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Math 611 Probability

Instructor: Ionut Florescu
Office: Kidde 227 Email: ifloresc@stevens.edu
Phone: (201) 216-5452 Office hours: M 4:00pm -6:00pm and by appt.
website: http://www.math.stevens.edu/ ifloresc/Teaching/2009-2010/index611.html

Some Topics to be presented:

Elements of Probability Measure, Conditional Probability and Independence,
Random Variables and Distributions, Conditional Distribution and Conditional
Expectation, The Poisson Process, Generating Functions and their applications,
Characteristic Function, Convergence of random variates, The Central Limit
Theorem, Markov Chains', Random Walks?.

Textbook(s):

This semester we will use as the main textbook:

e Introduction to Probability Models, 9** edition, by Sheldon M. Ross, Aca-
demic Press, 2006, ISBN-10: 0125980620 ISBN-13: 978-0125980623.

I choose this book mainly for the examples and exercises it contains.

However, the material which we cover goes beyond this book. On the course
website (link above) I will post several chapters that detail the specific material
covered in this class. Eventually, they will make a book but for now I only have
these draft chapters. I am going to ask that if you find mistakes or missprints
to mark them on the notes and give them to me at the end of the semester.

The following books are given as reference. They are on the list of reserved
books in the library:

e Probability: Theory and Examples, by Richard Durrett, Thomson Learn-
ing 2004

o Probability and Measure, by Patrick Billingsley, Wiley series in probability
and mathematical statistics 1995

ITime permitting
%idem
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o A course in probability theory, by Kai Lai Chung, Academic Press 2000

e Probability with Martingales, by David Williams, Cambridge University
Press 1991

e Probability and Random Processes by Geoffrey Grimmett and David Stirza-
ker, Oxford University Press 2001.

Homework, Exams and Grading:

We will have one midterm and a final exam. Their dates will be agreed on
during the semester. We will have assignments during the semester. They will
be graded and counting for the final grade. However, the most weight for the
final grade will be coming from the final examination.



Chapter 1
Elements of Probability Measure

The axiomatic approach of Kolmogorov is followed by most trioility Theory
books. This is the approach of choice for most graduate fgnafdability courses.
However, the immediate applicability of the theory learasdsuch is questionable
and many years of study are required to understand and tritsdsll power.

On the other hand the Applied probability books completetyaetard this ap-
proach and they go more or less directly into presentingiegipdns, thus leaving
gaps into the reader’s knowledge. At a cursory glance thisageh appears to be
very useful (the presented problems are all very real and aresdifficult), how-
ever | question the utility of this approach when confrontétth problems that are
slightly different from the ones presented in such books.

Unfortunately, there is no middle ground between these hwace the necessity
of the present lecture notes. | will start with the axiomatpproach and present as
much as | feel is going to be necessary for a complete unaelisigiof the Theory
of Probabilities. | will skip proofs which I consider will ndoring something new to
the development of the student’s understanding.

1.1 Probability Spaces

Let Q be an abstract set. This is sometimes denoted $/éhd is called the sam-
ple space. It is a set containing all the possible outcomessuits of a random
experiment or phenomenon. | called it abstract becausailt@ontain anything.
For example if the experiment consists in tossing a coin dheespace? could
be represented gdHead Tail}. However, it could just as well be represented as
{Cap Pajura}, these being the romanian equivalent$ieladandTail. The space
Q could just as well contain an infinite number of elements. &@mple measur-
ing the diameter of a doughnut could result in all possiblmbers inside a whole
range. Furthermore, measuring in inches or in centimetetgd\produce different
albeit equivalent spaces.

We will usew € Q to denote a generic outcome or a sample point.
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Any collection of outcomes is called an event. That is, abgetiofQ is an event.
We shall use capital letters from the beginning of the alghAlB, C to denote these
events.

So far so good. The proper definition &f is one of the most important issues
when treating a problem probabilistically. However, tlisidot enough. We have to
make sure that we can calculate the probability of all thegef interest.

Think of the following possible situation: Poles of variosiges are painted in
all the possible nuances of colors. In other words the padee ltwo characteris-
tics of interest size and color. Suppose that in this modehae to calculate the
probability of things like the next pole would be shorterritisb inches and painted
a nuance of red or blue. In order to answer such questions wetbalefine prop-
erly the sample spac® and furthermore give a definition of probability that will
be consistent. Specifically, we need to give a definition efdlements of2 which
can bemeasured.

To this end we have to group these events into some way thadtvedlow us
to say: yes we can calculate the probability of all the evanthis group. In other
words, we need to talk about the notion of collection of egent

We will introduce the notion of-algebra (oio-field) to deal with the problem of
the proper domain of definition for the probability. Before do that, we introduce
a special collection of events:

Z(Q) = The collection of all possible subsets @f (1.1)

We could define probability on this very large set. Howe\vgs tvould mean that
we would have to define probability for every single elemené(Q). This will
prove impossible except on the case wtins finite. However, even in this case
we have to do it consistently. For example if say the{deR,3} is in Q and has
probability 02, how do we define the probability ¢f., 2} ? How about probability
of {1,2,5}? A much better approach would be to define probability onlytren
generators of the collectio®?(Q) or on the generators of a collection of sets as
close as we can possibly make4é(Q).

How do we do this? Fortunately, algebra comes to the rescweelements of a
collection of events are the events. So first we define operstvith themunion,
intersection, complemenind slightly less importardifference and symmetric dif-
ference

AUB = set of elements that aggther inAor in B
ANB = AB= set of elements that ab®th in Aandin B (1.2)
AC — A= set of elements that are @ butnot in A

A\B= set of elements that are Abutnot in B
AAB= (A\B)U(B\A)
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We can of course express every operation in terms of unionirgedsection.
There are important relations between these operationdl,dtep here to mention
the De Morgan laws:

(1.3)

(AUB)® =A°NB®
(ANB)¢ = ACUB®

There is much more to be found out about set operations boufgourpose this
is enough. Look aBillingsley (1995 or Chung(2000) for a wealth of more details.

Definition 1.1 (Algebra on Q). A collection.# of events inQ is called an algebra
(or field) onQ iff:

1.Qes
2. Closed under complementarity AfC .% thenA® C &
3. Closed under finite union: & B C . thenAUB C .#

Remark 1.1The first two properties imply that € .7. The third is equivalent with
ANBC .%# by the second property and the de Morgan latv8)(

Definition 1.2 (o-Algebra on Q). If .% is an algebra o2 and in addition it is
closed under countable unions then it ig-algebra (oro-field) onQ

Note: Closed under countable unions means that the third propeDgfinition
1.1lis replaced with: Ifn € N is a natural number andl, C .% for all n then

Uaco

neN

Theo-algebra provides an appropriate domain of definition fergiobability func-
tion. However, it is such an abstract thing that it will be dhéw work with it. This
is the reason for the next definition, it will be much easiewtwk on the generators
of asigmaalgebraThis will be a recurring theme in probability, in order to sh@
property for a big class we show the property for a small gatirg set of the class
and then use standard arguments to extend to the whole class.

Definition 1.3 (o algebra generated by a clas®” of sets inQ).

Let ¥ be a collection (class) of subsets @f Theno (%) is the smalles-
algebra om2 that containg’.

Mathematically:

1.¢Co(%)
2.0(%) is ao-field
3. If ¥ C¥ and¥ is ao-field theno(¢) C ¥

The idea of this definition is to verify a statement on the®eThen, due to the
properties that would be presented later the same statemiiehée valid for all the
sets ino (%).
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Proposition 1.1.Properties ofo-algebras:

e #(Q)is ao-algebra, the largest possible-algebra onQ

e If ¢ is already ao-algebra theno(¢) =%

o If¢={0}oré ={Q}thena(¥¢)={2,Q}, the smallest possible-algebra
onQ

o If ¢ C ¢ thena(¥) C o(¥¢”)

o If€C%¢ Co(¢)theno(¢’)=0(¥)

In general listing the elements of a sigma algebra expligthard. It is only in
simple cases that this is done.

Remark 1.2 (Finite spac®). When the sample space is finite, we can and typically
will take the sigma algebra to b&’(Q). Indeed, any event of a finite space can
be trivially expressed in terms of individual outcomes.dotf if the finite spac&
containsM possible outcomes, then the number of possible events is &ind is
equal with 2.

Example 1.1Suppose a sét C Q. Let us calculater(A). Clearly, by definitionQ
isin o(A). Using the complementarity property we clearly see Afand 0 are also
in o(A). We only need to take unions of these sets and see that tleermanore
new sets. Thus:

o(A) ={Q,0,AA°}.

O

Proposition 1.2 (Intersection and union ofg-algebras).Suppose tha#; and.%,
are twoo-algebras onQ. Then:

1. #1N .7, is a sigma algebra.
2..%1U %, is not a sigma algebra. The smallest algebra that contains both of
them is:o (.91 U.%) and is denoted?; v %>

Proof. For part 2 there is nothing to show. Perhaps a counterexaifgdte for in-
stance two setd, B C Q such thaANB # 0. Then takeZ1 = o(A) and.%, = 0 (B).
Use the previous example and Exercisg partc.

For part 1 we just need to verify the definition of the sigmaealg. For example,
take A in 71N .%,. SOA belongs to both collections of sets. Singg is a sigma
algebra by definitiorA® € .%;. Similarly A® € .%,. Therefore A® € ., N.%,. The
rest of the definition is verified in a similar manner. a

An example: Borelo-algebra

Let Q be atopological space (think geometry is defined in thisespad this assures
us that the open subsets exist in this space).
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Definition 1.4. We define:

%(Q) = The Borelo-algebra 1.4)
= o-algebra generated by the class of open subsdis of

In the special case whe® = R we denote” = #(R), the Borel sets aR. This
4 is the mostimportant-algebra. The reason for this fact is that most experiments
can be brought to equivalence wikh (as we shall see when we will talk about
random variables). Thus, if we define a probability measuregp we have a way
to calculate probabilities for most experiments. a

Most subsets oR are in.%. However, it is possible (though very difficult) to
explicitly construct a subset @& which is not in%. See Billingsley, 1995 page
45) for such a construction in the ca@e= (0, 1].

There is nothing special about the open sets, except foattta@lat they can be
defined in any topological space.lfwe have alternate definitions which you will
have to show are equivalent with the one given above in pnotl&.

Probability measure

We are finally in the position to give the domain for the prabgbmeasure.

Definition 1.5 (Measurable Space.)A pair (Q,.%), whereQ is a set and? is a
o-algebra om? is called ameasurable space

Definition 1.6 (Probability measure. Probability space)Given a measurable space
(Q,.%), a probability measure is any functiéh: .# — [0, 1] with the following
properties:

i)P(Q)=1
ii) (countable additivity) For any sequen€A, }ncry Of disjoint events inZ (i.e.
ANA; =@, foralli # j):

P (U An) = z P(An)
n=1 n=1
The triple(Q,.%#,P) is called a Probability Space.

Note that the probability measure is a set function (i.eurecfion defined on sets).

The next two definitions are given for completeness only. eley, we will use
them later in this class. They are both presenting more génetions than a prob-
ability measure and they will be used later in hypotheseswfestheorems to show
that the results apply to even more general measures thhalulity measures.

Definition 1.7 (Finite Measure).Given a measurable spat@,.7), a finite mea-
sure is a set functiop : .% — [0, 1] with the same countable additivity property as



12 1 Elements of Probability Measure

defined above and the measure of the space finite instead ofione specifically
the first property above is replaced with:

H(Q) <o

Definition 1.8 (o-finite Measure). A measureu defined on a measurable space
(Q,.7) is calledo-finite if it is countably additive and there exist a partittaf the
spaceQ, {Qi}ic, andu(Q;) < o for alli € I. Note that the index sétis allowed

to be countable.

Example 1.2 (Discrete Probability Space).
Let Q be a countable space. L&t = #(Q). Letp: Q — [0,N) be a function
on Q such thaty ,co p(w) = N < o, whereN is a finite constant. Define:

We can show tha{Q,.7,P) is a Probability Space. Indeed, from the definition:

P(Q)= 1 z p(w) = %N =1
we

To show the countable additivity property fet set inQ such thaA = ;> 1 Aj, with
A disjoint sets inQ. Since the space is countable we may white= {cw}, wb,...},
where any of the sets may be finite, kw]t;é (qk foralli, j,k,| where either # k or
j # 1. Then using the definition we have:

P(A) = < 3 pO=g 5 e
welUiZ A 1z1)=

_ %;(mm P(eh) ) = 3 PIA)

This is a very simple example but it shows the basic prolghigiasoning.

Remark 1.3The previous exercise gives a way to construct discretegtibty
measures (distributions). For example taRe= N the natural numbers and take
N = 1 in the definition of probability of an event. Then:

1-p ,ifw=0
e plw)=4p ,if w=1 | givesthe Bernoullif) distribution.
0 , otherwise
n w _ n—-w i <
e plw) = {(()w) p?(1-p) ’ Zt;)e?v\zse, gives the Binomialg, p) distribution.

1 a partition of the set A is a collection of seig disjoint (A NA; =0, ifi # j) such thatyiA = A
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“HpPA-per Lifw>r

w) = ives the Negative Binomial
* Pl@) 0 , otherwise’ g g )
distribution.
e plw)= %e*", gives the Poissom( distribution.

Example 1.3 (Uniform Distribution on (0,1))s another example |&2 = (0,1) and
7 =2%((0,1)) the Borel sigma algebra. Define a probability measiiges follows:
for any open intervala,b) C (0,1) letU((a,b)) = b— a the length of the interval.
For any other open interv&l defineU (O) =U (0N (0,1)).

Note that we did not specify (A) for all Borel setsA, rather only for the gener-
ators of the Boreb-field. This illustrates the probabilistic concept preserdbove.
In our specific situation, under very mild conditions on trengrators of thes-
algebra any probability measure defined only on the genaram be uniquely
extended to a probability measure on the whmlalgebra (Caratheodory extension
theorem). In particular when the generators are open se$e ttonditions are true
and we can restrict the definition to the open sets alone.éXaimple is going to be
extended in Sectioh.5.

Proposition 1.3 (Elementary properties of Probability Measure).Let (Q,.%,P)
be a Probability Space. Then:

1. VA B e .# with AC B thenP(A) < P(B)
2.P(AUB)=P(A)+P(B)—P(ANB),VABe .#
3. (General Inclusion-Exclusion formula, also named Panédormula):

P(AlUAzU“'UAn)Z_Z\P(Ai)—. > P(AINA)) (1.5)
i= i<J]<n
+ P(ANANA) — -+ (—1)"P(A1NAz---NAy)

i<j<k<n

Note that successive partial sums are alternating between-and-under esti-
mating.
4. (Finite subadditivity, sometimes called Boole’s indgya

n n
P(UA-> <3 PA). VAR e S
i—1 i=

1.1.1 Null element of%. Almost sure (a.s.) statements. Indicator of
a set.

An eventN € .% is called a null event iP(N) = 0.
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Definition 1.9. A statementS about pointsw € Q is said to be tru@lmost
surely(a.s.), almost everywhere (a.e.) or with probability 1 (d)pf the set
M defined as:

M:={we Q|S(w) is true},

isin.Z andP(M) = 1, (or, equivalentlyM€® is a null set).

We will use the notions a.s., a.e., and w.p.1. to denote time $hing — the defi-
nition above. For example we will sa§> 0 a.s. and mea{w|X(w) >0} =1 or
equivalentlyP{w|X(w) < 0} = 0. The notion of almost sure is a fundamental one in
probability. Unlike in deterministic cases where somegtias to always be true no
matter what, in probability we care about “the majority of thuth”. In other words
probability recognizes that some phenomena may have estoeritomes, but if
they are extremely improbable then we do not care about tRarmdamentally, it is
mathematics applied to reality.

Definition 1.10. We define the indicator function of an eve¥as the (simple)
function1a: Q — {0,1},

1 if we A
1n() = ’
Al©) {o L fwdA

Sometimes this function is denoted with

Note that the indicator function is a regular function (neeafunction). Indicator
functions are very useful in probability theory. Here armeaiseful relationships:

1are(") = 1a(-)18(")

If {Bi} form a partition ofQ (i.e. the setg\ are disjoint and? = |J!_; A):

Ia() = T ()

1.2 Conditional Probability

Let (Q,.%,P) be a Probability Space. Then fArB € .# we define the conditional
probability of A givenB as usual by:
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P(ANB)

PAIB) = 5 g

We can immediately rewrite the formula above to obtainrthatiplicative rule

P(ANB) = P(A|B)P(B),
P(ANBNC) = P(A|BNC)P(B|C)P(C), etc.

Total probability formula Given Ay, Ay, ..., Ay a partition ofQ (i.e. the set#
are disjoint and2 = (J{"_; A)), then:

P(B) __iP(B|Ai)P(A@), VBe .Z (1.6)

Bayes Formulalf Az, A, ..., A, form a partition ofQ:

P(B|Aj)P(A))
Y1 P(BIA)P(A)’

Example 1.4A biker leaves the point O in the figure below. At each crossithe
biker chooses a road at random. What is the probability teartives at poin ?

Let By, k=1,2,3,4 be the event that the biker passes through poinflBese
four events are mutually exclusive and they form a partiibthe space. Moreover,
they are equiprobabl@(By) = 1/4,Vk € {1,2,3,4}). Let A denote the event “the
biker reaches the destination point A’. Conditioned on eafctihe possible points
B1-B4 of passing we have:

P(Aj|B) = VBe 7. (1.7)

P(ABy) = 1/4
P(AB2) = 1/2
P(AB3) =1

At By is slightly more complex. We have to use the multiplicatiuker

P(A|B4) = 1/4+ P(ANBs|Bs) + P(ANBg N Bs|By)
=1/4+ P(A| BsN B4)P(85|B4) + P(A| BsNBsN B4)P(Ba|85 N B4)P(B5|B4)
=1/4+1/3(1/4)+1(1/3)(1/4)=3/12+2/12=5/12

Finally, by the law of total probability:

P(A) = P(A[B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) + P(A|B4)P(Ba)
= 1/4(1/4) + 1/2(1/4) + 1/4(1) + 5/12(1/4) =13/24

O

Example 1.5 (De Mre’'s Paradox).As a result of extensive observation of dice
games the French gambler Chevaliér De Mére noticed teabtal number of spots
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U
&
/Xw\

Be
A

Fig. 1.1 The possible trajectories of the biker. O is the origin paimd A is the arrival pointBy’s
are intermediate points. Note that not all the ways lead tm&a.e. the probability of reaching
Rome is less than 1.

showing on 3 dice thrown simultaneously turn out to be 11 naften than 12.

However, from his point of view this is not possible since tturs in six ways :
(6:4:1);(6:3:2;(5:5:1);(5:4:2);(5:3:3);(4:4:3),

while 12 also in six ways:
(6:5:1);(6:4:2;(6:3:3);(5:5:2;(5:4:3);(4:4:9
What is the fallacy in the argument?

Solution 1.1 (Solution due to Pascal)The argument would be correct if these
“ways” would have the same probability. However this is nmoet For example:
(6:4:1) occurs in 3! ways, (5:5:1) occurs in 3 ways and (4:4cturs in 1 way.

As a result we can easily calculaf®(1l) = 27/216 ;P(12) = 25/216, and in-
deed his observation is correct and he should bet on 11 ri&tweon 12 if they have
the same game payoff. a

Example 1.6 (Another De &fe’s Paradox:)What is more probable?

1. Throw 4 dice and obtain at least one 6
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2. Throw 2 dice 24 time and obtain at least once a double 6

Solution 1.2.For option 1: 1- P(No 6)= 1— (5/6)* = 0.517747.
For option 2: 1- P(None of the 24 trials has a double=6)1 — (35/36)%4 =
0.491404

Example 1.7 (Monty Hall problem}his is a problem named after the host of the
American television show “Let's make a deal”. Simply put la¢ ttnd of a game
you are left to chose between 3 closed doors. Two of them haiveng behind and
one contains a prize. You chose one door but the door is notespautomatically.
Instead, the presenter opens another door that contaihingoHe then gives you
the choice of changing the door or sticking with the initinbice.

Most people would say that it does not matter what you do attiirie, but that
is not true. In fact everything depends on the host behav@rexample, if the host
knows in advance where the prize is and always reveals abrasdme other door
that does not contain anything then it is always better tacswi

Solution 1.3.This problem generated a lot of controversy since its pabba (in
1970's) since the solution seems so counterintuitive chesitalking about this prob-
lem in more detaiMorgan et al(1991), Mueser and Granbel(d991). We are pre-
senting it here since it exemplifies the conditional proligtrieasoning. The key in
any such problem is the sample space which has to be completgle to be able
to answer the questions asked.

Let D; be the event that the price is behind doot.et SW be the event that
switching wins the price

It does not matter which door we chose initially the reasgrnidentical with
all the three doors. So, we assume that initially we pick door

Fig. 1.2 The tree diagram

of conditional probabilities. SW
Note that the presenter has 0
two choices in casB, neither
of which results in winning if D1
switching the door. 1/3
0 SW
1/3 1
D, SW
1/3

D,—— SW

2 As a side note this event is the same as the event "not swijdbires”
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EventsD; i = 1,2,3 are mutually exclusive and we can write:
P(SW) = P(SWID1)P(D1) + P(SWD2)P(D2) + P(SWD3)P(D3).

When the prize is behind door 1 since we chose door 1 the pgegseas two
choices for the door to show us. However, neither would dortee prize and in
either case switching does not result in winning the prizereforeP(SWD;) = 0.

If the car is behind door 2 since our choice is door 1 the pteséras no alternative
but to show us the other door 3 which contains nothing. Thukhkimg in this case
results in winning the price. The same reasoning works ifpitize is behind door

3. Therefore:
1 1

1 2
P(SW) =13 +15+05 =

3
Thus switching has a higher probability of winning than neitehing.
A generalization tan doors shows that it still is advantageous to switch but the
advantage decreasesms . Specifically, in this casB(D;) = 1/n; P(SWD;) =0
still, but P(SWD;) =1/(n—2) if i # 1. Which gives:

ni1 1 n-11 1
PS == _—_— = — — —
(SW) i;nn—z n—2n>n

Furthermore, different presenter strategies producerdifft answers. For exam-
ple, if the presenter offers the option to switch only whea filayer chooses the
right door then switching is always bad. If the presenteersfwitching only when
the player has chosen incorrectly then switching alwayswihese and other cases
can be analyzed iRosentha(2009).

Example 1.8 (Bertrand’s box paradoXhis problem was first formulated by Joseph
Louis Francois Bertrand in his Calcul de Probabiliteési(rand 1889. In some
sense this problem is related to the previous problem buategsahot depend on any
presenter strategy and the solution is much more clearirpthis problem is an
exercise in Bayes formula.

Suppose that we know that three boxes contain respectiorybox contains
two gold coins, a second box with two silver coins, and a tliodt with one of
each. We chose a box at random and from that box we chose alsoiataandom.
Then we look at the coin chosen. Given that the coin chosergetaswhat is the
probability that the other coin in the box chosen is also gatd first glance it may
seem that this probability is/2 but after calculation this probability turns out to be
2/3.

Solution 1.4.We plot the sample space in Figuke3. Using this tree we can calcu-
late the probability:

P(Second coin i and First coin i<3)

P(Second coin i&|First coin isG) = P(First con isG)

Now, using the probabilities from the tree we continue:
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Box choice First coin Second coin
1
12 G—G
GG <
12 G .G
1/3
1
13 1/2 S S
SS
12 s—! .58
1/3
1 S

12 G—F—
Fig. 1.3 The tree diagram of GS < 1
112 S ———G

conditional probabilities.

11 11
__ 33l4331 2
11 11 11 :
331+331+331 3

Now that we have seen the solution we can recognize a logitatien to the
problem as well. Given that the coin seen is gold we can thnwayahe middle
box. Then if this would be box 1 then we have two possibilities the other coin is
gold (depending on which we have chosen in the first plac#&)idfis the box 2 then
there is one possibility (the remaining coin is silver). $lilne probability should be
2/3 since we have two out of three chances. Of course thiscdigargument does
not work if we do not choose the boxes with the same probwgbilit a

Example 1.9A blood test is 95% effective in detecting a certain disedsenit is in
fact present. However, the test yields also a false posiiselt for 1% of the people
tested. If 0.5% of the population actually has the diseabkat g the probability that
the person is diseased given that the test is positive?

Solution 1.5.This problem illustrates once again the application of thgd3 rule.
| do not like to use the rule literally instead work from firgtinziples one will
also obtain the Bayes rule without memorizing anything. Vet $y describing the
sample space. Refer to the Figurd for this purpose.
So given that the test is positive means that we have to edécal conditional
probability. We may write:
P(DN+) P(+|D)P(D) 0.95(0.005)

PO = =5~ =~ B(1) ~ 0.95(0.005 + 0.01(0.995)

=0.323

How about if only 0.05% (i.e. 0.0005) of the population has disease?
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+
0.95
D
0.00 0.05
+
0.99!
0.0
DC
Fig. 1.4 Blood test probabil- 0-99
ity diagram -
0.95(0.0005
P(D|+) = =0.0454
(BI+) = 5.95/0.0005 1 0.01(0.9995

This problem is an exercise in thinking. It is the same tegiode In the first case the
disease is relatively common and thus the test device is ordess reliable (though
32% right is very low). In the second case however the disisasay rare and thus
the precision of the device goes way down. a

Example 1.10 (Gambler's Ruin Problenye conclude this section with an exam-
ple which we shall see many times throughout this book. | dokmow who to
credit with the invention of the problem since it is so menéd so often in every
probability treatie®,

The formulation is simple. A game of heads or tails with a aiin. Player wins
1 dollar if he successfully calls the side of the coin whichda upwards and loses
$1 otherwise. Suppose the initial capitalXsdollars and he intends to play until
he winsm dollars but no longer. What is the probability that the gaenllill be
ruined?

Solution 1.6.We will display what is called as a first step analysis.

Let p(x) denote the probability that the player is going to be evdhytuained if
he starts withx dollars.

If he wins the next game then he will havex$ 1 and he is ruined from this
position with probp(x+1).

If he loses the next game then he will havex$ 1 so he is ruined from this
position with probp(x—1).

Let R be the event he is eventually ruined. Mgtbe the event he wins the next
trial. Let L be the event he loses this trial. Using the total prob. foemua get:

P(R) = P(RW)P(W) + P(RIL)P(L) = p(x) = p(x+1)(1/2) + p(x—1)(1/2)

3 The formalization may be due to Huygens (1629-1695) in thélXiVcentury
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Is this true for allx? No. This is true fox > 1 andx < w— 1. In the rest of cases
we obviously havep(0) = 1 andp(m) = 0 which give the boundary conditions for
the equation above.

This is a linear difference equation with constant coeffitsePlease look at the
general methodology in the following subsection on how feessuch equations.

Applying the method in our case gives the characteristi@ggn:

1, 1
Y=5¥ 5=V -2y +1=0=(y-12=0=y1=y,=1

In our case the two solutions are equal thus we seek a sohitibe formp(x) =
(C+Dx)1" = C+ Dx. Using the initial conditions we gep(0) =1=-C=1 and
p(m =0=C+Dm=0= D= -C/m= —1/m, thus the general probability of
ruin starting with wealthx is:

p(x) =1—x/m.

Solving difference equations with constant coefficients

This methodology is given for second order difference dguatbut higher order
equations are solved in a very similar way. Suppose we asngn equation of the
form:

an = Aan_1+ Ban_2,

with some boundary conditions.

The idea is to look for solutions of the forag = cy", with c some constant and
y needs to be determined. Note that if we have two solutionkisfform (sayciy;
andcpyy), then any linear combination of them is also a solution. Wesstute this
proposed form and obtain:

y' =AYty 2
Dividing by y"~2 we obtain the characteristic equation:
y? = Ay+B.

Next, we solve this equation and obtain real solutignandy, (if they exist). It
may be possible that the characteristic equation does nat $a@lutions inR in
which case the difference equation does not have solutitrereNow we have two
cases:

1. If y; andys are distinct then the solution & = Cy; + Dy; whereC,D are con-
stants that are going to be determined from the initial cioors.
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2. If y; =y, the solution isa, = Cyj 4+ Dny}. Again,C andD are determined from
the initial conditions.

In the case when the difference equation contaiterms the procedure is iden-
tical even replicating the multiplicity issues. For moréimation one can consult
any book on Ordinary Differential Equations suchzas/ce and DiPrim€2004).

1.3 Independence

Definition 1.11. Two eventsA andB are called independent if and only if

P(ANB) = P(A)P(B)

The eventd\;, Ay, As, ... are callednutually independerfbr sometimes simply
independent) if for every subsébf {1,2,3,...} we have:

P(UA | =[P
(U) M)

The eventd\;, Az, Az, ... are calledpairwise independerfsometimes jointly in-
dependent) if:
P(AIUA)) =PA)PA), Vi, j.

Note that jointly independent does not imply independence.
Two sigma fields?, 7 € .# are P-independernit:

P(GNH)=P(G)P(H), YGe%,vH c .

SeeBlillingsley (1995 for the definition of independence k> 2 sigma-algebras.

1.4 Monotone Convergence properties of probability

Let us take a step back for a minute and comment on what we kavdlisus far. The
o-algebra differs from the regular algebra in that it allovgg@deal with countable
(not finite) number of sets. In fact this is a recurrent themprobability, learning
to deal with infinity. On finite spaces things are more or lésgpke. One has to
define the probability of each individual outcome and ev@ng proceeds from
there. However, even in these simple cases imagine thatpeats an experiment
over and over. Then again we are forced to cope with infinitys $ection introduces
a way to deal with this infinity problem.
Let (Q,.#,P) be a Probability Space.
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Lemma 1.1.The following are true:

LIfALZAe Fand ATA(e, ACAC...AnC... and A= p>1An), then:
P(An) T P(A) as a sequence of numbers. -

2. f An,Ae Zand Ay | A(lLe, ADAD...An D ... and A= =1 An), then:
P(An) | P(A) as a sequence of numbers. -

3. (Countable subadditivity) If AAz,..., and > Aq € #, with A’s not neces-

sarily disjoint then:
P (U An) <5 P(An)
n=1 n=1

Proof. 1. LetB; = A1,By = Ao\ Ay,...,Bn = An\ Ay_1. Because the sequence is
increasing we have that thig's are disjoint thus:

n

P(An) =P(BiUBU---UBp) = _ZP(B;).

Thus using countable additivity:

P(U N) - P<U Bn> le (Bi) = I|m P(B.) = lim P(An)
n>1 n>1

2. Note thatd, | A < A° T A®and from part 1 this means-1P(A,) T 1—P(A).

3. LetBy =A;,Bo=A1UA,,....Bh=A1U---UA,, .... From the finite sub-
additivity property in Propositior1.3 we have thatP(Bp) = P(Aj U - UA,) <
P(A1) + -+ P(An).

{Bn}n>1 is an increasing sequence of events, thus from part 1 we @ét th
P(Un=1Bn) = limp—« P(Bn). Combining the two relations above we obtain:

[ee]

P(O Aa) = P(G Bn) < lim (P(A1) +--+P(An) = 5 P(An)
n=1

n=1 n=1

Lemma 1.2.The union of a countable number@ull sets is a-null set

This Lemma is a direct consequence of the countable subatydit

Recall from analysis: For a sequence of numbejfs, }» limsup and liminf are
defined:

limsupx, = mf{supxn} = ITI}an (supxn)
n>m

liminf x, = srgp{rlgl;nxn} = J:an(rlgl;nxn),

and they represent the highest (respectively lowest)itigipoint of a subsequence
included in{Xn}n.
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Note that ifzis a number such that> lim supx, thenx, < z eventually.
Likewise, if z < limsupx, thenx, > zinfinitely ofter?.
These notions are translated to probability in the follaywvay.

Definition 1.12.LetA;, Ay, ... be aninfinite sequence of events, in some probability
spacegQ,.7,P). We define the events:

limsupA, = ﬂ U An={w: w e A, for infinitely many it = {A,i.0.}

n—eo n>1m=n

Iinmiann = U ﬂ An={w: w e A, forall n large enough= {A, eventually}

n>1m=n

Let us clarify the notions of “infinitely often” and “eventiid@ a bit more. We
say that an outcome happens infinitely often for the sequensg Ay, ... Ay, ...
if wisinthe seNn_1 Um>nAm. This means that for any(no matter how big) there
existanm> nandw € Am.

We say that an outconie happens eventually for the sequergeA,, ... Ay, ...
if wis inthe selJy_1Nm=nAm. This means that there exist arsuch that for any
m>n, w € Am, SO from this particulan and upw is in all the sets.

Why so complicate definitions? The basic intuition is thédi@ing: say you roll
a die infinitely many times, then it is obvious what it meanstfe outcome 1 to
appear infinitely often. Also, we can say the average of this waill eventually be
arbitrarily close to 3.5 (this will be shown later). It is rsxt clear cut in general. The
framework above provides a generalization to these nations

The Borel Cantelli lemmas

With this definitions we are now capable to give two imporianimas.

Lemma 1.3 (First Borel-Cantelli). If A1, Az, ... is any infinite sequence of events
with the propertyy -1 P(An) < o then

P (ﬂ U M) = P(A, events are true infinitely oftén= 0

n=1lm>n

This lemma essentially says that if the probabilities ofréseo to zero and the
sum is convergent then necessaAlywill stop occurring. However, the reverse of
the statement is not true. To make it hold we need a very stondition (indepen-
dence).

4i.e., there is somag very large so that, < z for alln>ng
Si.e., for anyn there exists am > n such that, > z
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Lemma 1.4 (Second Borel-Cantelli)If A;, Ao, ... is an infinite sequence aide-
pendentevents then:

P(A)) = < P(Ani.0)=1

Proof. First Borel-Cantelli.

P(Ani.0)) <ﬂ UAm><P<UAm>§miP(Amwn

n>1m=n

where we used the definition and countable subadditivitytl®y hypothesis the
sum on the right is the tail end of a convergent series, thezefonverges to zero as
n— co. Thus we are done. a

Proof. Second Borel-Cantelli:

=" Clearly, showing thaP (A, i.0.) = P(limsupAn) = 1 is the same as showing
thatP ((limsupAp)©) =0
By the definition of limsup and the DeMorgan’s laws,

(lim SupAn)° (ﬂ UAm> UﬁA?n

n>1m=n n>1m=n

Therefore, itis enough to show tHR¢N ., AS,) = O for all n (recall that a countable
union of null sets is a null set). However,

(%) - nmp<mAm> - im [P

by mdependence

;
— lim )< lim e P(Am)
im, [1 (2 ﬂ
© m=n
_,_/
1-x<e Xif x>0

— |im e Zm=nP(Am) — &~ Sm-nP(Am) _

r—o0

The last equality follows sincg P(A,) = .
Note that we have used the following inequality- X < e * which is true ifx €
[0,0). One can prove this inequality with elementary analysis.
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“«<" This implication is the same as the first lemma. Indeed, mssby absurd that
Y P(An) < 0. By the First Borel-Cantelli Lemma this implies tHafA, i.0.) =0, a
contradiction with the hypothesis. a

The Fatou lemmas

Again assume thak;, Ao, ... is a sequence of events.

Lemma 1.5 (Fatou lemma for sets)Given any measure (not necessarily finite)
we have:

U (An eventually = u(linmJQfN) < IinmJQf U(An)

Proof. Recall that liminfi—.An = Un>1NmenAm, and denote this set with. Let
Bn = N, Am, Which is an increasing sequence (less intersections asreaises)
and B, T A =. By the monotone convergence property of measure (Lerhrfa
U(Bn) — u(A). However,

H(Bn) = p( m Am) < U (Am),Ym=n,

m=n

thusp(Bn) < infrsn 1 (Am). Therefore:
H(A) < limnco inf 11(Am) = liminf 1 (An)

O
Lemma 1.6 (The reverse of the Fatou lemmalf P is a finite measure (e.g., prob-
ability measure) then:

P(Aq i.0.) = P(limsupA,) > lim supP(A,)

n—oo n—oo

Proof. This proof is entirely similar. Recall that lim SpPp., An = Nn>1 Umen Am,

and denote this set witA. Let B, = Uy_,Am. Then clearlyBy is a decreasing
sequence anB, | A=. By the monotone convergence property of measure (Lemma
1.1) and since the measure is finR¢B1) < 0 soP(B,) — P(A). However,

P(Bn) = P(|J Am) = P(Am),Ym>n,
m=n
thusP(Bn) > supy-,P(Am), again since the measure is finite . Therefore:

P(A) > liMy_.e SUPP(Am) = limsupP(Ay)

m>n n—sco
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Kolmogorov zero-one law

| like to present this theorem since it introduces the cohoém sequence of-
algebras a notion essential for stochastic processes.

For a sequenca;, Ay, ... of events in the probability spa¢€,.%, &) consider
the generated sigma algebrgigs= g(An, Ani1,-..) and their intersection

[

T = m%: mo-(AnaAn+17"')7

n=1 n=1
called the tailo-field.

Theorem 1.1 (Kolmogorov’s 0-1 Law).If A;, Ay, ... are independent then for ev-
ery event A in the taib field (A€ .7) its probability P(A) is either0 or 1.

Proof. Skipped. The idea is to show thais independent of itself thuB(ANA) =
P(A)P(A) = P(A) = P(A)? = P(A) is either 0 or 1. The steps of this proof are as
follows:

1. First definesy, = 0(Ay,...,As) and show that is independent 6§ 1 for all n.

2. Since7 C 9,1 andar is independent aff, 1, thena}, and.7 are independent
for all n.

3. Defined, = 0(Aq,Az,...). Then from the previous step we deduce tvatand
7 are independent.

4. Finally since.7 C <%, by the previous stepy is independent of itself and the
result follows.

Note that limsup\, and liminfA, are tail events. However, it is only in the case
when the original events are independent that we can apginé@orov’s theorem.
Thus in that casP{A, i.0.} is either 0 or 1.

1.5 Lebesgue measure on the unit interval (0,1]

We conclude this chapter with the most important measurgaé@. This is the
unique measure that makes things behave in a normal way, (bey.nterval
(0.2,0.5) has measure.B).

Let Q =(0,1]. Let %#p=class of semiopen subintervals (a,bXdf For an interval
| = (a,b] € % defineA(l) =|I| =b—a. Let @ € % the element of length 0. Let
ABo=the algebra of finite disjoint unions of intervals in (0,llpte that the problem
1.3shows that this algebra is noaalgebra.

If A= 3 11h € Ho with |, disjoint %, sets; then

AR = imi) _ iun
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The goal is to show that is countably additive on the algebgdy. This will
allow us to construct a measure (actually a prob. measuce sie are working on
(0,1]) using the next result (Caratheodory’s theorem). trestructed measure is
well defined and will be called the Lebesgue Measure.

Theorem 1.2 (Theorem for the length of intervals:).Let | = (a,b] C (0,1] and k
of the form(ag, bx] bounded but not necessarily {6, 1].

(i) If Uxlk € I and I are disjoint theny |1y < |l
(ii) If I € Ukl (with the k not necessarily disjoint) thejh| < 5 |lx|.
(iii) If I = Uglk and k disjoint then|l| = 3|1k

Proof. Exercise Hint: use induction)
Note: Part (iii) shows that the functioh is well defined.

Theorem 1.3.A is a (countably additive) probability measure on the figtg. A is
called the Lebesgue measure restricted to the algekya

Proof. Let A= UUg_; Ak, WwhereAy are disjoint%, sets. By definition 0fA,

mg n
Ac=J X, A=Un,
j=1 i=1

where thely, are disjoint. Then,

A® =5 =5 k_ljZII k=5 ; 5 ind)

and sinceANJy, = J; = [ANJq| = 3iL; [liNJy | = |J |, the above is continued:

8

My co

Jol=S A(A
1;1| | k; (Ac)
——

=[Ayl

=
Il

O

The next theorem will extend the Lebesgue measure to theaBdl|, thus we
define the probability spad¢0, 1], #((0,1]),A ). The same construction with minor
modifications works iR, #(R),A) case.

Theorem 1.4 (Caratheodory’s Extension Theorem)A probability measure on an
algebra has a unique extension to the generatezlgebra.

Note: The Caratheodory Theorem practically constructs all ther@sting prob-
ability models. However, once we construct our models wesmavfurther need of
the theorem. It also reminds us of the central idea in theryhebprobabilities: If
one wants to prove something for a big set one needs to lodlafitke generators
of that set.
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Proof. (skipped), in the exercises.

Definition 1.13 (Monotone Class)A class.# of subsets i is monotonéf it is
closed under the formation of monotone unions and intemsesti.e.:

() A, Az,--- € A andA, C Anp1,UnAn=A=Ac A/
(i) Ag,Ap,--- € 4 andAn D Ant1 = NnAn € A

The next theorem is only needed for the proof of the Carathigotheorem.
However, the proof is interesting and that is why is presghere.

Theorem 1.5.1f .%; is an algebra and# is a monotone class, the#i, C .# =
O'(yo) C ..

Proof. Let m(.%p) = minimal monotone class ove¥, = the intersection of all
monotone classes containiig

We will prove thato (.%g) € m(.%p).

To show this it is enough to prove thaw.%p) is an algebra. Then exerciell
will show thatm(.%p) is a o algebra. Sincer(.%y) is the smallest the conclusion
follows.

To this end, let? = {A: A € m(.%)}.

(i) Sincem(.%#y) is a monotone class so%.
(ii) Since % is an algebra its elements aredh= %o C ¢

() and (ii) = m(F#y) C ¢. Thusm(F) is closed under complementarity.

Now define4; = {A: AUB e m(%),VB € %o }.

We show that¥; is a monotone class:

Let A, " an increasing sequence of sétg,c ¢ . By definition of¢;, for all n
AnUBemM(H),VB € F.

But A,UB D A,_1 UB and thus the definition ah(.%p) implies:

J(AnUB) € m(F),VB € o = <UAn> UB € m(%),VB,
n n
and thug J,,An € 4.

This shows tha#; is a monotone class. But sincg, is an algebra its elements
(the contained sets) aredf®, thus.Zy C 4. Sincem(.%y) is the smallest monotone
class containing#, we immediately haven(.%p) C %;.

Let% = {B: AUB € m(%),YAe m(%p)}

%, is a monotone class(identical proof- see problem 10

Let B € %p. Sincem(:%y) C % for any setA € m(.%y) = AUB € m(%). Thus,
by the definition 0f%, = B € % = %y C %.

The previous implication and the fact th# is a monotone class implies that
m(Fo) C %,.

ThereforeyA,B € m(.%g) = AUB € m(.%y) = m(.%p) is an algebra. 0

6 one can just verify the definition of; for this.
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Problems

1.1.Rolladie. Them2 ={1,2,3,4,5,6}. An example of a eventi&= { Roll an even numbér=
{2,4,6}. Find the cardinality (number of elements)&f(Q) in this case.

1.2.Suppose two eventd andB are in some spacg. List the elements of the
generated algebrao (A, B) in the following cases:

a)ANB=0

b)ACB

C)ANB#0;A\B#0andB\A#0D

1.3. An algebra which is not acg-algebra

Let Ao be the collection of sets of the forrfay,a;| U (ag,a,] U--- U (am, ar], for
anyme N*={1,2...}andallay <aj <ap<a, <---<am<apin Q =(0,1]
Verify that % is an algebra. Show tha#, is not acg-algebra.

1.4.Let.7 = {AC Q|Afinite or ACis finite}.

a) Show that# is an algebra

b) Show that ifQ is finite then is aog-algebra

¢) Show that ifQ is infinite then.Z is not a -algebra

1.5. A o-Algebra does not necessarily contain all the events i@

Let.# = {AC Q|A countableor A®is countablé. Show thatZ is ac-algebra.
Note that ifQ is uncountable implies that it contains a 8etuch that boti# andA°
are uncountable thus ¢ .%.

1.6.Show that the Borel sets & %2 = o ({(—,X]|x € R}).

Hint: show that the generating set is the same i.e., show that aoy the form
(—o0,X] can be written as countable union (or intersection) of opgervals and
viceversa that any open intervallfhcan be written as countable union (or intersec-
tion) of sets of the fornf—oo, x].

1.7.Show that the following classes all generate the Borellgebra, or put differ-
ently show the equality of the following collections of sets

o((ab):a<beR)=o0([abl:a<beR)=0((—»,b):beR)
=0((—e,b):beQ),

whereQ is the set of rational numbers.

1.8. Properties of probability measures
Prove properties 1-4 in the Propositibr8 on pagel 3.

Hint: You only have to use the definition of probability. The onlinthnon-trivial
in the definition is the countable additivity property.

1.9. No mater how many zeros do not add to more than zero
Prove the Lemma.2on page23.
Hint: You may use countable subadditivity.
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1.10.1f %y is an algebram(%#y) is the minimal monotone class ovéf and%; is
defined as:
4 ={B:AUBe m(%),YAe m(%)}

Then show tha®, is a monotone class.
Hint: Look at the proof of theorerh.50n page29, and repeat the arguments therein.

1.11. A monotone algebra is ar-algebra
Let.7 be an algebra that is also a monotone class. Show#hiata o-algebra.

1.12.Prove thetotal probability formulaequation {.6) and theBayes Formula
equationl.7.

1.13.If two events are sucAN B = 0 areA andB independent? Justify.
1.14.Show thatP(A|B) = P(A) is the same as independence of the evAraadB.

1.15.Prove that if two event# andB are independent then so are their comple-
ments.

1.16.Generalize the previous problemnaets using induction.

1.17.0ne urn containgy, white balls andb; black balls. Another urn containg
white balls and, black balls. A ball is drawn at random from each urn, then dne o
the two such chose are selected at random.

a) What is the probability that the final ball selected is wit

b) Given that the final ball selected was white what is the phbiliy that in fact it
came from the first urn (witkv; andb; balls).

1.18.At the end of a well known course the final grade is decided thighhelp of
an oral examination. There are a totalnopossible subjects listed on some pieces
of paper. Of thenm are generally considered “easy”.

Each student enrolled in the class, one after another, drieaubject at random
then presents it. Of the first two students who has the belienae of drawing a
“favorable” subject?

1.19.Suppose an evehthas probability 0.3. How many independent trials must be
performed to assert with probability®that the relative frequency éfdiffers from
0.3 by no more than Q.

1.20.Show using the Cantelli lemma that when you roll a die the @ui{1} will
appear infinitely often. Also show that eventually the ageraf all rolls up to rolin
will be within ¢ of 3.5 wheres > 0 is any arbitrary real number.

1.21.Andre Agassi and Pete Sampras decide to play a number of gagetber.
They play non-stop and at the end it turns out that Samprasmgemes while
Agassim wheren > m. Assume that in fact any possible sequence of games was
possible to reach this result. LiB{ iy denote the probability that from the first game
until the last Sampras is always in the lead. Find:



32 1 Elements of Probability Measure

1.P1; P31 Pha
2. P32, Py2; P2
3. P43, P53 Ps 4
4. Make a conjecture about a formula fém.

1.22.My friend Andrei has designed a system to win at the rouléteelikes to bet
onred, but he waits until there have been 6 previous blaclssrid only then he bets
on red. He reasons that the chance of winning is quite largeshe probability of
7 consecutive back spins is quite small. What do you think®iistem. Calculate
the probability the he wins using this strategy.

Actually, Andrei plays his strategy 4 times and he actualiysathree times out
of the 4 he played. Calculate what was the probability of theméthat just occurred.

1.23.Ali Baba is caught by the sultan while stealing his daugfitke sultan is be-
ing gentle with him and he offers Ali Baba a chance to regasriberty.

There are 2 urns and white balls andh black balls. Ali Baba has to put the balls in
the 2 urns however he likes with the only condition that noigrampty. After that
the sultan will chose an urn at random then pick a ball fron tina. If the chosen
ball is white Ali Baba is free to go, otherwise Ali Baba’s heail be at the same
level as his legs.

How should Ali Baba divide the balls to maximize his chancsufvival?
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Chapter 2
Random Variables

All the definitions with sets presented in Chapteare consistent, however if we
wish to calculate and compute numerical values related stradt spaces we need
to standardize the spaces. The first step is to give the foltpdefinition.

Definition 2.1 (Measurable Function (m.f.)).Let (Q1,.%1), (Q2,.%2) be two mea-
surable spaces. Ldt: Q; — Q, be a functionf is called a measurable function
if and only if for any seB € .%, we havef*l(B) € ;. The inverse function is a
set function defined in terms of the pre-image. Explicitty, & given seB € %5,

f1(B)={w € Q1: f(w) € B}

Note: This definition makes it possible to extend probability meas to other
spaces. For instance, létbe a measurable function and assume that there exists a
probability measur®; on the first spacéQ;,.#1). Then we can construct a proba-
bility measure on the second spdce,,.%,) by (Q2,.%,P1 0 f*l). Note that since
f is measurablé —1(B) is in .%1, thusPy o f ~1(B) = Py(f~%(B)) is well defined.

Reduction toR. Random variables

Definition 2.2. Any measurable function with codomaif,, .%,) = (R, A(R)) is
called a random variable.

ConsequenceSince the Borel sets iR are generated by—,x| then we can
have the definition of a random variable directly by:

f: Q1 — Rsuch thatf "1(—w,x € .Z or {w: f(w) <x} € .Z,¥xeR.

We shall sometimes usé(w) < x to denotef~%(—o,x). Traditionally, the
random variables are denoted with capital letters from thé ef the alphabet
X,Y,Z,... and their values are denoted with corresponding smalftettg, z,. ...

35
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Definition 2.3 (Distribution of Random Variable). Assume that on the measur-
able spac€Q,.#) we define a probability measuReso that it becomes a proba-
bility space(Q,.7,P). If a random variabl&X : Q — R is defined then we call its
distribution, the set functiop defined on the Borel sets &: .Z(R), with values in
[0,1]:

u(B) =P({w:X(w) € B}) =P (X !(B)) =PoX *(B)

Remark 2.1First note that the measuye is defined on sets iR and takes val-
ues in the interval0, 1]. Therefore, the random variabXeallows us to apparently
eliminate the abstract spac® However, this is not the case since we still have to
calculate probabilities using in the definition ofu above.

However, there is one simplification we can make. If we rettediresult of the
exercisesl.6 andl.7, we know that all Borel sets are generated by the same type
of sets. Using the same idea as before it is enough to deduoilveto calculate
u for the generators. We could of course specify any type otgming sets we
wish (open sets, closed sets, etc) but it turns out the sshplay is to use sets of
the form(—e0,X], since we only need to specify one end of the interval (therath
always—oo). With this observation we only need to specify the meagugePo X1
directly on the generators to completely characterize thbahility measure.

Definition 2.4. [The distribution function of a random variable] The distriion
function of a random variabl¥ is F : R — [0, 1] with:

F(X) = p(—0,X =P({w: X(w) € (—o,X}) = P({w: X(w) <x})

But wait a minute, this is exactly the definition of the cuniivia distribution
function (cdf) which you can find in any lower level probatyilclasses. It is ex-
actly the same thing except that in an effort to dumb down (ffromvever opinion
it was to teach the class that way) the meaning is lost and weotgroceed with
more complicated things. From the definition above we caudedll the elemen-
tary properties of the cdf that you have learned (right-cuity, increasing, taking
values between 0 and 1). In fact let me ask you to prove thizeéncése .

Proposition 2.1.The distribution function for any random variable X has tbé f
lowing properties:

(i) F is increasing (i.e. if x< y then F(x) < F(y))*
(ii) F is right continuous (i.elimp o F (x+h) = F(x))
(iii)) limy__oF(x) =0andlimy_.F(x)=1

Example 2.1 (Indicator random variabldRecall the indicator function from Def-
inition 1.10. Let 15 be the indicator function of a sé& C Q. This is a function

1 In other math books a function with this property is callechutecreasing. | do not like the
negation and | prefer to call a function like this increasimgh the distinction that a function
with the following propertyx <y impliesF (x) < F(y) is going to be called atrictly increasing
function
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defined onQ with values inR. Therefore, it may be a random variable. According
to the definition it is a random variable if the function is reeable. It is simple
to show that this happens if and onlyAfe .% the g-algebra associated with the
probability space. Assuming thate .%, what is the distribution function of this
random variable?

According to the definition we have to calcul&@e1,*((—o,x]) for anyx. How-
ever, the function A only takes two values 0 and 1. We can calculate immediately:

0 ,ifx<O
L ((—o0, X)) =< A° | if xe[0,1).
Q ,ifx>1
Therefore,
0 ,ifx<0
F(x)= < P(A®) |ifxe[0,1).
1 ,ifx>1

Proving the following lemma is elementary using the prapsrmf the probability
measure (Propositioh.3) and is left as an exercise.

Lemma 2.1.Let F be the distribution function of X. Then:

() P(X=x) =1-F(x)

(i) P(x< X <y) =F(x) = F(y)

(i) P(X =x) = F(x) — F(x—), where fx—) = limy ~F(y) the left limit of F

at x.

Above, we define a random variable as a measurable functithcsdomain
(R,%2(R)). A more specific case is obtained when the random variabléhleago-
main also equal tdR,.Z(R)). In this case the random variable is called a Borel
function.

Definition 2.5 (Borel measurable function).A functiong: R — R is called Borel
(measurable) function @ is a measurable function fro(®R, Z(R)) into (R, Z(R)).

Example 2.2Show that any continuous functign R — R is Borel measurable.

Solution 2.1.This is very simple. Recall that the Borel sets are genetayenpen
sets. So it is enough to see what happens to the pre-imagepdraseB. But g
is a continuous function therefoge(B) is an open set and thgs*(B) € Z(R).
Therefore by definitiory is Borel measurable.

2.1 Discrete and Continuous Random Variables

Definition 2.6 (pdf pmf and all that). Note that the distribution functiol always
exists. In general the distribution functiénis not necessarily derivable. However,
if itis, we call its derivativef (x) the probability density functioigpdf):
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X
F(x):/ f(2)dz

Traditionally, a variable X with this property is callaccontinuous random variable

Furthermore ifF is piecewise constant (i.e., constant almost everywherai,
other words there exist a countable sequefaeay, ... } such that the functiof
is constant for every point except themé and we denotg; = F(a) — F(ai—),
then the collection ofy’s is the traditionalprobability mass functiorfpmf) that
characterizes discrete random variabfe

Remark 2.2Traditional undergraduate textbooks segregate betwesmete and

continuous random variables. Because of this segregdimnadre the only vari-

ables presented and it appears that all the random varial#esither discrete or
continuous. In reality these are the only types that can esgmted without follow-

ing the general approach we take here. The definitions wepted here cover any
random variable. Furthermore, the treatment of randomakbées is the same, no
more segregation.

Important. So what is the point of all this? What did we just accomplish here?

The answer is: we successfully moved from the abstract sffacé , P) to some-
thing perfectly equivalent but defined ¢R, %(R)). Because of this we only need
to define probability measures @hand show that anything coming from the orig-
inal abstract space is equivalent with one of these digidba onR. We have just
constructed our first model.

Example 2.3 (Indicator r.v. (continued)Jhis indicator variable is also called the
Bernoulli random variable. Notice that the variable onlges values 0 and 1 and
the probability that the variable takes the value 1 may b#yeeaculated using the
previous definitions:

Pol,1({1}) = P{w: 1a(w) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli randanable with parame-
ter p= P(A). Alternately, we may obtain this probability using the poasly com-
puted distribution function:

P{w: 1a(w) =1} = F(1) - F(1-) = 1— P(A° = P(A)

Example 2.4Roll a six sided fair die. SaX(w) = 1 if the die shows 1¢ = 1),
X = 2 if the die shows 2, etc. Finl(x) = P(X < X).

Solution 2.2 (Solution).
If x<1thenP(X <x)=0

2 Again we used the notatiof(x—) for the left limit of functionF atx or in a more traditional
notation lim_y z«xF (2).
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If xe [1,2) thenP(X <x)=P(X=1)=1/6
If x € [2,3) thenP(X < x) = P(X(w) € {1,2}) =2/6

We continue this way to get:
Oifx<1
F(x) =14 i/6ifxefii+1)withi=15
lifx>6

Exercise 2.1 (Mixture of continuous and discrete random vaiable). Say a game
asks you to toss a coin. If the coin lands Tail you lose 13, iéHthen you draw a
number from[1,2] at random and gain that number. Furthermore, suppose that th
coins lands a Head with probabilify. Let X be the amount of money won or lost
after 1 game. Find the distribution of X.

Solution 2.3 (Solution).Let w = (i, w,) wherew, € {HeadTail} andw; in the
defining experiment space for the Uniform distribution. Nasfine a random vari-
ableY (wy) on the uniform[1,2] space. Then the random variaBles defined as:

-1 , if wy = Tall
(@) = o
Y(wp) if wn =Head

If xe [-1,1) we get:
P(X<x)=P(X=-1)=P(w =Tail) =1-p
If x € [1,2) we get:

PX<x)=P(X=-1orXe[1,x))=1—p+P(wn = headsY <Xx)

the two events are disjoint

=1-p+pP(Y€[1Xx))

Uniform[1,2]

X
=1-p+ |O/1 1dy=1-p+p(x—-1)
=1-2p+ px

Note that if the two parts of the game are not independentai-e¢her we cannot
calculate this distribution.
Finally, we obtain:

Oifx<—1
1-pifxe[-1,1)
1-2p+pxifxe[1,2)
lifx>2

F(x) =
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Checking that our calculation is corretitis always a good idea to check the re-
sult. We can verify the distribution function propertiesdave can plot the function
to confirm this.

Examples of commonly encountered Random Variables:

Discrete random variables

For discrete random variables we give the probability masstfon and it will de-
scribe completely the distribution (recall that the dimtition function is piecewise
linear).

(i) Bernoulli Distribution the random variable only takes two values:

X — 1 withP(X=1)=p
10 withP(X=0)=1-p
We denote a random variab¥ewith this distribution withX ~ Bernoulli(p).

(i) Binomialn, p) distribution the random variable takes valueNrwith:

P(X — k) — (1) p*(1—p)Kfor anyke€ {0,1,2,...,n}
0 otherwise
Note: X has the same distribution &g+ - - - Y, whereY; ~ Bernoulli(p)
We denote a random variab¥ewith this distribution withX ~ Binom(n, p).
(iii) Geometric(p) distributiorn

. [(@-pKlpforanyke {1,2---}
PX =k = { 0 otherwise
This is sometimes called Geometric “number of trials” disttion. We can also
talk about Geometric “number of failures distribution” wiution, defined:

PY —k—1) = { (1- p)k*18 foranyk € {1,2--}
otherwise
Most of the time when we writ¥X ~ Geometri¢p) we mean thaX has a Geo-
metric number of trials distribution. In the rare cases wiveruse the other one
we will specify very clearly.
(iv) Negative Binomialr, p) distribution

P(X =k) = (*H(a—p)*p foranyke {rr+1,...}
0 otherwise
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Similarly with theGeometri¢p) distribution we can talk about “number of fail-
ures” distribution, but I will not give that definition.

Let us stop for a moment and see where these distributionscanéng from.
Suppose we do a simple experiment, we repeat an experimenttimees. This ex-
periment only has two possible outcomes “success” withglodity p and “failure”
with probability 1— p.

e The variableX that takes value 1 if the experiment is a success and O otherwi
has aBernoulli(p) distribution.

e Repeat the experimenttimes in such a way that no experiment influences the
outcome of any other experimérand we count how many of therepetition
actually resulted in success. L¥tbe the variable denoting this number. Then
Y ~ Binom(n, p).

e If instead of repeating the experiment a fixed number of tinvesrepeat the
experiment as many times as are needed to see the first subessthe number
of trials needed is going to be distributed aSeometri¢p) random variable. If
we count failures until the first success we obtain@eometri¢p) “number of
failures” distribution.

e If we repeat the experiment until we sesuccesses, the number of trials needed
is aNegativeBinomidl, p)

(v) Hypergeometric distribution(N,m,n,p)
) (hi0)
[tlen)
N
(n)
This may be thought of as drawimgalls from an urn containing white balls
andN — m black balls, whereX represents the number of white balls in the

sample.
(vi) Poisson Distributionthe random variable takes valuesNn

P(X=k) = ke {0,1---m}

Continuous Random Variables.
In this case every random variable has a pdf and we will spéki§ function di-
rectly.

(i) Uniform Distribution[a,b], the random variable represents the position of a
point taken at random (without any preference) within thenval[a, bJ.

3 this is the idea of independence which we will discuss a bérla
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l .
_ 5z, ifxelab)
9 = { 0 ,otherwise

(i) Exponential Distributio(8)
f(x) = %e*"/e, x>0

(iif) Normal Distributior{u, o)

1 ~(x=p)?
e 202

f(x) =

ot , XeR

There are many more distributions, for our purpose the f@sgmted will suffice.

A special random variable: Dira¢ Delta distribution

For a fixeda real number, consider the following distribution function

0 ifx<a
Fs(X) =
5 {1 ifx>a

Fig. 2.1 A distribution func-
tion.

This function is plotted in Figur@.1 Note that the function has all the proper-
ties of a distribution function (increasing, right contous and limited by 0 and 1).
However, the function is not derivable (the distributioredamot have a pdf).

The random variable with this distribution is called a Dirarpulse function at
a. It can only be described using measures. We will come badkisofunction
when we develop the integration theory but for now let us kay if we define the

associated set function: _
1ifacA

Ofa}(A) = {0 otherwise
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this is in fact a probability measure with the property:

/h f(X)ddya) (x) = f(a), forall continuous function$

This will be written later ag%= [f] = f(a). (In other sciencedy, (f) = f(a)).
Also note that,) (A) is a set functiond is fixed) and has the same value as the
indicatorla(a) which is a regular function/is fixed).

2.2 Existence of random variables with prescribed distribdion.
Skorohod representation of a random variable

In the previous section we have seen that any random varede distribution
functionF, what is called in other classes the c.d.f. Recall the esdgmbperties
of this function from Propositio2.1 on page36: right-continuity, increasing, tak-
ing values between 0 and 1. An obvious question is given atifum& with these
properties can we construct a random variable with the eésiistribution?

In fact yes we can and this is the first step in a very importaabdtem we shall
see later in this course: the Skorohod representationéheddowever, recall that
a random variable has to have as domain some probabilityesfiaactually is true
that we can construct random variables with the prescristdlalition on any space
but recall that the purpose of creating random variablestavagave a uniform way
of treating probability. It is actually enough to give thedghod’s construction on
the probability spacé0,1], %([0,1]),A), whereA is the Lebesque measure.

On this space define the following random variables:

XT(w) =inf{ze R:F(2) > w}
X (w)=inf{ze R:F(2) > w}

Note that in statisticX ™~ would be called theo-quantile of the distributiof.

For most of the outcome® the two random variables are identical. Indeed, if
at z with w = F(z) the functionF is non-constant then the two variables take the
same valueX ™ (w) = X~ (w) = z The two important cases when the variables take
different values are depicted in Figl2e

We need to show that the two variables have the desiredulitih. To this end
letx € R. Then we have:

{we[0,1]: X~ (w) <x} =[0,F(x)]

Indeed, ifw is in the left set therX ™ (w) < x. By the definition ofX~ then
w < F(x) and we have the inclusiofi. If on the other handv € [0,F(x)] then
w < F(x) and again by definition and right continuity Bf X~ (w) < x, thus we
obtainD. Therefore, the distribution is:
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1 1
Wr-——""""""- i Wr----"-""--
0 | 0
X" (@) =X (@) X (@) z X" (@)

(a) A point of discontinuity fof~ (b) An interval where the functioR is constant

Fig. 2.2 Points where the two variablée"™ may have different outcomes

A{we[0,1]: X~ (w) <x}) =A([0,F(x)]) = F(x) —0=F(x).
Finally, X also has distribution functiof and furthermore:
AXT#£XT)=0.
By definition of X *:
{wel0,1]: X (w) <x} D[0,F(x)),
and soA (X < x) > F(x). Furthermore, sinc¥~ < X* we have:

{weR: X (w) #X (W)} = [J{weR: X (w) <x< X (w)}
xeQ

But for every suchx € Q:
A{weR: X (w) <x< XT(@)})=A{X" <x}\{XT<x})<F(X)—F(x)=0

SinceQ is countable and any countable union of null sets is a nultteetesult
follows.

2.3 Independence

In this section we extend the idea of independence origiregfined for events to
random variables. In order to do this we have to explain tl jdistribution of
several variables.
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Example 2.5 (The idea of joint distributior§uppose 2 pointé;, &, are tossed at
random and independently onto a line segment of lehdify, &, are i.i.d.). What
is the probability that the distance between the 2 points do¢exceed 1?

Solution 2.4 (Solution).If L < 1 then the probability is trivially equal to 1.

Assume that > 1 (the following also works if 1 is substituted by & L). What
is the distribution ofé; and &? They are botinif[0,L]. We want to calculate
P(|&1— &2/ < 1).

Fig. 2.3 The area we need to g
calculate. The blue parts need 2
to be deleted.

L-1

1 L g,

We plot the surface we need to calculate in Fig2u& The area within the rect-
angle and not shaded is exactly the area we need. If we picka@iny from within
this area it will have the property thgf; — &»| < 1. Since the points are chosen
uniformly from within the rectangle the chance of a pointigechosen is the ratio
between the “good” area and the total area.

2

The unshaded area from within the rectangld.fs- % — % =2L-1.
Therefore, the desired probability is:

2L—-1
P(|€1—-&|<1) = Iz
O

This geometrical proof works because the distribution ifoum and furthermore
the points are chosen independently of each other. Howéke idistribution is
anything else we need to go through the whole calculation st see how to
do this after we define joint probability. We need this to defihe independence
concept.
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2.3.1 Joint distribution

We talked about-algebras in Chaptet. Let us come back to them. If there is
any hope of rigorous introduction into probability and s$tastic processes, they are
unavoidable Later, when we will talk about stochastic processes we finitl out
the crucial role they play in quantifying the information available wpa certain
time. For now let us play a bit with them.

Definition 2.7 (o-algebra generated by a random variable)For a r.v.X we de-
fine the o-algebra generated by X, denotedX) or sometimeZx, the smallest
o-field ¢ such thatX is measurable 0oiQ,¥). It is the g-algebra generated by
the pre-images of Borel sets through(recall that we have already presented this
concept earlier in definitioh.3on paged). Because of this we can easily sHow

0(X) = o({w|X(w) < x}, asx varies inR).

Similarly, given Xy, Xo,...,X, random variables, we define the sigma algebra
generated by them as the smallest sigma algebra such tlzaieatieasurable with
respect to it. It turns out we can show easily that it is thesiglgebra generated by
the union of the individual sigma algebras or put more sp=adlfi o (X;,i < n) is the
smallest sigma algebra containing allX;), fori =1,2,...,n, oro(X1) Vo(X2) Vv
.-+ 0(Xn), again recall propositioh.2on pagelO.

In Chapterl we defined Borel sigma algebras corresponding to any s@ace
We consider the special case whén= R". This allows us to define a random
vector on(R", Z(R"),P) as (X1,Xz,...,X%n) where eachX is a random variable.
The probabilityP is defined onZ(R").

We can talk about its distribution (tHgoint distribution” of the variables
(X1,X2,...,%n)) as the function:

F (X1, %2, ..., Xn) = Po (Xg,Xa,. .., Xn) " ((—00,Xq] X - -+ X (—00,%])
— P(Xl leaxz S X27-"7Xn S Xn)7

which is well defined for any = (x1,X,...,X,) € R"

In the special case whéhcan be written as:

X1 X Xn
F(xl,xz,...,xn):/ / fy (t1, -+ ,tn)dty - - dtn,

we say that the vectoX has ajoint densityand fx is the joint probability density
function of the random vectof.

4 Remember that the Borel sets are generated by intervale oyjle(—oo, x|
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Definition 2.8 (Marginal Distribution). Given the joint distribution of a random
vectorX = (X1,Xp,...,%Xn) we define the marginal distribution f:

P (x1) = lim Fx(X1--%n)
Xn—s00

and similarly for all the other variablés.

2.3.2 Independence of random variables

We can now introduce the notions of independence and joid@pgandence using
the definition in Sectiorl.3, the probability measure: Po (X1, Xy, ... ,Xn)*1 and
any Borel sets. Writing more specifically that definitionrertsformed here:

Definition 2.9. The variable$X;, Xy, ..., Xn,...) are independent if for every subset
J={j1]2,...,Jk} 0f {1,2,3,... } we have:

P (Xjy < Xjp, Xip < Xjpy - Xjy <Xy ) = I_LP(XJ <X)
Je

Remark 2.3The formula in the Definitior2.8 allows to obtain the marginal distri-
butions from the joint distribution. The converse is geitgifalse meaning that if
we know the marginal distributions we cannot regain thetjoin

However, there is one case when this is possible: wkeare independent. In
this casex (x) = [iL; Fx (X). That is why the i.i.d case is the most important in
probability (we can regain the joint from the marginals with any other special
knowledge).

Independence (specialized cases)

(i) If X andY are discrete r.v.'s with joint probability mass functipry (-, -) then
they are independent if and only if

Px.y(X,Y) = px(X)pv(y), Xy

(i) If X andY are continuous r.v.'s with joint probability density furat f then
they are independent if and only if

fxy(xy) = fx(X)fy(y), Vxy

where we used obvious notations for marginal distributidriee above definition
can be extended todimensional vectors in an obvious way.

0

5 We can also define it simpler g8, [, -- [, fx(t1,---,tn)dt; - - -dt, if the joint pdf exists.
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I.I.D. r.v.’s: (Independent Identically Distributed Random Variaf)lélany of

the central ideas in probability involve sequences of ramdariables which
are independent and identically distributed. That is asege of random vari-
ables{X,} such thatX, are independent and all have the same distribution
function sayF (x).

Finally, we answer the question we asked in the earlier el@niphat to do if
the variables;, &, are not uniformly distributed?

Suppose tha§; had distributiorFs, andé; had distributionFs,. Assuming that
the two variables are independent we obtain the joint distion:

Fe e, (X1, %2) = Fg, (X1)Fe, (X2)

(If they are not independent we have to be given or infer thr pistribution).
The probability we are looking for is the area of the surface

{(61,82)[61€[0,L],62 € [O,L], &1 —1< & < &1+ 1}

We shall find out how to calculate this probability using gehdistribution func-
tionsFg, andF, in the next chapter. For now let us assume that the two vasabl
have densitie$; and f,. Then, the desired probability is:

L L
L[ Lo 10011y 0030 ey 00 sy ()b

which can be further calculated:

e WhenL—1<lorl<L<2:
L1 x4l L oL
/ / fe, (xa) f, (x2)dxpdxq + (2— L)L + / / fe, (%) f, (x2) e g
JO 0 J1 Jx—1
e WhenL—1>1orL > 2:
1 ma+l L-1 /x1+1
L b feeded+ [ [ "t )ty Go)dsd
x1—1
L L
+ e, (X1) fz, (Xo)dxdX
Jf s Tt el

Above is given to remind about the calculation of a two dinmenal integral.
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2.4 Functions of random variables. Calculating distributions

Measurable functions allow us to construct new random biégga These new ran-
dom variables possess their own distribution. This sedsidedicated to calculating
this new distribution. At this time it is not possible to waslith abstract spaces (for
that we will give a general theorem - the Transport formulthi next chapter) so
all our calculations will be done iR".

One dimensional functions

Let X be a random variable defined on some probability sgare”,P). Letg:
R — R be a Borel measurable function. Lét= g(X) which is a new random
variable. Its distribution is deduced as:
P(Y <y) = P(g(X) <y) = P(g(X) € (—,)]) =P (X € g *((—,¥]))
=P({w:X(w) € g H((—=,¥)})

whereg=1((—oo,y]) is the preimage of—,y] through the functiom, i.e.,:

{xeR:g(x) <y}.

If the random variabl& has p.d.ff then the probability has a simpler formula:

P(Y <y)= /7 f(x)dx
g 1(7°°1y]

Example 2.6Let X be a random variable distributed as a Normal (Gaussian) with
mean zero and variance X,~ N(0,1). Let g(x) = x?, and takeY = g(X) = X2.
Then:

0 ify<O

P(Yéy)=P(X2§Y>:{P(—ﬁgxgﬂ) ify>0

Note that the preimage df-c,y] through the functiorg(x) = x? is either 0 if
y <0 or[—-,/,/Yl if y> 0. This is how we obtain above. In the nontrivial case
y > 0 we get:

PY <y) = &(\y) - @(=vYy) = () - [1 - 2(\y)] = 2@(\y) - 1,

where@ is the c.d.foiX, aN(0, 1) random variable. In this case(x) = [* \/%Te*tz/zdt.
Since the function® is derivableY has a p.d.f. which can be obtained:



50 2 Random Variables

d 1
fy(y) = d—y[ch(\/y)] =20 (\/9)2—\/)—/
I P e I e
BT AR
1 e
= 2nye

O

We note that a random variabYewith the p.d.f. described above is said to have
a chi-squared distribution with one degree of freedom (tbtation isxlz).

Two and more dimensional functions

If the variableX does not have a p.m.f or a p.d.f there is not much we can do. The
same relationship holds as in the 1 dimensional case. Sgaljfiif X is an-dim
random vector ang : R" — R" is a measurable function which defines a new
random vecto¥ = g(X) then its distribution is determined using:

P(Y <y) =P(g(X) <y) =P ({w: X(w) € g~ H((~=,y])})

and this is the same relationship as before.

In the case when the vectirhas a density then things become more specific.
We will exemplify usingR? but the same calculation worksirdimensions with no
modification (other than the dimension of course). Supploaea two dimensional
random vectofXy, X) has joint densityf. Letg: R> — R? be a measurable func-
tion:

g(x1,%2) = (91(X1,%2),92(X1, %2))
Suppose first that the functiog is one-to-oné

Define a random vectdf = (Y1, Y2) = g(X1,X2). First we find the support set of
Y (i.e. the points wher¥ has nonzero probability). To this end let

A= {(x1,%2) 1 f(x1,%2) > O}
B ={(y1,¥2) : y1 = 01(X1,X2) andy, = go(X1,X2), for some(xy,x2) € A}

This B is the image of4 throughg, it is also the support set &f. Sinceg is one-
to-one, when restricted @: A — B itis also surjective, therefore forms a bijection
betweend andB. Thus, the inverse functiayn * (y1,y2) = (g7 *(y1,Y2), G5 L (Y1,Y2))

is a unique, well defined function.

6 this is why we use the same dimensiofor both X andY vectors
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To calculate the density of we need the derivative of thig~! and that role
is played by the Jacobian of the transformation (the deteantiof the matrix of
partial derivatives):

agrt agy*
F=(V1,Y2) G (y1Y2)

99 (y1,y2) %% (y1,y5)
ay; W1.Y2) 5y (Y1,¥2

Then, the joint p.d.f. of the vectdf is given by:

fy(yr.y2) = f (971 (Y1, ¥2). G M (Y. ¥2)) 9] 1s(y1.Y2)

where we used the indicator notation ddflis the absolute value of the Jacobian.
Suppose that the functiolg is not one-to-one

In this case we recover the previous one-to-one case byictexirthe func-
tion. Specifically, define the setd and 5 as before. Now, the restricted function
g: A — B is surjective. We partitiord into Ag, A1, Ao, ..., Ax. The setdg may
contain several points which are difficult to deal with, th@yocondition is that
P((X1,X2) € Ag) = 0 (it is a null set). Furthermore, for alls 0, each restric-
tion g: A; — B is one-to one. Thus, for each suick 1, an inverse can be found
g Y(y1,y2) = (911 (1,¥2), 951 (Y1, ¥2))- Thisi-th inverse gives for angys,y2) € B a
unique(xg,X2) € Aj such thaty1,y2) = g(x1,%2). LetJ; be the Jacobian associated
with thei-th inverse transformation. Then the joint p.d.fYofs:

k
fyv (y1,y2) = .Zf (9 (V1 Y2). G2 (Y1, ¥2)) 131 15(y1.¥2)

Example 2.7Let (X1,X2) have some joint p.d.ff(-,-). Calculate the density of
X1Xo.

Let us takeY; = X1X; andY, = X; i.e. g(Xl,Xz) = (XaX2, X1) = (Y1,¥2). The
function thus constructegl: R? — R? is bijective sa3 = R?. To calculate its inverse:

X1=Y2
Xzzﬁzﬁa
X1 Y2

which gives:

g ty1,y2) = <y2, ﬂ)
Y2

We then get the Jacobian:
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J _ s = Y. = O— _— = ——
-1 (Y1 Y2) = |1 _% %Y
Thus, the joint p.d.f o = (Y1, Y>) is:
yi) |1l
f ) - f 3 )
v(Y1:Y2) <Y2 y2> v

wheref is the given p.d.f. oK. To obtain the distribution aX1 X, = Y; we simply
need the marginal p.d.f. obtained immediately by integratiutY>:

d 1 1
fy,(y1) = '/%of <YZa y—2> : deZ
O

Example 2.8 (A more specific examplegt X3, X, be independent Exp(. Find the
joint density ofY; = X3 + Xz andY, = X—; Also show that the variablég andY, are
independent.

Letg(xy,xp) = (x1+ X2, %) = (y1,Y2). Let us calculate the domain of the trans-

formation.
Remember that the p.d.f of the exponential distribution is:

f(x)=A e*“l((,,m) (x),

thus.A = (0,) x (0,0). Sincexz, Xz > 0 we get thak; +x2 > 0 and% >0, and
soB = (0,0)? as well. The functiorg restricted to this sets is bijective as we can
easily show by solving the equations:= x; + X andy, = % We obtain:

X1 =XoY2 = Y1 =XoY2+ X2

Y1
= Xp =
2 1+ys
y1y2
=X =
1 1+yo

Since the solution is unique the functigiis one-to-one. Since the solution exists
for all (y1,y2) € (0.00)? the function is surjective. Its inverse is precisely:

-1 [ Y1iy2 Y1
g “(yny2) = (1+y2’ 1+y2)

Furthermore, the Jacobian is:

1y2 I 1
+Y2 +Y2
yi Y1

(1+y2)?  (L+y2)?

yiya v N
(14y2)°3 (1+yy)?® (14y2)?

Jg*1 (Y17YZ) =
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Thus the desired p.d.fis:

y1y2 Y1 Y1
f = f - 1
v(Y1,Y2) <1+y2’ 1+y2> ‘ (1+y2)2 (Y1.y2)€(0,20)2
e et N g
=A€ 2Ae T2 (1+y2)2 {y1.y2>0}
32,22 Y1
=A% ylml{ymw}

Finally, to end the example it is enough to recognize thatgluef. of Y can be
decomposed into a product of two functions, one of them antiaé variabley; and
the other only a function of the variabje. Thus, if we apply the next lemma the
example is solved. a

Lemma 2.2.If the joint distribution f of arandom vectdX,Y) factors as a product
of functions of only x and y, i.e., there exishgR — R such that {x,y) = g(x)h(y)
then the variables X are independent.

Proof. Problem2.12

Example 2.9Let X, Y be two random variables with joint p.df(-,-). Calculate
the density oiX + Y.

Let (U,V) = (X+Y,Y). We can easily calculate the domain and the inverse
g %(u,v) = (u—v,v). The Jacobian is:

1-1

Jy1(u,v) = ‘O 1

g ‘—1

As a result the desired p.d.f. is:
fu(u) = / f(u—v,v)dv

We will observe this particular example later when we talkwlconvolutions.

Example 2.10Let X; andX; be i.i.d.N(0, 1) random variables. Consider the func-
tion g(x1,X2) = (%, |x2|). Calculate the joint distribution of = g(X) and the dis-
tribution of the ratio of the two normal&; /X,.

First, A = R and B = R x (0,»). Second, note that the transformation is not
one-to-one. Also note that we have a problem wkes 0. Fortunately, we know

7 0is in.A sincefx,(0) >0
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how to deal with this situation. Take a partition.dfas follows:
Ao ={(x1,0) : xq € R}, A1 = {(X1,%2) : X2 < 0}, A1 = {(x1,%2) : X2 > 0}.

Ap has the desired property sinBg¢(Xi,Xz) € Ag) =P(X2=0)=0 (X2 is a
continuous random variable). Restricted to eAclhe functiong is bijective and
we can calculate its inverse in both cases:

91 (Y1, Y2) = (—y1y2, —Y2)
9, 1 (y1.y2) = (Y2, Y2)

In either case the Jacobian is identidgak J, = y». Using the p.d.f. of a normal with
mean zero and variance (&) = \/%Tea@/z), and thatX; andX, being independent
the joint p.d.f. is the product of marginals we obtain:

1 e 1 _
fy(y1,y2) = (Z_[e (—y1y2)?/2g( Y2)2/2|y2|+5_[e (1y2)?/2g (y2)2/2|y2|) Liy,=0}

v3+1y3
= Eei . : 1{)/2>0}1 yl € Ra

and this is the desired joint distribution. To calculate dhgtribution of X; /X, we
calculate the marginal of; by integrating out/,:

o Vi+1y5
fvl(Y1):/0 y—ﬁe’ “z7dy, ( Change of variableg =1)
roo (3+1)
0 21 2y +1
1

=————, V1€R
n(y?+1) "
But this is the distribution of a Cauchy random variable. §ke have just proven
that the ratio of two independeNt{0, 1) rv's has a Cauchy distribution. O

We conclude this chapter with a non-trivial applicationta Borel-Cantelli lem-
mas. We have postponed this example until this point sinceegeed to learn about
independent random variables first.

Example 2.11Let {X,} a sequence of i.i.d. random variables, each exponentially
distributed with rate 1, i.e.:
PXh>x)=€% x>0.

We wish to study how large are these variables when c. To this end take
x = alogn, for somea > 0 and for anyn > 1. Substitute into the probability above
to obtain:
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1

P(X, > alogn) = e 909" — n=@ — =

But we know that the surg, nia is divergent for the exponent < 1 and convergent
for a > 1. So we can apply the Borel-Cantelli lemmas since the evermgestion
are independent. Thus,

If a <1 the sum is divergent and §6,P(X, > alogn) = oo, thus:

P(ﬁ >ai.o.) =1
logn

If a > 1 the sum is convergent, afyg, P(X, > alogn) < o, thus:

P(i >ai.o.) =0
logn

We can express the same thing in terms of lim sup like so:

P(Iimsupﬁ>a)_ 0 ’ffa>1
n  logn 1 ,ifa<1

Since for alla < 1 we have thaP (Iim sup, % > a) =1, then we necessarily
have:

P (Iimsupi > 1) =1
n logn

Takea = 1+ & and look at the other implicatiof (Iim SUP g > 1+ %) =0,
and this happens for dlle N, . But we can write:

{Iimsupﬁ > 1} = {Iimsupi > 1+}},
n logn o n - logn K
and since any countable union of null sets is itself a nullthet probability of the

event on the left must be zero. Therefore, Iim@% <1 a.s. and combining with
the finding above:

Iimsupﬁzl, a.s.
n  logn

Thisis very interesting since as we will see in the chaptdiadged to the Poisson
process, thesk, are the inter-arrival times of this process. The exampleabells
us that if we look at the realizations of such a process they fibrm a sequence of
numbers that has the upper limiting point equal to 1, or pfi€intly there is no
subsequence of inter-arrival times that in the limit is ¢geethan the log.
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Problems

2.1.Prove the Propositiod.1 That is prove that the functioR in Definition 2.4
is increasing, right continuous and taking values in theril [0, 1], using only
propositionl.3on pagel3.

2.2.Show that any piecewise constant function is Borel measeirédee description
of piecewise constant functions in Definiti@ré

2.3.Give an example of two distinct random variables with the eatistribution
function.

2.4. Buffon’s needle problem

Suppose that a needle is tossed at random onto a plane rulegavallel lines a
distancel apart, where by a “needle” we mean a line segment of lehgth.
What is the probability of the needle intersecting one ofghrallel lines?

Hint: Consider the angle that is made by the needle with thallehlines as a
random variablex uniformly distributed in the intervalD, 2r1 and the position of
the midpoint of the needle as another random vari&lakso uniform on the interval
[0,L]. Then express the condition “needle intersects the patalés” in terms of

the position of the midpoint of the needle and the angl®o a calculation similar
with example2.5.

2.5.A random variableX has distribution function

F(x)=a+ barctang , =00 < X< 00
Find:
a) The constanta andb
b) The probability density function of

2.6.What is the probability that two randomly chosen numbersvbet O and 1
will have a sum no greater than 1 and a product no greater%tifhn

2.7.We know that the random variabl¥sandY have joint densityf (x,y). Assume
thatP(Y = 0) = 0. Find the densities of the following variables:

a)X+Y

b) X -Y

c) XY

d) é

2.8.Choose a poinA at random in the intervdD, 1]. Let L; (respectivelyl,) be
the length of the bigger (respectively smaller) segmergrdgned by A on[0,1].

Calculate:

a)P (L1 <x)forxeR.

b) P(L, <x) forx € R.
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2.9.Two friends decide to meet at the Castle gate of StevengutestiThey each
arrive at that spot at some random time betwaenda-+ T. They each wait for
15 minutes then leave if the other did not appear. What is tbbability that they
meet?

2.10.LetXq,Xz,..., X, be independefd (0, 1) random variables. Lé#l = max<ij<p X;.
Calculate the distribution function oA.

2.11.The random variable whose probability density functioniveqg by:

f(x)_{%/\eAX . ifx<0

l - .
IAeM | if x>0,

is said to have a Laplace, sometimes calletbable exponentiabistribution.
a) Verify that the density above defines a proper probaldiggribution.
b) Find the distribution functiof (x) for a Laplace random variable.

Now, letX andY be independent exponential random variables with paramete
Let| be independent of andY and equally likely to be 1 o¢1.

¢) Show thaX — Y is a Laplace random variable.

d) Show thaiX is a Laplace random variable.

e) Show thaW is a Laplace random variable where:

W X , !flzl
if | =—1.

)

2.12.Give a proof of the lemma.2on pages3.



Chapter 3
Integration Theory

In the previous chapter we learned about random variabléghasir distributions.
This distribution completely characterizes a random ¥deiaBut in general dis-
tributions are very complex functions. The human brain carmomprehend such
things easily. So the human brain wants to talk about one&ypalue. For exam-
ple, one can give a distribution for the random variable@spnting player salaries
in the NBA. Here the variability (probability space) is repented by the specific
player chosen. However, probably one is not interested¢h sudistribution. One
simply wants to know what is the typical salary in the NBA. Terson probably
contemplates a career in sports and wants to find out if ashdet@should go for
basketball or baseball, therefore he is much better serveolmparing only two
numbers. Calculating such a number is hard (which numbbkr?his chapter we
create a theory to calculate any numbers that the persoresvistaradoxically, to
calculate a simple number we need to understand a very cariigery.

3.1 Integral of measurable functions

Recall that the random variables are nothing more than malleufunctions. Let
(Q,.7,P) be a probability space. We wish to define for any measurabietifon f
an integral off with respect to the measuire

Notation. We shall use the following notations for this integral:

/ f(w)P(dw) = / fdp
Q .
forAc 7 we have/ f(w)P(dw):/ fdp = / f1adP
JA JA .
Recall the Dirac Delta we have defined previously? With it lsemmation is

another kind of integral. Lefa,} be a sequence of real numbers. ke R,.7 =
A(R) and the measure on this sedifA) = 5121 & (A).

59
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Then the function — &; is integrable if and only ify & < « and in this case we
have:

nian = ni/o;axdén(x) = /o;axnidén(x) = /:axdé(x)

What is the point of this? The simple argument above shovistha'discrete” ran-
dom variable (in the undergraduate text definition) may eaterd as a “continuous”
random variable. Not that there was any doubt after all thess we made about
it in the previous chapter.

Integral of Simple (Elementary) Functions

If Ae .7 we know that we can define a measurable function by its inolick{.
We define the integral of this measurable functiphh,dP = P(A). We note that
this variable has the same distribution as that of the Bdlirandom variable. The
variable takes values 0 and 1 and we can easily calculatertialpility that the
variable is 1 as:

Pol,1({1}) = P{w: 1a(w) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli randaniable with parameter
p=P(A).

Definition 3.1 (Simple function). f is called asimple(elementary) function if and
only if f can be written as a finite linear combination of indicatorsware specif-
ically there exist seté\, Ay, ..., Ay all in .# and constanta,ay,...,a, in R such

that:

n

f(0) = T ada(®)
k=1

If the constantsy are all positive, therf is a positive simple function.

Note that the set8; do not have to be disjoint but an easy exercise (Protiein
shows thatf could be written in terms of disjoint sets.
For any simple functiorf we define its integral:

n

/ fdP= 3 aP(A) <
b k=1

We adopt the conventions«® = 0 ande x 0 = 0 in the above summation.

We need to check that the above definition is proper. For test many repre-
sentations of a simple function and we need to make sure iiyaguech representa-
tion produces the same integral value. Furthermore, tleatity and monotonicity
properties of the integral may be proven. We skip thesetesince they are simple
to prove and do not bring any additional insight.



3.1 Integral of measurable functions 61

Integral of positive measurable functions

For everyf positive measurable functioh: Q — [0, ) we define:
/ fdP = sup{/th: his a simple functionh < f}

For a given positive measurable function can we find a segueisimple func-
tions that converge to it? The answer is yes and is providetheynext simple
exercise:

Exercise 3.1.Let f : Q — [0,] be a positive, measurable function. Forral 1,

we define:
n2"—-1 k

fn(w) == kzo ?l{%gf(ka_;n;}(w)+n1{f(w)2n} (3.1)

1. Show thatf, is a simple function ofiQ, %), foralln> 1.

2. Show that the sets present in the indicators in equafidij form a partition of
Q,foralln> 1.

3. Show that the sequence of simple functions is increaginggn.1 < f, for all
n>1.

4. Show thagy, T f asn — co. Note that this is not an a.s. statement, it is true for all
we Q.

The solution to this exercise is not complicated and in fistan assigned problem
(Problem3.3).
The following lemma is a very easy to understand and useflll to

Lemma 3.1.If fis a positive measurable function arfid dP = 0 thenP{f >0} =0
(or f =0a.s.).

Proof. We have{f > 0} = Up>o{f > %}. Since the events are increasing by the
monotone convergence property of measure we mustPgie 0} = limp_... P{f >
11.1f we assume by absurd the{ f > 0} > 0 then there must exist ansuch that

P{f > %} > 0. However, in this case by the definition of the integral o$ifiee
measurable functions:

1
/fsz/ﬁl{f>%}dP>O,

contradiction. O

The next theorem is one of the most useful in probabilityrihémour immediate
context it tells us that the integral for positive measuedbhctions is well defined.

Theorem 3.1 (Monotone Convergence Theorem)f f is a sequence of measur-
able positive functions such that f f then:

/fn(a))P(dw)T/f(w)P(dw)
Q Q
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Note: This is all there is to integration theory. The proof of thermatone con-
vergence theorem is not difficult, you may want to look at it.

Proof. lon: Write the proof

Integral of measurable functions

Let f be any measurable function. Then we wifite- f+ — f~ where:

f*(s) = max{f(s),0}
f7(s) = max{—f(s),0}

Thenf* andf~ are positive measurable functions afif= f* + f ~. Since they
are positive measurable their integrals are well definedhbytevious part.

Definition 3.2. We defineL'(Q,.7,P) as being the space of all functiofissuch
that: i _ i
/|f|dP= /f+dP+/f*dP< o
For any f in this space which we will shorten 10'(Q) or even simpler td.* we
define: i _ i
/fdP: /f*dP—/f’dP

Note: With the above it is trivial to show thay fdP| < [|f|dP

Linearity:
If f,gcL(Q)witha,beR, then:
af+bge L1(Q)
/(af+bg)dP: a/fdP+b/gdP

Lemma 3.2 (Fatou’s Lemma for measurable functions)lf one of the following is
true:

a) {fn}n is a sequence of positive measurable functions or
b) {fn} C L1(Q)

then:
/ liminf f,dP < liminf / f.dP

Proof. Note that liminf, fy = limm e iNfr>m fn, where limy_e info>m fn is an in-
creasing sequence.
Letgm = infrn>m fn, andn > m:
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fo > inf fm = gm = /fnsz /gdP:> /gmdpg inf /fndP
n>m n>m
Now gn, increases so we may use the Monotone Convergence Theoreneayet:

/Iim gmdP_ lim /gmdpg lim inf fndP:Iiminf/fndP
m—oo m—oo m— > n

on>m

Theorem 3.2 (Dominated Convergence Theoremi. f,, f are measurable .fw) —
f(w) for all w € Q and the sequence fs dominated by g L1(Q) :

Ifh(w)]<g(w), YweQ,VneN

then: _
fo— f in LY(Q) (i.e./|fn—f|dP—>0)

Thus[f,dP — [fdPandf € LY(Q).

The Standard Argument:

This argument is the most important argument in the protipliieory. Suppose
that we want to prove that some property holds for all funtdio in some space
such ad.}(Q) or the space of measurable functions.

1. Show that the resultis true for all indicator functions.

2. Use linearity to show the result holds true for alimple functions.

3. Use the Monotone Convergence Theorem to obtain the risuiheasurable
positive functions.

4. Finally from the previous step and writirfg= f* — f~ we show that the result
is true for all measurable functions.

3.2 Expectations

Since a random variable is just a measurable function wengestl to particularize
the results of the previous section. An integral with respea probability measure
is called an expectation. Lé®,.%,P) be a probability space.

Definition 3.3. ForX a r.v. inL(Q) define:

E(X):/QXdP:/QX(w)dP(w):/QX(oo)P(dw)

This expectation has the same properties of the integratetbthefore and some
extra ones since the space has finite measure.
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Convergence Theorems:

() Monotone Convergence TheorethX, > 0, X, € L andX, T X thenE(Xy) 1
E(X) < o.

(i) Fatou: E(liminfp_e Xn) < liminfp_e E(Xn)

(i) Dominated Convergence TheoretiX,(w)| < Y(w) on Q with Y € LY(Q)
andXp(w) — X(w) for all w € Q thenE(|X, —X|) — 0.

Now let us present specific properties of the expectatiois iBito be expected
since the space has finite measure therefore we can obtaiapecific properties.
Markov Inequality:

LetZ be ar.v. andlegy: R — [0, ] be anincreasingmeasurable function. Then:

E[9(2)] = E[9(2)1iz5¢] = 9(c)P(Z >¢)

Thus

P(Z>c) <
for all g increasing functions and> 0.

Example 3.1 (Special cases of the Markov inequallfyve takeg(x) = x an in-
creasing function and a positive random variable then we obtain:

P(Z>c) < @
To get rid of the necessity that > 0 takeZ = |X|. Then we obtain the classical
form of the Markov inequality:

E(X))

>c) <
P(X| > 0) < =2

If we takeg(x) = X%, Z = |[X — E(X)| and we use the variance definition (which
we will see in a minute), we obtain the Chebyshev inequality:

Var(X)
cz

P(IX-E(X)[>¢) <

If we denoteE(X) = p andVar(X) = o and we take = ko in the previous inequal-
ity we will obtain the classical Chebyshev inequality presel in undergraduate
courses:

1
P(X—pl=zko) < 7.

If g(x) = €%, with 6 > 0 then
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P(Z >c) < e E(e%),

This inequality states that the tail of the distribution algs exponentially irt if Z
has finite exponential moments. With simple manipulations can obtain Cher-
noff’s inequality using it.

Jensen'’s Inequality for convex functions:

This is just a reminder.

Definition 3.4. A functiong : | — R is called a convex function on(wherel is
any open interval ifR, if its graph lies below any of its chords. Mathematicallyr. f
anyx,y € | and for anya € (0,1) we have

glax+(1—a)y) <ag(x)+(1—a)g(y).
Some examples of convex functions on the wHgiéx|, x> ande®, with 8 > 0.

Lemma 3.3 (Jensen’s Inequality)Let f be a convex function and let X be ar.v. in
LY(Q). Assume thaE(f (X)) < o then:

FE(X)) <E(f(X))

Proof. Skipped. The classical approach indicaterssimple functions— positive
measurable~ measurable is a standard way to prove Jensen.

LP spaces.

We generalize the! notion presented earlier in the following way. Forlp < o
we define the space:

LP(Q,.7,P) = LP(Q) = {x Q- R:E[XP] = /|X|de < oo},

On this space we define a norm called fheorm as:
1
[1X]lp = E[1X|P1'P

Lemma 3.4 (Properties ofLP spaces).

(i) LPis a vector space. (i.e., if ¥ € LP and ab € R then aX+ bY € LP).
(i) LP is complete (every Cauchy sequencefind.convergent)

Lemma 3.5 (Cauchy-Bunyakovsky-Schwarz inequality)If X,Y € L?(Q) then
X,Y € LY(Q) and
[EIXY]] < E[IXY]] < [[X][2[[Y]]2
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A historical remark.This inequality, one of the most famous and useful un any
area of analysis (not only probability) is usually creditedCauchy for sums and
Schwartz for integrals and is usually known as the Cauchys@dz inequality.
However,the Russian mathematician Victor Yakovlevich yakovsky (1804-1889)
discovered and first published the inequality for integnal$859 (when Schwartz
was 16). Unfortunately, he was born in eastern Europe...adewall who are born

in eastern Europe (including myself) learn the inequalitytb proper name.

Proof. The first inequality is clear by Jensen inequality. We neeshtow
E[IXY]) < (E[X?)Y2(E[Y?)*?

LetW = |X| andZ = |Y| thenW,Z > 0.
Truncation:
LetW, =W AnandZ,=ZAnthatis

W(w), ifW(w)<n
n, if W(w) >n

Wn((l)) == {
Clearly, defined in this waW,, Z, are bounded. Led, b € R two constants. Then:
0 < E[(@Wh + bZ,)?] = a?E(W?) + 2abE(WhZy) + b?E(Z32)
If we leta/b = cwe get:

C’E(W?) 4+ 2cE(WhZn) +E(Z2) >0 VYceR

This means that the quadratic functiorcihas to be positive. But this is only possi-
ble if the determinant of the equation is negative and theitepcoefficients (W?)
is strictly positive, the later condition is obviously truehus we must have:

4(E(WhZn))? — 4E(W2)E(Z2) <0
= (E(WhZn))> < EMP)E(Z) < EWA)E(Z?)  vn

If we letn T 0 and use the monotone convergence theorem we get:

(E(W2))? < E(W?)E(Z?).

A more general inequality is:

Lemma 3.6 (Holder inequality). If 1/p+1/q=1, X € LP(Q) and Y€ L9(Q) then
XY € LY(Q) and:

P3 a\a
EIXY[ < [IX][[pllY[lq = (E[X[P)? (E[Y[*)a
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Proof. The proof is simple and uses the following inequality (Youmegquality): if
aandb are positive real numbers agxlq are as in the theorem then:

aP  bd
abg _+_a
P qQ

with equality if and only ifaP = bd.
Taking this inequality as given (not hard to prove) define:

_ X M

= 9= o
X1l I¥1lp

Note that the Holder inequality is equivalent witifg] < 1 (|[X|/p and|Y||q
are just numbers that can be taken in and out of integral blirtkarity property).
To prove this apply the Young inequality fo> 0 andg > 0 and then integrate to
obtain:

1 1 1 1
E[fg < =E[fP]+=E[g)==+==1
[fg = JEIFF+ BT =5+
E[fP] = 1 and similarly forg may be easily checked. Finally, the extreme cases
(p=1,g= o, etc.) may be treated separately. a

Lemma 3.7 (Minkowski Inequality). If X,Y € LP then X+Y € LP and:
IX+Ylp < [IX[lp+1Ylp
Proof. We clearly have:
X+ Y|P < 2P H(X|P+ |Y[P).

For example use the definition of convexity for the functidnwith x = |X| and
y=1Y| anda = 1/2. Now integrating implies thaX +Y € LP. Now we can write:

IX+YIB = ElX+Y[P] < E[(X]+YDIX+Y[P]
= E[IX|IX+Y[PH] +E[[Y][X+Y]P]

" XD MP (B [k i) ) vy (& [x v o))

(o= :pE )

= (IX[lp+ 1Y)

/a

(IXllp+ ¥ ) (EIX + Y [P 5
E[X+ Y]
X+

Now, identifying the left and right hand after simplificat®we obtain the result.
O

Example 3.2 (due to Efi). Suppose there are 17 fence posts around the perimeter
of a field and exactly 5 of them are rotten. Show that irrespedf which of these
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5 are rotten, there should exist a row of 7 consecutive pdstdizh at least 3 are
rotten.

Proof (Solution)First we label the posts 2---17. Now define :

L 1 if postk s rotten
kK= 0 otherwise

For any fixedk, let R¢ denote the number of rotten posts amdng1,--- ,k+7
(starting with the next one). Note that when anykef 1,--- ,k+ 7 are larger than
17 we start again from 1 (i.e., modulo 17 +1).

Now pick a post at random this obviously can be done in 17 waitts @equal
probability. Then after we pick this post we calculate thenber of rotten boards.
We have:

17 1
E(R¢) = z (et +l7) 75

& 17

1 17 7 1 7 17
=71 ltj == 75 ljk

174 le 17 lek;

1 7
=17 5 (the sum is 5 since we count all the rotten posts in the fence)

j=1

35
17

Now, 35/17 > 2 which impliesE(Rx) > 2. ThereforeP(Ry > 2) > 0 (otherwise the
expectation is necessarily bounded by 2) and sitds integer valuedP(R¢ > 3) >
0. So there exists sontesuch thaR, > 3.

Of course now that we see the proof we can play around with eusrdnd see
that there exists a row of 4 consecutive posts in which at teasare rotten, or that
there must exist a row of 11 consecutive posts in which at kease rotten and so
on (row of 14 containing all 5 rotten ones).

3.3 Variance and the correlation coefficient

Definition 3.5. The variance or the Dispersion of a random variable L2(Q) is:
V(X) = E[(X = p)?] = E(X?) — pi?
Wherepu = E(X).

Definition 3.6. Given two random variables,Y we call the covariance betweehn
andY the quantity:

CoMX,Y) = E[(X — px) (Y — ay)]
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Wherepux = E(X) andpy = E(Y).
Definition 3.7. Given random variableX,Y we call the correlation coefficient:

B _CouX,Y)  E[(X—px)(Y — )]
p =Corr(X,Y) = NOXNVY)  VEX - iOZEY — i)

From the Cauchy-Schwartz inequality appliedkte- ux andY — iy we get/p| < 1
orpe[-1,1].

The variableX andY are calleduncorrelated if the covariance (or equivalently
the correlation) between them is zero.

Proposition 3.1 (Properties of expectation)The following are true:

() f X andY are integrable r.v's then for any constantand the rv.aX + Y
is integrable andE[aX + BY] = aEX + BEY.

(i) V (aX +bY) = a?V (X) + bV (Y) + 2abCo\(X, Y)

(iii) If X ,Y are independent the&(XY) = E(X)E(Y) and CoyX,Y) = 0.

(iv) If X(w) = ¢ with probabilityl and ce R a constant thefEX = c.

(V) If X >Y a.s.therEX > EY. Furthermore, if X>Y a.s. andEX = EY then
X=Y a.s.

Proof. Exercise. Please note that the reverse of the part (iii) @monot true, if the
two variables are uncorrelated this does not mean that tieeyndependent. In fact
in Problem3.5you are required to provide a counterexample.

3.4 Functions of random variables. The Transport Formula.

In Section2.40n paget9we showed how to calculate distributions and in particular
p.d.f’s for continuous random variables. We have also [setha more general
result. Well, here it is. This general result allows to comstrandom variables and
in particular distributions in any space. This is the rethdt allows us to claim that
studying random variables aii0, 1], %([0,1]),A) is enough. We had to postpone
presenting the result until this point since we had to least ffiow to integrate.

Theorem 3.3 (General Transport Formula).Let (Q, R, P) be a probability space.
Let f be a measurable function such that:

(2,7) - (89) - (R A(R)),
where(S ¢) is a measurable space. Assuming that at least one of theal$ezxists

we then have:
/q)ofdP:/dePof’l,
Q S

for all ¢ measurable functions.
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Proof. We will use the standard argument technique discussed above

1. Let¢ be the indicator functionp = 1 for A€ ¥4:

1ifweA
1a(w) = {O otherwise

Then we get:
/QlefdP:/QlA(f(w))dP(w) :/Qlfflw(w)dp(w)
— P(f"L(A)) = Po f1(A) = /SlAd(Po i)

recalling the definition of the integral of an indicator.
2. Let¢ be a simple functio = S ; ai1p wherea;’s are constant and; € ¢.

/;2¢ofdP:'/;2<iialei> o fdP
:/Qiia{-(lAiof)dP:iia;/QlAiofdP

(part1) & / 1 g 1 " 1
DS & [10dPo f :/ aladPof =/¢dPof
2,3 J OXhe S

3. Let¢ be a positive measurable function anddgtbe a sequence of simple func-
tions such tha$, ¢ then:

/g¢ o fdP= /Q(r[mo $n)o fdP

— [ 1im (¢no f)dP

JQ n—oo n—oo

monotone convergenCﬁm

/}pno fdp

(part3 lim /¢ndPo f -1 monotone convergencef lim ¢ndPo £
_ / ¢d(Pof1
S

4. Let¢ be a measurable function thér = max(@,0), ~ = max(-¢,0). Which
then gives u® = ¢ " — ¢ . Since at least one integral is assumed to exist we get
that [¢+ and [¢~ exist. Also note that:

9 of(w)=9¢"(f () =maxd(f(w)),0)
max(@ o f(w),0) = (9o f)"(w)

Then:
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/q)*dPof*l:/d;*ofdP:/(q)of)*dP
/¢’dPof*l:/¢*ofdP:/(¢of)*dP

These equalities follow from part 3 of the proof. After swaatiing both:

/q)dPof*l:/d;ofdP

Exercise 3.2If X andY are independent random variables defined @nR, P)
with X,Y € L1(Q) thenXY € L}(Q):

/.XY(:P: /XdP/YdP (E(XY) = E(X)E(Y))
Q JQ JQ

Proof (Solution)This is an exercise that you have seen before, here is pegsent
exercise the standard approach.

Example 3.3Let us solve the previous exercise using the transport flarnhet us
takef : Q — R?, f(w) = (X(w),Y(w)); and¢ : R? — R, ¢(x,y) = xy. Then we
have from the transport formula:

/ X (@)Y (w)dP(w) 2 / xydPo (X,Y) 1
Q R2

The integral on the left i€(XY), while the integral on the right can be calculated
as:

/ xyd(PoX L Poy 1) :/ deOX*l/ ydPoy1
JR? R R
@/ X(oo)dP(w)/ Y (w)dP(w) = E(X)E(Y)
Q Q
Example 3.4Finally we conclude with an application of the transportnfioita

which will produce one of the most useful formulas. Rétbe a r.v. defined on
the probability spacéQ, .7, P) with distribution functionF (x). Show that:

E(X):/ xdF(x),
R
where the integral is understood in Riemann-Stieltjesesens

Proving the formulais immediate. Take Q — R, f(w) = X(w) and¢ : R — R,
#(x) = x. Then from the transport formula:

E(X):/K'?X(w)dp(w):'/éxOX(w)dP(w)@/ﬂ%xdpowl(x):/ﬂ%xdF(x)

Clearly if the distribution functionF(x) is derivable with%(x) = f(x) or
dF(x) = f(x)dx we obtain the lower level classes formula for calculatingesx
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tation of a “continuous” random variable:

E(X) = /ﬂ;\]xf(x)dx

3.5 Applications. Exercises in probability reasoning.

The next two theorems are presented to observe the proag.ara both early exer-
cises in probability. We will present later much strongesiens of these theorems
(and we will also see that these convergence types have vecjsp definitions),
but for now we lack the tools to give general proofs to thesmngfer versions.

Theorem 3.4 (Law of Large Numbers).Let (Q,.%,P) be a probability space and
let {Xn}n be a sequence of i.i.d random variables vEitX; ) = [, X dP = . Assume
that the fourth moment of these variables is finite El(\l{i“) = Ky for all i. Then:

X — Zin:n1xi _ X1+-r-]-+xn E’N

Proof. Recall what it means for a statement to hold almost surely)(dn our
specific context if we denot®, = X; + - - - + X then we need to show thBtS,/n —

p)=1.

First step.Let us show that we can reduce to the cas&@f;) = u = 0. Take
Yi = X — . If we prove thatYlJr%n'+Yn — 0 then substituting back we shall obtain
@ — 0, or % — W. Which gives our result. Thus we assume tBgX;) = u =0.

Second stepiVe want to show tha > 0. We have:

E(S) =E((Xa+--+Xn)*) :E< ><i><j><k><4>

i, J5K|

If any factor in the sum above appears with power one, frorefpretidence we will
haveE(XXjXX) = E(X)E(XjXX) = 0. Thus, the only terms remaining in the
sum above are those with power larger than one.

N _ 4 4 2y 2
- (u, ,IX'XJXle> - (ZK +% (2>)§ XJ)
= SEX)*+6 E(XXP)

i<]
Using the Cauchy-Schwartz inequality we get:
E(XXF) < EOYZE(X) Y2 = Ky < o0

Then:
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E(S) = iE(m“%_z EOG?X]) < nK4+6(2) Ka

i<]

= (n+3n(n—1))Ks= (3n® — 2n)K4 < 3n%K,4

Therefore:

©/s\Y 2 EE) 23K 2K
E(nzl(ﬁ) >_nzl n4 SnZ:L n4 _nzlﬁ<oo

Since the expectation of the random variable is finite themuwst have the random
variable finite with the exception of a set of measure 0 (otiwr the expectation

will be infinite). This implies:
4
> (E) <o as.
n

n

But a sum can only be convergent if the term under the sum cgesedo zero.

Therefore: 4
lim (E) =0 a.s.

n—oo n

and consequently:
S’] a.s
20
n
O

Example 3.5I cannot resist giving a simple application of this theorémt A be

an event that appears with probabilRyA) = p € (0, 1]. For example, roll a fair six
sided die and leA be the eventroll a 1 or a 8({1,6}) = 1/3). Let y, denote the
number of timed\ appears im independentepetitions of the experiment. Then :

lim ¥ —
n—o N

p

This is an important example for statistics. Suppose foramse that we do not
know that the die is fair but we have our suspicions. How doegt? All we have
to do is roll the die many timesi(— ) and look at the average number of times
1 or 6 appears. If this number stabilizes around a differahterthan ¥3 then the
die is tricked. The next theorem will also tell how many tinbesoll the dies to be
confident in our assessment.

To prove the result we simply apply the previous theorem.r2efj as:

X — 1 if eventA appears in repetition
~ ] 0 otherwise
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ThenP(X; =1)=pandP(X;=0)=1—-psothatE(Xj))=1-p+0-(1—p)=p.
Clearly, the fourth moment is finite as well and applying thearem:y, = S ; X;.
will converge to the stated value.

A Basic Central Limit Theorem: The DeMoivre-Laplace Theorem:

In order to prove the theorem we need:

Lemma 3.8 (Stirling’s Formula). For large n it can be shown that:
n ~+v2m-n"e "
The proof of this theorem is only of marginal interest to us.

Theorem 3.5 (DeMoivre-Laplace).Let &; --- &, be n independent r.v's each tak-
ing valuel with probability p and0 with probability 1 — p (Binomial(p) random

variables). Let
n

SnZiZifi

S$S—ES)__S—np
VV(S)  /np(l-p)

and

SJ; =
then for any x, % € R, X3 < Xo:

lim P(x; < S, <x2) = ®(x2) — P(x1)

n—oo
X2 1
B X1 Vv 27T

Note that® is the distribution function of &l(0, 1) random variable. This is exactly
the statement of the regular Central Limit Theorem apple®é¢rnoulli random
variables.

e /2dx

Proof. Notice thatS, ~ Binomial(h, p) and §, = —np)/y/np(l—p) is dis-
tributed equidistantly in the total mtervpcl\/”i_p M] The length between

two such consecutive valuesdx=1/+/np(1— p).
Fork large anch — k large:
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P(Sh = k) = (E) PL-P" = (nn!_ P
V2m-nhe™"

= ki1 ~\n—k
B \/ﬁ kke*k\/m, (n _ k)”*ke*(n*k) p (1 p) (32)

-l () (550)

Term | Term Il

(3.2 follows from Stirling’s Formula. Remember that f&; = k the x value of

S = (Sy—np)//np(l—p)is:

k—np
X=————=k=np+Xx,/np(l-p)
Vnp(1-p)
1-p

k
= —=1+X/—=
np np

Likewise we may express:

n—k=n—-np—xy/np(l—p)=n—k=n(l-p)—xy/np(l—p)
n—k p

ni-p ~ \n@-p

Using these two expressions in the Term Il of equat®g)(
lo (@)k =P\ _ K (n—Klog =K
I\ % n—k B 95 p g n(l—p)

_ [1-p\ B p
= klog<1+x np) (n k)log(l X n(l—p))

. 2 .
~ a -
If we approximate logl + a) ~ a — %- we continue:

N 1-p xX1-p P X p
—‘k<x\/n—p‘fn—p>‘<”‘”<‘x e za) ©9

Finally, we substitut& andn — k and after calculations (skipped) we obtain:

. npyk/nL-p\"*
mios(5E) () =

Also note that:
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n N n B 1
\/k(n—k> - \/np-n(l— P /np(l—p)

Putting both terms together we obtain:

1 2
lim P(S; = x) = ——e */2Ax
n—oo ($ ) \/Z-[
whereAx = 1
V/Nnp(1-p)
Thus:
1 2
lim P(x < § < %) = lim P(S,=X) = lim § ——=e */2Ax
n—oo n*}wxlﬁzﬁxz ni,ooz \/ZT
1 X2 7X2/2
= — e dx
\/27'r/><1

Problems

3.1.1t is well-known that 23 “random” people have a probabilitiyatout 1/2 of

having at least 1 shared birthday. There are 365 x 24 x 60 =6B8R5ninutes in

a year. (We'll ignore leap days.) Suppose each person iseldtiy the minute in
which the person was born, so that there are 525,600 posali#ts. Assume that
a “random” person is equally likely to have any of the 525, @dlfels, and that
different “random” people have independent labels.

a) About how many random people are needed to have a prdgapifiater than
1/2 of at least one shared birth-minute? (A numerical vadueduired.)

b) About how many random people are needed to have a prdiyajater than 1/2
of at least one birth-minute shared by three or more peoplg&if, a numerical
value is required. You can use heuristic reasoning, buaéxgbur thinking.)

3.2.Show that any simple functioh can be written a§; bj1g, with B; disjoint sets
(i.e.BiNB; =0, if i # j).

3.3.Prove the 4 assertions in Exercidd on pages1.

3.4.Give an example of two variablesandY which are uncorrelated but not inde-
pendent.

3.5.Prove the properties (i)-(v) of the expectation in ProposiB.1on pages9.



Chapter 4

Product spaces. Conditional Distribution and
Conditional Expectation

In this chapter we look at the following type of problems: I& \wnow something
extra about the experiment, how does that change our pildpalailculations. An
important part of statistics (Bayesian statistics) isdoih conditional distributions.
However, what about the more complex and abstract notioomditional expecta-
tion?

Why do we need conditional expectation?

Conditional expectation is a fundamental concept in therhef stochastic pro-
cesses. The simple idea is the following: suppose we havafooation about a
certain variable then our best guess about it would be som@toegular expec-
tation. However, in real life it often happens that we havasgartial information
about the random variable (or in time we come to know more gitprhen what
we should do is every time there is new information the sarapéeeQ or theo-
algebraZ is changing so they need to be recalculated. That will in tinange the
probability P which will change the expectation of the variable. The ctodal ex-
pectation provides a way to recalculate the expectationeofandom variable given
any new “consistent” information without going through th&uble of recalculating
(Q,.7,P) every time.

It is also easy to reason that since we calculate with respegtore precise
information it will be depending on this more precise infation, thus it is going
to be a random variable itself, “adapted” to this informatio

4.1 Product Spaces

Let (Q1, F1, 1) and(Q2, %, o) be twoo-finite measure spaces. Define:

Q = Q41 x Q, the cartesian product
F = O'({Bl xBy:Bg € e91782 S yz})

Let f : Q — R be.Z measurable such that

79
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Ve € Q1 f(wy,-) is #, measurable 0@,
Vap € Qp T(-,ap) is .71 measurable 0@,

Then we define:
II(M):/QZf(aa,aa)uz(daw
sz(a&):/glf(aa,aa)ul(dm

which are a kind of partial integrals, well defined by the meability of the restric-
tions.

Theorem 4.1 (Fubini's theorem).Define a measure:
HE) = [ 16 (e, w0 pa(den)pe(dey)
1/,

Thenp is the unique measure defined @@,.7) called the product measungith
the property:
H(ALx Ag) = (A p(R2) VA € F,

and as a consequence:

/fdu/l H(dan) = /I

Proof. Skipped. Apply the standard argument. Note that the firg Eealready
given.

Example 4.1 (Application of Fubini’'s Theorerhgt X be a positive r.v. o0Q,.% | P).
ConsiderP x A on (Q,.%) x ([0,), Z((0,0])), whereA is the Lebesgue measure.
LetA:= {(w,x) : 0 < x < X(w)}. Note thatA is the region under the graph of the
random variable&X. Let the indicator of this set be denoted wiith- 15. Then:

. . X(w)
1(w) = /{M (00,X)dA (x /1{0<x<x (9aA(0 = [~ dA (9 = X(@)

/ 1a(w,x)dP(w / Lo<xex(w)} (W)dP(w) = P{w: X(w) > X},

sinceX is a positive r.v.
We now apply Fubini’'s Theorem and we get :

H(A) // 1 (%, 0)du () dP(w)

—/x w)dP(w /Px>x

Thus reading the last line above:
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00
E(X) = / P(X > x)dx
0

This result is actually so useful that we will state it sepelsa

Corollary 4.1. If X is a positiverandom variable with distribution function ()
and we denot& (x) = 1— F(x), we have:

E(X) = /Ooof(x)dx

4.2 Conditional distribution and expectation. Calculation in
simple cases

We shall give a general formulation of conditional expeaotathat will be most use-

ful in the second part of this textbook. But, until then welilesent the cases that

actually allow the explicit calculation of conditional thisution and expectation.
Let X andY be two discrete variables q2,.7, P).

Definition 4.1 (Discrete Conditional Distribution). The conditional distribution
of Y givenX = x: Fyjx (+[x) is:
Frix (Y1) = P(Y < yIX = x)
The conditional probability mass function 6fX is:
fX,Y (X7 y)
fx (%)
Note: In the case wheR(X = x) = 0 we cannot define the conditional probability.

Definition 4.2 (Discrete Conditional Expectation).Let ¢(x) = E(Y|X = x) then
Y(X) = E[Y|X] is called the conditional expectation.

fyx (X)) =P(Y = y|X =x) =

Remark 4.1The conditional expectation is a random variable.

Definition 4.3 (Continuous Conditional Distribution). Let X,Y be two continu-
ous random variables. The conditional distribution is defins:

Ry = [ X0 g,

—o00 f)( (X)
The functionfy|x (y|X) = ff)((x&’)) is the conditional probability density function.
Definition 4.4 (Continuous Conditional Expectation).The conditional expecta-

tion for two continuous random variablesyg X) = E[Y|X] where the functiony
is calculated:

W09 =ECrX =x) = [ yhx(yixdy
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Example 4.2A point is picked uniformly from the surface of the unit spbeket
L =longitude angleéd and letl = latitude anglep. Let us find the distribution func-
tions of 6| andg|O.

Let C be a set on the sphere (or generallRi). The surface area of the sphere is
47?2 = 4. The set of points from which we sampleS€0,1) = {(x,Y,2) : X2 +y?+
Z = 1}. Then, since we pick the points uniformly the position of apiehosen has
distribution:

1
P((Xa Y, Z) € C) - /C El{x2+y2+22:1} (X, Y, Z)dXdde

Since we are interested in longitude and latitude we chaongpotar coordi-
nates to obtain the distribution of these variables. We thieetransformation:
X =rcosfcosp, Y =rsinfcosp andZ = rsing. To obtain the distribution we
calculate the new integral. The Jacobian of the transfaomé:

—rsinf@cosp —rcosf sing cosb cosgp
J=| rcosfcosp —rsin@sing sinBcosy
0 r cosgp sing

=r2¢os @+ r2sir? pcosp = r2 cosy

Note that the indicator is 1 if and onlyiif= 1. We conclude that

1
P((x.2) €C) = | _-|cospldode,

wherelmC is the set ofpolar coordinates that make the s&tTherefore, the joint
distribution function is

1
f(0,¢) = EICOS@OI, pe[-m/2,m/2],0 € [0,2m].

Now, we get the marginal ap:

and the marginal of:

o) = [0 2 do= " L cospdp=
o )—/ 23 O w—/ﬁn/zﬁcosrp =5

Thus, we calculate immediately the conditional distribns:
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1

fe\(p(e|(p) = Z_ln 0 e [0,27'[]
co

foio(916) = 2. ge[-m/2.m/2

We note thai and ¢ are independent (the product of marginals is equal to the
joint distribution) but the conditionals are different dteethe parameterizations
(this particular example is known &se Borel paradox Also note that the condi-
tional expectations are equal to the regular expectatibisss of course because the
variables are independent. We will obtain this propertyeneyal in the following
section.

Example 4.3Many clustering algorithms are based on random projectiorssim-
plicity we consider the direction of the first coordinatetuector €; as the best
possible projection. However, the probability of findingsttlirection exactly is zero
so we consider a tolerance angleand we say that a projection is “good enough”
if it makes an angle less than with ?1.

We want to calculate the probability that a random directiakes an angle less
thana with €.

The example is ifR® but we can easily generalize it to any dimension. We assume
that 0< ae < 11/2, otherwise the problem becomes trivial.

Directions inR?® are equivalent to points on the unit sphere. Therefore, tbie-p
ability to be calculated is twice the probability that a gaihosen at random on the
sphere belongs to the cone of anglecentered at the origin. Why twice? Because
we do not care if the angle formed by the random direction thve, or —€;.
Thus, we calculate the probability by taking the ratio of #nea of the intersection
of the said cone and the sphere and the total surface area spltere.

The area of the unit sphere B is readily calculated a% (e.g.,Kendall
(2009, I (x) = [y t*"le'dt is the gamma function). In the particular case when
d=3 (I'(%) = 4) we obtain the well known arear#

To compute the support area of the cone we switch to poladauates:

X1 = rcosf,;
X2 = r sin6; cosb,
X3 = rsinB; sinb,

where € [0,),6; € [0, 11,0, € [0,271].

The points of interest can be found whes: 1 and6; <€ [0, ae|, and we need to
double the final area found to take into account symmetridesngith respect to
€.

One can check immediately, that the Jacobian of this chahgear@bles is
r?sin6; and that the probability needed is easily calculated as:
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. o Oe
2sirt —
2

If we now consideK projections then the probability that at least one is a “good
enough projection” is:

1—(1—2sinz%)K

Note that the example is extendable to the more intere&ingase but in that
case we do not obtain an exact formula instead only boun@do8egive citation
once it exists.

4.3 Conditional expectation. General definition

To summarize the previous sectionXfandY are two random variables we have
defined the conditional distribution and conditional extpgon of onewith respect
to the other. In fact, we have defined more: the conditional expectatfamewith
respect to the information contained in the other

More precisely, in the previous subsection we defined theasgtion ofX con-
ditioned by theo-algebra generated by: o(Y). Thus, we may write without a
problem:

E[X|Y] =E[X|o(Y)].

This notion may be generalized to define conditional expiectavith respect
to any kind of of information §-algebra). As definition we shall use the following
theorem. We will skip the proof.

Theorem 4.2.Let (Q,.%#,P) be a probability space, and leZ” C .% a subo-
algebra. Let X be a random variable d®2,.%,P) such that either X is positive
or X € LY(Q). Then, there exists a random variable Y, measurable witheesto
2 with the property:

/YdP: /XdP VA X
A JA

This Y is defined to be the conditional expectation of X wisheet ta’#” and is
denotedE[X|.7].

Remark 4.2We note that the conditional expectation, unlike the regedaectation
is a random variable measurable with respect to the signebedgunder which is
conditioned. In simple language it has adapted itself tortf@mation contained in
the o-algebra#". In the simple cases presented in the previous section thai-co
tional expectation is measurable with respeai (¥ ). But since this is a very simple
sigma algebra then it has to be in fact a functioiy of

Note: We will take this theorem as a definition.
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Proposition 4.1 (Properties of the Conditional Expectatim). Let (Q,.#,P) a
probability space, and le¥", %1, %5 sub-o-algebras. Let X and Y be random vari-
ables of the probability space. Then we have:

(1) If & ={2,Q} thenE[X|.#| = EX = const
(2) E[aX + BY|#'] = aE[X|# |+ BE[Y|#] for a, B real constants.
(3) If X <Y a.s.therE[X|.7] <E[Y|#] a.s.
(4) E[EX|.7]] = EX
(5) If o1 C 45 then
E[E[X|#4]| 2] = E[E[X|.%5]| #4) = E[X|.74]

(6) If X is independent af#” then

E[X|#] = E[X]
(7) If Y is measurable with respect g then

E[XY|#] = YE[X|.#]

After proving these properties (see Probldrg) they will become essential in
working with conditional expectation. In fact the definitits never used anymore.

Example 4.4Let us obtain a weak form of the Wald’s equation (an equatiat t
serves a fundamental role in the theory of stochastic psesgsight now by a sim-
ple argument. LeXy, Xp, ..., Xy, ... be i.i.d. with finite mearu and letN be a ran-

dom variable taking values in strictly positive integers amdependent oX; for all

i. For exampleX's may be the results of random experiments Bhghay be some
stopping strategy established in advance. et X1+ Xo+ - - - + Xy. FINdE(Sy).

Let
d(n) =E[NIN=n]=E[Xg+Xo+---+Xy|N =n]

- 3 EXIN =1 = 5 EX) = n

by independence. Therefoi[Sy|N] = ¢ (N) = Nu. Finally, using the properties
of conditional expectation:

E(Sw) = E[E[SuIN]] = EINy] = HEIN].

Note that we have not used any distribution form only the prtes of the condi-
tional expectation.
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Problems

4.1.Prove the Fubini’'s Theorerh 1 on pages0.

4.2.Using the Theorem-Definitiofh.2 on page84 prove the seven properties of the
conditional expectation in Propositid@nl.

4.3.Let X be arandom variable on the probability spa@e.#,P). Leta seA € .%
and the sigma algebra generated by the set dermtéy What isE[X|c(A)]? Let
1, denote the indicator A. What isE[X|14]?

4.4.Let X,Y,Z be three random variables with joint distribution
PX=kY=mzZ=n)=p3q"3

for integersk,m,n satisfying 1< k < m< n, where O< p< 1, p+qg= 1. Find

E{Z|X,Y}.

4.5. A circular dartboard has a radius of 1 foot. Thom throws 3gattthe board
until all 3 darts are sticking in the board. The locationshef8 darts are independent
and uniformly distributed on the surface of the board. TgtT,, and Tz be the
distances from the center to the closest dart, the nextstialset, and the farthest
dart, respectively, so thdj < T, < Ts. FindE[Ty].

4.6.Let Xy, Xo,...,X1000be i.i.d. each taking on both 0 and 1 with probabiﬁnPut
Sv=X1+- -+ Xn. FINAE [(S1000— S300)1{570-400}] @NAE [(S1000— S300)%1(s,05-200} ]
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