to show the result holds true for allf simple functions.
3. Use the Monotone Convergence Theorem to obtain the resultfor measurable

positive functions.
4. Finally from the previous step and writingf = f +− f− we show that the result

is true for all measurable functions.

3.2 Expectations

Since a random variable is just a measurable function we justneed to particularize
the results of the previous section. An integral with respect to a probability measure
is called an expectation. Let(Ω ,F ,P) be a probability space.

Definition 3.3. ForX a r.v. inL1(Ω) define:

E(X) =

∫

Ω
XdP=

∫

Ω
X(ω)dP(ω) =

∫

Ω
X(ω)P(dω)

This expectation has the same properties of the integral defined before and some
extra ones since the space has finite measure.
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Convergence Theorems:

(i) Monotone Convergence Theorem:If Xn ≥ 0, Xn ∈ L1 andXn ↑ X thenE(Xn) ↑
E(X)≤ ∞.

(ii) Fatou:E(lim infn→∞ Xn)≤ lim infn→∞ E(Xn)
(iii) Dominated Convergence Theorem:If |Xn(ω)| ≤ Y(ω) on Ω with Y ∈ L1(Ω)

andXn(ω)→ X(ω) for all ω ∈Ω thenE(|Xn−X|)→ 0.

Now let us present specific properties of the expectation. This is to be expected
since the space has finite measure therefore we can obtain more specific properties.

Markov Inequality:

Let Z be a r.v. and letg : R−→ [0,∞] be anincreasingmeasurable function. Then:

E [g(Z)]≥ E
[
g(Z)1{Z≥c}

]
≥ g(c)P(Z≥ c)

Thus

P(Z≥ c)≤ E[g(Z)]

g(c)

for all g increasing functions andc > 0.

Example 3.1 (Special cases of the Markov inequality).If we takeg(x) = x an in-
creasing function andX a positive random variable then we obtain:

P(Z≥ c)≤ E(Z)

c
.

To get rid of the necessity thatX ≥ 0 takeZ = |X|. Then we obtain the classical
form of the Markov inequality:

P(|X| ≥ c)≤ E(|X|)
c

.

If we takeg(x) = x2, Z = |X−E(X)| and we use the variance definition (which
we will see in a minute), we obtain the Chebyshev inequality:

P(|X−E(X)| ≥ c)≤ Var(X)

c2 .

If we denoteE(X) = µ andVar(X) = σ and we takec= kσ in the previous inequal-
ity we will obtain the classical Chebyshev inequality presented in undergraduate
courses:

P(|X− µ | ≥ kσ)≤ 1
k2 .

If g(x) = eθx, with θ > 0 then
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P(Z≥ c)≤ e−θcE(eθz),

This inequality states that the tail of the distribution decays exponentially inc if Z
has finite exponential moments. With simple manipulations one can obtain Cher-
noff’s inequality using it.

Jensen’s Inequality for convex functions:

This is just a reminder.

Definition 3.4. A function g : I −→ R is called a convex function onI (whereI is
any open interval inR, if its graph lies below any of its chords. Mathematically: for
anyx,y∈ I and for anyα ∈ (0,1) we have

g(αx+(1−α)y)≤ αg(x)+ (1−α)g(y).

Some examples of convex functions on the wholeR: |x|, x2 andeθx, with θ > 0.

Lemma 3.3 (Jensen’s Inequality).Let f be a convex function and let X be a r.v. in
L1(Ω). Assume thatE( f (X)) ≤ ∞ then:

f (E(X)) ≤ E( f (X))

Proof. Skipped. The classical approach indicators→ simple functions→ positive
measurable→ measurable is a standard way to prove Jensen.

Lp spaces.

We generalize theL1 notion presented earlier in the following way. For 1≤ p≤ ∞
we define the space:

Lp(Ω ,F ,P) = Lp(Ω) =

{
X : Ω −→R : E [|X|p] =

∫
|X|pdP < ∞

}
,

On this space we define a norm called thep-norm as:

||X||p = E [|X|p]1/p

Lemma 3.4 (Properties ofLp spaces).

(i) Lp is a vector space. (i.e., if X,Y ∈ Lp and a,b∈R then aX+bY∈ Lp).
(ii) L p is complete (every Cauchy sequence in Lp is convergent)

Lemma 3.5 (Cauchy-Bunyakovsky-Schwarz inequality).If X ,Y ∈ L2(Ω) then
X,Y ∈ L1(Ω) and

|E[XY]| ≤ E[|XY|]≤ ||X||2||Y||2
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A historical remark.This inequality, one of the most famous and useful un any
area of analysis (not only probability) is usually creditedto Cauchy for sums and
Schwartz for integrals and is usually known as the Cauchy-Schwartz inequality.
However,the Russian mathematician Victor Yakovlevich Bunyakovsky (1804-1889)
discovered and first published the inequality for integralsin 1859 (when Schwartz
was 16). Unfortunately, he was born in eastern Europe... However, all who are born
in eastern Europe (including myself) learn the inequality by its proper name.

Proof. The first inequality is clear by Jensen inequality. We need toshow

E[|XY|]≤ (E[X2])1/2(E[Y2])1/2

LetW = |X| andZ = |Y| thenW,Z≥ 0.
Truncation:

LetWn = W
∧

n andZn = Z
∧

n that is

Wn(ω) =

{
W(ω), if W(ω) < n

n, if W(ω)≥ n

Clearly, defined in this wayWn,Zn are bounded. Leta,b∈ R two constants. Then:

0≤ E[(aWn +bZn)
2] = a2E(W2

n )+2abE(WnZn)+b2E(Z2
n)

If we let a/b = c we get:

c2E(W2
n )+2cE(WnZn)+E(Z2

n)≥ 0 ∀c∈ R

This means that the quadratic function inc has to be positive. But this is only possi-
ble if the determinant of the equation is negative and the leading coefficientE(W2

n )
is strictly positive, the later condition is obviously true. Thus we must have:

4(E(WnZn))
2−4E(W2

n )E(Z2
n)≤ 0

⇒ (E(WnZn))
2 ≤ E(W2

n )E(Z2
n)≤ E(W2)E(Z2) ∀n

If we let n ↑ ∞ and use the monotone convergence theorem we get:

(E(WZ))2 ≤ E(W2)E(Z2).

⊓⊔

A more general inequality is:

Lemma 3.6 (Hölder inequality). If 1/p+1/q= 1, X∈ Lp(Ω) and Y∈ Lq(Ω) then
XY∈ L1(Ω) and:

E|XY| ≤ ‖X‖p‖Y‖q = (E|X|p)
1
p (E|Y|q)

1
q
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Proof. The proof is simple and uses the following inequality (Younginequality): if
a andb are positive real numbers andp, q are as in the theorem then:

ab≤ ap

p
+

bq

q
,

with equality if and only ifap = bq.
Taking this inequality as given (not hard to prove) define:

f =
|X|
‖X‖p

, g =
|Y|
‖Y‖p

.

Note that the Hölder inequality is equivalent withE[ f g] ≤ 1 (‖X‖p and‖Y‖q
are just numbers that can be taken in and out of integral by thelinearity property).
To prove this apply the Young inequality tof ≥ 0 andg≥ 0 and then integrate to
obtain:

E[ f g]≤ 1
p

E[ f p]+
1
q

E[gq] =
1
p

+
1
q

= 1

E[ f p] = 1 and similarly forg may be easily checked. Finally, the extreme cases
(p = 1, q = ∞, etc.) may be treated separately. ⊓⊔

Lemma 3.7 (Minkowski Inequality). If X ,Y ∈ Lp then X+Y ∈ Lp and:

‖X +Y‖p≤ ‖X‖p+‖Y‖p

Proof. We clearly have:

|X +Y|p≤ 2p−1(|X|p + |Y|p).

For example use the definition of convexity for the functionxp with x = |X| and
y = |Y| andα = 1/2. Now integrating implies thatX +Y ∈ Lp. Now we can write:

‖X +Y‖p
p = E[|X +Y|p]≤ E

[
(|X|+ |Y|)|X +Y|p−1]

= E
[
|X||X +Y|p−1]+E

[
|Y||X +Y|p−1]

Hölder
≤ (E [|X|p])1/p

(
E
[
|X +Y|(p−1)q

])1/q
+(E [|Y|p])1/p

(
E
[
|X +Y|(p−1)q

])1/q

(
q= p

p−1

)

= (‖X‖p+‖Y‖p)(E [|X +Y|p])1− 1
p

= (‖X‖p+‖Y‖p)
E [|X +Y|p]
‖X +Y‖p

Now, identifying the left and right hand after simplifications we obtain the result.
⊓⊔

Example 3.2 (due to Erd́os).Suppose there are 17 fence posts around the perimeter
of a field and exactly 5 of them are rotten. Show that irrespective of which of these
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5 are rotten, there should exist a row of 7 consecutive posts of which at least 3 are
rotten.

Proof (Solution).First we label the posts 1,2· · ·17. Now define :

Ik =

{
1 if postk is rotten
0 otherwise

For any fixedk, let Rk denote the number of rotten posts amongk+ 1, · · · ,k+ 7
(starting with the next one). Note that when any ofk+ 1, · · · ,k+ 7 are larger than
17 we start again from 1 (i.e., modulo 17 +1).

Now pick a post at random this obviously can be done in 17 ways with equal
probability. Then after we pick this post we calculate the number of rotten boards.
We have:

E(Rk) =
17

∑
k=1

(Ik+1 + · · ·+ Ik+7)
1
17

=
1
17

17

∑
k=1

7

∑
j=1

Ik+ j ==
1
17

7

∑
j=1

17

∑
k=1

I j+k

=
1
17

7

∑
j=1

5 (the sum is 5 since we count all the rotten posts in the fence)

=
35
17

Now, 35/17> 2 which impliesE(Rk) > 2. Therefore,P(Rk > 2) > 0 (otherwise the
expectation is necessarily bounded by 2) and sinceRk is integer valuedP(Rk≥ 3) >
0. So there exists somek such thatRk ≥ 3.

Of course now that we see the proof we can play around with numbers and see
that there exists a row of 4 consecutive posts in which at least two are rotten, or that
there must exist a row of 11 consecutive posts in which at least 4 are rotten and so
on (row of 14 containing all 5 rotten ones).

3.3 Variance and the correlation coefficient

Definition 3.5. The variance or the Dispersion of a random variableX ∈ L2(Ω) is:

V(X) = E[(X− µ)2] = E(X2)− µ2

Whereµ = E(X).

Definition 3.6. Given two random variablesX,Y we call the covariance betweenX
andY the quantity:

Cov(X,Y) = E[(X− µX)(Y− µY)]
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WhereµX = E(X) andµY = E(Y).

Definition 3.7. Given random variablesX,Y we call the correlation coefficient:

ρ = Corr(X,Y) =
Cov(X,Y)√
V(X)V(Y)

=
E[(X− µX)(Y− µY)]√

E[(X− µX)2]E[(Y− µY)2]

From the Cauchy-Schwartz inequality applied toX−µX andY−µY we get|ρ |< 1
or ρ ∈ [−1,1].

The variableX andY are calleduncorrelated if the covariance (or equivalently
the correlation) between them is zero.

Proposition 3.1 (Properties of expectation).The following are true:

(i) If X andY are integrable r.v.’s then for any constantsα andβ the r.v.αX+βY
is integrable andE[αX + βY] = αEX + βEY.

(ii) V (aX+bY) = a2V(X)+b2V(Y)+2abCov(X,Y)
(iii) If X ,Y are independent thenE(XY) = E(X)E(Y) and Cov(X,Y) = 0.
(iv) If X(ω) = c with probability1 and c∈ R a constant thenEX = c.
(v) If X ≥Y a.s. thenEX ≥ EY. Furthermore, if X≥Y a.s. andEX = EY then
X = Y a.s.

Proof. Exercise. Please note that the reverse of the part (iii) above is not true, if the
two variables are uncorrelated this does not mean that they are independent. In fact
in Problem3.5you are required to provide a counterexample.

3.4 Functions of random variables. The Transport Formula.

In Section2.4on page49we showed how to calculate distributions and in particular
p.d.f.’s for continuous random variables. We have also promised a more general
result. Well, here it is. This general result allows to construct random variables and
in particular distributions in any space. This is the resultthat allows us to claim that
studying random variables on([0,1],B([0,1]),λ ) is enough. We had to postpone
presenting the result until this point since we had to learn first how to integrate.

Theorem 3.3 (General Transport Formula).Let (Ω ,R,P) be a probability space.
Let f be a measurable function such that:

(Ω ,F )
f−→ (S,G )

ϕ−→ (R,B(R)),

where(S,G ) is a measurable space. Assuming that at least one of the integrals exists
we then have: ∫

Ω
ϕ ◦ f dP=

∫

S
ϕdP◦ f−1,

for all ϕ measurable functions.



70 3 Integration Theory

Proof. We will use the standard argument technique discussed above.

1. Letϕ be the indicator function.ϕ = 1A for A∈ G :

1A(ω) =

{
1 if ω ∈ A
0 otherwise

Then we get:
∫

Ω
1A ◦ f dP =

∫

Ω
1A( f (ω))dP(ω) =

∫

Ω
1f−1(A)(ω)dP(ω)

= P( f−1(A)) = P◦ f−1(A) =

∫

S
1Ad(P◦ f−1)

recalling the definition of the integral of an indicator.
2. Letϕ be a simple functionϕ = ∑n

i=1ai1Ai whereai ’s are constant andAi ∈ G .

∫

Ω
ϕ ◦ f dP=

∫

Ω

(
n

∑
i=1

ai1Ai

)
◦ f dP

=
∫

Ω

n

∑
i=1

ai(1Ai ◦ f )dP=
n

∑
i=1

ai

∫

Ω
1Ai ◦ f dP

(part 1)
=

n

∑
i=1

ai

∫

S
1Ai dP◦ f−1 =

∫

S

n

∑
i=1

ai1Ai dP◦ f−1 =

∫

S
ϕdP◦ f−1

3. Letϕ be a positive measurable function and letϕn be a sequence of simple func-
tions such thatϕnր ϕ then:

∫

Ω
ϕ ◦ f dP =

∫

Ω
( lim
n→∞

ϕn)◦ f dP

=

∫

Ω
lim
n→∞

(ϕn◦ f )dP
monotone convergence

= lim
n→∞

∫
ϕn ◦ f dP

(part 2)
= lim

n→∞

∫
ϕndP◦ f−1 monotone convergence

=

∫
lim
n→∞

ϕndP◦ f−1

=

∫

S
ϕd(P◦ f−1)

4. Letϕ be a measurable function thenϕ+ = max(ϕ ,0),ϕ− = max(−ϕ ,0). Which
then gives usϕ = ϕ+−ϕ−. Since at least one integral is assumed to exist we get
that

∫
ϕ+ and

∫
ϕ− exist. Also note that:

ϕ+ ◦ f (ω) = ϕ+( f−1(ω)) = max(ϕ( f (ω)),0)

max(ϕ ◦ f (ω),0) = (ϕ ◦ f )+(ω)

Then:
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∫
ϕ+dP◦ f−1 =

∫
ϕ+ ◦ f dP=

∫
(ϕ ◦ f )+dP

∫
ϕ−dP◦ f−1 =

∫
ϕ− ◦ f dP=

∫
(ϕ ◦ f )−dP

These equalities follow from part 3 of the proof. After subtracting both:
∫

ϕdP◦ f−1 =
∫

ϕ ◦ f dP

Exercise 3.2.If X andY are independent random variables defined on(Ω ,R,P)
with X,Y ∈ L1(Ω) thenXY∈ L1(Ω):

∫

Ω
XYdP =

∫

Ω
XdP

∫

Ω
YdP (E(XY) = E(X)E(Y))

Proof (Solution).This is an exercise that you have seen before, here is presented to
exercise the standard approach.

Example 3.3.Let us solve the previous exercise using the transport formula. Let us
take f : Ω → R2, f (ω) = (X(ω),Y(ω)); andϕ : R2→ R, ϕ(x,y) = xy. Then we
have from the transport formula:

∫

Ω
X(ω)Y(ω)dP(ω)

(T)
=

∫

R2
xydP◦ (X,Y)−1

The integral on the left isE(XY), while the integral on the right can be calculated
as:

∫

R2
xyd(P◦X−1,P◦Y−1) =

∫

R
xdP◦X−1

∫

R
ydP◦Y−1

(T)
=
∫

Ω
X(ω)dP(ω)

∫

Ω
Y(ω)dP(ω) = E(X)E(Y)

Example 3.4.Finally we conclude with an application of the transport formula
which will produce one of the most useful formulas. LetX be a r.v. defined on
the probability space(Ω ,F ,P) with distribution functionF(x). Show that:

E(X) =

∫

R
xdF(x),

where the integral is understood in Riemann-Stieltjes sense.
Proving the formula is immediate. Takef : Ω→R, f (ω) = X(ω) andϕ : R→R,

ϕ(x) = x. Then from the transport formula:

E(X) =

∫

Ω
X(ω)dP(ω) =

∫

Ω
x◦X(ω)dP(ω)

(T)
=

∫

R
xdP◦X−1(x) =

∫

R
xdF(x)

Clearly if the distribution functionF(x) is derivable with dF
dx (x) = f (x) or

dF(x) = f (x)dx we obtain the lower level classes formula for calculating expec-
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tation of a “continuous” random variable:

E(X) =
∫

R
x f(x)dx

3.5 Applications. Exercises in probability reasoning.

The next two theorems are presented to observe the proofs. They are both early exer-
cises in probability. We will present later much stronger versions of these theorems
(and we will also see that these convergence types have very precise definitions),
but for now we lack the tools to give general proofs to these stronger versions.

Theorem 3.4 (Law of Large Numbers).Let (Ω ,F ,P) be a probability space and
let{Xn}n be a sequence of i.i.d random variables withE(Xi) =

∫
Ω XidP= µ . Assume

that the fourth moment of these variables is finite andE(X4
i ) = K4 for all i. Then:

X̄ =
∑n

i=1Xi

n
=

X1 + · · ·+Xn

n
a.s−→ µ

Proof. Recall what it means for a statement to hold almost surely (a.s.). In our
specific context if we denoteSn = X1+ · · ·+Xn then we need to show thatP(Sn/n→
µ) = 1.

First step.Let us show that we can reduce to the case ofE(Xi) = µ = 0. Take
Yi = Xi − µ . If we prove thatY1+···+Yn

n → 0 then substituting back we shall obtain
Sn−nµ

n → 0, or Sn
n → µ . Which gives our result. Thus we assume thatE(Xi) = µ = 0.

Second step.We want to show thatSn
n

a.s−→ 0. We have:

E
(
S4

n

)
= E

(
(X1 + · · ·+Xn)

4)= E

(

∑
i, j ,k,l

XiXjXkXl

)

If any factor in the sum above appears with power one, from independence we will
haveE(XiXjXkXl ) = E(Xi)E(Xj XkXl ) = 0. Thus, the only terms remaining in the
sum above are those with power larger than one.

E

(

∑
i, j ,k,l

XiXjXkXl

)
= E

(

∑
i

X4
i + ∑

i< j

(
4
2

)
X2

i X2
j

)

= ∑
i

E(Xi)
4 +6∑

i< j
E(X2

i X2
j )

Using the Cauchy-Schwartz inequality we get:

E(X2
i X2

j )≤ E(X4
i )1/2E(X4

j )
1/2 = K4 < ∞

Then:
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E(S4
n) =

n

∑
i=1

E(Xi)
4 +6∑

i< j
E(X2

i X2
j )≤ nK4 +6

(
n
2

)
·K4

= (n+3n(n−1))K4 = (3n2−2n)K4≤ 3n2K4

Therefore:

E

(
∞

∑
n=1

(
Sn

n

)4
)

=
∞

∑
n=1

E(S4
n)

n4 ≤
∞

∑
n=1

3n2K
n4 =

∞

∑
n=1

3K
n2 < ∞

Since the expectation of the random variable is finite then wemust have the random
variable finite with the exception of a set of measure 0 (otherwise the expectation
will be infinite). This implies:

∑
n

(
Sn

n

)4

< ∞ a.s.

But a sum can only be convergent if the term under the sum converges to zero.
Therefore:

lim
n→∞

(
Sn

n

)4

= 0 a.s.

and consequently:
Sn

n
a.s−→ 0

⊓⊔

Example 3.5.I cannot resist giving a simple application of this theorem.Let A be
an event that appears with probabilityP(A) = p∈ (0,1]. For example, roll a fair six
sided die and letA be the event roll a 1 or a 6 (P({1,6}) = 1/3). Let γn denote the
number of timesA appears inn independentrepetitions of the experiment. Then :

lim
n→∞

γn

n
= p

This is an important example for statistics. Suppose for instance that we do not
know that the die is fair but we have our suspicions. How do we test? All we have
to do is roll the die many times (n→ ∞) and look at the average number of times
1 or 6 appears. If this number stabilizes around a different value than 1/3 then the
die is tricked. The next theorem will also tell how many timesto roll the dies to be
confident in our assessment.

To prove the result we simply apply the previous theorem. DefineXi as:

Xi =

{
1 if eventA appears in repetitioni
0 otherwise
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ThenP(Xi = 1) = p andP(Xi = 0) = 1− p so thatE(Xi) = 1 · p+ 0 · (1− p) = p.
Clearly, the fourth moment is finite as well and applying the theorem:γn = ∑n

i=1Xi .
will converge to the stated value.

A Basic Central Limit Theorem: The DeMoivre-Laplace Theorem:

In order to prove the theorem we need:

Lemma 3.8 (Stirling’s Formula). For large n it can be shown that:

n! ∼
√

2πn·nne−n

The proof of this theorem is only of marginal interest to us.

Theorem 3.5 (DeMoivre-Laplace).Let ξ1 · · ·ξn be n independent r.v.’s each tak-
ing value1 with probability p and0 with probability 1− p (Binomial(p) random
variables). Let

Sn =
n

∑
i=1

ξi

and

S∗n =
Sn−E(Sn)√

V(Sn)
=

Sn−np√
np(1− p)

then for any x1,x2 ∈ R, x1 < x2:

lim
n→∞

P(x1 ≤ S∗n ≤ x2) = Φ(x2)−Φ(x1)

=

∫ x2

x1

1√
2π

e−x2/2dx

Note thatΦ is the distribution function of aN(0,1) random variable. This is exactly
the statement of the regular Central Limit Theorem applied to Bernoulli random
variables.

Proof. Notice thatSn ∼ Binomial(n, p) and S∗n = (Sn− np)/
√

np(1− p) is dis-
tributed equidistantly in the total interval[ −np√

np(1−p)
, n−np√

np(1−p)
]. The length between

two such consecutive values is∆x = 1/
√

np(1− p).
Fork large andn−k large:
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P(Sn = k) =

(
n
k

)
pk(1− p)n−k =

n!
k!(n−k)!

pk(1− p)k

=

√
2πn·nne−n

√
2πk·kke−k

√
2π(n−k) · (n−k)n−ke−(n−k)

pk(1− p)n−k (3.2)

=
1√
2π

√
n

k(n−k)
︸ ︷︷ ︸

Term I

(np
k

)k
(

n(1− p)

n−k

)n−k

︸ ︷︷ ︸
Term II

(3.2) follows from Stirling’s Formula. Remember that forSn = k the x value of
S∗n = (Sn−np)/

√
np(1− p) is:

x =
k−np√
np(1− p)

⇒ k = np+x
√

np(1− p)

⇒ k
np

= 1+x

√
1− p
np

Likewise we may express:

n−k = n−np−x
√

np(1− p)⇒ n−k= n(1− p)−x
√

np(1− p)

⇒ n−k
n(1− p)

= 1−x
√

p
n(1− p)

Using these two expressions in the Term II of equation (3.2):

log

((np
k

)k
(

n(1− p)

n−k

)n−k
)

=−k log
k

np
− (n−k) log

n−k
n(1− p)

=−k log

(
1+x

√
1− p
np

)
− (n−k) log

(
1−x

√
p

n(1− p)

)

If we approximate log(1+ α)≃ α− α2

2 we continue:

≃−k

(
x

√
1− p
np
− x2

2
1− p
np

)
− (n−k)

(
−x
√

p
n(1− p)

− x2

2
p

n(1− p)

)
(3.3)

Finally, we substitutek andn−k and after calculations (skipped) we obtain:

lim
n→∞

log
(np

k

)k
(

n(1− p)

n−k

)n−k

=−x2

2

Also note that:
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√
n

k(n−k)
≃
√

n
np·n(1− p)

=
1√

np(1− p)

Putting both terms together we obtain:

lim
n→∞

P(S∗n = x) =
1√
2π

e−x2/2∆x

where∆x = 1√
np(1−p)

Thus:

lim
n→∞

P(x1≤ S∗n ≤ x2) = lim
n→∞ ∑

x1≤x≤x2

P(S∗n = x) = lim
n→∞∑ 1√

2π
e−x2/2∆x

=
1√
2π

∫ x2

x1

e−x2/2dx

⊓⊔

Problems

3.1. It is well-known that 23 “random” people have a probability of about 1/2 of
having at least 1 shared birthday. There are 365 x 24 x 60 = 525,600 minutes in
a year. (We’ll ignore leap days.) Suppose each person is labeled by the minute in
which the person was born, so that there are 525,600 possiblelabels. Assume that
a “random” person is equally likely to have any of the 525,600labels, and that
different “random” people have independent labels.

a) About how many random people are needed to have a probability greater than
1/2 of at least one shared birth-minute? (A numerical value is required.)

b) About how many random people are needed to have a probability greater than 1/2
of at least one birth-minute shared by three or more people? (Again, a numerical
value is required. You can use heuristic reasoning, but explain your thinking.)

3.2.Show that any simple functionf can be written as∑i bi1Bi with Bi disjoint sets
(i.e.Bi ∩B j = /0, if i 6= j).

3.3.Prove the 4 assertions in Exercise3.1on page61.

3.4.Give an example of two variablesX andY which are uncorrelated but not inde-
pendent.

3.5.Prove the properties (i)-(v) of the expectation in Proposition 3.1on page69.



Chapter 4
Product spaces. Conditional Distribution and
Conditional Expectation

In this chapter we look at the following type of problems: If we know something
extra about the experiment, how does that change our probability calculations. An
important part of statistics (Bayesian statistics) is build on conditional distributions.
However, what about the more complex and abstract notion of conditional expecta-
tion?

Why do we need conditional expectation?
Conditional expectation is a fundamental concept in the theory of stochastic pro-

cesses. The simple idea is the following: suppose we have no information about a
certain variable then our best guess about it would be some sort of regular expec-
tation. However, in real life it often happens that we have some partial information
about the random variable (or in time we come to know more about it). Then what
we should do is every time there is new information the samplespaceΩ or theσ -
algebraF is changing so they need to be recalculated. That will in turnchange the
probabilityP which will change the expectation of the variable. The conditional ex-
pectation provides a way to recalculate the expectation of the random variable given
any new “consistent” information without going through thetrouble of recalculating
(Ω ,F ,P) every time.

It is also easy to reason that since we calculate with respectto more precise
information it will be depending on this more precise information, thus it is going
to be a random variable itself, “adapted” to this information.

4.1 Product Spaces

Let (Ω1,F1,µ1) and(Ω2,F2,µ2) be twoσ -finite measure spaces. Define:

Ω = Ω1×Ω2 the cartesian product

F = σ({B1×B2 : B1 ∈F1,B2 ∈F2})

Let f : Ω →R beF measurable such that

79
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∀ω1 ∈Ω1 f (ω1, ·) is F2 measurable onΩ2

∀ω2 ∈Ω2 f (·,ω2) is F1 measurable onΩ1

Then we define:

I f
1 (ω1) =

∫

Ω2

f (ω1,ω2)µ2(dω2)

I f
2 (ω2) =

∫

Ω1

f (ω1,ω2)µ1(dω1)

which are a kind of partial integrals, well defined by the measurability of the restric-
tions.

Theorem 4.1 (Fubini’s theorem).Define a measure:

µ(F) =
∫

Ω1

∫

Ω2

1F(ω1,ω2)µ1(dω1)µ2(dω2).

Thenµ is the unique measure defined on(Ω ,F ) called the product measurewith
the property:

µ(A1×A2) = µ1(A1)µ2(A2) ∀Ai ∈Fi ,

and as a consequence:
∫

Ω
f dµ =

∫

Ω1

I f
1 (ω1)µ(dω1) =

∫

Ω2

I f
2 (ω2)µ(dω2)

Proof. Skipped. Apply the standard argument. Note that the first step is already
given.

Example 4.1 (Application of Fubini’s Theorem).LetX be a positive r.v. on(Ω ,F ,P).
ConsiderP×λ on (Ω ,F )× ([0,∞),B((0,∞])), whereλ is the Lebesgue measure.
Let A := {(ω ,x) : 0≤ x< X(ω)}. Note thatA is the region under the graph of the
random variableX. Let the indicator of this set be denoted withh= 1A. Then:

Ih
1(ω) =

∫

[0,∞)
1A(ω ,x)dλ (x) =

∫ ∞

0
1{0≤x<X(ω)}(x)dλ (x) =

∫ X(ω)

0
dλ (x) = X(ω)

Ih
2(x) =

∫

Ω
1A(ω ,x)dP(ω) =

∫

Ω
1{0≤x<X(ω)}(ω)dP(ω) = P{ω : X(ω)> x},

sinceX is a positive r.v.
We now apply Fubini’s Theorem and we get :

µ(A) =
∫

Ω

∫

[0,∞)
1A(x,ω)dµ(x)dP(ω)

=

∫

Ω
X(ω)dP(ω) =

∫ ∞

0
P(X > x)dx

Thus reading the last line above:
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E(X) =

∫ ∞

0
P(X > x)dx

This result is actually so useful that we will state it separately.

Corollary 4.1. If X is a positiverandom variable with distribution function F(x)
and we denoteF(x) = 1−F(x), we have:

E(X) =

∫ ∞

0
F(x)dx

4.2 Conditional distribution and expectation. Calculation in
simple cases

We shall give a general formulation of conditional expectation that will be most use-
ful in the second part of this textbook. But, until then we will present the cases that
actually allow the explicit calculation of conditional distribution and expectation.

Let X andY be two discrete variables on(Ω ,F ,P).

Definition 4.1 (Discrete Conditional Distribution). The conditional distribution
of Y givenX = x: FY|X(·|x) is:

FY|X(y|x) = P(Y ≤ y|X = x)

The conditional probability mass function ofY|X is:

fY|X(y|x) = P(Y = y|X = x) =
fX,Y(x,y)

fX(x)

Note: In the case whenP(X = x) = 0 we cannot define the conditional probability.

Definition 4.2 (Discrete Conditional Expectation).Let ψ(x) = E(Y|X = x) then
ψ(X) = E[Y|X] is called the conditional expectation.

Remark 4.1.The conditional expectation is a random variable.

Definition 4.3 (Continuous Conditional Distribution). Let X,Y be two continu-
ous random variables. The conditional distribution is defined as:

FY|X(y|x) =
∫ y

−∞

fX,Y(x,v)
fX(x)

dv

The functionfY|X(y|x) = f (x,y)
fX(x)

is the conditional probability density function.

Definition 4.4 (Continuous Conditional Expectation).The conditional expecta-
tion for two continuous random variables isψ(X) = E[Y|X] where the functionψ
is calculated:

ψ(x) = E(Y|X = x) =
∫ ∞

−∞
y fY|X(y|x)dy
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Example 4.2.A point is picked uniformly from the surface of the unit sphere. Let
L =longitude angleθ and letl = latitude angleφ . Let us find the distribution func-
tions ofθ |φ andφ |θ .

Let C be a set on the sphere (or generally inR3). The surface area of the sphere is
4πr2 = 4π . The set of points from which we sample isS(0,1) = {(x,y,z) : x2+y2+
z2 = 1}. Then, since we pick the points uniformly the position of a point chosen has
distribution:

P((x,y,z) ∈C) =
∫

C

1
4π

1{x2+y2+z2=1}(x,y,z)dxdydz

Since we are interested in longitude and latitude we change to polar coordi-
nates to obtain the distribution of these variables. We takethe transformation:
X = r cosθ cosφ , Y = r sinθ cosφ andZ = r sinφ . To obtain the distribution we
calculate the new integral. The Jacobian of the transformation is:

J =

∣∣∣∣∣∣

−r sinθ cosφ −r cosθ sinφ cosθ cosφ
r cosθ cosφ −r sinθ sinφ sinθ cosφ

0 r cosφ sinφ

∣∣∣∣∣∣

= r2 cos3 φ + r2sin2 φ cosφ = r2 cosφ

Note that the indicator is 1 if and only ifr = 1. We conclude that

P((x,y,z) ∈C) =
∫

Im C

1
4π
|cosφ |dθdφ ,

whereImC is the set ofpolar coordinates that make the setC. Therefore, the joint
distribution function is

f (θ ,φ) =
1

4π
|cosφ |, φ ∈ [−π/2,π/2],θ ∈ [0,2π ].

Now, we get the marginal ofφ :

fφ (φ) =
∫ 2π

0

1
4π
|cosφ |dθ =

|cosφ |
2

,

and the marginal ofθ :

fθ (θ ) =
∫ π/2

−π/2

1
4π
|cosφ |dφ =

∫ π/2

−π/2

1
4π

cosφdφ =
1

2π

Thus, we calculate immediately the conditional distributions:
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fθ |φ (θ |φ) =
1

2π
, θ ∈ [0,2π ]

fφ |θ (φ |θ ) =
cosφ

2
, φ ∈ [−π/2,π/2]

We note thatθ andφ are independent (the product of marginals is equal to the
joint distribution) but the conditionals are different dueto the parameterizations
(this particular example is known asthe Borel paradox). Also note that the condi-
tional expectations are equal to the regular expectations,this is of course because the
variables are independent. We will obtain this property in general in the following
section.

Example 4.3.Many clustering algorithms are based on random projections. For sim-
plicity we consider the direction of the first coordinate unit vector−→e 1 as the best
possible projection. However, the probability of finding this direction exactly is zero
so we consider a tolerance angleαe and we say that a projection is “good enough”
if it makes an angle less thanαe with −→e 1.

We want to calculate the probability that a random directionmakes an angle less
thanα with −→e 1.

The example is inR3 but we can easily generalize it to any dimension. We assume
that 0< αe < π/2, otherwise the problem becomes trivial.

Directions inR3 are equivalent to points on the unit sphere. Therefore, the prob-
ability to be calculated is twice the probability that a point chosen at random on the
sphere belongs to the cone of angleαe centered at the origin. Why twice? Because
we do not care if the angle formed by the random direction is with −→e 1 or −−→e 1.
Thus, we calculate the probability by taking the ratio of thearea of the intersection
of the said cone and the sphere and the total surface area of the sphere.

The area of the unit sphere inRd is readily calculated as2πd/2

Γ (d/2) (e.g.,Kendall

(2004), Γ (x) =
∫ ∞

0 tx−1e−tdt is the gamma function). In the particular case when

d = 3 (Γ (3
2) =

√
π

2 ) we obtain the well known area 4π .
To compute the support area of the cone we switch to polar coordinates:

x1 = r cosθ1

x2 = r sinθ1cosθ2

x3 = r sinθ1sinθ2

wherer ∈ [0,∞),θ1 ∈ [0,π ],θ2 ∈ [0,2π ].
The points of interest can be found whenr = 1 andθ1 ∈ [0,αe], and we need to

double the final area found to take into account symmetric angles with respect to
−→e 1.

One can check immediately, that the Jacobian of this change of variables is
r2sinθ1 and that the probability needed is easily calculated as:
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2sin2 αe

2

If we now considerK projections then the probability that at least one is a “good
enough projection” is:

1−
(

1−2sin2 αe

2

)K

Note that the example is extendable to the more interestingRd case but in that
case we do not obtain an exact formula instead only bounds. See Ion: give citation
once it exists.

4.3 Conditional expectation. General definition

To summarize the previous section, ifX andY are two random variables we have
defined the conditional distribution and conditional expectation of onewith respect
to the other. In fact, we have defined more: the conditional expectation of onewith
respect to the information contained in the other.

More precisely, in the previous subsection we defined the expectation ofX con-
ditioned by theσ -algebra generated byY: σ(Y). Thus, we may write without a
problem:

E[X|Y] = E[X|σ(Y)].

This notion may be generalized to define conditional expectation with respect
to any kind of of information (σ -algebra). As definition we shall use the following
theorem. We will skip the proof.

Theorem 4.2.Let (Ω ,F ,P) be a probability space, and letK ⊆ F a sub-σ -
algebra. Let X be a random variable on(Ω ,F ,P) such that either X is positive
or X ∈ L1(Ω). Then, there exists a random variable Y, measurable with respect to
K with the property:

∫

A
YdP=

∫

A
XdP ,∀A∈K

This Y is defined to be the conditional expectation of X with respect toK and is
denotedE[X|K ].

Remark 4.2.We note that the conditional expectation, unlike the regular expectation
is a random variable measurable with respect to the sigma algebra under which is
conditioned. In simple language it has adapted itself to theinformation contained in
theσ -algebraK . In the simple cases presented in the previous section the condi-
tional expectation is measurable with respect toσ(Y). But since this is a very simple
sigma algebra then it has to be in fact a function ofY.

Note: We will take this theorem as a definition.
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Proposition 4.1 (Properties of the Conditional Expectation). Let (Ω ,F ,P) a
probability space, and letK ,K1,K2 sub-σ -algebras. Let X and Y be random vari-
ables of the probability space. Then we have:

(1) If K = {∅,Ω} thenE[X|K ] = EX = const.
(2) E[αX+βY|K ] = αE[X|K ]+βE[Y|K ] for α,β real constants.
(3) If X ≤Y a.s. thenE[X|K ]≤ E[Y|K ] a.s.
(4) E [E[X|K ]] = EX
(5) If K1 ⊆K2 then

E [E[X|K1]|K2] = E [E[X|K2]|K1] = E[X|K1]

(6) If X is independent ofK then

E[X|K ] = E[X]

(7) If Y is measurable with respect toK then

E[XY|K ] =YE[X|K ]

After proving these properties (see Problem4.2) they will become essential in
working with conditional expectation. In fact the definition is never used anymore.

Example 4.4.Let us obtain a weak form of the Wald’s equation (an equation that
serves a fundamental role in the theory of stochastic processes) right now by a sim-
ple argument. LetX1,X2, . . . ,Xn, . . . be i.i.d. with finite meanµ and letN be a ran-
dom variable taking values in strictly positive integers and independent ofXi for all
i. For example,Xi ’s may be the results of random experiments andN may be some
stopping strategy established in advance. LetSN = X1+X2+ · · ·+XN. FindE(SN).

Let

ϕ(n) = E[SN|N = n] = E[X1+X2+ · · ·+XN|N = n]

=
n

∑
i=1

E[Xi |N = n] =
n

∑
i=1

E[Xi ] = nµ

by independence. Therefore,E[SN|N] = ϕ(N) = Nµ . Finally, using the properties
of conditional expectation:

E(SN) = E[E[SN|N]] = E[Nµ ] = µE[N].

Note that we have not used any distribution form only the properties of the condi-
tional expectation.
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Problems

4.1.Prove the Fubini’s Theorem4.1on page80.

4.2.Using the Theorem-Definition4.2on page84prove the seven properties of the
conditional expectation in Proposition4.1.

4.3.Let X be a random variable on the probability space(Ω ,F ,P). Let a setA∈F

and the sigma algebra generated by the set denotedσ(A). What isE[X|σ(A)]? Let
1A denote the indicator ofA. What isE[X|1A]?

4.4.Let X,Y,Z be three random variables with joint distribution

P(X = k,Y = m,Z = n) = p3qn−3

for integersk,m,n satisfying 1≤ k < m< n, where 0< p < 1, p+ q = 1. Find
E{Z|X,Y}.

4.5.A circular dartboard has a radius of 1 foot. Thom throws 3 darts at the board
until all 3 darts are sticking in the board. The locations of the 3 darts are independent
and uniformly distributed on the surface of the board. LetT1, T2, andT3 be the
distances from the center to the closest dart, the next closest dart, and the farthest
dart, respectively, so thatT1 ≤ T2≤ T3. FindE[T2].

4.6.Let X1,X2, . . . ,X1000be i.i.d. each taking on both 0 and 1 with probability1
2. Put

Sn=X1+ · · ·+Xn. FindE
[
(S1000−S300)1{S700=400}

]
andE

[
(S1000−S300)

21{S700=400}
]
.
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