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Lecture 1: Measurable space, measure and probability

Random experiment: uncertainty in outcomes

Ω: sample space or outcome space; a set containing all possible outcomes

Definition 1.1. Let F be a collection of subsets of a sample space Ω. F is called a σ-field
(or σ-algebra) if and only if it has the following properties.
(i) The empty set ∅ ∈ F .
(ii) If A ∈ F , then the complement Ac ∈ F .
(iii) If Ai ∈ F , i = 1, 2, ..., then their union ∪Ai ∈ F .

F is a set of sets
Two trivial examples: F contains ∅ and Ω only and F contains all subsets of Ω
Why do we need to consider other σ-field?
F = {∅, A, Ac, Ω}, where A ⊂ Ω

C = a collection (set) of subsets of Ω
σ(C): the smallest σ-field containing C (called the σ-field generated by C)
σ(C) = C if C itself is a σ-field
Γ = {F : F is a σ-field on Ω and C ⊂ F}
σ(C) = ∩F∈ΓF

σ({A}) = σ({A, Ac}) = σ({A, Ω}) = σ({A, ∅}) = {∅, A, Ac, Ω}

Rk: the k-dimensional Euclidean space (R1 = R is the real line)
Bk: the Borel σ-field on Rk; Bk = σ(O), O is the collection of all open sets
C ∈ Bk, BC = {C ∩ B : B ∈ Bk} is the Borel σ-field on C

Measure: length, area, volume...

Definition 1.2. Let (Ω,F) be a measurable space. A set function ν defined on F is called
a measure if and only if it has the following properties.
(i) 0 ≤ ν(A) ≤ ∞ for any A ∈ F .
(ii) ν(∅) = 0.
(iii) If Ai ∈ F , i = 1, 2, ..., and Ai’s are disjoint, i.e., Ai ∩ Aj = ∅ for any i 6= j, then

ν

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

ν(Ai).

(Ω,F) a measurable space; (Ω,F , ν) a measure space

If ν(Ω) = 1, then ν is a probability measure (we usually use notation P instead of ν)
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A measure ν may take ∞ as its value
(1) For any x ∈ R, ∞ + x = ∞, x∞ = ∞ if x > 0, x∞ = −∞ if x < 0, and 0∞ = 0;
(2) ∞ + ∞ = ∞;
(3) ∞a = ∞ for any a > 0;
(4) ∞−∞ or ∞/∞ is not defined

Examples:

ν(A) =











∞ A ∈ F , A 6= ∅

0 A = ∅.

Counting measure. Let Ω be a sample space, F the collection of all subsets, and ν(A) the
number of elements in A ∈ F (ν(A) = ∞ if A contains infinitely many elements). Then ν is
a measure on F and is called the counting measure.
Lebesgue measure. There is a unique measure m on (R,B) that satisfies m([a, b]) = b − a
for every finite interval [a, b], −∞ < a ≤ b < ∞. This is called the Lebesgue measure. If we
restrict m to the measurable space ([0, 1],B[0,1]), then m is a probability measure.

Proposition 1.1. Let (Ω,F , ν) be a measure space.
(i) (Monotonicity). If A ⊂ B, then ν(A) ≤ ν(B).
(ii) (Subadditivity). For any sequence A1, A2, ...,

ν

(

∞
⋃

i=1

Ai

)

≤
∞
∑

i=1

ν(Ai).

(iii) (Continuity). If A1 ⊂ A2 ⊂ A3 ⊂ · · · (or A1 ⊃ A2 ⊃ A3 ⊃ · · · and ν(A1) < ∞), then

ν
(

lim
n→∞

An

)

= lim
n→∞

ν (An) ,

where

lim
n→∞

An =
∞
⋃

i=1

Ai

(

or =
∞
⋂

i=1

Ai

)

.

Let P be a probability measure. The cumulative distribution function (c.d.f.) of P is defined
to be

F (x) = P ((−∞, x]) , x ∈ R

Proposition 1.2. (i) Let F be a c.d.f. on R. Then
(a) F (−∞) = limx→−∞ F (x) = 0;
(b) F (∞) = limx→∞ F (x) = 1;
(c) F is nondecreasing, i.e., F (x) ≤ F (y) if x ≤ y;
(d) F is right continuous, i.e., limy→x,y>x F (y) = F (x).

(ii) Suppose that a real-valued function F on R satisfies (a)-(d) in part (i). Then F is the
c.d.f. of a unique probability measure on (R,B).
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Lecture 2: Product measure, measurable function and distribution

Product space
I = {1, ..., k}, k is finite or ∞
Γi, i ∈ I, are sets
∏

i∈I Γi = Γ1 × · · · × Γk = {(a1, ..., ak) : ai ∈ Γi, i ∈ I}
R ×R = R2, R×R×R = R3

Let (Ωi,Fi), i ∈ I, be measurable spaces
∏

i∈I Fi is not necessarily a σ-field
σ (

∏

i∈I Fi) is called the product σ-field on the product space
∏

i∈I Ωi

(
∏

i∈I Ωi, σ (
∏

i∈I Fi)) is denoted by
∏

i∈I(Ωi,Fi)

Example:
∏

i=1,...,k(R,B) = (Rk,Bk)

Product measure

Consider a rectangle [a1, b1] × [a2, b2] ⊂ R2. The usual area of [a1, b1] × [a2, b2] is

(b1 − a1)(b2 − a2) = m([a1, b1])m([a2, b2])

Is m([a1, b1])m([a2, b2]) the same as the value of a measure defined on the product σ-field?

A measure ν on (Ω,F) is said to be σ-finite if and only if there exists a sequence {A1, A2, ...}
such that ∪Ai = Ω and ν(Ai) < ∞ for all i
Any finite measure (such as a probability measure) is clearly σ-finite
The Lebesgue measure on R is σ-finite, since R = ∪An with An = (−n, n), n = 1, 2, ...
The counting measure in is σ-finite if and only if Ω is countable

Proposition 1.3 (Product measure theorem). Let (Ωi,Fi, νi), i = 1, ..., k, be measure
spaces with σ-finite measures, where k ≥ 2 is an integer. Then there exists a unique σ-finite
measure on the product σ-field σ(F1 ×· · ·×Fk), called the product measure and denoted by
ν1 × · · · × νk, such that

ν1 × · · · × νk(A1 × · · · × Ak) = ν1(A1) · · ·νk(Ak)

for all Ai ∈ Fi, i = 1, ..., k.

Let P be a probability measure on (Rk,Bk). The c.d.f. (or joint c.d.f.) of P is defined by

F (x1, ..., xk) = P ((−∞, x1] × · · · × (−∞, xk]) , xi ∈ R

There is a one-to-one correspondence between probability measures and joint c.d.f.’s on Rk

If F (x1, ..., xk) is a joint c.d.f., then

Fi(x) = lim
xj→∞,j=1,...,i−1,i+1,...,k

F (x1, ..., xi−1, x, xi+1, ..., xk)

is a c.d.f. and is called the ith marginal c.d.f.
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Marginal c.d.f.’s are determined by their joint c.d.f.
But a joint c.d.f. cannot be determined by k marginal c.d.f.’s.
If

F (x1, ..., xk) = F1(x1) · · ·Fk(xk), (x1, ..., xk) ∈ Rk,

then the probability measure corresponding to F is the product measure P1 × · · · × Pk with
Pi being the probability measure corresponding to Fi

Measurable function

f : a function from Ω to Λ (often Λ = Rk)
Inverse image of B ⊂ Λ under f :

f−1(B) = {f ∈ B} = {ω ∈ Ω : f(ω) ∈ B}.

The inverse function f−1 need not exist for f−1(B) to be defined.
f−1(Bc) = (f−1(B))c for any B ⊂ Λ;
f−1(∪Bi) = ∪f−1(Bi) for any Bi ⊂ Λ, i = 1, 2, ...
Let C be a collection of subsets of Λ. Define f−1(C) = {f−1(C) : C ∈ C}

Definition 1.3. Let (Ω,F) and (Λ,G) be measurable spaces and f a function from Ω
to Λ. The function f is called a measurable function from (Ω,F) to (Λ,G) if and only if
f−1(G) ⊂ F .

If f is measurable from (Ω,F) to (Λ,G), then f−1(G) is a sub-σ-field of F (verify). It is
called the σ-field generated by f and is denoted by σ(f).

If f is measurable from (Ω,F) to (R,B), it is called a Borel function or a random variable
A random vector (X1, ..., Xn) is measurable from (Ω,F) to (Rn,Bn) (each Xi is a random
variable)

Examples
If F is the collection of all subsets of Ω, then any function f is measurable
Indicator function for A ⊂ Ω:

IA(ω) =











1 ω ∈ A

0 ω 6∈ A.

For any B ⊂ R,

I−1
A (B) =







































∅ 0 6∈ B, 1 6∈ B

A 0 6∈ B, 1 ∈ B

Ac 0 ∈ B, 1 6∈ B

Ω 0 ∈ B, 1 ∈ B.

Then, σ(IA) = {∅, A, Ac, Ω} and IA is Borel iff A ∈ F
σ(f) is much simpler than F
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Simple function

ϕ(ω) =
k

∑

i=1

aiIAi
(ω),

where A1, ..., Ak are measurable sets on Ω and a1, ..., ak are real numbers. Let A1, ..., Ak be
a partition of Ω, i.e., Ai’s are disjoint and A1 ∪ · · · ∪ Ak = Ω. Then the simple function ϕ
with distinct ai’s exactly characterizes this partition and σ(ϕ) = σ({A1, ..., Ak}).

Proposition 1.4. Let (Ω,F) be a measurable space.
(i) f is Borel if and only if f−1(a,∞) ∈ F for all a ∈ R.
(ii) If f and g are Borel, then so are fg and af + bg, where a and b are real numbers; also,
f/g is Borel provided g(ω) 6= 0 for any ω ∈ Ω.
(iii) If f1, f2, ... are Borel, then so are supn fn, infn fn, lim supn fn, and lim infn fn. Further-
more, the set

A =
{

ω ∈ Ω : lim
n→∞

fn(ω) exists
}

is an event and the function

h(ω) =











limn→∞ fn(ω) ω ∈ A

f1(ω) ω 6∈ A

is Borel.
(iv) Suppose that f is measurable from (Ω,F) to (Λ,G) and g is measurable from (Λ,G) to
(∆,H). Then the composite function g ◦ f is measurable from (Ω,F) to (∆,H).
(v) Let Ω be a Borel set in Rp. If f is a continuous function from Ω to Rq, then f is
measurable.

Distribution (law)

Let (Ω,F , ν) be a measure space and f be a measurable function from (Ω,F) to (Λ,G). The
induced measure by f , denoted by ν ◦ f−1, is a measure on G defined as

ν ◦ f−1(B) = ν(f ∈ B) = ν
(

f−1(B)
)

, B ∈ G

If ν = P is a probability measure and X is a random variable or a random vector, then
P ◦ X−1 is called the law or the distribution of X and is denoted by PX .
The c.d.f. of PX is also called the c.d.f. or joint c.d.f. of X and is denoted by FX .

Examples 1.3 and 1.4
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Lecture 3: Integration

Integration is a type of “average”.

Definition 1.4

(a) The integral of a nonnegative simple function ϕ w.r.t. ν is defined as

∫

ϕdν =
k

∑

i=1

aiν(Ai).

(b) Let f be a nonnegative Borel function and let Sf be the collection of all nonnegative
simple functions satisfying ϕ(ω) ≤ f(ω) for any ω ∈ Ω. The integral of f w.r.t. ν is defined
as

∫

fdν = sup
{

∫

ϕdν : ϕ ∈ Sf

}

.

(Hence, for any Borel function f ≥ 0, there exists a sequence of simple functions ϕ1, ϕ2, ...
such that 0 ≤ ϕi ≤ f for all i and limn→∞

∫

ϕndν =
∫

fdν.)
(c) Let f be a Borel function,

f+(ω) = max{f(ω), 0}

be the positive part of f , and

f−(ω) = max{−f(ω), 0}

be the negative part of f . (Note that f+ and f− are nonnegative Borel functions, f(ω) =
f+(ω)− f−(ω), and |f(ω)| = f+(ω)+ f−(ω).) We say that

∫

fdν exists if and only if at least
one of

∫

f+dν and
∫

f−dν is finite, in which case

∫

fdν =
∫

f+dν −
∫

f−dν.

When both
∫

f+dν and
∫

f−dν are finite, we say that f is integrable. Let A be a measurable
set and IA be its indicator function. The integral of f over A is defined as

∫

A
fdν =

∫

IAfdν.

A Borel function f is integrable if and only if |f | is integrable.

For convenience, we define the integral of a measurable function f from (Ω,F , ν) to (R̄, B̄),
where R̄ = R∪ {−∞,∞}, B̄ = σ(B ∪ {{∞}, {−∞}}). Let A+ = {f = ∞} and A− = {f =
−∞}. If ν(A+) = 0, we define

∫

f+dν to be
∫

IAc
+
f+dν; otherwise

∫

f+dν = ∞.
∫

f−dν is
similarly defined. If at least one of

∫

f+dν and
∫

f−dν is finite, then
∫

fdν =
∫

f+dν−
∫

f−dν
is well defined.
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Notation for integrals
∫

fdν =
∫

Ω fdν =
∫

f(ω)dν =
∫

f(ω)dν(ω) =
∫

f(ω)ν(dω).
In probability and statistics,

∫

XdP = EX = E(X) and is called the expectation or expected

value of X.
If F is the c.d.f. of P on (Rk,Bk),

∫

f(x)dP =
∫

f(x)dF (x) =
∫

fdF .

Example 1.5. Let Ω be a countable set, F be all subsets of Ω, and ν be the counting
measure For any Borel function f ,

∫

fdν =
∑

ω∈Ω

f(ω).

Example 1.6. If Ω = R and ν is the Lebesgue measure, then the Lebesgue integral of f
over an interval [a, b] is written as

∫

[a,b] f(x)dx =
∫ b
a f(x)dx, which agrees with the Riemann

integral in calculus when the latter is well defined. However, there are functions for which
the Lebesgue integrals are defined but not the Riemann integrals.

Properties

Proposition 1.5 (Linearity of integrals). Let (Ω,F , ν) be a measure space and f and g be
Borel functions.
(i) If

∫

fdν exists and a ∈ R, then
∫

(af)dν exists and is equal to a
∫

fdν.
(ii) If both

∫

fdν and
∫

gdν exist and
∫

fdν +
∫

gdν is well defined, then
∫

(f + g)dν exists
and is equal to

∫

fdν +
∫

gdν.

A statement holds a.e. ν (or simply a.e.) if it holds for all ω in N c with ν(N) = 0. If ν is a
probability, then a.e. may be replaced by a.s.

Proposition 1.6. Let (Ω,F , ν) be a measure space and f and g be Borel.
(i) If f ≤ g a.e., then

∫

fdν ≤
∫

gdν, provided that the integrals exist.
(ii) If f ≥ 0 a.e. and

∫

fdν = 0, then f = 0 a.e.
Proof. (i) Exercise.
(ii) Let A = {f > 0} and An = {f ≥ n−1}, n = 1, 2, .... Then An ⊂ A for any n and
limn→∞ An = ∪An = A (why?). By Proposition 1.1(iii), limn→∞ ν(An) = ν(A). Using part
(i) and Proposition 1.5, we obtain that

n−1ν(An) =
∫

n−1IAn
dν ≤

∫

fIAn
dν ≤

∫

fdν = 0

for any n. Hence ν(A) = 0 and f = 0 a.e.

Consequences:
|
∫

fdν| ≤
∫

|f |dν
If f ≥ 0 a.e., then

∫

fdν ≥ 0
If f = g a.e., then

∫

fdν =
∫

gdν.
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Lecture 4: Convergence theorems, change of variable, and Fubini’s theorem

{fn : n = 1, 2, ...}: a sequence of Borel functions. Can we exchange the limit and integration,
i.e.,

∫

lim
n→∞

fndν = lim
n→∞

∫

fndν?

Example 1.7. Consider (R,B) and the Lebesgue measure. Define fn(x) = nI[0,n−1](x),
n = 1, 2, .... Then limn→∞ fn(x) = 0 for all x but x = 0. Since the Lebesgue measure of a
single point set is 0, limn→∞ fn(x) = 0 a.e. and

∫

limn→∞ fn(x)dx = 0. On the other hand,
∫

fn(x)dx = 1 for any n and, hence, limn→∞

∫

fn(x)dx = 1.

Sufficient conditions

Theorem 1.1. Let f1, f2, ... be a sequence of Borel functions on (Ω,F , ν).
(i) (Fatou’s lemma). If fn ≥ 0, then

∫

lim infn fndν ≤ lim infn

∫

fndν.
(ii) (Dominated convergence theorem). If limn→∞ fn = f a.e. and there exists an integrable
function g such that |fn| ≤ g a.e., then

∫

limn→∞ fndν = limn→∞

∫

fndν.
(iii) (Monotone convergence theorem). If 0 ≤ f1 ≤ f2 ≤ · · · and limn→∞ fn = f a.e., then
∫

limn→∞ fndν = limn→∞

∫

fndν.
Proof. (See the textbook).

Note
(a) To apply each part of the theorem, you need to check the conditions.
(b) If the conditions are not satisfied, you cannot apply the theorem, but it does not imply
that you cannot exchange the limit and integration.

Example: Let fn(x) = n
x+n

, x ∈ Ω = [0, 1], n = 1, 2, ... Then limn fn(x) = 1. To apply the
DCT, note that 0 ≤ fn(x) ≤ 1. To apply the MCT, note that 0 ≤ fn(x) ≤ fn+1(x). Hence,
limn

∫

fn(x)dx =
∫

limn fn(x)dx =
∫

dx = 1.

Example 1.8 (Interchange of differentiation and integration). Let (Ω,F , ν) be a measure
space and, for any fixed θ ∈ R, let f(ω, θ) be a Borel function on Ω. Suppose that ∂f(ω, θ)/∂θ
exists a.e. for θ ∈ (a, b) ⊂ R and that |∂f(ω, θ)/∂θ| ≤ g(ω) a.e., where g is an integrable
function on Ω. Then, for each θ ∈ (a, b), ∂f(ω, θ)/∂θ is integrable and, by Theorem 1.1(ii),

d

dθ

∫

f(ω, θ)dν =
∫

∂f(ω, θ)

∂θ
dν.

Theorem 1.2 (Change of variables). Let f be measurable from (Ω,F , ν) to (Λ,G) and g be
Borel on (Λ,G). Then

∫

Ω
g ◦ fdν =

∫

Λ
gd(ν ◦ f−1),

i.e., if either integral exists, then so does the other, and the two are the same.

For Riemann integrals,
∫

g(y)dy =
∫

g(f(x))f ′(x)dx, y = f(x).

For a random variable X on (Ω,F , P ), EX =
∫

Ω XdP =
∫

R
xdPX , PX = P ◦ X−1

Let Y be a random vector from Ω to Rk and g be Borel from Rk to R.
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Eg(Y ) =
∫

R
xdPg(Y ) =

∫

Rk g(y)dPY

Example: Y = (X1, X2) and g(Y ) = X1 + X2.
E(X1 + X2) = EX1 + EX2 (why?) =

∫

R
xdPX1

+
∫

R
xdPX2

.
We need to handle two integrals involving PX1

and PX2
. On the other hand,

E(X1 +X2) =
∫

R
xdPX1+X2

, which involves one integral w.r.t. PX1+X2
. Unless we have some

knowledge about the joint c.d.f. of (X1, X2), it is not easy to obtain PX1+X2
.

Iterated integration on a product space

Theorem 1.3 (Fubini’s theorem). Let νi be a σ-finite measure on (Ωi,Fi), i = 1, 2, and let
f be a Borel function on

∏2
i=1(Ωi,Fi) whose integral w.r.t. ν1 × ν2 exists. Then

g(ω2) =
∫

Ω1

f(ω1, ω2)dν1

exists a.e. ν2 and defines a Borel function on Ω2 whose integral w.r.t. ν2 exists, and
∫

Ω1×Ω2

f(ω1, ω2)dν1 × ν2 =
∫

Ω2

[
∫

Ω1

f(ω1, ω2)dν1

]

dν2.

Note: If f ≥ 0, then
∫

fdν1×ν2 always exists. Extensions to
∏k

i=1(Ωi,Fi) is straightforward.

Fubini’s theorem is very useful in
(1) evaluating multi-dimensional integrals (exchanging the order of integrals);
(2) proving a function is measurable;
(3) proving some results by relating a one dimensional integral to a multi-dimensional integral

Example: Exercise 47
Let X and Y be random variables such that the joint c.d.f. of (X, Y ) is FX(x)FY (y), where
FX and FY are marginal c.d.f.’s. Let Z = X + Y . Show that

FZ(z) =
∫

FY (z − x)dFX(x).

Note that

FZ(z) =
∫

x+y≤z
dFX(x)dFY (y)

=
∫

(
∫

y≤z−x
dFY (y)

)

dFX(x)

=
∫

FY (z − x)dFX(x),

where the second equality follows from Fubini’s theorem.

Example 1.9. Let Ω1 = Ω2 = {0, 1, 2, ...}, and ν1 = ν2 be the counting measure. A function
f on Ω1 × Ω2 defines a double sequence. If

∫

fdν1 × ν2 exists, then
∫

fdν1 × ν2 =
∞
∑

i=0

∞
∑

j=0

f(i, j) =
∞
∑

j=0

∞
∑

i=0

f(i, j)

(by Theorem 1.3 and Example 1.5). Thus, a double series can be summed in either order, if
it is well defined.

Proof of Fubini’s theorem
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Lecture 5: Radon-Nikodym derivative

Let (Ω,F , ν) be a measure space and f be a nonnegative Borel function. Note that

λ(A) =
∫

A
fdν, A ∈ F

is a measure satisfying
ν(A) = 0 implies λ(A) = 0.

(we say λ is absolutely continuous w.r.t. ν and write λ ≪ ν).

Comupting λ(A) can be done through integration w.r.t. a well-known measure

λ ≪ ν is also almost sufficient.

Theorem 1.4 (Radon-Nikodym theorem). Let ν and λ be two measures on (Ω,F) and ν
be σ-finite. If λ ≪ ν, then there exists a nonnegative Borel function f on Ω such that

λ(A) =
∫

A
fdν, A ∈ F .

Furthermore, f is unique a.e. ν, i.e., if λ(A) =
∫

A gdν for any A ∈ F , then f = g a.e. ν.

The function f is called the Radon-Nikodym derivative or density of λ w.r.t. ν and is denoted
by dλ/dν.

Consequence: If f is Borel on (Ω,F) and
∫

A fdν = 0 for any A ∈ F , then f = 0 a.e.

If
∫

fdν = 1 for an f ≥ 0 a.e. ν, then λ is a probability measure and f is called its probability

density function (p.d.f.) w.r.t. ν. For any probability measure P on (Rk,Bk) corresponding
to a c.d.f. F or a random vector X, if P has a p.d.f. f w.r.t. a measure ν, then f is also
called the p.d.f. of F or X w.r.t. ν.

Example 1.10 (Discrete c.d.f. and p.d.f.). Let a1 < a2 < · · · be a sequence of real numbers
and let pn, n = 1, 2, ..., be a sequence of positive numbers such that

∑

∞

n=1 pn = 1. Then

F (x) =











∑n
i=1 pi an ≤ x < an+1, n = 1, 2, ...

0 −∞ < x < a1.

is a stepwise c.d.f. It has a jump of size pn at each an and is flat between an and an+1,
n = 1, 2, .... Such a c.d.f. is called a discrete c.d.f. The corresponding probability measure is

P (A) =
∑

i:ai∈A

pi, A ∈ F ,

where F = the set of all subsets (power set).
Let ν be the counting measure on the power set. Then

P (A) =
∫

A
fdν =

∑

ai∈A

f(ai), A ⊂ Ω,

1



where f(ai) = pi, i = 1, 2, .... That is, f is the p.d.f. of P or F w.r.t. ν. Hence, any discrete
c.d.f. has a p.d.f. w.r.t. counting measure. A p.d.f. w.r.t. counting measure is called a discrete

p.d.f.

Example 1.11. Let F be a c.d.f. Assume that F is differentiable in the usual sense in
calculus. Let f be the derivative of F . From calculus,

F (x) =
∫ x

−∞

f(y)dy, x ∈ R.

Let P be the probability measure corresponding to F .
Then P (A) =

∫

A fdm for any A ∈ B, where m is the Lebesgue measure on R.
f is the p.d.f. of P or F w.r.t. Lebesgue measure.
Radon-Nikodym derivative is the same as the usual derivative in calculus.

A continuous c.d.f. may not have a p.d.f. w.r.t. Lebesgue measure.
A necessary and sufficient condition for a c.d.f. F having a p.d.f. w.r.t. Lebesgue measure is
that F is absolute continuous in the sense that for any ǫ > 0, there exists a δ > 0 such that
for each finite collection of disjoint bounded open intervals (ai, bi),

∑

(bi − ai) < δ implies
∑

[F (bi) − F (ai)] < ǫ.
Absolute continuity is weaker than differentiability, but is stronger than continuity.
Note that every c.d.f. is differentiable a.e. Lebesgue measure (Chung, 1974, Chapter 1).

A p.d.f. w.r.t. Lebesgue measure is called a Lebesgue p.d.f.

Proposition 1.7 (Calculus with Radon-Nikodym derivatives). Let ν be a σ-finite measure
on a measure space (Ω,F). All other measures discussed in (i)-(iii) are defined on (Ω,F).
(i) If λ is a measure, λ ≪ ν, and f ≥ 0, then

∫

fdλ =
∫

f
dλ

dν
dν.

(Notice how the dν’s “cancel” on the right-hand side.)
(ii) If λi, i = 1, 2, are measures and λi ≪ ν, then λ1 + λ2 ≪ ν and

d(λ1 + λ2)

dν
=

dλ1

dν
+

dλ2

dν
a.e. ν.

(iii) (Chain rule). If τ is a measure, λ is a σ-finite measure, and τ ≪ λ ≪ ν, then

dτ

dν
=

dτ

dλ

dλ

dν
a.e. ν.

In particular, if λ ≪ ν and ν ≪ λ (in which case λ and ν are equivalent), then

dλ

dν
=

(

dν

dλ

)−1

a.e. ν or λ.

(iv) Let (Ωi,Fi, νi) be a measure space and νi be σ-finite, i = 1, 2. Let λi be a σ-finite
measure on (Ωi,Fi) and λi ≪ νi, i = 1, 2. Then λ1 × λ2 ≪ ν1 × ν2 and

d(λ1 × λ2)

d(ν1 × ν2)
(ω1, ω2) =

dλ1

dν1
(ω1)

dλ2

dν2
(ω2) a.e. ν1 × ν2.
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Lecture 6: p.d.f. and transformation

Example 1.12. Let X be a random variable on (Ω,F , P ) whose c.d.f. FX has a Lebesgue
p.d.f. fX and FX(c) < 1, where c is a fixed constant. Let Y = min{X, c}, i.e., Y is the
smaller of X and c. Note that Y −1((−∞, x]) = Ω if x ≥ c and Y −1((−∞, x]) = X−1((∞, x])
if x < c. Hence Y is a random variable and the c.d.f. of Y is

FY (x) =











1 x ≥ c

FX(x) x < c.

This c.d.f. is discontinuous at c, since FX(c) < 1. Thus, it does not have a Lebesgue p.d.f. It
is not discrete either. Does PY , the probability measure corresponding to FY , have a p.d.f.
w.r.t. some measure? Define a probability measure on (R,B), called point mass at c, by

δc(A) =











1 c ∈ A

0 c 6∈ A,
A ∈ B

Then PY ≪ m + δc, where m is the Lebesgue measure, and the p.d.f. of PY is

dPY

d(m + δc)
(x) =



























0 x > c

1 − FX(c) x = c

fX(x) x < c.

Example 1.14. Let X be a random variable with c.d.f. FX and Lebesgue p.d.f. fX , and let
Y = X2. Since Y −1((−∞, x]) is empty if x < 0 and equals Y −1([0, x]) = X−1([−

√
x,
√

x ]) if
x ≥ 0, the c.d.f. of Y is

FY (x) = P ◦ Y −1((−∞, x])

= P ◦ X−1([−
√

x,
√

x ])

= FX(
√

x) − FX(−
√

x)

if x ≥ 0 and FY (x) = 0 if x < 0. Clearly, the Lebesgue p.d.f. of FY is

fY (x) =
1

2
√

x
[fX(

√
x) + fX(−

√
x)]I(0,∞)(x).

In particular, if

fX(x) =
1

√
2π

e−x2/2,

which is the Lebesgue p.d.f. of the standard normal distribution N(0, 1), then

fY (x) =
1

√
2πx

e−x/2I(0,∞)(x),

1



which is the Lebesgue p.d.f. for the chi-square distribution χ2
1 (Table 1.2). This is actually

an important result in statistics.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. fX and let Y = g(X),
where g is a Borel function from (Rk,Bk) to (Rk,Bk). Let A1, ..., Am be disjoint sets in Bk

such that Rk − (A1 ∪ · · · ∪ Am) has Lebesgue measure 0 and g on Aj is one-to-one with a
nonvanishing Jacobian, i.e., the determinant Det(∂g(x)/∂x) 6= 0 on Aj , j = 1, ..., m. Then
Y has the following Lebesgue p.d.f.:

fY (x) =
m

∑

j=1

|Det (∂hj(x)/∂x) | fX (hj(x)) ,

where hj is the inverse function of g on Aj, j = 1, ..., m.

In Example 1.14, A1 = (−∞, 0), A2 = (0,∞), g(x) = x2, h1(x) = −
√

x, h2(x) =
√

x, and
|dhj(x)/dx| = 1/(2

√
x).

Example 1.15. Let X = (X1, X2) be a random 2-vector having a joint Lebesgue p.d.f. fX .
Consider first the transformation g(x) = (x1, x1 + x2). Using Proposition 1.8, one can show
that the joint p.d.f. of g(X) is

fg(X)(x1, y) = fX(x1, y − x1),

where y = x1 + x2 (note that the Jacobian equals 1). The marginal p.d.f. of Y = X1 + X2

is then
fY (y) =

∫

fX(x1, y − x1)dx1.

In particular, if X1 and X2 are independent, then

fY (y) =
∫

fX1
(x1)fX2

(y − x1)dx1.

Next, consider the transformation h(x1, x2) = (x1/x2, x2), assuming that X2 6= 0 a.s. Using
Proposition 1.8, one can show that the joint p.d.f. of h(X) is

fh(X)(z, x2) = |x2|fX(zx2, x2),

where z = x1/x2. The marginal p.d.f. of Z = X1/X2 is

fZ(z) =
∫

|x2|fX(zx2, x2)dx2.

In particular, if X1 and X2 are independent, then

fZ(z) =
∫

|x2|fX1
(zx2)fX2

(x2)dx2.

Example 1.16 (t-distribution and F-distribution). Let X1 and X2 be independent random
variables having the chi-square distributions χ2

n1
and χ2

n2
(Table 1.2), respectively. The p.d.f.
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of Z = X1/X2 is

fZ(z) =
zn1/2−1I(0,∞)(z)

2(n1+n2)/2Γ(n1/2)Γ(n2/2)

∫

∞

0
x

(n1+n2)/2−1
2 e−(1+z)x2/2dx2

=
Γ[(n1 + n2)/2]

Γ(n1/2)Γ(n2/2)

zn1/2−1

(1 + z)(n1+n2)/2
I(0,∞)(z)

Using Proposition 1.8, one can show that the p.d.f. of Y = (X1/n1)/(X2/n2) = (n2/n1)Z is
the p.d.f. of the F-distribution Fn1,n2

given in Table 1.2.

Let U1 be a random variable having the standard normal distribution N(0, 1) and U2 a
random variable having the chi-square distribution χ2

n. Using the same argument, one can

show that if U1 and U2 are independent, then the distribution of T = U1/
√

U2/n is the
t-distribution tn given in Table 1.2.

Noncentral chi-square distribution

Let X1, ..., Xn be independent random variables and Xi = N(µi, σ
2), i = 1, ..., n. The

distribution of Y = (X2
1 + · · ·+ X2

n)/σ2 is called the noncentral chi-square distribution and
denoted by χ2

n(δ), where δ = (µ2
1 + · · ·+ µ2

n)/σ2 is the noncentrality parameter.
χ2

k(δ) with δ = 0 is called a central chi-square distribution.
It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

e−δ/2
∞
∑

j=0

(δ/2)j

j!
f2j+n(x)

where fk(x) is the Lebesgue p.d.f. of the chi-square distribution χ2
k.

If Y1, ..., Yk are independent random variables and Yi has the noncentral chi-square distribu-
tion χ2

ni
(δi), i = 1, ..., k, then Y = Y1 + · · · + Yk has the noncentral chi-square distribution

χ2
n1+···+nk

(δ1 + · · ·+ δk).

Noncentral t-distribution and F-distribution (in discussion)

Theorem 1.5. (Cochran’s theorem). Suppose that X = Nn(µ, In) and

XτX = XτA1X + · · · + XτAkX,

where In is the n × n identity matrix and Ai is an n × n symmetric matrix with rank ni,
i = 1, ..., k. A necessary and sufficient condition that XτAiX has the noncentral chi-square
distribution χ2

ni
(δi), i = 1, ..., k, and XτAiX’s are independent is n = n1 + · · ·+nk, in which

case δi = µτAiµ and δ1 + · · ·+ δk = µτµ.
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Lecture 7: Moments, inequalities, m.g.f. and ch.f.

If EXk is finite, where k is a positive integer, EXk is called the kth moment of X or PX .
If E|X|a <∞ for some real number a, E|X|a is called the ath absolute moment of X or PX .
If µ = EX and E(X − µ)k are finite for a positive integer k, E(X − µ)k is called the kth
central moment of X or PX .
Variance: E(X −EX)2

X = (X1, ..., Xk), EX = (EX1, ..., EXk)
M = (Mij), EM = (EMij)
Covariance matrix: Var(X) = E(X − EX)(X − EX)τ

The (i, j)th element of Var(X), i 6= j, is E(Xi − EXi)(Xj − EXj), which is called the
covariance of Xi and Xj and is denoted by Cov(Xi, Xj).
Var(X) is nonnegative definite
[Cov(Xi, Xj)]

2 ≤ Var(Xi)Var(Xj), i 6= j
If Cov(Xi, Xj) = 0, then Xi and Xj are uncorrelated
Independence implies uncorrelation, not converse
If Y = cτX, c ∈ Rk, and X is a random k-vector, EY = cτEX and Var(Y ) = cτVar(X)c.

Three useful inequalities
Cauchy-Schwartz inequality: [E(XY )]2 ≤ EX2EY 2 for random variables X and Y
Jensen’s inequality: f(EX) ≤ Ef(X) for a random vector X and convex function f (f ′′ ≥ 0)
Chebyshev’s inequality: Let X be a random variable and ϕ a nonnegative and nondecreasing
function on [0,∞) satisfying ϕ(−t) = ϕ(t). Then, for each constant t ≥ 0,

ϕ(t)P (|X| ≥ t) ≤
∫

{|X|≥t}
ϕ(X)dP ≤ Eϕ(X)

Example 1.18. If X is a nonconstant positive random variable with finite mean, then

(EX)−1 < E(X−1) and E(logX) < log(EX),

since t−1 and − log t are convex functions on (0,∞). Let f and g be positive integrable
functions on a measure space with a σ-finite measure ν. If

∫

fdν ≥
∫

gdν > 0, we want to
show that

∫

f log

(

f

g

)

dν ≥ 0.

Let h = f/
∫

fdν. Then h is a p.d.f. w.r.t. ν. Let Y = g/f be a random variable defined
on the probability space with P being the probability with p.d.f. h. By Jensen’s inequality,
E log(g/f) ≤ log(E(g/f)). Note that

log(E(g/f)) = log

(

∫

g

f
hdν

)

= log

(
∫

gdν
∫

fdν

)

≤ 0

and

E log(g/f) =
∫

log

(

g

f

)

hdν =
∫

log

(

g

f

)

fdν
/
∫

fdν

1



Moment generating and characteristic functions
Definition 1.5. Let X be a random k-vector.
(i) The moment generating function (m.g.f.) of X or PX is defined as

ψX(t) = Eetτ X , t ∈ Rk.

(ii) The characteristic function (ch.f.) of X or PX is defined as

φX(t) = Ee
√
−1tτ X = E[cos(tτX)] +

√
−1E[sin(tτX)], t ∈ Rk

If the m.g.f. is finite in a neighborhood of 0 ∈ Rk, then φX(t) can be obtained by replacing
t in ψX(t) by

√
−1t

If Y = AτX + c, where A is a k ×m matrix and c ∈ Rm, it follows from Definition 1.5 that

ψY (u) = ecτ uψX(Au) and φY (u) = e
√
−1cτuφX(Au), u ∈ Rm

X = (X1, ..., Xk) with m.g.f. ψX finite in a neighborhood of 0

ψX(t) =
∑

(r1,...,rk)

µr1,...,rk
tr1

1 · · · trk

k

r1! · · · rk!
µr1,...,rk

= E(Xr1

1 · · ·Xrk

k )

Special case of k = 1:

ψX(t) =
∞
∑

i=0

E(X i)ti

i!

Consequently,

E(Xr1

1 · · ·Xrk

k ) =
∂r1+···+rkψX(t)

∂tr1

1 · · ·∂trk

k

∣

∣

∣

∣

t=0
E(X i) = ψ(i)(0) =

dψi
X(t)

dti

∣

∣

∣

∣

t=0

∂ψX(t)

∂t

∣

∣

∣

∣

t=0
= EX,

∂2ψX(t)

∂t∂tτ

∣

∣

∣

∣

t=0
= E(XXτ )

If 0 < ψX(t) < ∞, then κX(t) = logψX(t) is called the cumulant generating function of X
or PX .

If ψX is not finite and E|Xr1

1 · · ·Xrk

k | <∞ for some nonnegative integers r1, ..., rk, then

∂r1+···+rkφX(t)

∂tr1

1 · · ·∂trk

k

∣

∣

∣

∣

t=0
= (−1)(r1+···+rk)/2E(Xr1

1 · · ·Xrk

k )

∂φX(t)

∂t

∣

∣

∣

∣

t=0
=

√
−1EX,

∂2φX(t)

∂t∂tτ

∣

∣

∣

∣

t=0
= −E(XXτ ), φ

(i)
X (0) = (−1)i/2E(X i)
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Example: a random variable X has finite E(Xk) for k = 1, 2... but ψX(t) = ∞, t 6= 0
Pn: the probability measure for N(0, n) with p.d.f. fn, n = 1, 2, ...
P =

∑

∞

n=1 2−nPn is a probability measure with Lebesgue p.d.f.
∑

∞

n=1 2−nfn (Exercise 35)
Let X be a random variable having distribution P .
It follows from Fubini’s theorem that X has finite moments of any order; for even k,

E(Xk) =
∫

xkdP =
∫ ∞
∑

n=1

xk2−ndPn =
∞
∑

n=1

2−n

∫

xkdPn =
∞
∑

n=1

2−n(k−1)(k−3) · · ·1nk/2 <∞

and E(Xk) = 0 for odd k.
By Fubini’s theorem,

ψX(t) =
∫

etxdP =
∞
∑

n=1

2−n

∫

etxdPn =
∞
∑

n=1

2−nent2/2 = ∞ t 6= 0

Since the ch.f. of N(0, n) is e−nt2/2,

φX(t) =
∫

e
√
−1txdP =

∞
∑

n=1

2−n

∫

e
√
−1txdPn =

∞
∑

n=1

2−ne−nt2/2 = (2et2/2 − 1)−1

(Fubini’s theorem)
Hence, the moments of X can be obtained by differentiating φX

For example, φ′
X(0) = 0 and φ′′

X(0) = −2, which shows that EX = 0 and EX2 = 2.

Theorem 1.6. (Uniqueness). Let X and Y be random k-vectors.
(i) If φX(t) = φY (t) for all t ∈ Rk, then PX = PY .
(ii) If ψX(t) = ψY (t) <∞ for all t in a neighborhood of 0, then PX = PY .

Another useful result: For independent X and Y ,

ψX+Y (t) = ψX(t)ψY (t) and φX+Y (t) = φX(t)ψY (t), t ∈ Rk

Example 1.20. Let Xi, i = 1, ..., k, be independent random variables and Xi have the
gamma distribution Γ(αi, γ) (Table 1.2), i = 1, ..., k. From Table 1.2, Xi has the m.g.f.
ψXi

(t) = (1 − γt)−αi , t < γ−1, i = 1, ..., k. Then, the m.g.f. of Y = X1 + · · · + Xk is
equal to ψY (t) = (1 − γt)−(α1+···+αk), t < γ−1. From Table 1.2, the gamma distribution
Γ(α1 + · · · + αk, γ) has the m.g.f. ψY (t) and, hence, is the distribution of Y (by Theorem
1.6).

A random vector X is symmetric about 0 iff X and −X have the same distribution
Show that: X is symmetric about 0 if and only if its ch.f. φX is real-valued.
If X and −X have the same distribution, then by Theorem 1.6, φX(t) = φ−X(t).
But φ−X(t) = φX(−t). Then φX(t) = φX(−t).
Note that sin(−tτX) = − sin(tτX) and cos(tτX) = cos(−tτX)
Hence E[sin(tτX)] = 0 and, thus, φX is real-valued.
Conversely, if φX is real-valued, then φX(t) = E[cos(tτX)] and φ−X(t) = φX(−t) = φX(t).
By Theorem 1.6, X and −X must have the same distribution.
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Lecture 8: Conditional expectation

Conditional probability P (B|A) = P (A ∩ B)/P (A) for events A and B with P (A) > 0
P (X ∈ B|Y ∈ A)
P (X ∈ B|Y = y)?

Definition 1.6. Let X be an integrable random variable on (Ω,F , P ).
(i) Let A be a sub-σ-field of F . The conditional expectation of X given A, denoted by
E(X|A), is the a.s.-unique random variable satisfying the following two conditions:

(a) E(X|A) is measurable from (Ω,A) to (R,B);
(b)

∫

A E(X|A)dP =
∫

A XdP for any A ∈ A.
(Note that the existence of E(X|A) follows from Theorem 1.4.)
(ii) Let B ∈ F . The conditional probability of B given A is defined to be P (B|A) = E(IB|A).
(iii) Let Y be measurable from (Ω,F , P ) to (Λ,G). The conditional expectation of X given
Y is defined to be E(X|Y ) = E[X|σ(Y )].

σ(Y ) contains “the information in Y ”
E(X|Y ) is the “expectation” of X given the information provided by Y

Lemma 1.2. Let Y be measurable from (Ω,F) to (Λ,G) and Z a function from (Ω,F) to
Rk. Then Z is measurable from (Ω, σ(Y )) to (Rk,Bk) if and only if there is a measurable
function h from (Λ,G) to (Rk,Bk) such that Z = h ◦ Y .

The function h in E(X|Y ) = h ◦ Y is a Borel function on (Λ,G).
Let y ∈ Λ. We define

E(X|Y = y) = h(y)

to be the conditional expectation of X given Y = y.
Note that h(y) is a function on Λ, whereas h ◦ Y = E(X|Y ) is a function on Ω.

For a random vector X, E(X|A) is defined as the vector of conditional expectations of
components of X.

Example 1.21. Let X be an integrable random variable on (Ω,F , P ), A1, A2, ... be disjoint
events on (Ω,F , P ) such that ∪Ai = Ω and P (Ai) > 0 for all i, and let a1, a2, ... be distinct
real numbers. Define Y = a1IA1

+ a2IA2
+ · · ·. We now show that

E(X|Y ) =
∞
∑

i=1

∫

Ai
XdP

P (Ai)
IAi

.

We need to verify (a) and (b) in Definition 1.6 with A = σ(Y ).
Since σ(Y ) = σ({A1, A2, ...}), it is clear that the function on the right-hand side is measurable
on (Ω, σ(Y )).
For any B ∈ B, Y −1(B) = ∪i:ai∈BAi. Using properties of integrals, we obtain that

1



∫

Y −1(B)
XdP =

∑

i:ai∈B

∫

Ai

XdP

=
∞
∑

i=1

∫

Ai
XdP

P (Ai)
P

(

Ai ∩ Y −1(B)
)

=
∫

Y −1(B)

[

∞
∑

i=1

∫

Ai
XdP

P (Ai)
IAi

]

dP.

This verifies (b) and thus the result.
Let h be a Borel function on R satisfying h(ai) =

∫

Ai
XdP/P (Ai).

Then E(X|Y ) = h ◦ Y and E(X|Y = y) = h(y).

Proposition 1.9. Let X be a random n-vector and Y a random m-vector. Suppose that
(X, Y ) has a joint p.d.f. f(x, y) w.r.t. ν×λ, where ν and λ are σ-finite measures on (Rn,Bn)
and (Rm,Bm), respectively. Let g(x, y) be a Borel function on Rn+m for which E|g(X, Y )| <
∞. Then

E[g(X, Y )|Y ] =

∫

g(x, Y )f(x, Y )dν(x)
∫

f(x, Y )dν(x)
a.s.

Proof. Denote the right-hand side by h(Y ). By Fubini’s theorem, h is Borel. Then, by
Lemma 1.2, h(Y ) is Borel on (Ω, σ(Y )). Also, by Fubini’s theorem, fY (y) =

∫

f(x, y)dν(x)
is the p.d.f. of Y w.r.t. λ. For B ∈ Bm,

∫

Y −1(B)
h(Y )dP =

∫

B
h(y)dPY

=
∫

B

∫

g(x, y)f(x, y)dν(x)
∫

f(x, y)dν(x)
fY (y)dλ(y)

=
∫

Rn×B
g(x, y)f(x, y)dν × λ

=
∫

Rn×B
g(x, y)dP(X,Y )

=
∫

Y −1(B)
g(X, Y )dP,

where the first and the last equalities follow from Theorem 1.2, the second and the next to
last equalities follow from the definition of h and p.d.f.’s, and the third equality follows from
Theorem 1.3 (Fubini’s theorem).

(X, Y ): a random vector with a joint p.d.f. f(x, y) w.r.t. ν × λ
The conditional p.d.f. of X given Y = y: fX|Y (x|y) = f(x, y)/fY (y)
fY (y) =

∫

f(x, y)dν(x) is the marginal p.d.f. of Y w.r.t. λ.
For each fixed y with fY (y) > 0, fX|Y (x|y) is a p.d.f. w.r.t. ν.
Then Proposition 1.9 states that

E[g(X, Y )|Y ] =
∫

g(x, Y )fX|Y (x|Y )dν(x)

i.e., the conditional expectation of g(X, Y ) given Y is equal to the expectation of g(X, Y )
w.r.t. the conditional p.d.f. of X given Y .
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Properties

Proposition 1.10. Let X, Y , X1, X2, ... be integrable random variables on (Ω,F , P ) and
A be a sub-σ-field of F .
(i) If X = c a.s., c ∈ R, then E(X|A) = c a.s.
(ii) If X ≤ Y a.s., then E(X|A) ≤ E(Y |A) a.s.
(iii) If a ∈ R and b ∈ R, then E(aX + bY |A) = aE(X|A) + bE(Y |A) a.s.
(iv) E[E(X|A)] = EX.
(v) E[E(X|A)|A0] = E(X|A0) = E[E(X|A0)|A] a.s., where A0 is a sub-σ-field of A.
(vi) If σ(Y ) ⊂ A and E|XY | < ∞, then E(XY |A) = Y E(X|A) a.s.
(vii) If X and Y are independent and E|g(X, Y )| < ∞ for a Borel function g, then
E[g(X, Y )|Y = y] = E[g(X, y)] a.s. PY .
(viii) If EX2 < ∞, then [E(X|A)]2 ≤ E(X2|A) a.s.
(ix) (Fatou’s lemma). If Xn ≥ 0 for any n, then E (lim infn Xn|A) ≤ lim infn E(Xn|A) a.s.
(x) (Dominated convergence theorem). Suppose that |Xn| ≤ Y for any n and Xn →a.s. X.
Then E(Xn|A) →a.s. E(X|A).

Example 1.22. Let X be a random variable on (Ω,F , P ) with EX2 < ∞ and let Y be
a measurable function from (Ω,F , P ) to (Λ,G). One may wish to predict the value of X
based on an observed value of Y . Let g(Y ) be a predictor, i.e., g ∈ ℵ = {all Borel functions
g with E[g(Y )]2 < ∞}. Each predictor is assessed by the “mean squared prediction error”
E[X − g(Y )]2. We now show that E(X|Y ) is the best predictor of X in the sense that

E[X − E(X|Y )]2 = min
g∈ℵ

E[X − g(Y )]2.

First, Proposition 1.10(viii) implies E(X|Y ) ∈ ℵ. Next, for any g ∈ ℵ,

E[X − g(Y )]2 = E[X − E(X|Y ) + E(X|Y ) − g(Y )]2

= E[X − E(X|Y )]2 + E[E(X|Y ) − g(Y )]2

+ 2E{[X − E(X|Y )][E(X|Y ) − g(Y )]}

= E[X − E(X|Y )]2 + E[E(X|Y ) − g(Y )]2

+ 2E{E{[X − E(X|Y )][E(X|Y ) − g(Y )]|Y }}

= E[X − E(X|Y )]2 + E[E(X|Y ) − g(Y )]2

+ 2E{[E(X|Y ) − g(Y )]E[X − E(X|Y )|Y ]}

= E[X − E(X|Y )]2 + E[E(X|Y ) − g(Y )]2

≥E[X − E(X|Y )]2,

where the third equality follows from Proposition 1.10(iv), the fourth equality follows from
Proposition 1.10(vi), and the last equality follows from Proposition 1.10(i), (iii), and (vi).
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Lecture 9: Independence, conditional independence, conditional distribution

Definition 1.7. Let (Ω,F , P ) be a probability space.
(i) Let C be a collection of subsets in F . Events in C are said to be independent if and only
if for any positive integer n and distinct events A1,...,An in C,

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · ·P (An).

(ii) Collections Ci ⊂ F , i ∈ I (an index set that can be uncountable), are said to be
independent if and only if events in any collection of the form {Ai ∈ Ci : i ∈ I} are
independent.
(iii) Random elements Xi, i ∈ I, are said to be independent if and only if σ(Xi), i ∈ I, are
independent.

A useful result for checking the independence of σ-fields.

Lemma 1.3. Let Ci, i ∈ I, be independent collections of events. Suppose that each Ci has
the property that if A ∈ Ci and B ∈ Ci, then A∩B ∈ Ci. Then σ(Ci), i ∈ I, are independent.

Random variables Xi, i = 1, ..., k, are independent according to Definition 1.7 if and only if

F(X1,...,Xk)(x1, ..., xk) = FX1
(x1) · · ·FXk

(xk), (x1, ..., xk) ∈ Rk

Take Ci = {(a, b] : a ∈ R, b ∈ R}, i = 1, ..., k

If X and Y are independent random vectors, then so are g(X) and h(Y ) for Borel functions
g and h.

Two events A and B are independent if and only if P (B|A) = P (B), which means that A
provides no information about the probability of the occurrence of B.

Proposition 1.11. Let X be a random variable with E|X| < ∞ and let Yi be random
ki-vectors, i = 1, 2. Suppose that (X, Y1) and Y2 are independent. Then

E[X|(Y1, Y2)] = E(X|Y1) a.s.

Proof. First, E(X|Y1) is Borel on (Ω, σ(Y1, Y2)), since σ(Y1) ⊂ σ(Y1, Y2). Next, we need to
show that for any Borel set B ∈ Bk1+k2,

∫

(Y1,Y2)−1(B)
XdP =

∫

(Y1,Y2)−1(B)
E(X|Y1)dP. (1)

If B = B1 × B2, where Bi ∈ Bki , then (Y1, Y2)
−1(B) = Y −1

1 (B1) ∩ Y −1
2 (B2) and

∫

Y −1

1
(B1)∩Y −1

2
(B2)

E(X|Y1)dP =
∫

IY −1

1
(B1)IY −1

2
(B2)E(X|Y1)dP

=
∫

IY −1

1
(B1)E(X|Y1)dP

∫

IY −1

2
(B2)dP

=
∫

IY −1

1
(B1)XdP

∫

IY −1

2
(B2)dP

=
∫

IY −1

1
(B1)IY −1

2
(B2)XdP

=
∫

Y −1

1
(B1)∩Y −1

2
(B2)

XdP,

1



where the second and the next to last equalities follow the independence of (X, Y1) and Y2,
and the third equality follows from the fact that E(X|Y1) is the conditional expectation of
X given Y1. This shows that (1) holds for B = B1 × B2. We can show that the collection
H = {B ⊂ Rk1+k2 : B satisfies (1) } is a σ-field. Since we have already shown that
Bk1 × Bk2 ⊂ H, Bk1+k2 = σ(Bk1 × Bk2) ⊂ H and thus the result follows.

The result in Proposition 1.11 still holds if X is replaced by h(X) for any Borel h and, hence,

P (A|Y1, Y2) = P (A|Y1) a.s. for any A ∈ σ(X), (2)

if (X, Y1) and Y2 are independent.

We say that given Y1, X and Y2 are conditionally independent if and only if (2) holds.

Proposition 1.11 can be stated as: if Y2 and (X, Y1) are independent, then given Y1, X and
Y2 are conditionally independent.

Conditional distribution

For random vectors X and Y , is P [X−1(B)|Y = y] a probability measure for given y?
The the following theorem shows that there exists a version of conditional probability such
that P [X−1(B)|Y = y] is a probability measure for any fixed y.

Theorem 1.7. (i) (Existence of conditional distributions). Let X be a random n-vector
on a probability space (Ω,F , P ) and A be a sub-σ-field of F . Then there exists a function
P (B, ω) on Bn ×Ω such that (a) P (B, ω) = P [X−1(B)|A] a.s. for any fixed B ∈ Bn, and (b)
P (·, ω) is a probability measure on (Rn,Bn) for any fixed ω ∈ Ω.
Let Y be measurable from (Ω,F , P ) to (Λ,G). Then there exists PX|Y (B|y) such that
(a) PX|Y (B|y) = P [X−1(B)|Y = y] a.s. PY for any fixed B ∈ Bn, and (b) PX|Y (·|y) is a
probability measure on (Rn,Bn) for any fixed y ∈ Λ.
Furthermore, if E|g(X, Y )| < ∞ with a Borel function g, then

E[g(X, Y )|Y = y] = E[g(X, y)|Y = y] =
∫

Rn
g(x, y)dPX|Y (x|y) a.s. PY .

(ii) Let (Λ,G, P1) be a probability space. Suppose that P2 is a function from Bn×Λ to R and
satisfies (a) P2(·, y) is a probability measure on (Rn,Bn) for any y ∈ Λ, and (b) P2(B, ·) is
Borel for any B ∈ Bn. Then there is a unique probability measure P on (Rn ×Λ, σ(Bn ×G))
such that, for B ∈ Bn and C ∈ G,

P (B × C) =
∫

C
P2(B, y)dP1(y). (3)

Furthermore, if (Λ,G) = (Rm,Bm), and X(x, y) = x and Y (x, y) = y define the coordinate
random vectors, then PY = P1, PX|Y (·|y) = P2(·, y), and the probability measure in (3) is
the joint distribution of (X, Y ), which has the following joint c.d.f.:

F (x, y) =
∫

(−∞,y]
PX|Y ((−∞, x]|z)dPY (z), x ∈ Rn, y ∈ Rm, (4)

where (−∞, a] denotes (−∞, a1] × · · · × (−∞, ak] for a = (a1, ..., ak).
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For a fixed y, PX|Y =y = PX|Y (·|y) is called the conditional distribution of X given Y = y.

Two-stage experiment theorem:
If Y ∈ Rm is selected in stage 1 of an experiment according to its marginal distribution
PY = P1, and X is chosen afterward according to a distribution P2(·, y), then the combined
two-stage experiment produces a jointly distributed pair (X, Y ) with distribution P(X,Y )

given by (3) and PX|Y =y = P2(·, y).
This provides a way of generating dependent random variables.

Example 1.23. A market survey is conducted to study whether a new product is preferred
over the product currently available in the market (old product). The survey is conducted
by mail. Questionnaires are sent along with the sample products (both new and old) to
N customers randomly selected from a population, where N is a positive integer. Each
customer is asked to fill out the questionnaire and return it. Responses from customers are
either 1 (new is better than old) or 0 (otherwise). Some customers, however, do not return
the questionnaires. Let X be the number of ones in the returned questionnaires. What is
the distribution of X?

If every customer returns the questionnaire, then (from elementary probability) X has the
binomial distribution Bi(p, N) in Table 1.1 (assuming that the population is large enough
so that customers respond independently), where p ∈ (0, 1) is the overall rate of customers
who prefer the new product. Now, let Y be the number of customers who respond. Then
Y is random. Suppose that customers respond independently with the same probability
π ∈ (0, 1). Then PY is the binomial distribution Bi(π, N). Given Y = y (an integer between
0 and N), PX|Y =y is the binomial distribution Bi(p, y) if y ≥ 1 and the point mass at 0
if y = 0. Using (4) and the fact that binomial distributions have p.d.f.’s w.r.t. counting
measure, we obtain that the joint c.d.f. of (X, Y ) is

F (x, y)=
y
∑

k=0

PX|Y =k((−∞, x])

(

N

k

)

πk(1 − π)N−k

=
y
∑

k=0

min{x,k}
∑

j=0

(

k

j

)

pj(1 − p)k−j

(

N

k

)

πk(1 − π)N−k

for x = 0, 1, ..., y, y = 0, 1, ..., N . The marginal c.d.f. FX(x) = F (x,∞) = F (x, N). The
p.d.f. of X w.r.t. counting measure is

fX(x) =
N
∑

k=x

(

k

x

)

px(1 − p)k−x

(

N

k

)

πk(1 − π)N−k

=

(

N

x

)

(πp)x(1 − πp)N−x
N
∑

k=x

(

N − x

k − x

)(

π − πp

1 − πp

)k−x(

1 − π

1 − πp

)N−k

=

(

N

x

)

(πp)x(1 − πp)N−x

for x = 0, 1, ..., N . It turns out that the marginal distribution of X is the binomial distribu-
tion Bi(πp, N).
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Lecture 10: Markov chains

An important example of dependent sequence of random variables in statistical application

A sequence of random vectors {Xn : n = 1, 2, ...} is a Markov chain or Markov process if and
only if

P (B|X1, ..., Xn) = P (B|Xn) a.s., B∈σ(Xn+1), n = 2, 3, .... (1)

Xn+1 (tomorrow) is conditionally independent of (X1, ..., Xn−1) (the past), given Xn (today).
(X1, ..., Xn−1) is not necessarily independent of (Xn, Xn+1).
A sequence of independent random vectors forms a Markov chain

Example 1.24 (First-order autoregressive processes). Let ε1, ε2, ... be independent random
variables defined on a probability space, X1 = ε1, and Xn+1 = ρXn+εn+1, n = 1, 2, ..., where
ρ is a constant in R. Then {Xn} is called a first-order autoregressive process. We now show
that for any B ∈ B and n = 1, 2, ...,

P (Xn+1 ∈ B|X1, ..., Xn) = Pεn+1
(B − ρXn) = P (Xn+1 ∈ B|Xn) a.s.,

where B − y = {x ∈ R : x + y ∈ B}, which implies that {Xn} is a Markov chain. For any
y ∈ R,

Pεn+1
(B − y) = P (εn+1 + y ∈ B) =

∫

IB(x + y)dPεn+1
(x)

and, by Fubini’s theorem, Pεn+1
(B−y) is Borel. Hence, Pεn+1

(B−ρXn) is Borel w.r.t. σ(Xn)
and, thus, is Borel w.r.t. σ(X1, ..., Xn). Let Bj ∈ B, j = 1, ..., n, and A = ∩n

j=1X
−1
j (Bj).

Since εn+1 + ρXn = Xn+1 and εn+1 is independent of (X1, ..., Xn), it follows from Theorem
1.2 and Fubini’s theorem that

∫

A
Pεn+1

(B − ρXn)dP =
∫

xj∈Bj ,j=1,...,n

∫

t∈B−ρxn

dPεn+1
(t)dPX(x)

=
∫

xj∈Bj ,j=1,...,n,xn+1∈B
dP(X,εn+1)(x, t)

=P
(

A ∩ X−1
n+1(B)

)

,

where X and x denote (X1, ..., Xn) and (x1, ..., xn), respectively, and xn+1 denotes ρxn + t.
Using this and the argument in the end of the proof for Proposition 1.11, we obtain P (Xn+1 ∈
B|X1, ..., Xn) = Pεn+1

(B − ρXn) a.s. The proof for Pεn+1
(B − ρXn) = P (Xn+1 ∈ B|Xn) a.s.

is similar and simpler.

1



Characterizations of Markov chains

Proposition 1.12. A sequence of random vectors {Xn} is a Markov chain if and only if
one of the following three conditions holds.
(a) For any n = 2, 3, ... and any integrable h(Xn+1) with a Borel function h,

E[h(Xn+1)|X1, ..., Xn] = E[h(Xn+1)|Xn] a.s.

(b) For any n = 1, 2, ... and B ∈ σ(Xn+1, Xn+2, ...),

P (B|X1, ..., Xn) = P (B|Xn) a.s.

(“the past and the future are conditionally independent given the present”)
(c) For any n = 2, 3, ..., A ∈ σ(X1, ..., Xn), and B ∈ σ(Xn+1, Xn+2, ...),

P (A ∩ B|Xn) = P (A|Xn)P (B|Xn) a.s.

Proof. (i) It is clear that (a) implies (1). If h is a simple function, then (1) and Proposition
1.10(iii) imply (a). If h is nonnegative, then there are nonnegative simple functions h1 ≤
h2 ≤ · · · ≤ h such that hj → h. Then (1) together with Proposition 1.10(iii) and (x) imply
(a). Since h = h+ − h−, we conclude that (1) implies (a).
(ii) It is also clear that (b) implies (1). We now show that (1) implies (b). Note that

σ(Xn+1, Xn+2, ...) = σ
(

∪∞
j=1σ(Xn+1, ..., Xn+j)

)

(Exercise 19). Hence, it suffices to show

that P (B|X1, ..., Xn) = P (B|Xn) a.s. for B ∈ σ(Xn+1, ..., Xn+j) for any j = 1, 2, .... We
use induction. The result for j = 1 follows from (1). Suppose that the result holds for
any B ∈ σ(Xn+1, ..., Xn+j). To show the result for any B ∈ σ(Xn+1, ..., Xn+j+1), it is
enough (why?) to show that for any B1 ∈ σ(Xn+j+1) and any B2 ∈ σ(Xn+1, ..., Xn+j),
P (B1∩B2|X1, ..., Xn) = P (B1∩B2|Xn) a.s. From the proof in (i), the induction assumption
implies

E[h(Xn+1, ..., Xn+j)|X1, ..., Xn] = E[h(Xn+1, ..., Xn+j)|Xn] (2)

for any Borel function h. The result follows from

E(IB1
IB2

|X1, ..., Xn) =E[E(IB1
IB2

|X1, ..., Xn+j)|X1, ..., Xn]

=E[IB2
E(IB1

|X1, ..., Xn+j)|X1, ..., Xn]

=E[IB2
E(IB1

|Xn+j)|X1, ..., Xn]

=E[IB2
E(IB1

|Xn+j)|Xn]

=E[IB2
E(IB1

|Xn, ..., Xn+j)|Xn]

=E[E(IB1
IB2

|Xn, ..., Xn+j)|Xn]

=E(IB1
IB2

|Xn) a.s.,

where the first and last equalities follow from Proposition 1.10(v), the second and sixth
equalities follow from Proposition 1.10(vi), the third and fifth equalities follow from (1), and
the fourth equality follows from (2).
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(iii) Let A ∈ σ(X1, ..., Xn) and B ∈ σ(Xn+1, Xn+2, ...). If (b) holds, then

E(IAIB|Xn) =E[E(IAIB|X1, ..., Xn)|Xn]

=E[IAE(IB|X1, ..., Xn)|Xn]

=E[IAE(IB|Xn)|Xn]

=E(IA|Xn)E(IB|Xn),

which is (c).

Assume that (c) holds. Let A1 ∈ σ(Xn), A2 ∈ σ(X1, ..., Xn−1), and B ∈ σ(Xn+1, Xn+2, ...).
Then

∫

A1∩A2

E(IB|Xn)dP =
∫

A1

IA2
E(IB|Xn)dP

=
∫

A1

E[IA2
E(IB|Xn)|Xn]dP

=
∫

A1

E(IA2
|Xn)E(IB|Xn)dP

=
∫

A1

E(IA2
IB|Xn)dP

= P (A1 ∩ A2 ∩ B).

Since disjoint unions of events of the form A1 ∩A2 as specified above generate σ(X1, ..., Xn),
this shows that E(IB|Xn) = E(IB|X1, ..., Xn) a.s., which is (b).

3



Lecture 11: Convergence modes and stochastic orders

c = (c1, ..., ck) ∈ Rk, ‖c‖r = (
∑k

j=1 |cj|
r)1/r, r > 0.

If r ≥ 1, then ‖c‖r is the Lr-distance between 0 and c.
When r = 2, ‖c‖ = ‖c‖2 =

√
cτc.

Definition 1.8. Let X, X1, X2, . . . be random k-vectors defined on a probability space.
(i) We say that the sequence {Xn} converges to X almost surely (a.s.) and write Xn →a.s. X
if and only if limn→∞ Xn = X a.s.
(ii) We say that {Xn} converges to X in probability and write Xn →p X if and only if, for
every fixed ǫ > 0,

lim
n→∞

P (‖Xn − X‖ > ǫ) = 0.

(iii) We say that {Xn} converges to X in Lr (or in rth moment) and write Xn →Lr
X if and

only if
lim

n→∞
E‖Xn − X‖r

r = 0,

where r > 0 is a fixed constant.
(iv) Let F , Fn, n = 1, 2, ..., be c.d.f.’s on Rk and P , Pn, n = 1, ..., be their corresponding
probability measures. We say that {Fn} converges to F weakly (or {Pn} converges to P
weakly) and write Fn →w F (or Pn →w P ) if and only if, for each continuity point x of F ,

lim
n→∞

Fn(x) = F (x).

We say that {Xn} converges to X in distribution (or in law) and write Xn →d X if and only
if FXn

→w FX .

→a.s., →p, →Lr
: How close is between Xn and X as n → ∞?

FXn
→w FX : Xn and X may not be close (they may be on different spaces)

Example 1.26. Let θn = 1 + n−1 and Xn be a random variable having the exponential
distribution E(0, θn) (Table 1.2), n = 1, 2, .... Let X be a random variable having the
exponential distribution E(0, 1). For any x > 0, as n → ∞,

FXn
(x) = 1 − e−x/θn → 1 − e−x = FX(x)

Since FXn
(x) ≡ 0 ≡ FX(x) for x ≤ 0, we have shown that Xn →d X.

Xn →p X?
Need further information about the random variables X and Xn.
We consider two cases in which different answers can be obtained.
First, suppose that Xn ≡ θnX (then Xn has the given c.d.f.).
Xn − X = (θn − 1)X = n−1X, which has the c.d.f. (1 − e−nx)I[0,∞)(x).

P (|Xn − X| ≥ ǫ) = e−nǫ → 0

for any ǫ > 0. (In fact, by Theorem 1.8(v), Xn →a.s. X)
Since E|Xn − X|p = n−pEXp < ∞ for any p > 0, Xn →Lp

X for any p > 0.

1



Next, suppose that Xn and X are independent random variables.
Since p.d.f.’s for Xn and −X are θ−1

n e−x/θnI(0,∞)(x) and exI(−∞,0)(x), respectively, we have

P (|Xn − X| ≤ ǫ) =
∫ ǫ

−ǫ

∫

θ−1
n e−x/θney−xI(0,∞)(x)I(−∞,x)(y)dxdy,

which converges to (by the dominated convergence theorem)

∫ ǫ

−ǫ

∫

e−xey−xI(0,∞)(x)I(−∞,x)(y)dxdy = 1 − e−ǫ.

Thus, P (|Xn − X| ≥ ǫ) → e−ǫ > 0 for any ǫ > 0 and, therefore, Xn →p X does not hold.

Proposition 1.16 (Pólya’s theorem). If Fn →w F and F is continuous on Rk, then

lim
n→∞

sup
x∈Rk

|Fn(x) − F (x)| = 0.

Lemma 1.4. For random k-vectors X, X1, X2, . . . on a probability space, Xn →a.s. X if and
only if for every ǫ > 0,

lim
n→∞

P

(

∞
⋃

m=n

{‖Xm − X‖ > ǫ}

)

= 0. (1)

Proof. Let Aj = ∪∞
n=1 ∩

∞
m=n {‖Xm − X‖ ≤ j−1}, j = 1, 2, ....

Then
∞
⋂

j=1

Aj = {ω : lim
n→∞

Xn(ω) = X(ω)}

By Proposition 1.1(iii),

P (Aj) = lim
n→∞

P

(

∞
⋂

m=n

{‖Xm − X‖ ≤ j−1}

)

= 1 − lim
n→∞

P

(

∞
⋃

m=n

{‖Xm − X‖ > j−1}

)

(1) holds for every ǫ > 0 if and only if P (Aj) = 1 for every j, i.e., P (∩∞
j=1Aj) = 1

P (Aj) ≥ P (
∞
⋂

j=1

Aj) = 1 − P (
∞
⋃

j=1

Ac
j) ≥ 1 −

∞
∑

j=1

P (Ac
j)

Lemma 1.5. (Borel-Cantelli lemma). Let An be a sequence of events in a probability space
and lim supn An = ∩∞

n=1 ∪
∞
m=n Am.

(i) If
∑

∞

n=1 P (An) < ∞, then P (lim supn An) = 0.
(ii) If A1, A2, ... are pairwise independent and

∑

∞

n=1 P (An) = ∞, then P (lim supn An) = 1.
Proof. (i) By Proposition 1.1,

P
(

lim sup
n→∞

An

)

= P

(

∞
⋂

n=1

∞
⋃

m=n

Am

)

= lim
n→∞

P

(

∞
⋃

m=n

Am

)

≤ lim
n→∞

∞
∑

m=n

P (An) = 0

if
∑

∞

n=1 P (An) < ∞.
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(ii) We prove the case of independent An’s.

P
(

lim sup
n→∞

An

)

= lim
n→∞

P

(

∞
⋃

m=n

Am

)

= 1 − lim
n→∞

P

(

∞
⋂

m=n

Ac
m

)

= 1 − lim
n→∞

∞
∏

m=n

P (Ac
m)

n+k
∏

m=n

P (Ac
m) =

n+k
∏

m=n

[1 − P (Am)] ≤
n+k
∏

m=n

exp{−P (Am)} = exp

{

−
n+k
∑

m=n

P (Am)

}

(1 − t ≤ e−t = exp{t}). Letting k → ∞,

∞
∏

m=n

P (Ac
m) = lim

k→∞

n+k
∏

m=n

P (Ac
m) ≤ exp

{

−
∞
∑

m=n

P (Am)

}

= 0.

See Chung (1974, pp. 76-78) for the pairwise independence An’s.

The notion of O( · ), o( · ), and stochastic O( · ) and o( · )

In calculus, two sequences of real numbers, {an} and {bn}, satisfy an = O(bn) if and only if
|an| ≤ c|bn| for all n and a constant c
an = o(bn) if and only if an/bn → 0 as n → ∞

Definition 1.9. Let X1, X2, ... be random vectors and Y1, Y2, ... be random variables defined
on a common probability space.
(i) Xn = O(Yn) a.s. if and only if P (‖Xn‖ = O(|Yn|)) = 1.
(ii) Xn = o(Yn) a.s. if and only if Xn/Yn →a.s. 0.
(iii) Xn = Op(Yn) if and only if, for any ǫ > 0, there is a constant Cǫ > 0 such that
supn P (‖Xn‖ ≥ Cǫ|Yn|) < ǫ.
(iv) Xn = op(Yn) if and only if Xn/Yn →p 0.

Since an = O(1) means that {an} is bounded, {Xn} is said to be bounded in probability if
Xn = Op(1).

Xn = op(Yn) implies Xn = Op(Yn)
Xn = Op(Yn) and Yn = Op(Zn) implies Xn = Op(Zn)
Xn = Op(Yn) does not imply Yn = Op(Xn)
If Xn = Op(Zn), then XnYn = Op(YnZn).
If Xn = Op(Zn) and Yn = Op(Zn), then Xn + Yn = Op(Zn).
The same conclusion can be obtained if Op( · ) and op( · ) are replaced by O( · ) a.s. and o( · )
a.s., respectively.
If Xn →d X for a random variable X, then Xn = Op(1)
If E|Xn| = O(an), then Xn = Op(an), where an ∈ (0,∞).
If Xn →a.s. X, then supn |Xn| = Op(1).
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Leture 12: Relationship among onvergene modes and uniform integrabilityTheorem 1.8. Let X;X1; X2; : : : be random k-vetors.(i) If Xn !a:s: X, then Xn !p X. (The onverse is not true.)(ii) If Xn !Lr X for an r > 0, then Xn !p X. (The onverse is not true.)(iii) If Xn !p X, then Xn !d X. (The onverse is not true.)(iv) (Skorohod's theorem). If Xn !d X, then there are random vetors Y; Y1; Y2; ::: de�nedon a ommon probability spae suh that PY = PX , PYn = PXn , n = 1; 2;..., and Yn !a:s: Y .(A useful result; a onditional onverse of (i)-(iii).)(v) If, for every � > 0, P1n=1 P (kXn �Xk � �) <1, then Xn !a:s: X.(A onditional onverse of (i): P (kXn �Xk � �) tends to 0 fast enough.)(vi) If Xn !p X, then there is a subsequene fXnj ; j = 1; 2; :::g suh that Xnj !a:s: X asj !1. (A partial onverse of (i).)(vii) If Xn !d X and P (X = ) = 1, where  2 Rk is a onstant vetor, then Xn !p . (Aonditional onverse of (i).)(viii) Suppose that Xn !d X. Then, for any r > 0,limn!1EkXnkrr = EkXkrr <1 (1)if and only if fkXnkrrg is uniformly integrable in the sense thatlimt!1 supn E �kXnkrrIfkXnkr>tg� = 0: (2)(A onditional onverse of (ii).)Disussion on uniform integrabilityIf there is only one random vetor, then (2) islimt!1E �kXkrrIfkXkr>tg� = 0;whih is equivalent to the integrability of kXkrr (dominated onvergene theorem).SuÆient onditions for uniform integrability:supn EkXnkr+Ær <1 for a Æ > 0This is beauselimt!1 supn E �kXnkrrIfkXnkr>tg�� limt!1 supn E  kXnkrrIfkXnkr>tgkXnkÆrtÆ !� limt!1 1tÆ supn E �kXnkr+Ær �=0Exerises 117-120. 1



Proof of Theorem 1.8. (i) The result follows from Lemma 1.4.(ii) The result follows from Chebyshev's inequality with '(t) = jtjr.(iii) Assume k = 1. (The general ase is proved in the textbook.)Let x be a ontinuity point of FX and � > 0 be given. ThenFX(x� �) =P (X � x� �)�P (Xn � x) + P (X � x� �;Xn > x)�FXn(x) + P (jXn �Xj > �) :Letting n!1, we obtain that FX(x� �) � lim infn FXn(x):Swithing Xn and X in the previous argument, we an show thatFX(x+ �) � lim supn FXn(x):Sine � is arbitrary and FX is ontinuous at x, FX(x) = limn!1 FXn(x).(iv) The proof of this part an be found in Billingsley (1986, pp. 399-402).(v) Let An = fkXn � Xk � �g. The result follows from Lemma 1.4, Lemma 1.5(i), andProposition 1.1(iii).(vi) Xn !p X means limn!1 P (kXn �Xk > �) = 0 for every � > 0.That is, for every � > 0, P (kXn �Xk > �) < � for n > n� (n� is an integer depending on �).For every j = 1; 2; :::, there is a positive integer nj suh thatP (kXnj �Xk > 2�j) < 2�j:For any � > 0, there is a k� suh that for j � k�, P (kXnj �Xk > �) < P (kXnj �Xk > 2�j).Sine P1j=1 2�j = 1, it follows from the result in (v) that Xnj !a:s: X as j !1.(vii) The proof for this part is left as an exerise.(viii) First, by part (iv), we may assume that Xn !a:s: X (why?).Proof of (2) implies (1)Note that (2) (the uniform integrability of fkXnkrrg) implies that supnEkXnkrr <1 (why?)By Fatou's lemma (Theorem 1.1(i)), EkXkrr � lim infnEkXnkrr <1.Hene, (1) follows if we an show thatlim supn EkXnkrr � EkXkrr: (3)For any � > 0 and t > 0, let An = fkXn �Xkr � �g and Bn = fkXnkr > tg. ThenEkXnkrr =E(kXnkrrIAn\Bn) + E(kXnkrrIAn\Bn) + E(kXnkrrIAn)�E(kXnkrrIBn) + trP (An) + EkXnIAnkrr:For r � 1, kXnIAnkrr � (kXn �Xkrr + kXkrr)IAn andEkXnIAnkrr � E[(kXn �Xkrr + kXkrr)IAn℄ � �r + EkXkrr:2



For r > 1, an appliation of Minkowski's inequality leads toEkXnIAnkrr =Ek(Xn �X)IAn +XIAnkrr�E [k(Xn �X)IAnkr + kXIAnkr℄r� n[Ek(Xn �X)IAnkrr℄1=r + [EkXIAnkrr℄1=ror� n�+ [EkXkrr℄1=ror :In any ase, sine � is arbitrary, lim supnEkXnIAnkrr � EkXkrr. This result and the previ-ously established inequality imply thatlim supn EkXnkrr� lim supn E(kXnkrrIBn) + tr limn!1P (An)+ lim supn EkXnIAnkrr� supn E(kXnkrrIfkXnkr>tg) + EkXkrr;sine P (An)! 0. Sine fkXnkrrg is uniformly integrable, letting t!1 we obtain (3).Proof of (1) impies (2)Let �n = kXnkrrIBn � kXkrrIBn . Then �n !a:s: 0 and j�nj � tr + kXkrr, whih is integrable.By the dominated onvergene theorem, E�n ! 0; this and (1) imply thatE(kXnkrrIBn)� E(kXkrrIBn)! 0:From the de�nition of Bn, Bn � fkXn �Xkr > t=2g [ fkXkr > t=2g.Sine EkXkrr <1, it follows from the dominated onvergene theorem thatlimn!1E(kXkrrIfkXn�Xkr>t=2g) = 0Hene lim supn E(kXnkrrIBn) � lim supn E(kXkrrIBn) � E(kXkrrIfkXkr>t=2g):Letting t!1, it follows from the dominated onvergene theorem thatlimt!1 lim supn E(kXnkrrIBn) � limt!1E(kXkrrIfkXkr>t=2g) = 0:This proves (2).
3



Leture 13: Weak onvergeneA sequene fPng of probability measures on (Rk;Bk) is tight if for every � > 0, there is aompat set C � Rk suh that infn Pn(C) > 1� �.If fXng is a sequene of random k-vetors, then the tightness of fPXng is the same as theboundedness of fkXnkg in probability (kXnk = Op(1)).Proposition 1.17. Let fPng be a sequene of probability measures on (Rk;Bk).(i) Tightness of fPng is a neessary and suÆient ondition that for every subsequene fPnigthere exists a further subsequene fPnjg � fPnig and a probability measure P on (Rk;Bk)suh that Pnj !w P as j !1.(ii) If fPng is tight and if eah subsequene that onverges weakly at all onverges to thesame probability measure P , then Pn !w P .The proof an be found in Billingsley (1986, pp. 392-395).The following result gives some useful suÆient and neessary onditions for onvergene indistribution.Theorem 1.9. Let X;X1; X2; : : : be random k-vetors.(i) Xn !d X is equivalent to any one of the following onditions:(a) E[h(Xn)℄! E[h(X)℄ for every bounded ontinuous funtion h;(b) lim supn PXn(C) � PX(C) for any losed set C � Rk;() lim infn PXn(O) � PX(O) for any open set O � Rk.(ii) (L�evy-Cram�er ontinuity theorem). Let �X ; �X1; �X2; ::: be the h.f.'s of X;X1; X2; :::,respetively. Xn !d X if and only if limn!1 �Xn(t) = �X(t) for all t 2 Rk.(iii) (Cram�er-Wold devie). Xn !d X if and only if �Xn !d �X for every  2 Rk.Proof. (i) First, we show Xn !d X implies (a). By Theorem 1.8(iv) (Skorohod's theorem),there exists a sequene of random vetors fYng and a random vetor Y suh that PYn = PXnfor all n, PY = PX and Yn !a:s: Y . For bounded ontinuous h, h(Yn)!a:s: h(Y ) and, by thedominated onvergene theorem, E[h(Yn)℄ ! E[h(Y )℄. Then (a) follows from E[h(Xn)℄ =E[h(Yn)℄ for all n and E[h(X)℄ = E[h(Y )℄.Next, we show (a) implies (b). Let C be a losed set and fC(x) = inffkx � yk : y 2 Cg.Then fC is ontinuous. For j = 1; 2; :::, de�ne 'j(t) = I(�1;0℄ + (1 � jt)I(0;j�1℄. Thenhj(x) = 'j(fC(x)) is ontinuous and bounded, hj � hj+1, j = 1; 2; :::, and hj(x)! IC(x) asj ! 1. Hene lim supn PXn(C) � limn!1E[hj(Xn)℄ = E[hj(X)℄ for eah j (by (a)). Bythe dominated onvergene theorem, E[hj(X)℄! E[IC(X)℄ = PX(C). This proves (b).For any open set O, O is losed. Hene, (b) is equivalent to (). Now, we show (b)and () imply Xn !d X. For x = (x1; :::; xk) 2 Rk, let (�1; x℄ = (�1; x1℄ � � � � �(�1; xk℄ and (�1; x) = (�1; x1) � � � � � (�1; xk). From (b) and (), PX((�1; x)) �lim infn PXn((�1; x)) � lim infn FXn(x) � lim supn FXn(x) = lim supn PXn((�1; x℄) �PX((�1; x℄) = FX(x). If x is a ontinuity point of FX , then PX((�1; x)) = FX(x). Thisproves Xn !d X and ompletes the proof of (i).(ii) From (a) of part (i), Xn !d X implies �Xn(t) ! �X(t), sine ep�1t�x = os(t�x) +p�1 sin(t�x) and os(t�x) and sin(t�x) are bounded ontinuous funtions for any �xed t.1



Suppose now that k = 1 and that �Xn(t)! �X(t) for every t 2 R.We want to show that fPXng is tight. By Fubini's theorem,1u Z u�u[1� �Xn(t)℄dt= Z 1�1 �1u Z u�u(1� ep�1tx)dt� dPXn(x)= 2 Z 1�1 �1� sinuxux � dPXn(x)� 2 Zfjxj>2u�1g  1� 1juxj! dPXn(x)�PXn �(�1;�2u�1) [ (2u�1;1)�for any u > 0. Sine �X is ontinuous at 0 and �X(0) = 1, for any � > 0 there is a u > 0 suhthat u�1 R u�u[1 � �X(t)℄dt < �=2. Sine �Xn ! �X , by the dominated onvergene theorem,supnfu�1 R u�u[1� �Xn(t)℄dtg < �. Hene,infn PXn �[�2u�1; 2u�1℄� � 1� supn �1u Z u�u[1� �Xn(t)℄dt� � 1� �;i.e., fPXng is tight.Let fPXnj g be any subsequene that onverges to a probability measure P .By the �rst part of the proof, �Xnj ! �, whih is the h.f. of P .By the onvergene of �Xn , � = �X . By the uniqueness theorem, P = PX .By Proposition 1.17(ii), Xn !d X.Consider now the ase where k � 2 and �Xn ! �X .Let Ynj be the jth omponent of Xn and Yj be the jth omponent of X.Then �Ynj ! �Yj for eah j.By the proof for the ase of k = 1, Ynj !d Yj.By Proposition 1.17(i), fPYnjg is tight, j = 1; :::; k. This implies that fPXng is tight (why?).Then the proof for Xn !d X is the same as that for the ase of k = 1.(iii) Note that ��Xn(u) = �Xn(u) and ��X(u) = �X(u) for any u 2 R and any  2 Rk.Hene, onvergene of �Xn to �X is equivalent to onvergene of ��Xn to ��X for every 2 Rk. Then the result follows from part (ii).Example 1.28. Let X1; :::; Xn be independent random variables having a ommon .d.f.and Tn = X1 + � � �+Xn, n = 1; 2; :::. Suppose that EjX1j <1. It follows from a result inalulus that the h.f. of X1 satis�es�X1(t) = �X1(0) +p�1�t+ o(jtj)as jtj ! 0, where � = EX1. Then, the h.f. of Tn=n is�Tn=n(t) = ��X1� tn��n = "1 + p�1�tn + o� tn�#nfor any t 2 R, as n!1. Sine (1 + n=n)n ! e for any omplex sequene fng satisfyingn ! , we obtain that �Tn=n(t)! ep�1�t, whih is the h.f. of the distribution degenerated2



at � (i.e., the point mass probability measure at �). By Theorem 1.9(ii), Tn=n!d �. FromTheorem 1.8(vii), this also shows that Tn=n!p �.Similarly, � = 0 and �2 = Var(X1) <1 imply�Tn=pn(t) = "1� �2t22n + o t2n!#nfor any t 2 R, whih implies that �Tn=pn(t) ! e��2t2=2, the h.f. of N(0; �2). HeneTn=pn !d N(0; �2). If � 6= 0, a transformation of Yi = Xi � � leads to (Tn � n�)=pn !dN(0; �2).Suppose now that X1; :::; Xn are random k-vetors and � = EX1 and � = Var(X1) are �nite.For any �xed  2 Rk, it follows from the previous disussion that (�Tn � n��)=pn !dN(0; ��). From Theorem 1.9(iii) and a property of the normal distribution (Exerise 81),we onlude that (Tn � n�)=pn!d Nk(0;�).Example 1.29. Let X1; :::; Xn be independent random variables having a ommon Lebesguep.d.f. f(x) = (1� os x)=(�x2). Then the h.f. of X1 is maxf1� jtj; 0g (Exerise 73) and theh.f. of Tn=n = (X1 + � � �+Xn)=n is max(1� jtjn ; 0)!n ! e�jtj; t 2 R:Sine e�jtj is the h.f. of the Cauhy distribution C(0; 1) (Table 1.2), we onlude thatTn=n!d X, where X has the Cauhy distribution C(0; 1).Does this result ontradit the �rst result in Example 1.28?Other examples are given in Exerises 135-140.The following result an be used to hek whether Xn !d X when X has a p.d.f. f and Xnhas a p.d.f. fn.Proposition 1.18 (She��e's theorem). Let ffng be a sequene of p.d.f.'s on Rk w.r.t. ameasure �. Suppose that limn!1 fn(x) = f(x) a.e. � and f(x) is a p.d.f. w.r.t. �. Thenlimn!1 R jfn(x)� f(x)jd� = 0.Proof. Let gn(x) = [f(x)� fn(x)℄Iff�fng(x), n = 1; 2,.... ThenZ jfn(x)� f(x)jd� = 2 Z gn(x)d�:Sine 0 � gn(x) � f(x) for all x and gn ! 0 a.e. �, the result follows from the dominatedonvergene theorem.As an example, onsider the Lebesgue p.d.f. fn of the t-distribution tn (Table 1.2), n = 1; 2;....One an show (exerise) that fn ! f , where f is the standard normal p.d.f. This is animportant result in statistis. 3



Leture 14: Convergene of transformations, Slutsky's theorem and Æ-methodTransformation is an important tool in statistis.If Xn onverges to X in some sense, is g(Xn) onverges to g(X) in the same sense?The following result (ontinuous mapping theorem) provides an answer to this question inmany problems.Theorem 1.10. Let X;X1; X2; ::: be random k-vetors de�ned on a probability spae andg be a measurable funtion from (Rk;Bk) to (Rl;Bl). Suppose that g is ontinuous a.s. PX .Then(i) Xn !a:s: X implies g(Xn)!a:s: g(X);(ii) Xn !p X implies g(Xn)!p g(X);(iii) Xn !d X implies g(Xn)!d g(X).Proof. (i) an be established using a result in alulus.(iii) follows from Theorem 1.9(i): for any bounded and ontinuous h, E[h(g(Xn))℄ !E[h(g(X))℄, sine h Æ g is bounded and ontinuous.To show (ii), we onsider the speial ase of X =  (a onstant).From the ontinuity of g, for any � > 0, there is a Æ� > 0 suh that kg(x)�g()k < � wheneverkx� k < Æ�. Hene,f! : kg(Xn(!))� g()k < �g � f! : kXn(!)� k < Æ�gand P (kg(Xn)� g()k � �) � P (kXn � k � Æ�):Hene g(Xn)!p g() follows from Xn !p .Is the previous arguement still valid when  is replaed by the random vetor X in thegeneral ase? If not, how do we �x the proof?Example 1.30. (i) Let X1; X2; ::: be random variables. If Xn !d X, where X has theN(0; 1) distribution, then X2n !d Y , where Y has the hi-square distribution �21.(ii) Let (Xn; Yn) be random 2-vetors satisfying (Xn; Yn) !d (X; Y ), where X and Y areindependent random variables having the N(0; 1) distribution, then Xn=Yn !d X=Y , whihhas the Cauhy distribution C(0; 1).(iii) Under the onditions in part (ii), maxfXn; Yng !d maxfX; Y g, whih has the .d.f.[�(x)℄2 (�(x) is the .d.f. of N(0; 1)).In Example 1.30(ii) and (iii), the ondition that (Xn; Yn) !d (X; Y ) annot be relaxed toXn !d X and Yn !d Y (exerise); i.e., we need the onvergene of the joint .d.f. of (Xn; Yn).This is di�erent when !d is replaed by !p or !a:s:. The following result, whih plays animportant role in probability and statistis, establishes the onvergene in distribution ofXn + Yn or XnYn when no information regarding the joint .d.f. of (Xn; Yn) is provided.
1



Theorem 1.11 (Slutsky's theorem). Let X;X1; X2; :::, Y1; Y2; ::: be random variables on aprobability spae. Suppose that Xn !d X and Yn !p , where  is a onstant. Then(i) Xn + Yn !d X + ;(ii) YnXn !d X;(iii) Xn=Yn !d X= if  6= 0.Proof. We prove (i) only. The proofs of (ii) and (iii) are left as exerises.Let t 2 R and � > 0 be �xed onstants. ThenFXn+Yn(t)=P (Xn + Yn � t)�P (fXn + Yn � tg \ fjYn � j < �g) + P (jYn � j � �)�P (Xn � t� + �) + P (jYn � j � �)and, similarly, FXn+Yn(t) � P (Xn � t� � �)� P (jYn � j � �):If t� , t� + �, and t� � � are ontinuity points of FX , then it follows from the previoustwo inequalities and the hypotheses of the theorem thatFX(t� � �) � lim infn FXn+Yn(t) � lim supn FXn+Yn(t) � FX(t� + �):Sine � an be arbitrary (why?), limn!1FXn+Yn(t) = FX(t� ):The result follows from FX+(t) = FX(t� ).An appliation of Theorem 1.11 is given in the proof of the following important result.Theorem 1.12. Let X1; X2; ::: and Y be random k-vetors satisfyingan(Xn � )!d Y; (1)where  2 Rk and fang is a sequene of positive numbers with limn!1 an = 1. Let g be afuntion from Rk to R.(i) If g is di�erentiable at , thenan[g(Xn)� g()℄!d [rg()℄�Y; (2)where rg(x) denotes the k-vetor of partial derivatives of g at x.(ii) Suppose that g has ontinuous partial derivatives of order m > 1 in a neighborhood of, with all the partial derivatives of order j, 1 � j � m � 1, vanishing at , but with themth-order partial derivatives not all vanishing at . Thenamn [g(Xn)� g()℄!d 1m! kXi1=1 � � � kXim=1 �mg�xi1 � � ��xim ����x=Yi1 � � �Yim ; (3)where Yj is the jth omponent of Y . 2



Proof. We prove (i) only. The proof of (ii) is similar. LetZn = an[g(Xn)� g()℄� an[rg()℄� (Xn � ):If we an show that Zn = op(1), then by (1), Theorem 1.9(iii), and Theorem 1.11(i), result(2) holds.The di�erentiability of g at  implies that for any � > 0, there is a Æ� > 0 suh thatjg(x)� g()� [rg()℄� (x� )j � �kx� k (4)whenever kx� k < Æ�. Let � > 0 be �xed. By (4),P (jZnj � �) � P (kXn � k � Æ�) + P (ankXn � k � �=�):Sine an !1, (1) and Theorem 1.11(ii) imply Xn !p . By Theorem 1.10(iii), (1) impliesankXn � k !d kY k. Without loss of generality, we an assume that �=� is a ontinuitypoint of FkY k. Then lim supn P (jZnj � �)� limn!1P (kXn � k � Æ�)+ limn!1P (ankXn � k � �=�)=P (kY k � �=�):The proof is omplete sine � an be arbitrary.In statistis, we often need a nondegenerated limiting distribution of an[g(Xn)�g()℄ so thatprobabilities involving an[g(Xn) � g()℄ an be approximated by the .d.f. of [rg()℄�Y , if(2) holds. Hene, result (2) is not useful for this purpose if rg() = 0, and in suh asesresult (3) may be applied.A useful method in statistis, alled the delta-method, is based on the following orollary ofTheorem 1.12.Corollary 1.1. Assume the onditions of Theorem 1.12. If Y has the Nk(0;�) distribution,then an[g(Xn)� g()℄!d N (0; [rg()℄��rg()) :Example 1.31. Let fXng be a sequene of random variables satisfying pn(Xn � ) !dN(0; 1). Consider the funtion g(x) = x2. If  6= 0, then an appliation of Corollary 1.1gives that pn(X2n � 2) !d N(0; 42). If  = 0, the �rst-order derivative of g at 0 is 0but the seond-order derivative of g � 2. Hene, an appliation of result (3) gives thatnX2n !d [N(0; 1)℄2, whih has the hi-square distribution �21 (Example 1.14). The last resultan also be obtained by applying Theorem 1.10(iii).
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Leture 15: The law of large numbersThe law of large numbers onerns the limiting behavior of a sum of random variables.The weak law of large numbers (WLLN) refers to onvergene in probability.Te strong law of large numbers (SLLN) refers to a.s. onvergene.Lemma 1.6. (Kroneker's lemma). Let xn 2 R, an 2 R, 0 < an � an+1, n = 1; 2; :::, andan !1. If the series P1n=1 xn=an onverges, then a�1n Pni=1 xi ! 0.Our �rst result gives the WLLN and SLLN for a sequene of independent and identiallydistributed (i.i.d.) random variables.Theorem 1.13. Let X1; X2; ::: be i.i.d. random variables.(i) (The WLLN). A neessary and suÆient ondition for the existene of a sequene of realnumbers fang for whih 1n nXi=1Xi � an !p 0 (1)is that nP (jX1j > n)! 0, in whih ase we may take an = E(X1IfjX1j�ng).(ii) (The SLLN). A neessary and suÆient ondition for the existene of a onstant  forwhih 1n nXi=1Xi !a:s:  (2)is that EjX1j <1, in whih ase  = EX1 and1n nXi=1 i(Xi � EX1)!a:s: 0 (3)for any bounded sequene of real numbers fig.Proof. (i) We prove the suÆieny. The proof of neessity an be found in Petrov (1975).Consider a sequene of random variables obtained by trunatingXj's at n: Ynj = XjIfjXj j�ng.Let Tn = X1 + � � �+Xn and Zn = Yn1 + � � �+ Ynn. ThenP (Tn 6= Zn) � nXj=1P (Ynj 6= Xj) = nP (jX1j > n)! 0: (4)For any � > 0, it follows from Chebyshev's inequality thatP �����Zn � EZnn ���� > �� � Var(Zn)�2n2 = Var(Yn1)�2n � EY 2n1�2n ;where the last equality follows from the fat that Ynj, j = 1; :::; n, are i.i.d.From integration by parts, we obtain thatEY 2n1n = 1n Z[0;n℄ x2dFjX1j(x) = 2n Z n0 xP (jX1j > x)dx� nP (jX1j > n);whih onverges to 0 sine nP (jX1j > n)! 0 (why?). This proves that (Zn�EZn)=n!p 0,whih together with (4) and the fat that EYnj = E(X1IfjX1j�ng) imply the result.1



(ii) The proof for suÆieny is given in the textbook.We prove the neessity. Suppose that (2) holds for some  2 R. ThenXnn = Tnn � � n� 1n � Tn�1n� 1 � �+ n !a:s: 0:From Exerise 114, Xn=n!a:s: 0 and the i.i.d. assumption on Xn's imply1Xn=1P (jXnj � n) = 1Xn=1P (jX1j � n) <1;whih implies EjX1j <1 (Exerise 54). From the proved suÆieny,  = EX1.If EjX1j < 1, then an in (1) onverges to EX1 and result (1) is atually established inExample 1.28 in a muh simpler way.On the other hand, if EjX1j <1, then the stronger result (2) an be obtained.Some results for the ase of EjX1j =1 an be found in Exerise 148 and Theorem 5.4.3 inChung (1974).The next result is for sequenes of independent but not neessarily identially distributedrandom variables.Theorem 1.14. Let X1; X2; ::: be independent random variables with �nite expetations.(i) (The SLLN). If there is a onstant p 2 [1; 2℄ suh that1Xi=1 EjXijpip <1; (5)then 1n nXi=1(Xi � EXi)!a:s: 0: (6)(ii) (The WLLN). If there is a onstant p 2 [1; 2℄ suh thatlimn!1 1np nXi=1EjXijp = 0; (7)then 1n nXi=1(Xi � EXi)!p 0: (8)Proof. See the textbook.Note that (5) implies (7) (Lemma 1.6).The result in Theorem 1.14(i) is alled Kolmogorov's SLLN when p = 2 and is due toMarinkiewiz and Zygmund when 1 � p < 2.An obvious suÆient ondition for (5) with p 2 (1; 2℄ is supnEjXnjp <1.The WLLN and SLLN have many appliations in probability and statistis.2



Example 1.32. Let f and g be ontinuous funtions on [0; 1℄ satisfying 0 � f(x) � Cg(x)for all x, where C > 0 is a onstant. We now show thatlimn!1 Z 10 Z 10 � � � Z 10 Pni=1 f(xi)Pni=1 g(xi)dx1dx2 � � �dxn = R 10 f(x)dxR 10 g(x)dx (9)(assuming that R 10 g(x)dx 6= 0). Let X1; X2; ::: be i.i.d. random variables having the uni-form distribution on [0; 1℄. By Theorem 1.2, E[f(X1)℄ = R 10 f(x)dx < 1 and E[g(X1)℄ =R 10 g(x)dx <1. By the SLLN (Theorem 1.13(ii)),1n nXi=1 f(Xi)!a:s: E[f(X1)℄;and the same result holds when f is replaed by g. By Theorem 1.10(i),Pni=1 f(Xi)Pni=1 g(Xi) !a:s: E[f(X1)℄E[g(X1)℄ : (10)Sine the random variable on the left-hand side of (10) is bounded by C, result (9) followsfrom the dominated onvergene theorem and the fat that the left-hand side of (9) is theexpetation of the random variable on the left-hand side of (10).Example: Let Tn = Pni=1Xi, where Xn's are independent random variables satisfyingP (Xn = �n�) = 0:5 and � > 0 is a onstant.We want to show that Tn=n!a:s: 0. when � < 0:5.When � < 0:5, 1Xn=1 EX2nn2 = 1Xn=1 n2�n2 <1:By the Kolmogorov strong law of large numbers, Tn=n!a:s: 0.Example (Exerise 165): Let X1; X2; ::: be independent random variables. Suppose thatPnj=1(Xj � EXj)=�n !d N(0; 1), where �2n = Var(Pnj=1Xj).We want to show that n�1Pnj=1(Xj � EXj)!p 0 if and only if �n=n! 0.If �n=n! 0, then by Slutsky's theorem,1n nXj=1(Xj � EXj) = �nn 1�n nXj=1(Xj � EXj)!d 0:Assume now �n=n does not onverge to 0 but n�1Pnj=1(Xj � EXj) !p 0. Without loss ofgenerality, assume that �n=n!  2 (0;1℄. By Slutsky's theorem,1�n nXj=1(Xj � EXj) = n�n 1n nXj=1(Xj � EXj)!p 0:This ontradits the fat that Pnj=1(Xj�EXj)=�n !d N(0; 1). Hene, n�1Pnj=1(Xj�EXj)does not onverge to 0 in probability. 3



Leture 16: The entral limit theoremThe WLLN and SLLN may not be useful in approximating the distributions of (normalized)sums of independent random variables.We need to use the entral limit theorem (CLT), whih plays a fundamental role in statistialasymptoti theory.Theorem 1.15 (Lindeberg's CLT). Let fXnj; j = 1; :::; kng be independent random variableswith 0 < �2n = Var(Pknj=1Xnj) <1, n = 1; 2;..., and kn !1 as n!1. If1�2n knXj=1E h(Xnj � EXnj)2IfjXnj�EXnj j>��ngi! 0 for any � > 0; (1)then 1�n knXj=1(Xnj � EXnj)!d N(0; 1): (2)Proof. Considering (Xnj �EXnj)=�n, without loss of generality we may assume EXnj = 0and �2n = 1 in this proof.Let t 2 R be given. From the inequality jep�1tx� (1+p�1tx� t2x2=2)j � minfjtxj2; jtxj3g,the h.f. of Xnj satis�es�����Xnj (t)� �1� t2�2nj=2� ���� � E �minfjtXnjj2; jtXnjj3g� ; (3)where �2nj = Var(Xnj). For any � > 0, the right-hand side of (3) is bounded byE(jtXnjj3IfjXnj j<�g) + E(jtXnjj2IfjXnj j��g);whih is bounded by �jtj3�2nj + t2E(X2njIfjXnj j��g):Summing over j and using ondition (1), we obtain thatknXj=1 �����Xnj(t)� �1� t2�2nj=2� ����! 0: (4)By ondition (1), maxj�kn �2nj � �2 + maxj�kn E(X2njIfjXnj j>�g) ! �2 for arbitrary � > 0.Hene limn!1maxj�kn �2nj�2n = 0: (5)(Note that �2n = 1 is assumed for onveniene.) This implies that 1� t2�2nj are all between0 and 1 for large enough n. Using the inequalityja1 � � �am � b1 � � � bmj � mXj=1 jaj � bjj1



for any omplex numbers aj's and bj's with jajj � 1 and jbjj � 1, j = 1; :::; m, we obtainthat ���� knYj=1 e�t2�2nj=2 � knYj=1 �1� t2�2nj=2� ���� � knXj=1 ����e�t2�2nj=2 � �1� t2�2nj=2� ����;whih is bounded by t4Pknj=1 �4nj � t4maxj�kn �2nj ! 0, sine jex � 1 � xj � x2=2 if jxj � 12and Pknj=1 �2nj = �2n = 1. Also, ���� knYj=1�Xnj (t)� knYj=1 �1� t2�2nj=2� ����is bounded by the quantity on the left-hand side of (4) and, hene, onverges to 0 by (4).Thus, knYj=1�Xnj (t) = knYj=1 e�t2�2nj=2 + o(1) = e�t2=2 + o(1):This shows that the h.f. of Pknj=1Xnj onverges to the h.f. of N(0; 1) for every t. ByTheorem 1.9(ii), the result follows.Condition (1) is alled Lindeberg's ondition.From the proof, Lindeberg's ondition implies (5), whih is alled Feller's ondition.Feller's ondition (5) means that all terms in the sum �2n = Pknj=1 �2nj are uniformly negligibleas n!1.If Feller's ondition is assumed, then Lindeberg's ondition is not only suÆient but alsoneessary for result (2), whih is the well-known Lindeberg-Feller CLT.A proof an be found in Billingsley (1986, pp. 373-375).Note that neither Lindeberg's ondition nor Feller's ondition is neessary for result (2)(Exerise 158).A suÆient ondition for Lindeberg's ondition is the following Liapounov's ondition, whihis somewhat easier to verify:1�2+Æn knXj=1EjXnj � EXnjj2+Æ ! 0 for some Æ > 0. (6)Example 1.33. Let X1; X2; ::: be independent random variables. Suppose that Xi has thebinomial distribution Bi(pi; 1), i = 1; 2;..., and that �2n = Pni=1Var(Xi) = Pni=1 pi(1� pi)!1 as n!1. For eah i, EXi = pi and EjXi�EXij3 = (1�pi)3pi+p3i (1�pi) � 2pi(1�pi).Hene Pni=1EjXi �EXij3 � 2�2n, i.e., Liapounov's ondition (6) holds with Æ = 1. Thus, byTheorem 1.15, 1�n nXi=1(Xi � pi)!d N(0; 1): (7)It an be shown (exerise) that the ondition �n !1 is also neessary for result (7).2



Useful orollaries of Theorem 1.15 (and Theorem 1.9(iii))Corollary 1.2 (Multivariate CLT). Let X1; :::; Xn be i.i.d. random k-vetors with a �nite� = Var(X1). Then 1pn nXi=1(Xi � EX1)!d Nk(0;�):Corollary 1.3. Let Xni 2 Rmi , i = 1; :::; kn, be independent random vetors with mi � m(a �xed integer), n = 1; 2;..., kn ! 1 as n ! 1, and infi;n ��[Var(Xni)℄ > 0, where ��[A℄is the smallest eigenvalue of A. Let ni 2 Rmi be vetors suh thatlimn!10� max1�i�kn knik2� knXi=1 knik21A = 0:(i) Suppose that supi;nEkXnik2+Æ <1 for some Æ > 0. ThenknXi=1 �ni(Xni � EXni)�24 knXi=1Var(�niXni)351=2 !d N(0; 1): (8)(ii) Suppose that whenever mi=mj, 1� i< j� kn, n=1; 2; :::, Xni and Xnj have the samedistribution with EkXnik2 <1. Then (8) holds.Proving Corollary 1.3 is a good exerise.Appliations of these orollaries an be found in later hapters.More results on the CLT an be found, for example, in Sering (1980) and Shorak andWellner (1986).Let Yn be a sequene of random variables, f�ng and f�ng be sequenes of real numbers suhthat �n > 0 for all n, and (Yn � �n)=�n !d N(0; 1). Then, by Proposition 1.16,limn!1 supx jF(Yn��n)=�n(x)� �(x)j = 0; (9)where � is the .d.f. of N(0; 1).This implies that for any sequene of real numbers fng, limn!1 jP (Yn � n)��(n��n�n )j = 0,i.e., P (Yn � n) an be approximated by �( n��n�n ), regardless of whether fng has a limit.Sine �( t��n�n ) is the .d.f. ofN(�n; �2n), Yn is said to be asymptotially distributed asN(�n; �2n)or simply asymptotially normal.For example, Pkni=1 �niXni in Corollary 1.3 is asymptotially normal.This an be extended to random vetors.For example, Pni=1Xi in Corollary 1.2 is asymptotially distributed as Nk(nEX1; n�).
3



Leture 17: Populations, samples, models, and statistisOne or a series of random experiments is performed.Some data from the experiment(s) are olleted.Planning experiments and olleting data (not disussed in the textbook).Data analysis: extrat information from the data, interpret the results, and draw someonlusions.A desriptive data analysis: summary measures of the data, suh as the mean, median,range, standard deviation, et., and some graphial displays, suh as the histogram andbox-and-whisker diagram, et.It is simple and requires almost no assumptions, but may not allow us to gain enough insightinto the problem.We fous on more sophistiated methods of analyzing data: statistial inferene and deisiontheory.The data set is a realization of a random element de�ned on a probability spae (
;F ; P )P is alled the population.The data set or the random element that produes the data is alled a sample from P .The size of the data set is alled the sample size.A population P is known if and only if P (A) is a known value for every event A 2 F .In a statistial problem, the population P is at least partially unknown.We would like to dedue some properties of P based on the available sample.Examples 2.1-2.3A statistial model (a set of assumptions) on the population P in a given problem is oftenpostulated to make the analysis possible or easy.Although testing the orretness of postulated models is part of statistial inferene anddeision theory, postulated models are often based on knowledge of the problem under on-sideration.De�nition 2.1. A set of probability measures P� on (
;F) indexed by a parameter � 2 �is said to be a parametri family if and only if � � Rd for some �xed positive integer d andeah P� is a known probability measure when � is known. The set � is alled the parameterspae and d is alled its dimension.Parametri model: the population P is in a parametri family P = fP� : � 2 �gP = fP� : � 2 �g is identi�able if and only if �1 6= �2 and �i 2 � imply P�1 6= P�2 .In most ases an identi�able parametri family an be obtained through reparameterization.A family of populations P is dominated by � (a �-�nite measure) if P � � for all P 2 PP an be identi�ed by the family of densities fdPd� : P 2 Pg or fdP�d� : � 2 �g.Parametri methods: methods designed for parametri models1



Example (The k-dimensional normal family).P = fNk(�;�) : � 2 Rk; � 2 Mkg;where Mk is a olletion of k � k symmetri positive de�nite matries.This family is dominated by the Lebesgue measure on Rk.When k = 1, P = fN(�; �2) : � 2 R; �2 > 0g.Nonparametri family: P is not parametri aording to De�nition 2.1.A nonparametri model: the population P is in a given nonparametri family.Examples of nonparametri family on (Rk;Bk):(1) The joint .d.f.'s are ontinuous.(2) The joint .d.f.'s have �nite moments of order � a �xed integer.(3) The joint .d.f.'s have p.d.f.'s (e.g., Lebesgue p.d.f.'s).(4) k = 1 and the .d.f.'s are symmetri.(5) The family of all probability measures on (Rk;Bk).Nonparametri methods: methods designed for nonparametri modelsSemi-parametri models and methodsStatistis and their distributionsOur data set is a realization of a sample (random vetor) X from an unknown population PStatisti T (X): A measurable funtion T of X; T (X) is a known value whenever X is known.Statistial analyses are based on various statistis, for various purposes.X itself is a statisti, but it is a trivial statisti.The range of a nontrivial statisti T (X) is usually simpler than that of X.For example, X may be a random n-vetor and T (X) may be a random p-vetor with a pmuh smaller than n.�(T (X)) � �(X) and the two �-�elds are the same if and only if T is one-to-one.Usually �(T (X)) simpli�es �(X), i.e., a statisti provides a \redution" of the �-�eld.The \information" within the statisti T (X) onerning the unknown distribution of X isontained in the �-�eld �(T (X)).S is any other statisti for whih �(S(X)) = �(T (X)).Then, by Lemma 1.2, S is a measurable funtion of T , and T is a measurable funtion of S.Thus, one the value of S (or T ) is known, so is the value of T (or S).It is not the partiular values of a statisti that ontain the information, but the generated�-�eld of the statisti.Values of a statisti may be important for other reasons.A statisti T (X) is a random element.If the distribution of X is unknown, then the distribution of T may also be unknown,although T is a known funtion.Finding the form of the distribution of T is one of the major problems in statistial infereneand deision theory. 2



Sine T is a transformation of X, tools we learn in Chapter 1 for transformations may beuseful in �nding the distribution or an approximation to the distribution of T (X).Example 2.8. Let X1; :::; Xn be i.i.d. random variables having a ommon distribution Pand X = (X1; :::; Xn).The sample mean �X = n�1Pni=1Xi and sample variane S2 = (n� 1)�1Pni=1(Xi � �X)2 aretwo ommonly used statistis.Can we �nd the joint or the marginal distributions of �X and S2?It depends on how muh we know about P .Moments of �X and S2If P has a �nite mean �, then E �X = �.If P 2 fP� : � 2 �g, then E �X = R xdP� = �(�) for some funtion �(�).Even if the form of � is known, �(�) is still unknown when � is unknown.If P has a �nite variane �2, then Var(�X) = �2=n, whih equals �2(�)=n for some funtion�2(�) if P is in a parametri family.With a �nite �2 = Var(X1), we an also obtain that ES2 = �2.With a �nite EjX1j3, we an obtain E( �X)3 and Cov(�X; S2).With a �nite EjX1j4, we an obtain Var(S2) (exerise).The distribution of �XIf P is in a parametri family, we an often �nd the distribution of �X.See Example 1.20 and some exerises in x1.6.For example, �X is N(�; �2=n) if P is N(�; �2);n �X has the gamma distribution �(n; �) if P is the exponential distribution E(0; �).If P is not in a parametri family, then it is usually hard to �nd the exat form of thedistribution of �X.One an use the CLT to obtain an approximation to the distribution of �X.Applying Corollary 1.2 (for the ase of k = 1), we obtain that pn( �X � �)!d N(0; �2),where � and �2 are the mean and variane of P , respetively, and are assumed to be �nite.The distribution of �X an be approximated by N(�; �2=n)The distribution of S2If P is N(�; �2), then (n� 1)S2=�2 has the hi-square distribution �2n�1 (see Example 2.18).An approximate distribution for S2 an be obtained from the approximate joint distributionof �X and S2 disussed next.Joint distribution of �X and S2If P is N(�; �2), then �X and S2 are independent (Example 2.18).Hene, the joint distribution of ( �X;S2) is the produt of the marginal distributions of �Xand S2 given in the previous disussion.Without the normality assumption, an approximate joint distribution an be obtained.Assume that � = EX1, �2 = Var(X1), and EjX1j4 are �nite.Let Yi = (Xi � �; (Xi � �)2), i = 1; :::; n.
3



Y1; :::; Yn are i.i.d. random 2-vetors with EY1 = (0; �2) and variane-ovariane matrix� = 0B� �2 E(X1 � �)3E(X1 � �)3 E(X1 � �)4 � �4 1CA :Note that �Y = n�1Pni=1 Yi = ( �X � �; ~S2), where ~S2 = n�1Pni=1(Xi � �)2.Applying the CLT (Corollary 1.2) to Yi's, we obtain thatpn( �X � �; ~S2 � �2)!d N2(0;�):Sine S2 = nn� 1 h ~S2 � ( �X � �)2iand �X !a:s: � (the SLLN), an appliation of Slutsky's theorem leads topn( �X � �; S2 � �2)!d N2(0;�):Example 2.9 (Order statistis). Let X = (X1; :::; Xn) with i.i.d. random omponents.Let X(i) be the ith smallest value of X1; :::; Xn.The statistis X(1); :::; X(n) are alled the order statistis.Order statistis is a set of very useful statistis in addition to the sample mean and variane.Suppose that Xi has a .d.f. F having a Lebesgue p.d.f. f .Then the joint Lebesgue p.d.f. of X(1); :::; X(n) isg(x1; x2; :::; xn) = 8><>: n!f(x1)f(x2) � � �f(xn) x1 < x2 < � � � < xn0 otherwise.The joint Lebesgue p.d.f. of X(i) and X(j), 1 � i < j � n, isgi;j(x; y) = 8><>: n![F (x)℄i�1[F (y)�F (x)℄j�i�1[1�F (y)℄n�jf(x)f(y)(i�1)!(j�i�1)!(n�j)! x < y0 otherwiseand the Lebesgue p.d.f. of X(i) isgi(x) = n!(i� 1)!(n� i)! [F (x)℄i�1[1� F (x)℄n�if(x):
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Leture 18: Exponential and loation-sale familiesTwo important types of parametri familiesDe�nition 2.2 (Exponential families). A parametri family fP� : � 2 �g dominated by a�-�nite measure � on (
;F) is alled an exponential family if and only ifdP�d� (!) = expf[�(�)℄�T (!)� �(�)gh(!); ! 2 
; (1)where expfxg = ex, T is a random p-vetor with a �xed positive integer p, � is a funtionfrom � to Rp, h is a nonnegative Borel funtion on (
;F), and�(�) = log�Z
 expf[�(�)℄�T (!)gh(!)d�(!)� :In De�nition 2.2, T and h are funtions of ! only, whereas � and � are funtions of � only.The representation (1) of an exponential family is not unique.~�(�) = D�(�) with a p � p nonsingular matrix D gives another representation (with Treplaed by ~T = (D� )�1T ).A hange of the measure that dominates the family also hanges the representation.If we de�ne �(A) = RA hd� for any A 2 F , then we obtain an exponential family withdensities dP�d� (!) = expf[�(�)℄�T (!)� �(�)g: (2)In an exponential family, onsider the reparameterization � = �(�) andf�(!) = expf��T (!)� �(�)gh(!); ! 2 
; (3)where �(�) = log fR
 expf��T (!)gh(!)d�(!)g.This is the anonial form for the family (not unique).The new parameter � is alled the natural parameter.The new parameter spae � = f�(�) : � 2 �g, a subset of Rp, is alled the natural parameterspae.An exponential family in anonial form is alled a natural exponential family.If there is an open set ontained in the natural parameter spae of an exponential family,then the family is said to be of full rank.Example 2.6. The normal family fN(�; �2) : � 2 R; � > 0g is an exponential family, sinethe Lebesgue p.d.f. of N(�; �2) an be written as1p2� exp( ��2x� 12�2x2 � �22�2 � log �) :Hene, T (x) = (x;�x2), �(�) = � ��2 ; 12�2 �, � = (�; �2), �(�) = �22�2 +log �, and h(x) = 1=p2�.Let � = (�1; �2) = � ��2 ; 12�2 �. Then � = R� (0;1) and we an obtain a natural exponentialfamily of full rank with �(�) = �21=(4�2) + log(1=p2�2).1



A subfamily of the previous normal family, fN(�; �2) : � 2 R; � 6= 0g, is also an exponentialfamily with the natural parameter � = ( 1� ; 12�2 ) and natural parameter spae � = f(x; y) :y = 2x2; x 2 R; y > 0g. This exponential family is not of full rank.For an exponential family, (2) implies that there is a nonzero measure � suh thatdP�d� (!) > 0 for all ! and �: (4)We an use this fat to show that a family of distributions is not an exponential family.Consider the family of uniform distributions, i.e., P� is U(0; �) with an unknown � 2 (0;1).If fP� : � 2 (0;1)g is an exponential family, then (4) holds with a nonzero measure �.For any t > 0, there is a � < t suh that P�([t;1)) = 0, whih with (4) implies that�([t;1)) = 0.Also, for any t � 0, P�((�1; t℄) = 0, whih with (4) implies that �((�1; t℄) = 0.Sine t is arbitrary, � � 0.This ontradition implies that fP� : � 2 (0;1)g annot be an exponential family.Whih of the parametri families from Tables 1.1 and 1.2 are exponential families?An important exponential family ontaining multivariate disrete distributions.Example 2.7 (The multinomial family). Consider an experiment having k + 1 possibleoutomes with pi as the probability for the ith outome, i = 0; 1; :::; k, Pki=0 pi = 1. In nindependent trials of this experiment, let Xi be the number of trials resulting in the ithoutome, i = 0; 1; :::; k. Then the joint p.d.f. (w.r.t. ounting measure) of (X0; X1; :::; Xk) isf�(x0; x1; :::; xk) = n!x0!x1! � � �xk!px00 px11 � � � pxkk IB(x0; x1; :::; xk);where B = f(x0; x1; :::; xk) : xi's are integers � 0, Pki=0 xi = ng and � = (p0; p1; :::; pk). Thedistribution of (X0; X1; :::; Xk) is alled the multinomial distribution, whih is an extension ofthe binomial distribution. In fat, the marginal .d.f. of eah Xi is the binomial distributionBi(pi; n).ff� : � 2 �g is the multinomial family, where � = f� 2 Rk+1 : 0 < pi < 1;Pki=0 pi = 1g.Let x = (x0; x1; :::; xk), � = (log p0; log p1; :::; log pk), and h(x) = [n!=(x0!x1! � � �xk!)℄IB(x).Then f�(x0; x1; :::; xk) = exp f��xg h(x); x 2 Rk+1: (5)Hene, the multinomial family is a natural exponential family with natural parameter �.However, representation (5) does not provide an exponential family of full rank, sine thereis no open set of Rk+1 ontained in the natural parameter spae.A reparameterization leads to an exponential family with full rank.Using the fat that Pki=0Xi = n and Pki=0 pi = 1, we obtain thatf�(x0; x1; :::; xk) = exp f���x� � �(��)gh(x); x 2 Rk+1; (6)where x� = (x1; :::; xk), �� = (log(p1=p0); :::; log(pk=p0)), and �(��) = �n log p0.The ��-parameter spae is Rk.Hene, the family of densities given by (6) is a natural exponential family of full rank.2



If X1; :::; Xm are independent random vetors with p.d.f.'s in exponential families, then thep.d.f. of (X1; :::; Xm) is again in an exponential family.The following result summarizes some other useful properties of exponential families.Its proof an be found in Lehmann (1986).Theorem 2.1. Let P be a natural exponential family given by (3).(i) Let T = (Y; U) and � = (#; '), where Y and # have the same dimension.Then, Y has the p.d.f. f�(y) = expf#�y � �(�)gw.r.t. a �-�nite measure depending on '.In partiular, T has a p.d.f. in a natural exponential family.Furthermore, the onditional distribution of Y given U = u has the p.d.f. (w.r.t. a �-�nitemeasure depending on u) f#;u(y) = expf#�y � �u(#)g;whih is in a natural exponential family indexed by #.(ii) If �0 is an interior point of the natural parameter spae, then the m.g.f.  �0 of P�0 Æ T�1is �nite in a neighborhood of 0 and is given by �0(t) = expf�(�0 + t)� �(�0)g:Furthermore, if f is a Borel funtion satisfying R jf jdP�0 <1, then the funtionZ f(!) expf��T (!)gh(!)d�(!)is in�nitely often di�erentiable in a neighborhood of �0, and the derivatives may be omputedby di�erentiation under the integral sign.Example 2.5. Let P� be the binomial distribution Bi(�; n) with parameter �, where n is a�xed positive integer. Then fP� : � 2 (0; 1)g is an exponential family, sine the p.d.f. of P�w.r.t. the ounting measure isf�(x) = exp nx log �1�� + n log(1� �)o nx!If0;1;:::;ng(x)(T (x) = x, �(�) = log �1�� , �(�) = �n log(1 � �), and h(x) = �nx�If0;1;:::;ng(x)). If we let� = log �1�� , then � = R and the family with p.d.f.'sf�(x) = exp fx� � n log(1 + e�)g nx!If0;1;:::;ng(x)is a natural exponential family of full rank.Using Theorem 2.1(ii) and the result in Example 2.5, we obtain that the m.g.f. of the binomialdistribution Bi(�; n) is  �(t)= expfn log(1 + e�+t)� n log(1 + e�)g= 1 + e�et1 + e� !n=(1� � + �et)n:3



De�nition 2.3 (Loation-sale families). Let P be a known probability measure on (Rk;Bk),V � Rk, and Mk be a olletion of k � k symmetri positive de�nite matries. The familyfP(�;�) : � 2 V; � 2 Mkg (7)is alled a loation-sale family (on Rk), whereP(�;�)(B) = P ���1=2(B � �)� ; B 2 Bk;��1=2(B� �) = f��1=2(x� �) : x 2 Bg � Rk, and ��1=2 is the inverse of the \square root"matrix �1=2 satisfying �1=2�1=2 = �. The parameters � and �1=2 are alled the loation andsale parameters, respetively.The following are some important examples of loation-sale families.The family fP(�;Ik) : � 2 Rkg is a loation family, where Ik is the k � k identity matrix.The family fP(0;�) : � 2 Mkg is a sale family.In some ases, we onsider a loation-sale family of the form fP(�;�2Ik) : � 2 Rk; � > 0g.If X1; :::; Xk are i.i.d. with a ommon distribution in the loation-sale family fP(�;�2) : � 2R; � > 0g, then the joint distribution of the vetor (X1; :::; Xk) is in the loation-sale familyfP(�;�2Ik) : � 2 V; � > 0g with V = f(x; :::; x) 2 Rk : x 2 Rg.A loation-sale family an be generated as follows.Let X be a random k-vetor having a distribution P .Then the distribution of �1=2X + � is P(�;�).On the other hand, if X is a random k-vetor whose distribution is in the loation-salefamily (7), then the distribution DX+ is also in the same family, provided that D�+ 2 Vand D�D� 2 Mk.Let F be the .d.f. of P .Then the .d.f. of P(�;�) is F ���1=2(x� �)�, x 2 Rk.If F has a Lebesgue p.d.f. f , then the Lebesgue p.d.f. of P(�;�) is Det(��1=2)f ���1=2(x� �)�,x 2 Rk (Proposition 1.8).Many families of distributions in Table 1.2 (x1.3.1) are loation, sale, or loation-salefamilies.For example, the family of exponential distributions E(a; �) is a loation-sale family on Rwith loation parameter a and sale parameter �;the family of uniform distributions U(0; �) is a sale family on R with a sale parameter �.The k-dimensional normal family is a loation-sale family on Rk.
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Leture 19: SuÆient statistis and fatorization theoremA statisti T (X) provides a redution of the �-�eld �(X)Does suh a redution results in any loss of information onerning the unknown population?If a statisti T (X) is fully as informative as the original sample X, then statistial analysesan be done using T (X) that is simpler than X.The next onept desribes what we mean by fully informative.De�nition 2.4 (SuÆieny). Let X be a sample from an unknown population P 2 P,where P is a family of populations. A statisti T (X) is said to be suÆient for P 2 P (orfor � 2 � when P = fP� : � 2 �g is a parametri family) if and only if the onditionaldistribution of X given T is known (does not depend on P or �).One we observe X and ompute a suÆient statisti T (X), the original data X do notontain any further information onerning the unknown population P (sine its onditionaldistribution is unrelated to P ) and an be disarded.A suÆient statisti T (X) ontains all information about P ontained in X and provides aredution of the data if T is not one-to-one.The onept of suÆieny depends on the given family P.If T is suÆient for P 2 P, then T is also suÆient for P 2 P0 � P but not neessarilysuÆient for P 2 P1 � P.Example 2.10. Suppose that X = (X1; :::; Xn) and X1; :::; Xn are i.i.d. from the binomialdistribution with the p.d.f. (w.r.t. the ounting measure)f�(z) = �z(1� �)1�zIf0;1g(z); z 2 R; � 2 (0; 1):For any realization x of X, x is a sequene of n ones and zeros.Consider the statisti T (X) = Pni=1Xi, whih is the number of ones in X.T ontains all information about �, sine � is the probability of an ourrene of a one in x.Given T = t (the number of ones in x), what is left in the data set x is the redundantinformation about the positions of t ones.Compute the onditional distribution of X given T = t.P (T = t) = �nt��t(1� �)n�tIf0;1;:::;ng(t).Let xi be the ith omponent of x.If t 6= Pni=1 xi, then P (X = x; T = t) = 0. If t = Pni=1 xi, thenP (X = x; T = t) = nYi=1P (Xi = xi) = �t(1� �)n�t nYi=1 If0;1g(xi):Let Bt = f(x1; :::; xn) : xi = 0; 1; Pni=1 xi = tg. ThenP (X = xjT = t) = P (X = x; T = t)P (T = t) = 1�nt�IBt(x)is a known p.d.f. This shows that T (X) is suÆient for � 2 (0; 1), aording to De�nition2.4 with the family ff� : � 2 (0; 1)g. 1



Finding a suÆient statisti by means of the de�nition is not onvenientIt involves guessing a statisti T that might be suÆient and omputing the onditionaldistribution of X given T = t.For families of populations having p.d.f.'s, a simple way of �nding suÆient statistis is touse the fatorization theorem.Lemma 2.1. If a family P is dominated by a �-�nite measure, then P is dominated by aprobability measure Q = P1i=1 iPi, where i's are nonnegative onstants with P1i=1 i = 1and Pi 2 P.Proof. See the textbook.Theorem 2.2 (The fatorization theorem). Suppose that X is a sample from P 2 P andP is a family of probability measures on (Rn;Bn) dominated by a �-�nite measure �. ThenT (X) is suÆient for P 2 P if and only if there are nonnegative Borel funtions h (whihdoes not depend on P ) on (Rn;Bn) and gP (whih depends on P ) on the range of T suhthat dPd� (x) = gP (T (x))h(x): (1)Proof. (i) Suppose that T is suÆient for P 2 P.For any A 2 Bn, P (AjT ) does not depend on P .Let Q be the probability measure in Lemma 2.1.By Fubini's theorem and the result in Exerise 35 of x1.6,Q(A \ B)= 1Xj=1 jPj(A \ B)= 1Xj=1 j ZB P (AjT )dPj= ZB 1Xj=1 jP (AjT )dPj= ZB P (AjT )dQfor any B 2 �(T ). Hene, P (AjT ) = EQ(IAjT ) a.s. Q, where EQ(IAjT ) denotes the ondi-tional expetation of IA given T w.r.t. Q.Let gP (T ) be the Radon-Nikodym derivative dP=dQ on the spae (Rn; �(T ); Q). ThenP (A)= Z P (AjT )dP= Z EQ(IAjT )gP (T )dQ= Z EQ[IAgP (T )jT ℄dQ= ZA gP (T )dQd� d�for any A 2 Bn. Hene, (1) holds with h = dQ=d�.2



(ii) Suppose that (1) holds. ThendPdQ = dPd� � 1Xi=1 idPid� = gP (T )� 1Xi=1 gPi (T ) a.s. Q; (2)where the seond equality follows from the result in Exerise 35 of x1.6.Let A 2 �(X) and P 2 P.The suÆieny of T follows fromP (AjT ) = EQ(IAjT ) a.s. P; (3)where EQ(IAjT ) is given in part (i) of the proof.This is beause EQ(IAjT ) does not vary with P 2 P, and result (3) and Theorem 1.7 implythat the onditional distribution of X given T is determined by EQ(IAjT ), A 2 �(X).By the de�nition of onditional probability, (3) follows fromZB IAdP = ZB EQ(IAjT )dP (4)for any B 2 �(T ).By (2), dP=dQ is a Borel funtion of T .Then the right-hand side of (4) is equal toZB EQ(IAjT )dPdQdQ = ZB EQ  IAdPdQ ����T! dQ = ZB IAdPdQdQ;whih equals the left-hand side of (4).This proves (4) for any B 2 �(T ) and ompletes the proof.If P is an exponential family, then Theorem 2.2 an be applied withg�(t) = expf[�(�)℄� t� �(�)g;i.e., T is a suÆient statisti for � 2 �.In Example 2.10 the joint distribution ofX is in an exponential family with T (X) = Pni=1Xi.Hene, we an onlude that T is suÆient for � 2 (0; 1) without omputing the onditionaldistribution of X given T .
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Example 2.11 (Trunation families). Let �(x) be a positive Borel funtion on (R;B) suhthat R ba �(x)dx < 1 for any a and b, �1 < a < b < 1. Let � = (a; b), � = f(a; b) 2 R2 :a < bg, and f�(x) = (�)�(x)I(a;b)(x);where (�) = hR ba �(x)dxi�1. Then ff� : � 2 �g, alled a trunation family, is a parametrifamily dominated by the Lebesgue measure on R. Let X1; :::; Xn be i.i.d. random variableshaving the p.d.f. f�. Then the joint p.d.f. of X = (X1; :::; Xn) isnYi=1 f�(xi) = [(�)℄nI(a;1)(x(1))I(�1;b)(x(n)) nYi=1�(xi); (5)where x(i) is the ith smallest value of x1; :::; xn. Let T (X) = (X(1); X(n)), g�(t1; t2) =[(�)℄nI(a;1)(t1)I(�1;b)(t2), and h(x) = Qni=1 �(xi). By (5) and Theorem 2.2, T (X) is suf-�ient for � 2 �.Example 2.12 (Order statistis). Let X = (X1; :::; Xn) and X1; :::; Xn be i.i.d. randomvariables having a distribution P 2 P, where P is the family of distributions on R havingLebesgue p.d.f.'s. Let X(1); :::; X(n) be the order statistis given in Example 2.9. Note thatthe joint p.d.f. of X is f(x1) � � �f(xn) = f(x(1)) � � �f(x(n)):Hene, T (X) = (X(1); :::; X(n)) is suÆient for P 2 P. The order statistis an be shown tobe suÆient even when P is not dominated by any �-�nite measure, but Theorem 2.2 is notappliable (see Exerise 31 in x2.6).
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Leture 20: Minimal suÆienyThere are many suÆient statistis for a given family P.In fat, X (the whole data set) is suÆient.If T is a suÆient statisti and T =  (S), where  is measurable and S is another statisti,then S is suÆient.This is obvious from Theorem 2.2 if the population has a p.d.f., but it an be proved diretlyfrom De�nition 2.4 (Exerise 25).For instane, if X1; :::; Xn are iid with P (Xi = 1) = � and P (Xi = 0) = 1 � �, then(Pmi=1Xi;Pni=m+1Xi) is suÆient for �, where m is any �xed integer between 1 and n.If T is suÆient and T =  (S) with a measurable  that is not one-to-one, then �(T ) � �(S)and T is more useful than S, sine T provides a further redution of the data (or �-�eld)without loss of information.Is there a suÆient statisti that provides \maximal" redution of the data?If a statement holds exept for outomes in an event A satisfying P (A) = 0 for all P 2 P,then we say that the statement holds a.s. P.De�nition 2.5 (Minimal suÆieny). Let T be a suÆient statisti for P 2 P. T is alleda minimal suÆient statisti if and only if, for any other statisti S suÆient for P 2 P,there is a measurable funtion  suh that T =  (S) a.s. P.If both T and S are minimal suÆient statistis, then by de�nition there is a one-to-onemeasurable funtion  suh that T =  (S) a.s. P.Hene, the minimal suÆient statisti is unique in the sense that two statistis that areone-to-one measurable funtions of eah other an be treated as one statisti.Example 2.13. Let X1; :::; Xn be i.i.d. random variables from P�, the uniform distributionU(�; � + 1), � 2 R. Suppose that n > 1. The joint Lebesgue p.d.f. of (X1; :::; Xn) isf�(x) = nYi=1 I(�;�+1)(xi) = I(x(n)�1;x(1))(�); x = (x1; :::; xn) 2 Rn;where x(i) denotes the ith smallest value of x1; :::; xn. By Theorem 2.2, T = (X(1); X(n)) issuÆient for �. Note thatx(1) = supf� : f�(x) > 0g and x(n) = 1 + inff� : f�(x) > 0g:If S(X) is a statisti suÆient for �, then by Theorem 2.2, there are Borel funtions h andg� suh that f�(x) = g�(S(x))h(x). For x with h(x) > 0,x(1) = supf� : g�(S(x)) > 0g and x(n) = 1 + inff� : g�(S(x)) > 0g:Hene, there is a measurable funtion  suh that T (x) =  (S(x)) when h(x) > 0. Sineh > 0 a.s. P, we onlude that T is minimal suÆient.Minimal suÆient statistis exist under weak assumptions, e.g., P ontains distributions onRk dominated by a �-�nite measure (Bahadur, 1957).1



Useful tools for �nding minimal suÆient statistis.Theorem 2.3. Let P be a family of distributions on Rk.(i) Suppose that P0 � P and a.s. P0 implies a.s. P. If T is suÆient for P 2 P and minimalsuÆient for P 2 P0, then T is minimal suÆient for P 2 P.(ii) Suppose that P ontains p.d.f.'s f0; f1; f2; :::, w.r.t. a �-�nite measure. Let f1(x) =P1i=0 ifi(x), where i > 0 for all i and P1i=0 i = 1, and let Ti(X) = fi(x)=f1(x) whenf1(x) > 0, i = 0; 1; 2; :::. Then T (X) = (T0; T1; T2; :::) is minimal suÆient for P 2 P.Furthermore, if fx : fi(x) > 0g � fx : f0(x) > 0g for all i, then we may replae f1 by f0, inwhih ase T (X) = (T1; T2; :::) is minimal suÆient for P 2 P.(iii) Suppose that P ontains p.d.f.'s fP w.r.t. a �-�nite measure and that there exists asuÆient statisti T (X) suh that, for any possible values x and y of X, fP (x) = fP (y)�(x; y)for all P implies T (x) = T (y), where � is a measurable funtion. Then T (X) is minimalsuÆient for P 2 P.Proof. (i) If S is suÆient for P 2 P, then it is also suÆient for P 2 P0 and, therefore,T =  (S) a.s. P0 holds for a measurable funtion  . The result follows from the assumptionthat a.s. P0 implies a.s. P.(ii) Note that f1 > 0 a.s. P. Let gi(T ) = Ti, i = 0; 1; 2; :::. Then fi(x) = gi(T (x))f1(x)a.s. P. By Theorem 2.2, T is suÆient for P 2 P. Suppose that S(X) is another suÆientstatisti. By Theorem 2.2, there are Borel funtions h and ~gi suh that fi(x) = ~gi(S(x))h(x),i = 0; 1; 2; :::. Then Ti(x) = ~gi(S(x))=P1j=0 j~gj(S(x)) for x's satisfying f1(x) > 0. ByDe�nition 2.5, T is minimal suÆient for P 2 P. The proof for the ase where f1 isreplaed by f0 is the same.(iii) From Bahadur (1957), there exists a minimal suÆient statisti S(X). The result followsif we an show that T (X) =  (S(X)) a.s. P for a measurable funtion  . By Theorem2.2, there are Borel funtions gP and h suh that fP (x) = gP (S(x))h(x) for all P . LetA = fx : h(x) = 0g. Then P (A) = 0 for all P . For x and y suh that S(x) = S(y), x 62 Aand y 62 A, fP (x)= gP (S(x))h(x)= gP (S(y))h(x)h(y)=h(y)= fP (y)h(x)=h(y)for all P . Hene T (x) = T (y). This shows that there is a funtion  suh that T (x) = (S(x)) exept for x 2 A. It remains to show that  is measurable. Sine S is minimalsuÆient, g(T (X)) = S(X) a.s. P for a measurable funtion g. Hene g is one-to-one and = g�1. The measurability of  follows from Theorem 3.9 in Parthasarathy (1967).
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Example 2.14. Let P = ff� : � 2 �g be an exponential family with p.d.f.'sf�(x) = expf[�(�)℄�T (x)� �(�)gh(x)Suppose that there exists �0 = f�0; �1; :::; �pg � � suh that the vetors �i = �(�i)� �(�0),i = 1; :::; p, are linearly independent in Rp. (This is true if the family is of full rank.) Wehave shown that T (X) is suÆient for � 2 �. We now show that T is in fat minimalsuÆient for � 2 �. Let P0 = ff� : � 2 �0g. Note that the set fx : f�(x) > 0g does notdepend on �. It follows from Theorem 2.3(ii) with f1 = f�0 thatS(X) = �expf��1T (x)� �1g; :::; expf��pT (x)� �pg�is minimal suÆient for � 2 �0, where �i = �(�i)� �(�0). Sine �i's are linearly independent,there is a one-to-one measurable funtion  suh that T (X) =  (S(X)) a.s. P0. Hene, T isminimal suÆient for � 2 �0. It is easy to see that a.s. P0 implies a.s. P. Thus, by Theorem2.3(i), T is minimal suÆient for � 2 �.The results in Examples 2.13 and 2.14 an also be proved by using Theorem 2.3(iii).The suÆieny (and minimal suÆieny) depends on the postulated family P of populations(statistial models).It may not be a useful onept if the proposed statistial model is wrong or at least one hassome doubts about the orretness of the proposed model.From the examples in this setion and some exerises in x2.6, one an �nd that for a widevariety of models, statistis suh as the sample mean �X, the sample variane S2, (X(1); X(n))in Example 2.11, and the order statistis in Example 2.9 are suÆient.Thus, using these statistis for data redution and summarization does not lose any infor-mation when the true model is one of those models but we do not know exatly whih modelis orret.A minimal statisti is not always the \simplest suÆient statisti".For example, if �X is minimal suÆent, then so is ( �X; expf �Xg).
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Lecture 21: Complete statistics

A statistic V (X) is ancillary if its distribution does not depend on the population P
V (X) is first-order ancillary if E[V (X)] is independent of P .
A trivial ancillary statistic is the constant statistic V (X) ≡ c ∈ R.
If V (X) is a nontrivial ancillary statistic, then σ(V (X)) ⊂ σ(X) is a nontrivial σ-field that
does not contain any information about P .
Hence, if S(X) is a statistic and V (S(X)) is a nontrivial ancillary statistic, it indicates that
σ(S(X)) contains a nontrivial σ-field that does not contain any information about P and,
hence, the “data” S(X) may be further reduced.
A sufficient statistic T appears to be most successful in reducing the data if no nonconstant
function of T is ancillary or even first-order ancillary.

Definition 2.6 (Completeness). A statistic T (X) is said to be complete for P ∈ P if and
only if, for any Borel f , E[f(T )] = 0 for all P ∈ P implies f = 0 a.s. P. T is said to be
boundedly complete if and only if the previous statement holds for any bounded Borel f .

A complete statistic is boundedly complete.
If T is complete (or boundedly complete) and S = ψ(T ) for a measurable ψ, then S is
complete (or boundedly complete).
Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).
A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient
statistic (X(1), X(n)) in Example 2.13 is not complete (Exercise 47).

Finding a complete and sufficient statistic

Proposition 2.1. If P is in an exponential family of full rank with p.d.f.’s given by

fη(x) = exp{ητT (x) − ζ(η)}h(x),

then T (X) is complete and sufficient for η ∈ Ξ.
Proof. We have shown that T is sufficient. Suppose that there is a function f such that
E[f(T )] = 0 for all η ∈ Ξ. By Theorem 2.1(i),

∫

f(t) exp{ητ t− ζ(η)}dλ = 0 for all η ∈ Ξ,

where λ is a measure on (Rp,Bp). Let η0 be an interior point of Ξ. Then
∫

f+(t)eητ tdλ =
∫

f−(t)eητ tdλ for all η ∈ N(η0), (1)

where N(η0) = {η ∈ Rp : ‖η − η0‖ < ǫ} for some ǫ > 0. In particular,
∫

f+(t)eητ
0
tdλ =

∫

f−(t)eητ
0
tdλ = c.

If c = 0, then f = 0 a.e. λ. If c > 0, then c−1f+(t)eητ
0
t and c−1f−(t)eητ

0
t are p.d.f.’s w.r.t. λ

and (1) implies that their m.g.f.’s are the same in a neighborhood of 0. By Theorem 1.6(ii),
c−1f+(t)eητ

0
t = c−1f−(t)eητ

0
t, i.e., f = f+ − f− = 0 a.e. λ. Hence T is complete.
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Example 2.15. Suppose that X1, ..., Xn are i.i.d. random variables having the N(µ, σ2)
distribution, µ ∈ R, σ > 0. From Example 2.6, the joint p.d.f. of X1, ..., Xn is

(2π)−n/2 exp {η1T1 + η2T2 − nζ(η)} ,

where T1 =
∑n

i=1Xi, T2 = −
∑n

i=1X
2
i , and η = (η1, η2) =

(

µ

σ2 ,
1

2σ2

)

. Hence, the family

of distributions for X = (X1, ..., Xn) is a natural exponential family of full rank (Ξ =
R × (0,∞)). By Proposition 2.1, T (X) = (T1, T2) is complete and sufficient for η. Since
there is a one-to-one correspondence between η and θ = (µ, σ2), T is also complete and
sufficient for θ. It can be shown that any one-to-one measurable function of a complete and
sufficient statistic is also complete and sufficient (exercise). Thus, (X̄, S2) is complete and
sufficient for θ, where X̄ and S2 are the sample mean and sample variance, respectively.

Example 2.16. Let X1, ..., Xn be i.i.d. random variables from Pθ, the uniform distribution
U(0, θ), θ > 0. The largest order statistic, X(n), is complete and sufficient for θ ∈ (0,∞).
The sufficiency of X(n) follows from the fact that the joint Lebesgue p.d.f. of X1, ..., Xn is
θ−nI(0,θ)(x(n)). From Example 2.9, X(n) has the Lebesgue p.d.f. (nxn−1/θn)I(0,θ)(x) on R.
Let f be a Borel function on [0,∞) such that E[f(X(n))] = 0 for all θ > 0. Then

∫ θ

0
f(x)xn−1dx = 0 for all θ > 0.

Let G(θ) be the left-hand side of the previous equation. Applying the result of differentiation
of an integral (see, e.g., Royden (1968, §5.3)), we obtain thatG′(θ) = f(θ)θn−1 a.e.m+, where
m+ is the Lebesgue measure on ([0,∞),B[0,∞)). Since G(θ) = 0 for all θ > 0, f(θ)θn−1 = 0
a.e. m+ and, hence, f(x) = 0 a.e. m+. Therefore, X(n) is complete and sufficient for θ ∈
(0,∞).

Example 2.17. In Example 2.12, we showed that the order statistics T (X) = (X(1), ..., X(n))
of i.i.d. random variables X1, ..., Xn is sufficient for P ∈ P, where P is the family of distri-
butions on R having Lebesgue p.d.f.’s. We now show that T (X) is also complete for P ∈ P.
Let P0 be the family of Lebesgue p.d.f.’s of the form

f(x) = C(θ1, ..., θn) exp{−x2n + θ1x+ θ2x
2 + · · ·+ θnx

n},

where θj ∈ R and C(θ1, ..., θn) is a normalizing constant such that
∫

f(x)dx = 1. Then
P0 ⊂ P and P0 is an exponential family of full rank. Note that the joint distribution of
X = (X1, ..., Xn) is also in an exponential family of full rank. Thus, by Proposition 2.1,
U = (U1, ..., Un) is a complete statistic for P ∈ P0, where Uj =

∑n
i=1X

j
i . Since a.s. P0

implies a.s. P, U(X) is also complete for P ∈ P.

The result follows if we can show that there is a one-to-one correspondence between T (X)
and U(X). Let V1 =

∑n
i=1Xi, V2 =

∑

i<j XiXj, V3 =
∑

i<j<kXiXjXk,..., Vn = X1 · · ·Xn.
From the identities

Uk − V1Uk−1 + V2Uk−2 − · · · + (−1)k−1Vk−1U1 + (−1)kkVk = 0,
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k = 1, ..., n, there is a one-to-one correspondence between U(X) and V (X) = (V1, ..., Vn).
From the identity

(t−X1) · · · (t−Xn) = tn − V1t
n−1 + V2t

n−2 − · · ·+ (−1)nVn,

there is a one-to-one correspondence between V (X) and T (X). This completes the proof
and, hence, T (X) is sufficient and complete for P ∈ P. In fact, both U(X) and V (X) are
sufficient and complete for P ∈ P.

The relationship between an ancillary statistic and a complete and sufficient statistic is
characterized in the following result.

Theorem 2.4 (Basu’s theorem). Let V and T be two statistics of X from a population
P ∈ P. If V is ancillary and T is boundedly complete and sufficient for P ∈ P, then V and
T are independent w.r.t. any P ∈ P.
Proof. Let B be an event on the range of V . Since V is ancillary, P (V −1(B)) is a constant.
Since T is sufficient, E[IB(V )|T ] is a function of T (independent of P ). Since

E{E[IB(V )|T ] − P (V −1(B))} = 0 for all P ∈ P ,

P (V −1(B)|T ) = E[IB(V )|T ] = P (V −1(B)) a.s. P, by the bounded completeness of T . Let
A be an event on the range of T . Then,

P (T−1(A) ∩ V −1(B))=E{E[IA(T )IB(V )|T ]} = E{IA(T )E[IB(V )|T ]}

= E{IA(T )P (V −1(B))} = P (T−1(A))P (V −1(B)).

Hence T and V are independent w.r.t. any P ∈ P.

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18. Suppose that X1, ..., Xn are i.i.d. random variables having the N(µ, σ2)
distribution, with µ ∈ R and a known σ > 0. It can be easily shown that the family
{N(µ, σ2) : µ ∈ R} is an exponential family of full rank with natural parameter η = µ/σ2.
By Proposition 2.1, the sample mean X̄ is complete and sufficient for η (and µ). Let S2 be
the sample variance. Since S2 = (n− 1)−1∑n

i=1(Zi − Z̄)2, where Zi = Xi −µ is N(0, σ2) and
Z̄ = n−1∑n

i=1 Zi, S
2 is an ancillary statistic (σ2 is known). By Basu’s theorem, X̄ and S2

are independent w.r.t. N(µ, σ2) with µ ∈ R. Since σ2 is arbitrary, X̄ and S2 are independent
w.r.t. N(µ, σ2) for any µ ∈ R and σ2 > 0.

Using the independence of X̄ and S2, we now show that (n − 1)S2/σ2 has the chi-square
distribution χ2

n−1. Note that

n

(

X̄ − µ

σ

)2

+
(n− 1)S2

σ2
=

n
∑

i=1

(

Xi − µ

σ

)2

.

From the properties of the normal distributions, n(X̄−µ)2/σ2 has the chi-square distribution
χ2

1 with the m.g.f. (1−2t)−1/2 and
∑n

i=1(Xi −µ)2/σ2 has the chi-square distribution χ2
n with

3



the m.g.f. (1−2t)−n/2, t < 1/2. By the independence of X̄ and S2, the m.g.f. of (n−1)S2/σ2

is
(1 − 2t)−n/2/(1 − 2t)−1/2 = (1 − 2t)−(n−1)/2

for t < 1/2. This is the m.g.f. of the chi-square distribution χ2
n−1 and, therefore, the result

follows.
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Lecture 22: Decision rules, loss, and risk

Statistical decision theory

X: a sample from a population P ∈ P
Decision: an action we take after observing X
A: the set of allowable actions
(A,FA): the action space
X : the range of X
Decision rule: a measurable function (a statistic) T from (X ,FX ) to (A,FA)
If X is observed, then we take the action T (X) ∈ A

Performance criterion: loss function L(P, a) from P ×A to [0,∞) and is Borel for each P
If X = x is observed and our decision rule is T , then our “loss” is L(P, T (x))
It is difficult to compare L(P, T1(X)) and L(P, T2(X)) for two decision rules, T1 and T2, since
both of them are random.

Risk: Average (expected) loss defined as

RT (P ) = E[L(P, T (X))] =
∫

X

L(P, T (x))dPX(x).

If P is a parametric family indexed by θ, the loss and risk are denoted by L(θ, a) and RT (θ)

For decision rules T1 and T2, T1 is as good as T2 if and only if

RT1
(P ) ≤ RT2

(P ) for any P ∈ P ,

and is better than T2 if, in addition, RT1
(P ) < RT2

(P ) for at least one P ∈ P.

Two decision rules T1 and T2 are equivalent if and only if RT1
(P ) = RT2

(P ) for all P ∈ P.

Optimal rule: If T∗ is as good as any other rule in ℑ, a class of allowable decision rules, then
T∗ is ℑ-optimal (or optimal if ℑ contains all possible rules).

Sometimes it is useful to consider randomized decision rules.
Randomized decision rule: a function δ on X ×FA such that, for every A ∈ FA, δ(·, A) is a
Borel function and, for every x ∈ X , δ(x, ·) is a probability measure on (A,FA).
If X = x is observed, our have a distribution of actions: δ(x, ·).
A nonrandomized decision rule T previously discussed can be viewed as a special randomized
decision rule with δ(x, {a}) = I{a}(T (x)), a ∈ A, x ∈ X .

To choose an action in A when a randomized rule δ is used, we need to simulate a pseudo-
random element of A according to δ(x, ·).
Thus, an alternative way to describe a randomized rule is to specify the method of simulating
the action from A for each x ∈ X .
For example, a randomized rule can be a discrete distribution δ(x, ·) assigning probability
pj(x) to a nonrandomized decision rule Tj(x), j = 1, 2, ..., in which case the rule δ can be

1



equivalently defined as a rule taking value Tj(x) with probability pj(x), i.e.,

T (X) =



























T1(X) with probability p1(X)

· · · · · ·

Tk(X) with probability pk(X)

The loss function for a randomized rule δ is defined as

L(P, δ, x) =
∫

A

L(P, a)dδ(x, a),

which reduces to the same loss function we discussed when δ is a nonrandomized rule.
The risk of a randomized rule δ is then

Rδ(P ) = E[L(P, δ, X)] =
∫

X

∫

A

L(P, a)dδ(x, a)dPX(x).

For T (X) defined above,

L(P, T, x) =
k

∑

j=1

L(P, Tj(x))pj(x)

and

RT (P ) =
k

∑

j=1

E[L(P, Tj(X))pj(X)]

Example 2.19. Let X = (X1, ..., Xn) be a vector of iid measurements for a parameter
θ ∈ R.
Action space: (A,FA) = (R,B).
A common loss function in this problem is the squared error loss L(P, a) = (θ − a)2, a ∈ A.
Let T (X) = X̄, the sample mean.
The loss for X̄ is (X̄ − θ)2.
If the population has mean µ and variance σ2 < ∞, then

RX̄(P )=E(θ − X̄)2

=(θ − EX̄)2 + E(EX̄ − X̄)2

=(θ − EX̄)2 + Var(X̄)

= (µ − θ)2 + σ2

n
.

If θ is in fact the mean of the population, then

RX̄(P ) = σ2

n
,

is an increasing function of the population variance σ2 and a decreasing function of the sam-
ple size n.
Consider another decision rule T1(X) = (X(1) + X(n))/2.

2



RT1
(P ) does not have a simple explicit form if there is no further assumption on the popu-

lation P .
Suppose that P ∈ P. Then, for some P, X̄ (or T1) is better than T1 (or X̄) (exercise),
whereas for some P, neither X̄ nor T1 is better than the other.
Consider a randomized rule:

T2(X) =











X̄ with probability p(X)

T1(X) with probability 1 − p(X)

The loss for T2(X) is
(X̄ − θ)2p(X) + [T1(X) − θ]2[1 − p(X)]

and the risk of T2 is

RT2
(P ) = E{(X̄ − θ)2p(X) + [T1(X) − θ]2[1 − p(X)]}

In particular, if p(X) = 0.5, then

RT2
(P ) =

RX̄(P ) + RT1
(P )

2
.

The problem in Example 2.19 is a special case of a general problem called estimation.
In an estimation problem, a decision rule T is called an estimator.
The following example describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, P0 ⊂ P, and P1 = {P ∈ P : P 6∈ P0}.
A hypothesis testing problem can be formulated as that of deciding which of the following
two statements is true:

H0 : P ∈ P0 versus H1 : P ∈ P1. (1)

Here, H0 is called the null hypothesis and H1 is called the alternative hypothesis.
The action space for this problem contains only two elements, i.e., A = {0, 1}, where 0 is
the action of accepting H0 and 1 is the action of rejecting H0.
A decision rule is called a test.
Since a test T (X) is a function from X to {0, 1}, T (X) must have the form IC(X), where
C ∈ FX is called the rejection region or critical region for testing H0 versus H1.
0-1 loss: L(P, a) = 0 if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P, j) = 0 for P ∈ Pj and L(P, j) = 1 otherwise, j = 0, 1.
Under this loss, the risk is

RT (P ) =











P (T (X) = 1) = P (X ∈ C) P ∈ P0

P (T (X) = 0) = P (X 6∈ C) P ∈ P1.

See Figure 2.2 on page 127 for an example of a graph of RT (θ) for some T and P in a
parametric family.
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The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H0 when
P ∈ P1 and rejecting H0 when P ∈ P0) are the same.
In some cases, one might assume unequal losses: L(P, j) = 0 for P ∈ Pj, L(P, 0) = c0 when
P ∈ P1, and L(P, 1) = c1 when P ∈ P0.

Admissibility

Definition 2.7. Let ℑ be a class of decision rules (randomized or nonrandomized). A
decision rule T ∈ ℑ is called ℑ-admissible (or admissible when ℑ contains all possible rules)
if and only if there does not exist any S ∈ ℑ that is better than T (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than T .
Thus, T should not be used in principle.
However, an admissible decision rule is not necessarily good.
For example, in an estimation problem a silly estimator T (X) ≡ a constant may be admis-
sible.

If T∗ is ℑ-optimal, then it is ℑ-admissible.
If T∗ is ℑ-optimal and T0 is ℑ-admissible, then T0 is also ℑ-optimal and is equivalent to T∗.
If there are two ℑ-admissible rules that are not equivalent, then there does not exist any
ℑ-optimal rule.
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Lecture 23: Sufficiency and Rao-Blackwell theorem,

unbiasedness and invariance

Suppose that we have a sufficient statistic T (X) for P ∈ P.
Intuitively, our decision rule should be a function of T .
This is not true in general, but the following result indicates that this is true if randomized
decision rules are allowed.

Proposition 2.2. Suppose that A is a subset of Rk. Let T (X) be a sufficient statistic for
P ∈ P and let δ0 be a decision rule. Then

δ1(t, A) = E[δ0(X, A)|T = t],

which is a randomized decision rule depending only on T , is equivalent to δ0 if Rδ0(P ) < ∞
for any P ∈ P.
Proof. Note that δ1 is a decision rule since δ1 does not depend on the unknown P by the
sufficiency of T . Then

Rδ1(P )= E
{
∫

A

L(P, a)dδ1(X, a)
}

= E
{

E
[
∫

A

L(P, a)dδ0(X, a)
∣

∣

∣

∣

T
]}

= E
{
∫

A

L(P, a)dδ0(X, a)
}

= Rδ0(P ),

where the proof of the second equality is left to the reader.

Note that Proposition 2.2 does not imply that δ0 is inadmissible.
If δ0 is a nonrandomized rule,

δ1(t, A) = E[IA(δ0(X))|T = t] = P (δ0(X) ∈ A|T = t)

is still a randomized rule, unless δ0(X) = h(T (X)) a.s. P for some Borel function h (Exercise
75).
Hence, Proposition 2.2 does not apply to situations where randomized rules are not allowed.

The following result tells us when nonrandomized rules are all we need and when decision
rules that are not functions of sufficient statistics are inadmissible.

Theorem 2.5. Suppose that A is a convex subset of Rk and that for any P ∈ P, L(P, a)
is a convex function of a.
(i) Let δ be a randomized rule satisfying

∫

A
‖a‖dδ(x, a) < ∞ for any x ∈ X and let T1(x) =

∫

A
adδ(x, a). Then L(P, T1(x)) ≤ L(P, δ, x) (or L(P, T1(x))<L(P, δ, x) if L is strictly convex

in a) for any x∈X and P ∈P.
(ii) (Rao-Blackwell theorem). Let T be a sufficient statistic for P ∈ P, T0 ∈ Rk be a
nonrandomized rule satisfying E‖T0‖ < ∞, and T1 = E[T0(X)|T ]. Then RT1

(P ) ≤ RT0
(P )

1



for any P ∈ P. If L is strictly convex in a and T0 is not a function of T , then T0 is
inadmissible.

The proof of Theorem 2.5 is an application of Jensen’s inequality and is left to the reader.

The concept of admissibility helps us to eliminate some decision rules.
However, usually there are still too many rules left after the elimination of some rules ac-
cording to admissibility and sufficiency.
Although one is typically interested in a ℑ-optimal rule, frequently it does not exist, if ℑ is
either too large or too small.

Example 2.22. Let X1, ..., Xn be i.i.d. random variables from a population P ∈ P that is
the family of populations having finite mean µ and variance σ2.
Consider the estimation of µ (A = R) under the squared error loss.
It can be shown that if we let ℑ be the class of all possible estimators, then there is no
ℑ-optimal rule (exercise).
Next, let ℑ1 be the class of all linear functions in X = (X1, ..., Xn), i.e., T (X) =

∑n
i=1 ciXi

with known ci ∈ R, i = 1, ..., n.
Then

RT (P ) = µ2

(

n
∑

i=1

ci − 1

)2

+ σ2
n
∑

i=1

c2
i . (1)

We now show that there does not exist T∗ =
∑n

i=1 c∗i Xi such that RT
∗

(P ) ≤ RT (P ) for any
P ∈ P and T ∈ ℑ1.
If there is such a T∗, then (c∗1, ..., c

∗
n) is a minimum of the function of (c1, ..., cn) on the right-

hand side of (1).
Then c∗1, ..., c

∗
n must be the same and equal to µ2/(σ2 + nµ2), which depends on P .

Hence T∗ is not a statistic.
This shows that there is no ℑ1-optimal rule.
Consider now a subclass ℑ2 ⊂ ℑ1 with ci’s satisfying

∑n
i=1 ci = 1.

From (1), RT (P ) = σ2∑n
i=1 c2

i if T ∈ ℑ2.
Minimizing σ2∑n

i=1 c2
i subject to

∑n
i=1 ci = 1 leads to an optimal solution of ci = n−1.

Thus, the sample mean X̄ is ℑ2-optimal.
There may not be any optimal rule if we consider a small class of decision rules.
For example, if ℑ3 contains all the rules in ℑ2 except X̄, then one can show that there is no
ℑ3-optimal rule.

Example 2.23. Assume that the sample X has the binomial distribution Bi(θ, n) with an
unknown θ ∈ (0, 1) and a fixed integer n > 1.
Consider the hypothesis testing problem described in Example 2.20 with H0 : θ ∈ (0, θ0]
versus H1 : θ ∈ (θ0, 1), where θ0 ∈ (0, 1) is a fixed value.
Suppose that we are only interested in the following class of nonrandomized decision rules:
ℑ = {Tj : j = 0, 1, ..., n − 1}, where Tj(X) = I{j+1,...,n}(X).
From Example 2.20, the risk function for Tj under the 0-1 loss is

RTj
(θ) = P (X > j)I(0,θ0](θ) + P (X ≤ j)I(θ0,1)(θ).
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For any integers k and j, 0 ≤ k < j ≤ n − 1,

RTj
(θ) − RTk

(θ) =











−P (k < X ≤ j) < 0 0 < θ ≤ θ0

P (k < X ≤ j) > 0 θ0 < θ < 1.

Hence, neither Tj nor Tk is better than the other.
This shows that every Tj is ℑ-admissible and, thus, there is no ℑ-optimal rule.

In view of the fact that an optimal rule often does not exist, statisticians adopt the following
two approaches to choose a decision rule.
The first approach is to define a class ℑ of decision rules that have some desirable properties
(statistical and/or nonstatistical) and then try to find the best rule in ℑ.
In Example 2.22, for instance, any estimator T in ℑ2 has the property that T is linear in X
and E[T (X)] = µ.
In a general estimation problem, we can use the following concept.

Definition 2.8 (Unbiasedness). In an estimation problem, the bias of an estimator T (X) of
a real-valued parameter ϑ of the unknown population is defined to be bT (P ) = E[T (X)]− ϑ
(which is denoted by bT (θ) when P is in a parametric family indexed by θ). An estimator
T (X) is said to be unbiased for ϑ if and only if bT (P ) = 0 for any P ∈ P.

Thus, ℑ2 in Example 2.22 is the class of unbiased estimators linear in X.
In Chapter 3, we discuss how to find a ℑ-optimal estimator when ℑ is the class of unbiased
estimators or unbiased estimators linear in X.

Another class of decision rules can be defined after we introduce the concept of invariance.

Definition 2.9 Let X be a sample from P ∈ P.
(i) A class G of one-to-one transformations of X is called a group if and only if gi ∈ G implies
g1◦g2 ∈ G and g−1

i ∈ G.
(ii) We say that P is invariant under G if and only if ḡ(PX) = Pg(X) is a one-to-one trans-
formation from P onto P for each g ∈ G.
(iii) A decision problem is said to be invariant if and only if P is invariant under G and the
loss L(P, a) is invariant in the sense that, for every g ∈ G and every a ∈ A, there exists

a unique g(a) ∈ A such that L(PX , a) = L
(

Pg(X), g(a)
)

. (Note that g(X) and g(a) are

different functions in general.)
(iv) A decision rule T (x) is said to be invariant if and only if, for every g ∈ G and every
x ∈ X , T (g(x)) = g(T (x)).

Invariance means that our decision is not affected by one-to-one transformations of data.
In a problem where the distribution of X is in a location-scale family P on Rk, we often
consider location-scale transformations of data X of the form g(X) = AX + c, where c ∈
C ⊂ Rk and A ∈ T , a class of invertible k × k matrices.
In §4.2 and §6.3, we discuss the problem of finding a ℑ-optimal rule when ℑ is a class of
invariant decision rules.
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Lecture 24: Bayes rules, minimax rules, point estimators, and hypothesis tests

The second approach to finding a good decision rule is to consider some characteristic RT of
RT (P ), for a given decision rule T , and then minimize RT over T ∈ ℑ.
The following are two popular ways to carry out this idea.
The first one is to consider an average of RT (P ) over P ∈ P:

r
T
(Π) =

∫

P

RT (P )dΠ(P ),

where Π is a known probability measure on (P,FP) with an appropriate σ-field FP .
r

T
(Π) is called the Bayes risk of T w.r.t. Π.

If T∗ ∈ ℑ and r
T
∗

(Π) ≤ r
T
(Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes rule (or Bayes rule

when ℑ contains all possible rules) w.r.t. Π.
The second method is to consider the worst situation, i.e., supP∈P RT (P ).
If T∗ ∈ ℑ and

sup
P∈P

RT
∗

(P ) ≤ sup
P∈P

RT (P )

for any T ∈ ℑ, then T∗ is called a ℑ-minimax rule (or minimax rule when ℑ contains all
possible rules).
Bayes and minimax rules are discussed in Chapter 4.

Example 2.25. We usually try to find a Bayes rule or a minimax rule in a parametric
problem where P = Pθ for a θ ∈ Rk.
Consider the special case of k = 1 and L(θ, a) = (θ − a)2, the squared error loss.
Note that

r
T
(Π) =

∫

R

E[θ − T (X)]2dΠ(θ),

which is equivalent to E[θ − T (X)]2, where θ is a random variable having the distribution
Π and, given θ = θ, the conditional distribution of X is Pθ.
Then, the problem can be viewed as a prediction problem for θ using functions of X.
Using the result in Example 1.22, the best predictor is E(θ|X), which is the ℑ-Bayes rule
w.r.t. Π with ℑ being the class of rules T (X) satisfying E[T (X)]2 < ∞ for any θ.

As a more specific example, let X = (X1, ..., Xn) with i.i.d. components having the N(µ, σ2)
distribution with an unknown µ = θ ∈ R and a known σ2, and let Π be the N(µ0, σ

2
0)

distribution with known µ0 and σ2
0 .

Then the conditional distribution of θ given X = x is N(µ∗(x), c2) with

µ∗(x) =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x̄ and c2 =
σ2

0σ
2

nσ2
0 + σ2

(1)

The Bayes rule w.r.t. Π is E(θ|X) = µ∗(X).

In this special case we can show that the sample mean X̄ is minimax.
For any decision rule T ,
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sup
θ∈R

RT (θ)≥
∫

R

RT (θ)dΠ(θ)

≥
∫

R

Rµ
∗

(θ)dΠ(θ)

= E
{

[θ − µ∗(X)]2
}

= E
{

E{[θ − µ∗(X)]2|X}
}

= E(c2)

= c2,

where µ∗(X) is the Bayes rule given in (1) and c2 is also given in (1).
Since this result is true for any σ2

0 > 0 and c2 → σ2/n as σ2
0 → ∞,

sup
θ∈R

RT (θ) ≥
σ2

n
= sup

θ∈R

RX̄(θ),

where the equality holds because the risk of X̄ under the squared error loss is σ2/n and
independent of θ = µ.
Thus, X̄ is minimax.

A minimax rule in a general case may be difficult to obtain. It can be seen that if both µ
and σ2 are unknown in the previous discussion, then

sup
θ∈R×(0,∞)

RX̄(θ) = ∞, (2)

where θ = (µ, σ2).
Hence X̄ cannot be minimax unless (2) holds with X̄ replaced by any decision rule T , in
which case minimaxity becomes meaningless.

Statistical inference: Point estimators, hypothesis tests, and confidence sets

Point estimators

Let T (X) be an estimator of ϑ ∈ R
Bias: bT (P ) = E[T (X)] − ϑ
Mean squared error (mse):

mseT (P ) = E[T (X) − ϑ]2 = [bT (P )]2 + Var(T (X)).

Bias and mse are two common criteria for the performance of point estimators.

Example 2.26. Let X1, ..., Xn be i.i.d. from an unknown c.d.f. F .
Suppose that the parameter of interest is ϑ = 1 − F (t) for a fixed t > 0.
If F is not in a parametric family, then a nonparametric estimator of F (t) is the empirical

c.d.f.

Fn(t) =
1

n

n
∑

i=1

I(−∞,t](Xi), t ∈ R.
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Since I(−∞,t](X1), ..., I(−∞,t](Xn) are i.i.d. binary random variables with P (I(−∞,t](Xi) = 1) =
F (t), the random variable nFn(t) has the binomial distribution Bi(F (t), n).
Consequently, Fn(t) is an unbiased estimator of F (t) and Var(Fn(t)) = mseFn(t)(P ) =
F (t)[1 − F (t)]/n.
Since any linear combination of unbiased estimators is unbiased for the same linear combi-
nation of the parameters (by the linearity of expectations), an unbiased estimator of ϑ is
U(X) = 1 − Fn(t), which has the same variance and mse as Fn(t).
The estimator U(X) = 1 − Fn(t) can be improved in terms of the mse if there is further
information about F .
Suppose that F is the c.d.f. of the exponential distribution E(0, θ) with an unknown θ > 0.
Then ϑ = e−t/θ.
The sample mean X̄ is sufficient for θ > 0.
Since the squared error loss is strictly convex, an application of Theorem 2.5(ii) (Rao-
Blackwell theorem) shows that the estimator T (X) = E[1−Fn(t)|X̄], which is also unbiased,
is better than U(X) in terms of the mse.
Figure 2.1 shows graphs of the mse’s of U(X) and T (X), as functions of θ, in the special
case of n = 10, t = 2, and F (x) = (1 − e−x/θ)I(0,∞)(x).

Hypothesis tests

To test the hypotheses
H0 : P ∈ P0 versus H1 : P ∈ P1,

there are two types of statistical errors we may commit: rejecting H0 when H0 is true (called
the type I error) and accepting H0 when H0 is wrong (called the type II error).
A test T : a statistic from X to {0, 1}. Pprobabilities of making two types of errors:

αT (P ) = P (T (X) = 1) P ∈ P0 (3)

and
1 − αT (P ) = P (T (X) = 0) P ∈ P1, (4)

which are denoted by αT (θ) and 1 − αT (θ) if P is in a parametric family indexed by θ.
Note that these are risks of T under the 0-1 loss in statistical decision theory.
Error probabilities in (3) and (4) cannot be minimized simultaneously.
Furthermore, these two error probabilities cannot be bounded simultaneously by a fixed
α ∈ (0, 1) when we have a sample of a fixed size.

A common approach to finding an “optimal” test is to assign a small bound α to one of the
error probabilities, say αT (P ), P ∈ P0, and then to attempt to minimize the other error
probability 1 − αT (P ), P ∈ P1, subject to

sup
P∈P0

αT (P ) ≤ α. (5)

The bound α is called the level of significance.
The left-hand side of (5) is called the size of the test T .
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The level of significance should be positive, otherwise no test satisfies (5) except the silly
test T (X) ≡ 0 a.s. P.

Example 2.28. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with an unknown
µ ∈ R and a known σ2.
Consider the hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0, where µ0 is a fixed constant.
Since the sample mean X̄ is sufficient for µ ∈ R, it is reasonable to consider the following
class of tests: Tc(X) = I(c,∞)(X̄), i.e., H0 is rejected (accepted) if X̄ > c (X̄ ≤ c), where
c ∈ R is a fixed constant.
Let Φ be the c.d.f. of N(0, 1). Then, by the property of the normal distributions,

αTc
(µ) = P (Tc(X) = 1) = 1 − Φ

(√
n(c − µ)

σ

)

.

Figure 2.2 provides an example of a graph of two types of error probabilities, with µ0 = 0.
Since Φ(t) is an increasing function of t,

sup
P∈P0

αTc
(µ) = 1 − Φ

(√
n(c − µ0)

σ

)

.

In fact, it is also true that

sup
P∈P1

[1 − αTc
(µ)] = Φ

(√
n(c − µ0)

σ

)

.

If we would like to use an α as the level of significance, then the most effective way is to
choose a cα (a test Tcα

(X)) such that

α = sup
P∈P0

αTcα
(µ),

in which case cα must satisfy

1 − Φ

(√
n(cα − µ0)

σ

)

= α,

i.e., cα = σz1−α/
√

n + µ0, where za = Φ−1(a).
In Chapter 6, it is shown that for any test T (X) satisfying (5),

1 − αT (µ) ≥ 1 − αTcα
(µ), µ > µ0.
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Lecture 25: p-value, randomized tests, and confidence sets

The choice of a level of significance α is usually somewhat subjective.
In most applications there is no precise limit to the size of T that can be tolerated.
Standard values, such as 0.10, 0.05, or 0.01, are often used for convenience.

For most tests satisfying
sup
P∈P0

αT (P ) ≤ α. (1)

a small α leads to a “small” rejection region.
It is good practice to determine not only whether H0 is rejected or accepted for a given α
and a chosen test Tα, but also the smallest possible level of significance at which H0 would
be rejected for the computed Tα(x), i.e.,

α̂ = inf{α ∈ (0, 1) : Tα(x) = 1}.

Such an α̂, which depends on x and the chosen test and is a statistic, is called the p-value
for the test Tα.

Example 2.29. Consider the problem in Example 2.28. Let us calculate the p-value for
Tcα

. Note that

α = 1 − Φ

(√
n(cα − µ0)

σ

)

> 1 − Φ

(√
n(x̄ − µ0)

σ

)

if and only if x̄ > cα (or Tcα
(x) = 1). Hence

1 − Φ

(√
n(x̄ − µ0)

σ

)

= inf{α ∈ (0, 1) : Tcα
(x) = 1} = α̂(x)

is the p-value for Tcα
. It turns out that Tcα

(x) = I(0,α)(α̂(x)).

With the additional information provided by p-values, using p-values is typically more ap-
propriate than using fixed-level tests in a scientific problem.
However, a fixed level of significance is unavoidable when acceptance or rejection of H0

implies an imminent concrete decision.

In Example 2.28, the equality in (1) can always be achieved by a suitable choice of c.
This is, however, not true in general.
We need to consider randomized tests.
Recall that a randomized decision rule is a probability measure δ(x, ·) on the action space
for any fixed x.
Since the action space contains only two points, 0 and 1, for a hypothesis testing problem,
any randomized test δ(X, A) is equivalent to a statistic T (X) ∈ [0, 1] with T (x) = δ(x, {1})
and 1 − T (x) = δ(x, {0}).
A nonrandomized test is obviously a special case where T (x) does not take any value in
(0, 1).
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For any randomized test T (X), we define the type I error probability to be αT (P ) = E[T (X)],
P ∈ P0, and the type II error probability to be 1 − αT (P ) = E[1 − T (X)], P ∈ P1.
For a class of randomized tests, we would like to minimize 1 − αT (P ) subject to (1).

Example 2.30. Assume that the sample X has the binomial distribution Bi(θ, n) with an
unknown θ ∈ (0, 1) and a fixed integer n > 1.
Consider the hypotheses H0 : θ ∈ (0, θ0] versus H1 : θ ∈ (θ0, 1), where θ0 ∈ (0, 1) is a fixed
value.
Consider the following class of randomized tests:

Tj,q(X) =



























1 X > j

q X = j

0 X < j,

where j = 0, 1, ..., n − 1 and q ∈ [0, 1]. Then

αTj,q
(θ) = P (X > j) + qP (X = j) 0 < θ ≤ θ0

and
1 − αTj,q

(θ) = P (X < j) + (1 − q)P (X = j) θ0 < θ < 1.

It can be shown that for any α ∈ (0, 1), there exist an integer j and q ∈ (0, 1) such that the
size of Tj,q is α.

Confidence sets

ϑ: a k-vector of unknown parameters related to the unknown population P ∈ P
C(X) a Borel set (in the range of ϑ) depending only on the sample X
If

inf
P∈P

P (ϑ ∈ C(X)) ≥ 1 − α, (2)

where α is a fixed constant in (0, 1), then C(X) is called a confidence set for ϑ with level of

significance 1 − α.
The left-hand side of (2) is called the confidence coefficient of C(X), which is the highest
possible level of significance for C(X).
A confidence set is a random element that covers the unknown ϑ with certain probability.
If (2) holds, then the coverage probability of C(X) is at least 1 − α, although C(x) either
covers or does not cover ϑ whence we observe X = x.
The concepts of level of significance and confidence coefficient are very similar to the level
of significance and size in hypothesis testing.
In fact, it is shown in Chapter 7 that some confidence sets are closely related to hypothesis
tests.

Consider a real-valued ϑ.
If C(X) = [ϑ(X), ϑ(X)] for a pair of real-valued statistics ϑ and ϑ, then C(X) is called a
confidence interval for ϑ.
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If C(X) = (−∞, ϑ(X)] (or [ϑ(X),∞)), then ϑ (or ϑ) is called an upper (or a lower) confidence

bound for ϑ.

A confidence set (or interval) is also called a set (or an interval) estimator of ϑ, although it
is very different from a point estimator (discussed in §2.4.1).

Example 2.31. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with an unknown
µ ∈ R and a known σ2.
Suppose that a confidence interval for ϑ = µ is needed.
We only need to consider ϑ(X̄) and ϑ(X̄), since the sample mean X̄ is sufficient.
Consider confidence intervals of the form [X̄ − c, X̄ + c], where c ∈ (0,∞) is fixed.
Note that

P
(

µ ∈ [X̄ − c, X̄ + c]
)

= P
(

|X̄ − µ| ≤ c
)

= 1 − 2Φ
(

−
√

nc/σ
)

,

which is independent of µ.
Hence, the confidence coefficient of [X̄ −c, X̄ + c] is 1−2Φ (−

√
nc/σ), which is an increasing

function of c and converges to 1 as c → ∞ or 0 as c → 0.
Thus, confidence coefficients are positive but less than 1 except for silly confidence intervals
[X̄, X̄] and (−∞,∞).
We can choose a confidence interval with an arbitrarily large confidence coefficient, but the
chosen confidence interval may be so wide that it is practically useless.

If σ2 is also unknown, then [X̄ − c, X̄ + c] has confidence coefficient 0 and, therefore, is not
a good inference procedure.
In such a case a different confidence interval for µ with positive confidence coefficient can be
derived (Exercise 97 in §2.6).

This example tells us that a reasonable approach is to choose a level of significance 1 − α ∈
(0, 1) (just like the level of significance in hypothesis testing) and a confidence interval or set
satisfying (2).
In Example 2.31, when σ2 is known and c is chosen to be σz1−α/2/

√
n, where za = Φ−1(a),

the confidence coefficient of the confidence interval [X̄ − c, X̄ + c] is exactly 1 − α for any
fixed α ∈ (0, 1).
This is desirable since, for all confidence intervals satisfying (2), the one with the shortest
interval length is preferred.

For a general confidence interval [ϑ(X), ϑ(X)], its length is ϑ(X) − ϑ(X), which may be
random.
We may consider the expected (or average) length E[ϑ(X) − ϑ(X)].
The confidence coefficient and expected length are a pair of good measures of performance
of confidence intervals.
Like the two types of error probabilities of a test in hypothesis testing, however, we cannot
maximize the confidence coefficient and minimize the length (or expected length) simulta-
neously.
A common approach is to minimize the length (or expected length) subject to (2).

For an unbounded confidence interval, its length is ∞.
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Hence we have to define some other measures of performance.
For an upper (or a lower) confidence bound, we may consider the distance ϑ(X) − ϑ (or
ϑ − ϑ(X)) or its expectation.

Example 2.32. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with both µ ∈ R and
σ2 > 0 unknown.
Let θ = (µ, σ2) and α ∈ (0, 1) be given.
Let X̄ be the sample mean and S2 be the sample variance.
Since (X̄, S2) is sufficient (Example 2.15), we focus on C(X) that is a function of (X̄, S2).
From Example 2.18, X̄ and S2 are independent and (n − 1)S2/σ2 has the chi-square distri-
bution χ2

n−1.
Since

√
n(X̄ − µ)/σ has the N(0, 1) distribution,

P

(

−c̃α ≤
X̄ − µ

σ/
√

n
≤ c̃α

)

=
√

1 − α,

where c̃α = Φ−1
(

1+
√

1−α

2

)

(verify).

Since the chi-square distribution χ2
n−1 is a known distribution, we can always find two con-

stants c1α and c2α such that

P

(

c1α ≤
(n − 1)S2

σ2
≤ c2α

)

=
√

1 − α.

Then

P

(

−c̃α ≤
X̄ − µ

σ/
√

n
≤ c̃α, c1α ≤

(n − 1)S2

σ2
≤ c2α

)

= 1 − α,

or

P

(

n(X̄ − µ)2

c̃2
α

≤ σ2,
(n − 1)S2

c2α

≤ σ2 ≤
(n − 1)S2

c1α

)

= 1 − α. (3)

The left-hand side of (3) defines a set in the range of θ = (µ, σ2) bounded by two straight
lines, σ2 = (n − 1)S2/ciα, i = 1, 2, and a curve σ2 = n(X̄ − µ)2/c̃2

α (see the shadowed part
of Figure 2.3).
This set is a confidence set for θ with confidence coefficient 1 − α, since (3) holds for any θ.
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Lecture 26: Asymptotic approach and consistency

Asymptotic approach

In decision theory and inference, a key to the success of finding a good decision rule or
inference procedure is being able to find some moments and/or distributions of various
statistics.
There are many cases in which we are not able to find exactly the moments or distributions
of given statistics, especially when the problem is complext.
When the sample size n is large, we may approximate the moments and distributions of
statistics that are impossible to derive, using the asymptotic tools discussed in §1.5.
In an asymptotic analysis, we consider a sample X = (X1, ..., Xn) not for fixed n, but as
a member of a sequence corresponding to n = n0, n0 + 1, ..., and obtain the limit of the
distribution of an appropriately normalized statistic or variable Tn(X) as n → ∞.
The limiting distribution and its moments are used as approximations to the distribution
and moments of Tn(X) in the situation with a large but actually finite n.
This leads to some asymptotic statistical procedures and asymptotic criteria for assessing
their performances.

The asymptotic approach is not only applied to the situation where no exact method is avail-
able, but also used to provide an inference procedure simpler (e.g., in terms of computation)
than that produced by the exact approach (the approach considering a fixed n).

In addition to providing more theoretical results and/or simpler inference procedures, the
asymptotic approach requires less stringent mathematical assumptions than does the exact
approach.
The mathematical precision of the optimality results obtained in statistical decision theory
tends to obscure the fact that these results are approximations in view of the approximate
nature of the assumed models and loss functions.
As the sample size increases, the statistical properties become less dependent on the loss
functions and models.

A major weakness of the asymptotic approach is that typically no good estimates for the
precision of the approximations are available and, therefore, we cannot determine whether a
particular n in a problem is large enough to safely apply the asymptotic results.
To overcome this difficulty, asymptotic results are frequently used in combination with some
numerical/empirical studies for selected values of n to examine the finite sample performance
of asymptotic procedures.

Consistency

A reasonable point estimator is expected to perform better, at least on the average, if more
information about the unknown population is available.
With a fixed model assumption and sampling plan, more data (larger sample size n) provide
more information about the unknown population.
Thus, it is distasteful to use a point estimator Tn which, if sampling were to continue indef-
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initely, could possibly have a nonzero estimation error, although the estimation error of Tn

for a fixed n may never equal 0.

Definition 2.10 (Consistency of point estimators). Let X = (X1, ..., Xn) be a sample from
P ∈ P and Tn(X) be a point estimator of ϑ for every n.
(i) Tn(X) is called consistent for ϑ if and only if Tn(X) →p ϑ w.r.t. any P ∈ P.
(ii) Let {an} be a sequence of positive constants diverging to ∞. Tn(X) is called an-consistent

for ϑ if and only if an[Tn(X) − ϑ] = Op(1) w.r.t. any P ∈ P.
(iii) Tn(X) is called strongly consistent for ϑ if and only if Tn(X) →a.s. ϑ w.r.t. any P ∈ P.
(iv) Tn(X) is called Lr-consistent for ϑ if and only if Tn(X) →Lr

ϑ w.r.t. any P ∈ P for
some fixed r > 0.

Consistency is actually a concept relating to a sequence of estimators, {Tn, n = n0, n0+1, ...},
but we usually just say “consistency of Tn” for simplicity.
Each of the four types of consistency in Definition 2.10 describes the convergence of Tn(X)
to ϑ in some sense, as n → ∞.
In statistics, consistency according to Definition 2.10(i), which is sometimes called weak con-

sistency since it is implied by any of the other three types of consistency, is the most useful
concept of convergence of Tn to ϑ.
L2-consistency is also called consistency in mse, which is the most useful type of Lr-consistency.

Example 2.33. Let X1, ..., Xn be i.i.d. from P ∈ P.
If ϑ = µ, which is the mean of P and is assumed to be finite, then by the SLLN (Theorem
1.13), the sample mean X̄ is strongly consistent for µ and, therefore, is also consistent for µ.
If we further assume that the variance of P is finite, then X̄ is consistent in mse and is√

n-consistent.
With the finite variance assumption, the sample variance S2 is strongly consistent for the
variance of P , according to the SLLN.

Consider estimators of the form Tn =
∑n

i=1 cniXi, where {cni} is a double array of constants.
If P has a finite variance, then Tn is consistent in mse if and only if

∑n
i=1 cni → 1 and

∑n
i=1 c2

ni → 0.
If we only assume the existence of the mean of P , then Tn with cni = ci/n satisfying
n−1∑n

i=1 ci → 1 and supi |ci| < ∞ is strongly consistent (Theorem 1.13(ii)).

One or a combination of the law of large numbers, the CLT, Slutsky’s theorem (Theorem
1.11), and the continuous mapping theorem (Theorems 1.10 and 1.12) are typically applied
to establish consistency of point estimators.
In particular, Theorem 1.10 implies that if Tn is (strongly) consistent for ϑ and g is a
continuous function of ϑ, then g(Tn) is (strongly) consistent for g(ϑ).
For example, in Example 2.33 the point estimator X̄2 is strongly consistent for µ2.
To show that X̄2 is

√
n-consistent under the assumption that P has a finite variance σ2, we

can use the identity √
n(X̄2 − µ2) =

√
n(X̄ − µ)(X̄ + µ)

and the fact that X̄ is
√

n-consistent for µ and X̄ + µ = Op(1).
X̄2 may not be consistent in mse since we do not assume that P has a finite fourth moment.
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Alternatively, we can use the fact that
√

n(X̄2 − µ2) →d N(0, 4µ2σ2) (by the CLT and
Theorem 1.12) to show the

√
n-consistency of X̄2.

The following example shows another way to establish consistency of some point estimators.

Example 2.34. Let X1, ..., Xn be i.i.d. from an unknown P with a continuous c.d.f. F
satisfying F (θ) = 1 for some θ ∈ R and F (x) < 1 for any x < θ.
Consider the largest order statistic X(n).
For any ǫ > 0, F (θ − ǫ) < 1 and

P (|X(n) − θ| ≥ ǫ) = P (X(n) ≤ θ − ǫ) = [F (θ − ǫ)]n ,

which imply (according to Theorem 1.8(v)) X(n) →a.s. θ, i.e., X(n) is strongly consistent for
θ.
If we assume that F (i)(θ−), the ith-order left-hand derivative of F at θ, exists and vanishes
for any i ≤ m and that F (m+1)(θ−) exists and is nonzero, where m is a nonnegative integer,
then

1 − F (X(n)) =
(−1)mF (m+1)(θ−)

(m + 1)!
(θ − X(n))

m+1 + o
(

|θ − X(n)|
m+1

)

a.s.

This result and the fact that P
(

n[1 − F (X(n))] ≥ s
)

= (1−s/n)n imply that (θ−X(n))
m+1 =

Op(n
−1), i.e., X(n) is n(m+1)−1

-consistent.
If m = 0, then X(n) is n-consistent, which is the most common situation.
If m = 1, then X(n) is

√
n-consistent.

The limiting distribution of n(m+1)−1

(X(n) − θ) can be derived as follows.
Let

hn(θ) =

[

(−1)m(m + 1)!

nF (m+1)(θ−)

](m+1)−1

.

For t ≤ 0, by Slutsky’s theorem,

lim
n→∞

P

(

X(n) − θ

hn(θ)
≤ t

)

= lim
n→∞

P





[

θ − X(n)

hn(θ)

]m+1

≥ (−t)m+1





= lim
n→∞

P
(

n[1 − F (X(n))] ≥ (−t)m+1
)

= lim
n→∞

[

1 − (−t)m+1/n
]n

= e−(−t)m+1

.

It can be seen from the previous examples that there are many consistent estimators.
Like the admissibility in statistical decision theory, consistency is a very essential requirement
in the sense that any inconsistent estimators should not be used, but a consistent estimator
is not necessarily good.
Thus, consistency should be used together with one or a few more criteria.
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We discuss a situation in which finding a consistent estimator is crucial.
Suppose that an estimator Tn of ϑ satisfies

cn[Tn(X) − ϑ] →d σY, (1)

where Y is a random variable with a known distribution, σ > 0 is an unknown parameter,
and {cn} is a sequence of constants. For example, in Example 2.33,

√
n(X̄−µ) →d N(0, σ2);

in Example 2.34, (1) holds with cn = n(m+1)−1

and σ = [(−1)m(m + 1)!/F (m+1)(θ−)](m+1)−1

.
If a consistent estimator σ̂n of σ can be found, then, by Slutsky’s theorem,

cn[Tn(X) − ϑ]/σ̂n →d Y

and, thus, we may approximate the distribution of cn[Tn(X)− ϑ]/σ̂n by the known distribu-
tion of Y .

4



Lecture 27: Asymptotic bias, variance, and mse

Asymptotic bias

Unbiasedness as a criterion for point estimators is discussed in §2.3.2.
In some cases, however, there is no unbiased estimator.
Furthermore, having a “slight” bias in some cases may not be a bad idea.
Let Tn(X) be a point estimator of ϑ for every n.
If ETn exists for every n and limn→∞ E(Tn − ϑ) = 0 for any P ∈ P, then Tn is said to be
approximately unbiased.

There are many reasonable point estimators whose expectations are not well defined.
It is desirable to define a concept of asymptotic bias for point estimators whose expectations
are not well defined.

Definition 2.11. (i) Let ξ, ξ1, ξ2, ... be random variables and {an} be a sequence of positive
numbers satisfying an → ∞ or an → a > 0. If anξn →d ξ and E|ξ| < ∞, then Eξ/an is
called an asymptotic expectation of ξn.
(ii) Let Tn be a point estimator of ϑ for every n. An asymptotic expectation of Tn − ϑ, if
it exists, is called an asymptotic bias of Tn and denoted by b̃Tn

(P ) (or b̃Tn
(θ) if P is in a

parametric family). If limn→∞ b̃Tn
(P ) = 0 for any P ∈ P, then Tn is said to be asymptotically

unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept relating to sequences
{ξn} and {Eξ/an} (or {Tn} and {b̃Tn

(P )}).
The exact bias bTn

(P ) is not necessarily the same as b̃Tn
(P ) when both of them exist.

Proposition 2.3 shows that the asymptotic expectation defined in Definition 2.11 is essentially
unique.

Proposition 2.3. Let {ξn} be a sequence of random variables. Suppose that both Eξ/an

and Eη/bn are asymptotic expectations of ξn defined according to Definition 2.11(i). Then,
one of the following three must hold: (a) Eξ = Eη = 0; (b) Eξ 6= 0, Eη = 0, and bn/an → 0;
or Eξ = 0, Eη 6= 0, and an/bn → 0; (c) Eξ 6= 0, Eη 6= 0, and (Eξ/an)/(Eη/bn) → 1.

If Tn is a consistent estimator of ϑ, then Tn = ϑ + op(1) and, by Definition 2.11(ii), Tn is
asymptotically unbiased, although Tn may not be approximately unbiased.
In Example 2.34, X(n) has the asymptotic bias b̃X(n)

(P ) = hn(θ)EY , which is of order

n−(m+1)−1

.

When an(Tn − ϑ) →d Y with EY = 0 (e.g., Tn = X̄2 and ϑ = µ2 in Example 2.33), a
more precise order of the asymptotic bias of Tn may be obtained (for comparing different
estimators in terms of their asymptotic biases).
Suppose that there is a sequence of random variables {ηn} such that

anηn →d Y and a2
n(Tn − ϑ − ηn) →d W, (1)

where Y and W are random variables with finite means, EY = 0 and EW 6= 0.
Then we may define a−2

n to be the order of b̃Tn
(P ) or define EW/a2

n to be the a−2
n order

1



asymptotic bias of Tn.
However, ηn in (1) may not be unique.
Some regularity conditions have to be imposed so that the order of asymptotic bias of Tn

can be uniquely defined.
We consider the case where X1, ..., Xn are i.i.d. random k-vectors with finite Σ = Var(X1).
Let X̄ = n−1 ∑n

i=1 Xi, and Tn = g(X̄), where g is a function on Rk that is second-order
differentiable at µ = EX1 ∈ Rk.
Consider Tn as an estimator of ϑ = g(µ).
By Taylor’s expansion,

Tn − ϑ = [∇g(µ)]τ(X̄ − µ) +
1

2
(X̄ − µ)τ∇2g(µ)(X̄ − µ) + o

(

1

n

)

,

where ∇g is the k-vector of partial derivatives of g and ∇2g is the k × k matrix of second-
order partial derivatives of g.
By the CLT and Theorem 1.10(iii),

n

2
(X̄ − µ)τ∇2g(µ)(X̄ − µ) →d

Zτ
Σ∇

2g(µ)ZΣ

2
,

where ZΣ = Nk(0, Σ). Thus,

E[Zτ
Σ∇

2g(µ)ZΣ]

2n
=

tr (∇2g(µ)Σ)

2n
(2)

is the n−1 order asymptotic bias of Tn = g(X̄), where tr(A) denotes the trace of the matrix
A.

Example 2.35. Let X1, ..., Xn be i.i.d. binary random variables with P (Xi = 1) = p, where
p ∈ (0, 1) is unknown.
Consider first the estimation of ϑ = p(1 − p).
Since Var(X̄) = p(1 − p)/n, the n−1 order asymptotic bias of Tn = X̄(1 − X̄) according to
(2) with g(x) = x(1 − x) is −p(1 − p)/n.
On the other hand, a direct computation shows E[X̄(1− X̄)] = EX̄ −EX̄2 = p− (EX̄)2 −
Var(X̄) = p(1 − p) − p(1 − p)/n.
Hence, the exact bias of Tn is the same as the n−1 order asymptotic bias.

Consider next the estimation of ϑ = p−1.
In this case, there is no unbiased estimator of p−1 (Exercise 84 in §2.6).
Let Tn = X̄−1.
Then, an n−1 order asymptotic bias of Tn according to (2) with g(x) = x−1 is (1− p)/(p2n).
On the other hand, ETn = ∞ for every n.

Asymptotic variance and mse

Like the bias, the mse of an estimator Tn of ϑ, mseTn
(P ) = E(Tn − ϑ)2, is not well defined

if the second moment of Tn does not exist.
We now define a version of asymptotic mean squared error (amse) and a measure of assessing
different point estimators of a common parameter.
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Definition 2.12. Let Tn be an estimator of ϑ for every n and {an} be a sequence of
positive numbers satisfying an → ∞ or an → a > 0. Assume that an(Tn − ϑ) →d Y with
0 < EY 2 < ∞.
(i) The asymptotic mean squared error of Tn, denoted by amseTn

(P) or amseTn
(θ) if P is in a

parametric family indexed by θ, is defined to be the asymptotic expectation of (Tn−ϑ)2, i.e.,
amseTn

(P) = EY2/a2
n. The asymptotic variance of Tn is defined to be σ2

Tn
(P ) = Var(Y)/a2

n.
(ii) Let T ′

n be another estimator of ϑ. The asymptotic relative efficiency of T ′
n w.t.r. Tn is

defined to be eT ′

n,Tn
(P ) = amseTn

(P)/amseT′

n
(P).

(iii) Tn is said to be asymptotically more efficient than T ′
n if and only if lim supn eT ′

n,Tn
(P ) ≤ 1

for any P and < 1 for some P .

The amse and asymptotic variance are the same if and only if EY = 0.
By Proposition 2.3, the amse or the asymptotic variance of Tn is essentially unique and,
therefore, the concept of asymptotic relative efficiency in Definition 2.12(ii)-(iii) is well de-
fined.

In Example 2.33, amseX̄2(P) = σ2
X̄2(P) = 4µ2σ2/n.

In Example 2.34, σ2
X(n)

(P ) = [hn(θ)]2Var(Y) and amseX(n)
(P) = [hn(θ)]

2EY2.

When both mseTn
(P ) and mseT ′

n
(P ) exist, one may compare Tn and T ′

n by evaluating the
relative efficiency mseTn

(P )/mseT ′

n
(P ).

However, this comparison may be different from the one using the asymptotic relative ef-
ficiency in Definition 2.12(ii), since the mse and amse of an estimator may be different
(Exercise 115 in §2.6).
The following result shows that when the exact mse of Tn exists, it is no smaller than the
amse of Tn.
It also provides a condition under which the exact mse and the amse are the same.

Proposition 2.4. Let Tn be an estimator of ϑ for every n and {an} be a sequence of
positive numbers satisfying an → ∞ or an → a > 0. Suppose that an(Tn − ϑ) →d Y with
0 < EY 2 < ∞. Then
(i) EY 2 ≤ lim infn E[a2

n(Tn − ϑ)2] and
(ii) EY 2 = limn→∞ E[a2

n(Tn − ϑ)2] if and only if {a2
n(Tn − ϑ)2} is uniformly integrable.

Proof. (i) By Theorem 1.10(iii),

min{a2
n(Tn − ϑ)2, t} →d min{Y 2, t}

for any t > 0. Since min{a2
n(Tn − ϑ)2, t} is bounded by t,

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t}) = E(min{Y 2, t})

(Theorem 1.8(viii)). Then

EY 2 = lim
t→∞

E(min{Y 2, t})

= lim
t→∞

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t})

= lim inf
t,n

E(min{a2
n(Tn − ϑ)2, t})

≤ lim inf
n

E[a2
n(Tn − ϑ)2],
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where the third equality follows from the fact that E(min{a2
n(Tn − ϑ)2, t}) is nondecreasing

in t for any fixed n.
(ii) The result follows from Theorem 1.8(viii).

Example 2.36. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an unknown
θ > 0.
Consider the estimation of ϑ = P (Xi = 0) = e−θ.
Let T1n = Fn(0), where Fn is the empirical c.d.f.
Then T1n is unbiased and has mseT1n

(θ) = e−θ(1 − e−θ)/n.
Also,

√
n(T1n − ϑ) →d N(0, e−θ(1 − e−θ)) by the CLT.

Thus, in this case amseT1n
(θ) = mseT1n

(θ).
Consider T2n = e−X̄ .
Note that ET2n = enθ(e−1/n−1).
Hence nbT2n

(θ) → θe−θ/2.
Using Theorem 1.12 and the CLT, we can show that

√
n(T2n − ϑ) →d N(0, e−2θθ).

By Definition 2.12(i), amseT2n
(θ) = e−2θθ/n.

Thus, the asymptotic relative efficiency of T1n w.r.t. T2n is

eT1n,T2n
(θ) = θ/(eθ − 1),

which is always less than 1.
This shows that T2n is asymptotically more efficient than T1n.

The result for T2n in Example 2.36 is a special case (with Un = X̄) of the following general
result.

Theorem 2.6. Let g be a function on Rk that is differentiable at θ ∈ Rk and let Un be a
k-vector of statistics satisfying an(Un−θ) →d Y for a random k-vector Y with 0 < E‖Y ‖2 <
∞ and a sequence of positive numbers {an} satisfying an → ∞. Let Tn = g(Un) be an
estimator of ϑ = g(θ). Then, the amse and asymptotic variance of Tn are, respectively,
E{[∇g(θ)]τY }2/a2

n and [∇g(θ)]τVar(Y)∇g(θ)/a2
n.
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Lecture 28: Asymptotic inference

Statistical inference based on asymptotic criteria and approximations is called asymptotic

statistical inference or simply asymptotic inference.
We have previously considered asymptotic estimation.
We now focus on asymptotic hypothesis tests and confidence sets.

Hypothesis tests

Definition 2.13. Let X = (X1, ..., Xn) be a sample from P ∈ P and Tn(X) be a test for
H0 : P ∈ P0 versus H1 : P ∈ P1.
(i) If lim supn αTn

(P ) ≤ α for any P ∈ P0, then α is an asymptotic significance level of Tn.
(ii) If limn→∞ supP∈P0

αTn
(P ) exists, then it is called the limiting size of Tn.

(iii) Tn is called consistent if and only if the type II error probability converges to 0, i.e.,
limn→∞[1 − αTn

(P )] = 0, for any P ∈ P1.
(iv) Tn is called Chernoff-consistent if and only if Tn is consistent and the type I error
probability converges to 0, i.e., limn→∞ αTn

(P ) = 0, for any P ∈ P0. Tn is called strongly

Chernoff-consistent if and only if Tn is consistent and the limiting size of Tn is 0.

Obviously if Tn has size (or significance level) α for all n, then its limiting size (or asymptotic
significance level) is α.
If the limiting size of Tn is α ∈ (0, 1), then for any ǫ > 0, Tn has size α + ǫ for all n ≥ n0,
where n0 is independent of P .
Hence Tn has level of significance α + ǫ for any n ≥ n0.
However, if P0 is not a parametric family, it is likely that the limiting size of Tn is 1 (see,
e.g., Example 2.37).
This is the reason why we consider the weaker requirement in Definition 2.13(i).
If Tn has asymptotic significance level α, then for any ǫ > 0, αTn

(P ) < α+ǫ for all n ≥ n0(P )
but n0(P ) depends on P ∈ P0; and there is no guarantee that Tn has significance level α + ǫ
for any n.

The consistency in Definition 2.13(iii) only requires that the type II error probability converge
to 0.
We may define uniform consistency to be limn→∞ supP∈P1

[1 − αTn
(P )] = 0, but it is not

satisfied in most problems.
If α ∈ (0, 1) is a pre-assigned level of significance for the problem, then a consistent test Tn

having asymptotic significance level α is called asymptotically correct, and a consistent test
having limiting size α is called strongly asymptotically correct.

The Chernoff-consistency (or strong Chernoff-consistency) in Definition 2.13(iv) requires that
both types of error probabilities converge to 0.
Mathematically, Chernoff-consistency (or strong Chernoff-consistency) is better than asymp-
totic correctness (or strongly asymptotic correctness).
After all, both types of error probabilities should decrease to 0 if sampling can be continued
indefinitely.
However, if α is chosen to be small enough so that error probabilities smaller than α can

1



be practically treated as 0, then the asymptotic correctness (or strongly asymptotic correct-
ness) is enough, and is probably preferred, since requiring an unnecessarily small type I error
probability usually results in an unnecessary increase in the type II error probability.

Example 2.37. Consider the testing problem H0 : µ ≤ µ0 versus H1 : µ > µ0 based on
i.i.d. X1, ..., Xn with EX1 = µ ∈ R. If each Xi has the N(µ, σ2) distribution with a known
σ2, then the test Tcα

I(cα,∞)(X̄) with cα = σz1−α/
√

n + µ0 and α ∈ (0, 1) has size α (and,
therefore, limiting size α).
For any µ > µ0,

1 − αTcα
(µ) = Φ

(

z1−α +

√
n(µ0 − µ)

σ

)

→ 0 (1)

as n → ∞.
This shows that Tcα

is consistent and, hence, is strongly asymptotically correct.
The convergence in (1) is not uniform in µ > µ0, but is uniform in µ > µ1 for any fixed
µ1 > µ0.

Since the size of Tcα
is α for all n, Tcα

is not Chernoff-consistent.
A strongly Chernoff-consistent test can be obtained as follows.
Let

αn = 1 − Φ(
√

nan), (2)

where an’s are positive numbers satisfying an → 0 and
√

nan → ∞.
Let Tn be Tcα

with α = αn for each n.
Then, Tn has size αn.
Since αn → 0, The limiting size of Tn is 0.
On the other hand, (1) still holds with α replaced by αn.
This follows from the fact that

z1−αn
+

√
n(µ0 − µ)

σ
=

√
n
(

an +
µ0 − µ

σ

)

→ −∞

for any µ > µ0.
Hence Tn is strongly Chernoff-consistent.
However, if αn < α, then, from the left-hand side of (1), 1 − αTcα

(µ) < 1 − αTn
(µ) for any

µ > µ0.

We now consider the case where the population P is not in a parametric family.
We still assume that σ2 = Var(Xi) is known.
Using the CLT, we can show that for µ > µ0,

lim
n→∞

[1 − αTcα
(µ)] = lim

n→∞
Φ

(

z1−α +

√
n(µ0 − µ)

σ

)

= 0,

i.e., Tcα
is still consistent.

For µ ≤ µ0,

lim
n→∞

αTcα
(µ) = 1 − lim

n→∞
Φ

(

z1−α +

√
n(µ0 − µ)

σ

)

,
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which equals α if µ = µ0 and 0 if µ < µ0.
Thus, the asymptotic significance level of Tcα

is α.
Combining these two results, we know that Tcα

is asymptotically correct.
However, if P contains all possible populations on R with finite second moments, then one
can show that the limiting size of Tcα

is 1 (exercise).
For αn defined by (2), we can show that Tn = Tcα

with α = αn is Chernoff-consistent
(exercise).
But Tn is not strongly Chernoff-consistent if P contains all possible populations on R with
finite second moments.

Example. Let (X1, ..., Xn) be a random sample from the exponential distribution E(0, θ),
where θ ∈ (0,∞).
Consider the hypotheses H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 > 0 is a fixed constant.
Let Tc = I(c,∞)(X̄), where X̄ is the sample mean.
X̄/θ has the gamma distribution with shape parameter n and scale parameter θ/n.
Let Gn,θ denote the cumulative distribution function of this distribution and cn,α be the
constant satisfying Gn,θ0

(cn,α) = 1 − α.
Then,

sup
θ≤θ0

P (Tcn,α
= 1) = sup

θ≤θ0

[1 − Gn,θ(cn,α)] = 1 − Gn,θ0
(cn,α) = α,

i.e., the size of Tcn,α
is α.

Since the power of Tcn,α
is P (Tcn,α

= 1) = P (X̄ > cn,α) for θ > θ0 and, by the law of large
numbers, X̄ →p θ, the consistency of Tcn,α

follows if we can show that limn→∞ cn,α = θ0.
By the central limit theorem,

√
n(X̄ − θ) →d N(0, θ2).

Hence,
√

n( X̄
θ
− 1) →d N(0, 1).

By Pólya’s theorem (Proposition 1.16),

lim
n→∞

sup
t

∣

∣

∣

∣

P
(√

n
(

X̄
θ
− 1

)

≤ t
)

− Φ(t)

∣

∣

∣

∣

= 0,

where Φ is the cumulative distribution function of the standard normal distribution.
When θ = θ0,

α = P (X̄ ≥ cn,α) = P
(√

n
(

X̄
θ0
− 1

)

≥
√

n
(

cn,α

θ0
− 1

)

)

.

Hence

lim
n→∞

Φ
(√

n
(

cn,α

θ0
− 1

)

)

= 1 − α,

which implies limn→∞

√
n( cn,α

θ0
− 1) = Φ−1(1 − α) and, thus, limn→∞ cn,α = θ0.

Let {an} be a sequence of positive numbers such that limn→∞ an = 0 and limn→∞

√
nan = ∞.

Let αn = 1 − Φ(
√

nan) and bn = cn,αn
.

From the previous derivation, the size of Tbn
is αn, which converges to 0 as n → ∞ since

limn→∞

√
nan = ∞.

Using the previous argument, we can show that

lim
n→∞

∣

∣

∣

∣

1 − αn − Φ
(√

n
(

cn,αn

θ0
− 1

)

)∣

∣

∣

∣

= 0,
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which implies that

lim
n→∞

√
n

Φ−1(1 − αn)

(

cn,αn

θ0
− 1

)

= 1.

Since 1 − αn = Φ(
√

nan), this implies that limn→∞ cn,αn
= θ0.

Since bn = cn,αn
, the test Tbn

is Chernoff-consistent.

Confidence sets

Definition 2.14. Let X = (X1, ..., Xn) be a sample from P ∈ P, ϑ be a k-vector of
parameters related to P , and C(X) be a confidence set for ϑ.
(i) If lim infn P (ϑ ∈ C(X)) ≥ 1 − α for any P ∈ P, then 1 − α is an asymptotic significance

level of C(X).
(ii) If limn→∞ infP∈P P (ϑ ∈ C(X)) exists, then it is called the limiting confidence coefficient

of C(X).

Note that the asymptotic significance level and limiting confidence coefficient of a confidence
set are very similar to the asymptotic significance level and limiting size of a test, respectively.
Some conclusions are also similar.
For example, in a parametric problem one can often find a confidence set having limiting
confidence coefficient 1−α ∈ (0, 1), which implies that for any ǫ > 0, the confidence coefficient
of C(X) is 1−α−ǫ for all n ≥ n0, where n0 is independent of P . In a nonparametric problem
the limiting confidence coefficient of C(X) might be 0, whereas C(X) may have asymptotic
significance level 1−α ∈ (0, 1), but for any fixed n, the confidence coefficient of C(X) might
be 0.
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Lecture 29: UMVUE and the method of using the distribution

of a sufficient and complete statistic

Unbiased or asymptotically unbiased estimation plays an important role in point estimation
theory.
Unbiased estimators can be used as “building blocks” for the construction of better estima-
tors.
Asymptotic unbiasedness is necessary for consistency.
How to derive unbiased estimators
How to find the best unbiased estimators

UMVUE

X: a sample from an unknown population P ∈ P
ϑ: a real-valued parameter related to P .
An estimator T (X) of ϑ is unbiased if and only if E[T (X)] = ϑ for any P ∈ P.
If there exists an unbiased estimator of ϑ, then ϑ is called an estimable parameter.

Definition 3.1. An unbiased estimator T (X) of ϑ is called the uniformly minimum variance

unbiased estimator (UMVUE) if and only if Var(T(X)) ≤ Var(U(X)) for any P ∈ P and any
other unbiased estimator U(X) of ϑ.

Since the mse of any unbiased estimator is its variance, a UMVUE is ℑ-optimal in mse with
ℑ being the class of all unbiased estimators.
One can similarly define the uniformly minimum risk unbiased estimator in statistical deci-
sion theory when we use an arbitrary loss instead of the squared error loss that corresponds
to the mse.

Sufficient and complete statistics

The derivation of a UMVUE is relatively simple if there exists a sufficient and complete
statistic for P ∈ P.

Theorem 3.1 (Lehmann-Scheffé theorem). Suppose that there exists a sufficient and com-
plete statistic T (X) for P ∈ P. If ϑ is estimable, then there is a unique unbiased estimator
of ϑ that is of the form h(T ) with a Borel function h. (Two estimators that are equal a.s. P
are treated as one estimator.) Furthermore, h(T ) is the unique UMVUE of ϑ.

This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell theorem).
One can easily extend this theorem to the case of the uniformly minimum risk unbiased
estimator under any loss function L(P, a) that is strictly convex in a.
The uniqueness of the UMVUE follows from the completeness of T (X).

Two typical ways to derive a UMVUE when a sufficient and complete statistic T is available.

The 1st method: Directly solving for h
Need the distribution of T
Try some function h to see if E[h(T )] is related to ϑ
If E[h(T )] = ϑ for all P , what should h be?

1



Example 3.1. Let X1, ..., Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0.
Suppose that ϑ = θ.
Since the sufficient and complete statistic X(n) has the Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x),

EX(n) = nθ−n

∫ θ

0
xndx =

n

n + 1
θ.

Hence an unbiased estimator of θ is (n + 1)X(n)/n, which is the UMVUE.
Suppose that ϑ = g(θ), where g is a differentiable function on (0,∞).
An unbiased estimator h(X(n)) of ϑ must satisfy

θng(θ) = n
∫ θ

0
h(x)xn−1dx for all θ > 0.

Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral (Royden (1968, §5.3)) lead to

nθn−1g(θ) + θng′(θ) = nh(θ)θn−1.

Hence, the UMVUE of ϑ is h(X(n)) = g(X(n)) + n−1X(n)g
′(X(n)).

In particular, if ϑ = θ, then the UMVUE of θ is (1 + n−1)X(n).

Example 3.2. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an unknown
θ > 0.
Then T (X) =

∑n
i=1 Xi is sufficient and complete for θ > 0 and has the Poisson distribution

P (nθ).
Since E(T ) = nθ, the UMVUE of θ is T/n.
Suppose that ϑ = g(θ), where g is a smooth function such that g(x) =

∑

∞

j=0 ajx
j , x > 0.

An unbiased estimator h(T ) of ϑ must satisfy

∞
∑

t=0

h(t)nt

t!
θt = enθg(θ)

=
∞
∑

k=0

nk

k!
θk

∞
∑

j=0

ajθ
j

=
∞
∑

t=0





∑

j,k:j+k=t

nkaj

k!



 θt

for any θ > 0.
Thus, a comparison of coefficients in front of θt leads to

h(t) =
t!

nt

∑

j,k:j+k=t

nkaj

k!
,

i.e., h(T ) is the UMVUE of ϑ.
In particular, if ϑ = θr for some fixed integer r ≥ 1, then ar = 1 and ak = 0 if k 6= r and

h(t) =











0 t < r

t!
nr(t−r)!

t ≥ r.
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Example 3.5. Let X1, ..., Xn be i.i.d. from a power series distribution (see Exercise 13 in
§2.6), i.e.,

P (Xi = x) = γ(x)θx/c(θ), x = 0, 1, 2, ...,

with a known function γ(x) ≥ 0 and an unknown parameter θ > 0.
It turns out that the joint distribution of X = (X1, ..., Xn) is in an exponential family with
a sufficient and complete statistic T (X) =

∑n
i=1 Xi.

Furthermore, the distribution of T is also in a power series family, i.e.,

P (T = t) = γn(t)θt/[c(θ)]n, t = 0, 1, 2, ...,

where γn(t) is the coefficient of θt in the power series expansion of [c(θ)]n (Exercise 13 in
§2.6).
This result can help us to find the UMVUE of ϑ = g(θ).
For example, by comparing both sides of

∞
∑

t=0

h(t)γn(t)θt = [c(θ)]n−pθr,

we conclude that the UMVUE of θr/[c(θ)]p is

h(T ) =











0 T < r

γn−p(T−r)
γn(T )

T ≥ r,

where r and p are nonnegative integers.
In particular, the case of p = 1 produces the UMVUE γ(r)h(T ) of the probability P (X1 =
r) = γ(r)θr/c(θ) for any nonnegative integer r.

Example 3.6. Let X1, ..., Xn be i.i.d. from an unknown population P in a nonparametric
family P.
We have discussed in §2.2 that in many cases the vector of order statistics, T = (X(1), ..., X(n)),
is sufficient and complete for P ∈ P.
(For example, P is the collection of all Lebesgue p.d.f.’s.) Note that an estimator ϕ(X1, ..., Xn)
is a function of T if and only if the function ϕ is symmetric in its n arguments.
Hence, if T is sufficient and complete, then a symmetric unbiased estimator of any estimable
ϑ is the UMVUE.
For example,
X̄ is the UMVUE of ϑ = EX1;
S2 is the UMVUE of Var(X1);
n−1 ∑n

i=1 X2
i − S2 is the UMVUE of (EX1)

2;
Fn(t) is the UMVUE of P (X1 ≤ t) for any fixed t.

These conclusions are not true if T is not sufficient and complete for P ∈ P.
For example, if n > 1 and P contains all symmetric distributions having Lebesgue p.d.f.’s
and finite means, then there is no UMVUE for ϑ = EX1.
Suppose that T is a UMVUE of µ.

3



Let P1 = {N(µ, 1) : µ ∈ R}.
Since the sample mean X̄ is UMVUE when P1 is considered, and the Lebesgue measure is
dominated by any P ∈ P1, we conclude that T = X̄ a.e. Lebesgue measure.
Let P2 be the family of uniform distributions on (θ1 − θ2, θ1 + θ2), θ1 ∈ R, θ2 > 0.
Then (X(1) + X(n))/2 is the UMVUE when P2 is considered, where X(j) is the jth order
statistic.
Then X̄ = (X(1) + X(n))/2 a.s. P for any P ∈ P2, which is impossible if n > 1.
Hence, there is no UMVUE of µ.

What if n = 1?
Consider the sub-family P1 = {N(µ, 1) : µ ∈ R}.
Then X1 is complete for P ∈ P1.
Hence, E[h(X1)] = 0 for any P ∈ P implies that E[h(X1)] = 0 for any P ∈ P1 and, thus,
h = 0 a.e. Lebesgue measure.
This shows that X1 is complete when the family P is considered.
Since EX1 = µ, X1 is the UMVUE of µ.

4



Lecture 30: UMVUE: the method of conditioning

The 2nd method of deriving a UMVUE is conditioning on a sufficient and complete statistic
T (X),
i.e., if U(X) is any unbiased estimator of ϑ, then E[U(X)|T ] is the UMVUE of ϑ.
We do not need the distribution of T .
But we need to work out the conditional expectation E[U(X)|T ].
From the uniqueness of the UMVUE, it does not matter which U(X) is used.
Thus, we should choose U(X) so as to make the calculation of E[U(X)|T ] as easy as possible.

Example 3.3. Let X1, ..., Xn be i.i.d. from the exponential distribution E(0, θ).
Fθ(x) = (1 − e−x/θ)I(0,∞)(x).
Consider the estimation of ϑ = 1 − Fθ(t).
X̄ is sufficient and complete for θ > 0.
I(t,∞)(X1) is unbiased for ϑ,

E[I(t,∞)(X1)] = P (X1 > t) = ϑ.

Hence
T (X) = E[I(t,∞)(X1)|X̄] = P (X1 > t|X̄)

is the UMVUE of ϑ. If the conditional distribution of X1 given X̄ is available, then we can
calculate P (X1 > t|X̄) directly.
By Basu’s theorem (Theorem 2.4), X1/X̄ and X̄ are independent.
By Proposition 1.10(vii),

P (X1 > t|X̄ = x̄) = P (X1/X̄ > t/X̄|X̄ = x̄) = P (X1/X̄ > t/x̄).

To compute this unconditional probability, we need the distribution of

X1

/ n
∑

i=1

Xi = X1

/

(

X1 +
n
∑

i=2

Xi

)

.

Using the transformation technique discussed in §1.3.1 and the fact that
∑n

i=2 Xi is inde-
pendent of X1 and has a gamma distribution, we obtain that X1/

∑n
i=1 Xi has the Lebesgue

p.d.f. (n − 1)(1 − x)n−2I(0,1)(x).
Hence

P (X1 > t|X̄ = x̄) = (n − 1)
∫ 1

t/(nx̄)
(1 − x)n−2dx =

(

1 −
t

nx̄

)n−1

and the UMVUE of ϑ is

T (X) =
(

1 −
t

nX̄

)n−1

.

1



Example 3.4. Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown µ ∈ R and σ2 > 0.
From Example 2.18, T = (X̄, S2) is sufficient and complete for θ = (µ, σ2);
X̄ and (n − 1)S2/σ2 are independent;
X̄ has the N(µ, σ2/n) distribution;
S2 has the chi-square distribution χ2

n−1.
Using the method of solving for h directly, we find that
the UMVUE for µ is X̄;
the UMVUE of µ2 is X̄2 − S2/n;
the UMVUE for σr with r > 1 − n is kn−1,rS

r, where

kn,r =
nr/2Γ(n/2)

2r/2Γ
(

n+r
2

)

and the UMVUE of µ/σ is kn−1,−1X̄/S, if n > 2.

Suppose that ϑ satisfies P (X1 ≤ ϑ) = p with a fixed p ∈ (0, 1).
Let Φ be the c.d.f. of the standard normal distribution.
Then ϑ = µ + σΦ−1(p) and its UMVUE is X̄ + kn−1,1SΦ−1(p).

Let c be a fixed constant and ϑ = P (X1 ≤ c) = Φ
(

c−µ

σ

)

.
We can find the UMVUE of ϑ using the method of conditioning.
Since I(−∞,c)(X1) is an unbiased estimator of ϑ, the UMVUE of ϑ is

E[I(−∞,c)(X1)|T ] = P (X1 ≤ c|T ).

By Basu’s theorem, the ancillary statistic Z(X) = (X1−X̄)/S is independent of T = (X̄, S2).
Then, by Proposition 1.10(vii),

P
(

X1 ≤ c|T = (x̄, s2)
)

=P

(

Z ≤
c − X̄

S

∣

∣

∣

∣

T = (x̄, s2)

)

=P
(

Z ≤
c − x̄

s

)

.

It can be shown that Z has the Lebesgue p.d.f.

f(z) =

√
nΓ

(

n−1
2

)

√
π(n − 1)Γ

(

n−2
2

)

[

1 −
nz2

(n − 1)2

](n/2)−2

I(0,(n−1)/
√

n)(|z|)

Hence the UMVUE of ϑ is

P (X1 ≤ c|T ) =
∫ (c−X̄)/S

−(n−1)/
√

n
f(z)dz

Suppose that we would like to estimate ϑ = 1
σ
Φ′
(

c−µ

σ

)

, the Lebesgue p.d.f. of X1 evaluated

at a fixed c, where Φ′ is the first-order derivative of Φ.
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By the previous result, the conditional p.d.f. of X1 given X̄ = x̄ and S2 = s2 is s−1f
(

x−x̄
s

)

.

Let fT be the joint p.d.f. of T = (X̄, S2).
Then

ϑ =
∫ ∫ 1

s
f
(

c − x̄

s

)

fT (t)dt = E

[

1

S
f

(

c − X̄

S

)]

.

Hence the UMVUE of ϑ is
1

S
f

(

c − X̄

S

)

.

Example. Let X1, ..., Xn be i.i.d. with Lebesgue p.d.f. fθ(x) = θx−2I(θ,∞)(x), where θ > 0
is unknown.
Suppose that ϑ = P (X1 > t) for a constant t > 0.
The smallest order statistic X(1) is sufficient and complete for θ.
Hence, the UMVUE of ϑ is

P (X1 > t|X(1)) = P (X1 > t|X(1) = x(1))

= P

(

X1

X(1)

>
t

X(1)

∣

∣

∣

∣

X(1) = x(1)

)

= P

(

X1

X(1)

>
t

x(1)

∣

∣

∣

∣

X(1) = x(1)

)

= P

(

X1

X(1)

> s

)

(Basu’s theorem), where s = t/x(1).
If s ≤ 1, this probability is 1.
Consider s > 1 and assume θ = 1 in the calculation:

P

(

X1

X(1)
> s

)

=
n
∑

i=1

P

(

X1

X(1)
> s, X(1) = Xi

)

=
n
∑

i=2

P

(

X1

X(1)

> s, X(1) = Xi

)

= (n − 1)P

(

X1

X(1)

> s, X(1) = Xn

)

= (n − 1)P (X1 > sXn, X2 > Xn, ..., Xn−1 > Xn)

= (n − 1)
∫

x1>sxn,x2>xn,...,xn−1>xn

n
∏

i=1

1

x2
i

dx1 · · · dxn

= (n − 1)
∫

∞

1

[

∫

∞

sxn

n−1
∏

i=2

(

∫

∞

xn

1

x2
i

dxi

)

1

x2
1

dx1

]

dxn

= (n − 1)
∫

∞

1

1

sxn−1
n

dxn

=
(n − 1)x(1)

nt

3



This shows that the UMVUE of P (X1 > t) is

h(X(1)) =











(n−1)X(1)

nt
X(1) < t

1 X(1) ≥ t

Another way of showing h(X(1)) is the UMVUE.
Note that the Lebesgue p.d.f. of X(1) is

nθn

xn+1
I(θ,∞)(x).

If θ < t,

E[h(X(1))] =
∫

∞

θ
h(x)

nθn

xn+1
dx

=
∫ t

θ

(n − 1)x

nt

nθn

xn+1
dx +

∫

∞

t

nθn

xn+1
dx

=
θn

tθn−1
−

θn

tn
+

θn

tn

=
θ

t
= P (X1 > t).

If θ ≥ t, then P (X1 > t) = 1 and h(X(1)) = 1 a.s. Pθ since P (t > X(1)) = 0.
Hence, for any θ > 0,

E[h(X(1)) = P (X1 > t).
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Lecture 31: UMVUE: a necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very difficult to derive
a UMVUE.
In some cases, the following result can be applied, if we have enough knowledge about
unbiased estimators of 0.

Theorem 3.2. Let U be the set of all unbiased estimators of 0 with finite variances and T
be an unbiased estimator of ϑ with E(T 2) < ∞.
(i) A necessary and sufficient condition for T (X) to be a UMVUE of ϑ is that E[T (X)U(X)] =
0 for any U ∈ U and any P ∈ P.
(ii) Suppose that T = h(T̃ ), where T̃ is a sufficient statistic for P ∈ P and h is a Borel
function.
Let UT̃ be the subset of U consisting of Borel functions of T̃ .
Then a necessary and sufficient condition for T to be a UMVUE of ϑ is that E[T (X)U(X)] =
0 for any U ∈ UT̃ and any P ∈ P.
Proof. (i) Suppose that T is a UMVUE of ϑ.
Then Tc = T + cU , where U ∈ U and c is a fixed constant, is also unbiased for ϑ and, thus,

Var(Tc) ≥ Var(T ) c ∈ R, P ∈ P,

which is the same as

c2Var(U) + 2cCov(T, U) ≥ 0 c ∈ R, P ∈ P.

This is impossible unless Cov(T, U) = E(TU) = 0 for any P ∈ P.

Suppose now E(TU) = 0 for any U ∈ U and P ∈ P.
Let T0 be another unbiased estimator of ϑ with Var(T0) < ∞.
Then T − T0 ∈ U and, hence,

E[T (T − T0)] = 0 P ∈ P,

which with the fact that ET = ET0 implies that

Var(T ) = Cov(T, T0) P ∈ P.

Note that [Cov(T, T0)]
2 ≤ Var(T )Var(T0).

Hence Var(T ) ≤ Var(T0) for any P ∈ P.
(ii) It suffices to show that E(TU) = 0 for any U ∈ UT̃ and P ∈ P implies that E(TU) = 0
for any U ∈ U and P ∈ P.
Let U ∈ U . Then E(U |T̃ ) ∈ UT̃ and the result follows from the fact that T = h(T̃ ) and

E(TU) = E[E(TU |T̃ )] = E[E(h(T̃ )U |T̃ )] = E[h(T̃ )E(U |T̃ )].

1



Theorem 3.2 can be used
to find a UMVUE,
to check whether a particular estimator is a UMVUE, and
to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on
functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.

As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1. (i) Let Tj be a UMVUE of ϑj , j = 1, ..., k, where k is a fixed positive integer.
Then

∑k
j=1 cjTj is a UMVUE of ϑ =

∑k
j=1 cjϑj for any constants c1, ..., ck.

(ii) Let T1 and T2 be two UMVUE’s of ϑ. Then T1 = T2 a.s. P for any P ∈ P.

Example 3.7. Let X1, ..., Xn be i.i.d. from the uniform distribution on the interval (0, θ).
In Example 3.1, (1 + n−1)X(n) is shown to be the UMVUE for θ when the parameter space
is Θ = (0,∞).
Suppose now that Θ = [1,∞).
Then X(n) is not complete, although it is still sufficient for θ.
Thus, Theorem 3.1 does not apply to X(n).
We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ.
Let U(X(n)) be an unbiased estimator of 0.
Since X(n) has the Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x),

0 =
∫ 1

0
U(x)xn−1dx +

∫ θ

1
U(x)xn−1dx

for all θ ≥ 1.
This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞) and

∫ 1

0
U(x)xn−1dx = 0.

Consider T = h(X(n)).
To have E(TU) = 0, we must have

∫ 1

0
h(x)U(x)xn−1dx = 0.

Thus, we may consider the following function:

h(x) =











c 0 ≤ x ≤ 1

bx x > 1,

where c and b are some constants.
From the previous discussion,

E[h(X(n))U(X(n))] = 0, θ ≥ 1.
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Since E[h(X(n))] = θ, we obtain that

θ = cP (X(n) ≤ 1) + bE[X(n)I(1,∞)(X(n))]

= cθ−n + [bn/(n + 1)](θ − θ−n).

Thus, c = 1 and b = (n + 1)/n. The UMVUE of θ is then

h(X(n)) =











1 0 ≤ X(n) ≤ 1

(1 + n−1)X(n) X(n) > 1.

This estimator is better than (1 + n−1)X(n), which is the UMVUE when Θ = (0,∞) and
does not make use of the information about θ ≥ 1.

In fact, h(X(n)) is complete and sufficient for θ.
It suffices to show that

g(X(n)) =











1 0 ≤ X(n) ≤ 1

X(n) X(n) > 1.

is complete and sufficient for θ.
The sufficiency follows from the fact that the joint p.d.f. of X1, ..., Xn is

1

θn
I(0,θ)(X(n)) =

1

θn
I(0,θ)(g(X(n))).

If E[f(g(X(n))] = 0 for all θ > 1, then

0 =
∫ θ

0
f(g(x))xn−1dx =

∫ 1

0
f(1)xn−1dx +

∫ θ

1
f(x)xn−1dx

for all θ > 1.
Letting θ → 1 we obtain that f(1) = 0. Then

0 =
∫ θ

1
f(x)xn−1dx

for all θ > 1, which implies f(x) = 0 a.e. for x > 1.
Hence, g(X(n)) is complete.

Example 3.8. Let X be a sample (of size 1) from the uniform distribution U(θ − 1
2
, θ + 1

2
),

θ ∈ R.
We now apply Theorem 3.2 to show that there is no UMVUE of ϑ = g(θ) for any nonconstant
function g.
Note that an unbiased estimator U(X) of 0 must satisfy

∫ θ+ 1

2

θ− 1

2

U(x)dx = 0 for all θ ∈ R.

3



Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral lead to U(x) = U(x + 1) a.e. m, where m is the Lebesgue measure on R.
If T is a UMVUE of g(θ), then T (X)U(X) is unbiased for 0 and, hence, T (x)U(x) =
T (x + 1)U(x + 1) a.e. m, where U(X) is any unbiased estimator of 0.
Since this is true for all U , T (x) = T (x + 1) a.e. m. Since T is unbiased for g(θ),

g(θ) =
∫ θ+ 1

2

θ− 1

2

T (x)dx for all θ ∈ R.

Differentiating both sizes of the previous equation and applying the result of differentiation
of an integral, we obtain that

g′(θ) = T
(

θ + 1
2

)

− T
(

θ − 1
2

)

= 0 a.e. m.
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Lecture 32: Information inequality

Suppose that we have a lower bound for the variances of all unbiased estimators of ϑ.
There is an unbiased estimator T of ϑ whose variance is always the same as the lower bound.
Then T is a UMVUE of ϑ.
Although this is not an effective way to find UMVUE’s, it provides a way of assessing the
performance of UMVUE’s.

Theorem 3.3 (Cramér-Rao lower bound). Let X = (X1, ..., Xn) be a sample from P ∈
P = {Pθ : θ ∈ Θ}, where Θ is an open set in Rk. Suppose that T (X) is an estimator with
E[T (X)] = g(θ) being a differentiable function of θ; Pθ has a p.d.f. fθ w.r.t. a measure ν for
all θ ∈ Θ; and fθ is differentiable as a function of θ and satisfies

∂

∂θ

∫

h(x)fθ(x)dν =
∫

h(x)
∂

∂θ
fθ(x)dν, θ ∈ Θ, (1)

for h(x) ≡ 1 and h(x) = T (x). Then

Var(T (X)) ≥
[

∂
∂θ
g(θ)

]τ
[I(θ)]−1 ∂

∂θ
g(θ), (2)

where

I(θ) = E

{

∂

∂θ
log fθ(X)

[

∂

∂θ
log fθ(X)

]τ}

(3)

is assumed to be positive definite for any θ ∈ Θ.
Proof. We prove the univariate case (k = 1) only.
When k = 1, (2) reduces to

Var(T (X)) ≥
[g′(θ)]2

E
[

∂
∂θ

log fθ(X)
]2 . (4)

From the Cauchy-Schwartz inequality, we only need to show that

E

[

∂

∂θ
log fθ(X)

]2

= Var

(

∂

∂θ
log fθ(X)

)

and

g′(θ) = Cov

(

T (X),
∂

∂θ
log fθ(X)

)

.

From condition (1) with h(x) = 1,

E

[

∂

∂θ
log fθ(X)

]

=
∫

∂

∂θ
fθ(X)dν =

∂

∂θ

∫

fθ(X)dν = 0.

From condition (1) with h(x) = T (x),

E

[

T (X)
∂

∂θ
log fθ(X)

]

=
∫

T (x)
∂

∂θ
fθ(X)dν =

∂

∂θ

∫

T (x)fθ(X)dν = g′(θ).

1



The k × k matrix I(θ) in (3) is called the Fisher information matrix.
The greater I(θ) is, the easier it is to distinguish θ from neighboring values and, therefore,
the more accurately θ can be estimated. Thus, I(θ) is a measure of the information that X
contains about the unknown θ.
The inequalities in (2) and (4) are called information inequalities.
The following result is helpful in finding the Fisher information matrix.

Proposition 3.1. (i) Let X and Y be independent with the Fisher information matrices
IX(θ) and IY (θ), respectively. Then, the Fisher information about θ contained in (X, Y ) is
IX(θ) + IY (θ). In particular, if X1, ..., Xn are i.i.d. and I1(θ) is the Fisher information about
θ contained in a single Xi, then the Fisher information about θ contained in X1, ..., Xn is
nI1(θ).
(ii) Suppose that X has the p.d.f. fθ that is twice differentiable in θ and that (1) holds with
h(x) ≡ 1 and fθ replaced by ∂fθ/∂θ. Then

I(θ) = −E

[

∂2

∂θ∂θτ
log fθ(X)

]

. (5)

Proof. Result (i) follows from the independence of X and Y and the definition of the Fisher
information. Result (ii) follows from the equality

∂2

∂θ∂θτ
log fθ(X) =

∂2

∂θ∂θτ fθ(X)

fθ(X)
−

∂

∂θ
log fθ(X)

[

∂

∂θ
log fθ(X)

]τ

.

Example 3.9. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. 1
σ
f
(

x−µ

σ

)

, where f(x) > 0

and f ′(x) exists for all x ∈ R, µ ∈ R, and σ > 0 (a location-scale family). Let θ = (µ, σ).
Then, the Fisher information about θ contained in X1, ..., Xn is (exercise)

I(θ) =
n

σ2















∫ [f ′(x)]2

f(x)
dx

∫ f ′(x)[xf ′(x)+f(x)]
f(x)

dx

∫ f ′(x)[xf ′(x)+f(x)]
f(x)

dx
∫ [xf ′(x)+f(x)]2

f(x)
dx















.

Note that I(θ) depends on the particular parameterization.
If θ = ψ(η) and ψ is differentiable, then the Fisher information that X contains about η is

∂
∂η
ψ(η)I(ψ(η))

[

∂
∂η
ψ(η)

]τ
.

However, the Cramér-Rao lower bound in (2) or (4) is not affected by any one-to-one repa-
rameterization.

If we use inequality (2) or (4) to find a UMVUE T (X), then we obtain a formula for
Var(T (X)) at the same time.
On the other hand, the Cramér-Rao lower bound in (2) or (4) is typically not sharp.
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Under some regularity conditions, the Cramér-Rao lower bound is attained if and only if
fθ is in an exponential family; see Propositions 3.2 and 3.3 and the discussion in Lehmann
(1983, p. 123).
Some improved information inequalities are available (see, e.g., Lehmann (1983, Sections 2.6
and 2.7)).

Proposition 3.2. Suppose that the distribution of X is from an exponential family {fθ :
θ ∈ Θ}, i.e., the p.d.f. of X w.r.t. a σ-finite measure is

fθ(x) = exp{[η(θ)]τT (x) − ξ(θ)}c(x), (6)

where Θ is an open subset of Rk.
(i) The regularity condition (1) is satisfied for any h with E|h(X)| <∞ and (5) holds.
(ii) If I(η) is the Fisher information matrix for the natural parameter η, then the variance-
covariance matrix Var(T ) = I(η).
(iii) If I(ϑ) is the Fisher information matrix for the parameter ϑ = E[T (X)], then Var(T ) =
[I(ϑ)]−1.
Proof. (i) This is a direct consequence of Theorem 2.1.
(ii) The p.d.f. under the natural parameter η is

fη(x) = exp {ητT (x) − ζ(η)} c(x).

From Theorem 2.1, E[T (X)] = ∂
∂η
ζ(η). The result follows from

∂
∂η

log fη(x) = T (x) − ∂
∂η
ζ(η).

(iii) Since ϑ = E[T (X)] = ∂
∂η
ζ(η),

I(η) = ∂ϑ
∂η
I(ϑ)

(

∂ϑ
∂η

)τ
= ∂2

∂η∂ητ ζ(η)I(ϑ)
[

∂2

∂η∂ητ ζ(η)
]τ
.

By Theorem 2.1 and the result in (ii), ∂2

∂η∂ητ ζ(η) = Var(T ) = I(η). Hence

I(ϑ) = [I(η)]−1I(η)[I(η)]−1 = [I(η)]−1 = [Var(T )]−1.

A direct consequence of Proposition 3.2(ii) is that the variance of any linear function of T
in (6) attains the Cramér-Rao lower bound.
The following result gives a necessary condition for Var(U(X)) of an estimator U(X) to
attain the Cramér-Rao lower bound.

Proposition 3.3. Assume that the conditions in Theorem 3.3 hold with T (X) replaced by
U(X) and that Θ ⊂ R.
(i) If Var(U(X)) attains the Cramér-Rao lower bound in (4), then

a(θ)[U(X) − g(θ)] = g′(θ)
∂

∂θ
log fθ(X) a.s. Pθ

3



for some function a(θ), θ ∈ Θ.
(ii) Let fθ and T be given by (6). If Var(U(X)) attains the Cramér-Rao lower bound, then
U(X) is a linear function of T (X) a.s. Pθ, θ ∈ Θ.

Example 3.10. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with an unknown
µ ∈ R and a known σ2.
Let fµ be the joint distribution of X = (X1, ..., Xn). Then

∂
∂µ

log fµ(X) =
n
∑

i=1

(Xi − µ)/σ2.

Thus, I(µ) = n/σ2.
It is obvious that Var(X̄) attains the Cramér-Rao lower bound in (4).
Consider now the estimation of ϑ = µ2.
Since EX̄2 = µ2 + σ2/n, the UMVUE of ϑ is h(X̄) = X̄2 − σ2/n.
A straightforward calculation shows that

Var(h(X̄)) =
4µ2σ2

n
+

2σ4

n2
.

On the other hand, the Cramér-Rao lower bound in this case is 4µ2σ2/n.
Hence Var(h(X̄)) does not attain the Cramér-Rao lower bound.
The difference is 2σ4/n2.

Condition (1) is a key regularity condition for the results in Theorem 3.3 and Proposition
3.3.
If fθ is not in an exponential family, then (1) has to be checked.
Typically, it does not hold if the set {x : fθ(x) > 0} depends on θ (Exercise 37).
More discussions can be found in Pitman (1979).
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Lecture 33: U-statistics and their variances

Let X1, ..., Xn be i.i.d. from an unknown population P in a nonparametric family P.
If the vector of order statistic is sufficient and complete for P ∈ P, then a symmetric unbiased
estimator of any estimable ϑ is the UMVUE of ϑ.
In a large class of problems, parameters to be estimated are of the form

ϑ = E[h(X1, ..., Xm)]

with a positive integer m and a Borel function h that is symmetric and satisfies

E|h(X1, ..., Xm)| < ∞

for any P ∈ P.
It is easy to see that a symmetric unbiased estimator of ϑ is

Un =

(

n

m

)−1
∑

c

h(Xi1, ..., Xim), (1)

where
∑

c denotes the summation over the
(

n

m

)

combinations of m distinct elements {i1, ..., im}

from {1, ..., n}.

Definition 3.2. The statistic Un in (1) is called a U -statistic with kernel h of order m.

The use of U-statistics is an effective way of obtaining unbiased estimators.
In nonparametric problems, U-statistics are often UMVUE’s, whereas in parametric prob-
lems, U-statistics can be used as initial estimators to derive more efficient estimators.

If m = 1, Un in (1) is simply a type of sample mean.
Examples include the empirical c.d.f. evaluated at a particular t and the sample moments

n−1∑n
i=1 Xk

i for a positive integer k.

Consider the estimation of ϑ = µm, where µ = EX1 and m is a positive integer. Using
h(x1, ..., xm) = x1 · · ·xm, we obtain the following U-statistic unbiased for ϑ = µm:

Un =

(

n

m

)−1
∑

c

Xi1 · · ·Xim . (2)

Consider the estimation of ϑ = σ2 = Var(X1). Since

σ2 = [Var(X1) + Var(X2)]/2 = E[(X1 − X2)
2/2],

we obtain the following U-statistic with kernel h(x1, x2) = (x1 − x2)
2/2:

Un =
2

n(n − 1)

∑

1≤i<j≤n

(Xi − Xj)
2

2
=

1

n − 1

(

n
∑

i=1

X2
i − nX̄2

)

= S2,

1



which is the sample variance.

In some cases, we would like to estimate ϑ = E|X1 − X2|, a measure of concentration.
Using kernel h(x1, x2) = |x1 − x2|, we obtain the following U-statistic unbiased for ϑ =
E|X1 − X2|:

Un =
2

n(n − 1)

∑

1≤i<j≤n

|Xi − Xj|,

which is known as Gini’s mean difference.

Let ϑ = P (X1 + X2 ≤ 0).
Using kernel h(x1, x2) = I(−∞,0](x1 + x2), we obtain the following U-statistic unbiased for ϑ:

Un =
2

n(n − 1)

∑

1≤i<j≤n

I(−∞,0](Xi + Xj),

which is known as the one-sample Wilcoxon statistic.

If E[h(X1, ..., Xm)]2 < ∞, then the variance of Un in (1) with kernel h has an explicit form.
To derive Var(Un), we need some notation.
For k = 1, ..., m, let

hk(x1, ..., xk) =E[h(X1, ..., Xm)|X1 = x1, ..., Xk = xk]

=E[h(x1, ..., xk, Xk+1, ..., Xm)].

Note that hm = h.
It can be shown that

hk(x1, ..., xk) = E[hk+1(x1, ..., xk, Xk+1)]. (3)

Define
h̃k = hk − E[h(X1, ..., Xm)], (4)

k = 1, ..., m, and h̃ = h̃m.
Then, for any Un defined by (1),

Un − E(Un) =

(

n

m

)−1
∑

c

h̃(Xi1 , ..., Xim). (5)

Theorem 3.4 (Hoeffding’s theorem). For a U-statistic Un given by (1) with E[h(X1, ..., Xm)]2

< ∞,

Var(Un) =

(

n

m

)−1 m
∑

k=1

(

m

k

)(

n − m

m − k

)

ζk,

where
ζk = Var(hk(X1, ..., Xk)).

Proof. Consider two sets {i1, ..., im} and {j1, ..., jm} of m distinct integers from {1, ..., n}
with exactly k integers in common.
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The number of distinct choices of two such sets is
(

n

m

)(

m

k

)(

n−m

m−k

)

.

By the symmetry of h̃m and independence of X1, ..., Xn,

E[h̃(Xi1 , ..., Xim)h̃(Xj1 , ..., Xjm
)] = ζk (6)

for k = 1, ..., m.
Then, by (5),

Var(Un)=

(

n

m

)−2
∑

c

∑

c

E[h̃(Xi1, ..., Xim)h̃(Xj1, ..., Xjm
)]

=

(

n

m

)−2 m
∑

k=1

(

n

m

)(

m

k

)(

n − m

m − k

)

ζk.

This proves the result.

Corollary 3.2. Under the condition of Theorem 3.4,
(i) m2

n
ζ1 ≤ Var(Un) ≤ m

n
ζm;

(ii) (n + 1)Var(Un+1) ≤ nVar(Un) for any n > m;
(iii) For any fixed m and k = 1, ..., m, if ζj = 0 for j < k and ζk > 0, then

Var(Un) =
k!
(

m

k

)2
ζk

nk
+ O

(

1

nk+1

)

.

It follows from Corollary 3.2 that a U-statistic Un as an estimator of its mean is consistent
in mse (under the finite second moment assumption on h).
In fact, for any fixed m, if ζj = 0 for j < k and ζk > 0, then the mse of Un is of the order
n−k and, therefore, Un is nk/2-consistent.

Example 3.11. Consider first h(x1, x2) = x1x2, which leads to a U-statistic unbiased for
µ2, µ = EX1.
Note that h1(x1) = µx1, h̃1(x1) = µ(x1 − µ), ζ1 = E[h̃1(X1)]

2 = µ2Var(X1) = µ2σ2,
h̃(x1, x2) = x1x2 − µ2, and ζ2 = Var(X1X2) = E(X1X2)

2 − µ4 = (µ2 + σ2)2 − µ4.

By Theorem 3.4, for Un =
(

n

2

)−1
∑

1≤i<j≤n XiXj ,

Var(Un)=

(

n

2

)−1 [(
2

1

)(

n − 2

1

)

ζ1 +

(

2

2

)(

n − 2

0

)

ζ2

]

=
2

n(n − 1)

[

2(n − 2)µ2σ2 + (µ2 + σ2)2 − µ4
]

=
4µ2σ2

n
+

2σ4

n(n − 1)
.

Comparing Un with X̄2 − σ2/n in Example 3.10, which is the UMVUE under the normality
and known σ2 assumption, we find that

Var(Un) − Var(X̄2 − σ2/n) =
2σ4

n2(n − 1)
.
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Next, consider h(x1, x2) = I(−∞,0](x1 +x2), which leads to the one-sample Wilcoxon statistic.
Note that h1(x1) = P (x1 + X2 ≤ 0) = F (−x1), where F is the c.d.f. of P . Then ζ1 =
Var(F (−X1)).
Let ϑ = E[h(X1, X2)].
Then ζ2 = Var(h(X1, X2)) = ϑ(1 − ϑ).
Hence, for Un being the one-sample Wilcoxon statistic,

Var(Un) =
2

n(n − 1)
[2(n − 2)ζ1 + ϑ(1 − ϑ)] .

If F is continuous and symmetric about 0, then ζ1 can be simplified as

ζ1 = Var(F (−X1)) = Var(1 − F (X1)) = Var(F (X1)) = 1
12

,

since F (X1) has the uniform distribution on [0, 1].

Finally, consider h(x1, x2) = |x1 − x2|, which leads to Gini’s mean difference.
Note that

h1(x1) = E|x1 − X2| =
∫

|x1 − y|dP (y),

and

ζ1 = Var(h1(X1)) =
∫
[
∫

|x − y|dP (y)
]2

dP (x) − ϑ2,

where ϑ = E|X1 − X2|.
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Lecture 34: The projection method

Since P is nonparametric, the exact distribution of any U-statistic is hard to derive.
We study asymptotic distributions of U-statistics by using the method of projection.

Definition 3.3. Let Tn be a given statistic based on X1, ..., Xn. The projection of Tn on kn

random elements Y1, ..., Ykn
is defined to be

Ťn = E(Tn) +
kn
∑

i=1

[E(Tn|Yi) −E(Tn)].

Let ψn(Xi) = E(Tn|Xi).
If Tn is symmetric (as a function of X1, ..., Xn), then ψn(X1), ..., ψn(Xn) are i.i.d. with mean
E[ψn(Xi)] = E[E(Tn|Xi)] = E(Tn).
If E(T 2

n) <∞ and Var(ψn(Xi)) > 0, then

1
√

nVar(ψn(X1))

n
∑

i=1

[ψn(Xi) − E(Tn)] →d N(0, 1) (1)

by the CLT.
Let Ťn be the projection of Tn on X1, ..., Xn.
Then

Tn − Ťn = Tn −E(Tn) −
n

∑

i=1

[ψn(Xi) −E(Tn)]. (2)

If we can show that Tn − Ťn has a negligible order of magnitude, then we can derive the
asymptotic distribution of Tn by using (1)-(2) and Slutsky’s theorem.
The order of magnitude of Tn − Ťn can be obtained with the help of the following lemma.

Lemma 3.1. Let Tn be a symmetric statistic with Var(Tn) <∞ for every n and Ťn be the
projection of Tn on X1, ..., Xn. Then E(Tn) = E(Ťn) and

E(Tn − Ťn)2 = Var(Tn) − Var(Ťn).

Proof. Since E(Tn) = E(Ťn),

E(Tn − Ťn)2 = Var(Tn) + Var(Ťn) − 2Cov(Tn, Ťn).

From Definition 3.3 with Yi = Xi and kn = n,

Var(Ťn) = nVar(E(Tn|Xi)).

The result follows from

Cov(Tn, Ťn)=E(TnŤn) − [E(Tn)]2

=nE[TnE(Tn|Xi)] − n[E(Tn)]2

=nE{E[TnE(Tn|Xi)|Xi]} − n[E(Tn)]2

=nE{[E(Tn|Xi)]
2} − n[E(Tn)]2

=nVar(E(Tn|Xi))

= Var(Ťn).

1



This method of deriving the asymptotic distribution of Tn is known as the method of pro-
jection and is particularly effective for U-statistics.
For a U-statistic Un, one can show (exercise) that

Ǔn = E(Un) +
m

n

n
∑

i=1

h̃1(Xi), (3)

where Ǔn is the projection of Un on X1, ..., Xn and h̃1(x) = h1(x)−E[h(X1, ..., Xm)], h1(x) =
E[h(x,X2, ..., Xm)].
Hence

Var(Ǔn) = m2ζ1/n

and, by Corollary 3.2 and Lemma 3.1,

E(Un − Ǔn)2 = O(n−2).

If ζ1 > 0, then (1) holds with ψn(Xi) = mh1(Xi), which leads to the result in Theorem 3.5(i)
stated later.

If ζ1 = 0, then h̃1 ≡ 0 and we have to use another projection of Un.
Suppose that ζ1 = · · · = ζk−1 = 0 and ζk > 0 for an integer k > 1.

Consider the projection Ǔkn of Un on
(

n

k

)

random vectors {Xi1, ..., Xik}, 1 ≤ i1 < · · · < ik ≤
n.
We can establish a result similar to that in Lemma 3.1 and show that

E(Un − Ǔn)2 = O(n−(k+1)).

Also, see Serfling (1980, §5.3.4).

With these results, we obtain the following theorem.

Theorem 3.5. Let Un be a U-statistic with E[h(X1, ..., Xm)]2 <∞.
(i) If ζ1 > 0, then √

n[Un −E(Un)] →d N(0, m2ζ1).

(ii) If ζ1 = 0 but ζ2 > 0, then

n[Un − E(Un)] →d

m(m− 1)

2

∞
∑

j=1

λj(χ
2
1j − 1), (4)

where χ2
1j ’s are i.i.d. random variables having the chi-square distribution χ2

1 and λj ’s are
some constants (which may depend on P ) satisfying

∑

∞

j=1 λ
2
j = ζ2.

We have actually proved Theorem 3.5(i).
A proof for Theorem 3.5(ii) is given in Serfling (1980, §5.5.2).
One may derive results for the cases where ζ2 = 0, but the case of either ζ1 > 0 or ζ2 > 0 is
the most interesting case in applications.
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If ζ1 > 0, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that

amseUn
(P ) = m2ζ1/n = Var(Un) +O(n−2).

By Proposition 2.4(ii), {n[Un −E(Un)]2} is uniformly integrable.

If ζ1 = 0 but ζ2 > 0, it follows from Theorem 3.5(ii) that amseUn
(P ) = EY 2/n2, where Y

denotes the random variable on the right-hand side of (4).
The following result provides the value of EY 2.

Lemma 3.2. Let Y be the random variable on the right-hand side of (4). Then EY 2 =
m2(m−1)2

2
ζ2.

Proof. Define

Yk =
m(m− 1)

2

k
∑

j=1

λj(χ
2
1j − 1), k = 1, 2, ....

It can be shown (exercise) that {Y 2
k } is uniformly integrable.

Since Yk →d Y as k → ∞, limk→∞EY 2
k = EY 2 (Theorem 1.8(viii)).

Since χ2
1j ’s are independent chi-square random variables with Eχ2

1j = 1 and Var(χ2
1j) = 2,

EYk = 0 for any k and

EY 2
k =

m2(m− 1)2

4

k
∑

j=1

λ2
jVar(χ2

1j)

=
m2(m− 1)2

4



2
k

∑

j=1

λ2
j





→
m2(m− 1)2

2
ζ2.

It follows from Corollary 3.2(iii) and Lemma 3.2 that

amseUn
(P ) =

m2(m− 1)2

2
ζ2/n

2 = Var(Un) +O(n−3)

if ζ1 = 0.
Again, by Proposition 2.4(ii), the sequence {n2[Un − E(Un)]2} is uniformly integrable.

We now apply Theorem 3.5 to the U-statistics in Example 3.11.
For Un = 2

n(n−1)

∑

1≤i<j≤nXiXj , ζ1 = µ2σ2.

Thus, if µ 6= 0, the result in Theorem 3.5(i) holds with ζ1 = µ2σ2.
If µ = 0, then ζ1 = 0, ζ2 = σ4 > 0, and Theorem 3.5(ii) applies.
However, it is not convenient to use Theorem 3.5(ii) to find the limiting distribution of Un.
We may derive this limiting distribution using the following technique, which is further
discussed in §3.5.
By the CLT and Theorem 1.10,

nX̄2/σ2 →d χ
2
1

3



when µ = 0, where χ2
1 is a random variable having the chi-square distribution χ2

1.
Note that

nX̄2

σ2
=

1

σ2n

n
∑

i=1

X2
i +

(n− 1)Un

σ2
.

By the SLLN, 1
σ2n

∑n
i=1X

2
i →a.s. 1.

An application of Slutsky’s theorem leads to

nUn/σ
2 →d χ

2
1 − 1.

Since µ = 0, this implies that the right-hand side of (4) is σ2(χ2
1−1), i.e., λ1 = σ2 and λj = 0

when j > 1.

For the one-sample Wilcoxon statistic, ζ1 = Var(F (−X1)) > 0 unless F is degenerate.
Similarly, for Gini’s mean difference, ζ1 > 0 unless F is degenerate.
Hence Theorem 3.5(i) applies to these two cases.
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Lecture 35: The LSE and estimability

One of the most useful statistical models

Xi = βτZi + εi, i = 1, ..., n, (1)

where Xi is the ith observation and is often called the ith response;
β is a p-vector of unknown parameters (main parameters of interest), p < n;
Zi is the ith value of a p-vector of explanatory variables (or covariates);
ε1, ..., εn are random errors (not observed).
Data: (X1, Z1), ..., (Xn, Zn).
Zi’s are nonrandom or given values of a random p-vector, in which case our analysis is
conditioned on Z1, ..., Zn.
X = (X1, ..., Xn), ε = (ε1, ..., εn)
Z = the n × p matrix whose ith row is the vector Zi, i = 1, ..., n
A matrix form of model (1) is

X = Zβ + ε. (2)

Definition 3.4. Suppose that the range of β in model (2) is B ⊂ Rp. A least squares

estimator (LSE) of β is defined to be any β̂ ∈ B such that

‖X − Zβ̂‖2 = min
b∈B

‖X − Zb‖2. (3)

For any l ∈ Rp, lτ β̂ is called an LSE of lτβ.

Throughout this book, we consider B = Rp unless otherwise stated.
Differentiating ‖X − Zb‖2 w.r.t. b, we obtain that any solution of

ZτZb = ZτX (4)

is an LSE of β.
If the rank of the matrix Z is p, in which case (ZτZ)−1 exists and Z is said to be of full
rank, then there is a unique LSE, which is

β̂ = (ZτZ)−1ZτX. (5)

If Z is not of full rank, then there are infinitely many LSE’s of β.
Any LSE of β is of the form

β̂ = (ZτZ)−ZτX, (6)

where (ZτZ)− is called a generalized inverse of ZτZ and satisfies

ZτZ(ZτZ)−ZτZ = ZτZ.

Generalized inverse matrices are not unique unless Z is of full rank, in which case (ZτZ)− =
(ZτZ)−1 and (6) reduces to (5).
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To study properties of LSE’s of β, we need some assumptions on the distribution of X or ε
(conditional on Z if Z is random).

Assumption A1: ε is distributed as Nn(0, σ2In) with an unknown σ2 > 0.

Assumption A2: E(ε) = 0 and Var(ε) = σ2In with an unknown σ2 > 0.

Assumption A3: E(ε) = 0 and Var(ε) is an unknown matrix.

Assumption A1 is the strongest and implies a parametric model.
We may assume a slightly more general assumption that ε has the Nn(0, σ2D) distribution
with unknown σ2 but a known positive definite matrix D.
Let D−1/2 be the inverse of the square root matrix of D.
Then model (2) with assumption A1 holds if we replace X, Z, and ε by the transformed
variables X̃ = D−1/2X, Z̃ = D−1/2Z, and ε̃ = D−1/2ε, respectively.
A similar conclusion can be made for assumption A2.

Under assumption A1, the distribution of X is Nn(Zβ, σ2In), which is in an exponential
family P with parameter θ = (β, σ2) ∈ Rp × (0,∞).
However, if the matrix Z is not of full rank, then P is not identifiable (see §2.1.2), since
Zβ1 = Zβ2 does not imply β1 = β2.

Suppose that the rank of Z is r ≤ p.
Then there is an n × r submatrix Z∗ of Z such that

Z = Z∗Q (7)

and Z∗ is of rank r, where Q is a fixed r × p matrix, and

Zβ = Z∗Qβ.

P is identifiable if we consider the reparameterization β̃ = Qβ.
The new parameter β̃ is in a subspace of Rp with dimension r.

In many applications, we are interested in estimating some linear functions of β, i.e., ϑ = lτβ
for some l ∈ Rp.
From the previous discussion, however, estimation of lτβ is meaningless unless l = Qτc for
some c ∈ Rr so that

lτβ = cτQβ = cτ β̃.

The following result shows that lτβ is estimable if l = Qτ c, which is also necessary for lτβ
to be estimable under assumption A1.

Theorem 3.6. Assume model (2) with assumption A3.
(i) A necessary and sufficient condition for l ∈ Rp being Qτc for some c ∈ Rr is l ∈ R(Z) =
R(ZτZ), where Q is given by (7) and R(A) is the smallest linear subspace containing all
rows of A.
(ii) If l ∈ R(Z), then the LSE lτ β̂ is unique and unbiased for lτβ.
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(iii) If l 6∈ R(Z) and assumption A1 holds, then lτβ is not estimable.
Proof. (i) Note that a ∈ R(A) if and only if a = Aτb for some vector b. If l = Qτc, then

l = Qτ c = QτZτ
∗
Z∗(Z

τ
∗
Z∗)

−1c = Zτ [Z∗(Z
τ
∗
Z∗)

−1c].

Hence l ∈ R(Z). If l ∈ R(Z), then l = Zτζ for some ζ and

l = (Z∗Q)τζ = Qτc

with c = Zτ
∗ ζ .

(ii) If l ∈ R(Z) = R(ZτZ), then l = ZτZζ for some ζ and by (6),

E(lτ β̂) =E[lτ (ZτZ)−ZτX]

= ζτZτZ(ZτZ)−ZτZβ

= ζτZτZβ

= lτβ.

If β̄ is any other LSE of β, then, by (4),

lτ β̂ − lτ β̄ = ζτ(ZτZ)(β̂ − β̄) = ζτ(ZτX − ZτX) = 0.

(iii) Under assumption A1, if there is an estimator h(X, Z) unbiased for lτβ, then

lτβ =
∫

Rn
h(x, Z)(2π)−n/2σ−n exp

{

− 1
2σ2 ‖x − Zβ‖2

}

dx.

Differentiating w.r.t. β and applying Theorem 2.1 lead to

lτ = Zτ

∫

Rn
h(x, Z)(2π)−n/2σ−n−2(x − Zβ) exp

{

− 1
2σ2 ‖x − Zβ‖2

}

dx,

which implies l ∈ R(Z).

Example 3.12 (Simple linear regression). Let β = (β0, β1) ∈ R2 and Zi = (1, ti), ti ∈ R,
i = 1, ..., n.
Then model (1) or (2) is called a simple linear regression model.
It turns out that

ZτZ =







n
∑n

i=1 ti
∑n

i=1 ti
∑n

i=1 t2i






.

This matrix is invertible if and only if some ti’s are different.
Thus, if some ti’s are different, then the unique unbiased LSE of lτβ for any l ∈ R2 is
lτ (ZτZ)−1ZτX, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression of order p in which
β = (β0, β1, ..., βp−1) and Zi = (1, ti, ..., t

p−1
i ).
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Example 3.13 (One-way ANOVA). Suppose that n =
∑m

j=1 nj with m positive integers
n1, ..., nm and that

Xi = µj + εi, i = kj−1 + 1, ..., kj, j = 1, ..., m,

where k0 = 0, kj =
∑j

l=1 nl, j = 1, ..., m, and (µ1, ..., µm) = β.
Let Jm be the m-vector of ones.
Then the matrix Z in this case is a block diagonal matrix with Jnj

as the jth diagonal
column.
Consequently, ZτZ is an m × m diagonal matrix whose jth diagonal element is nj .
Thus, ZτZ is invertible and the unique LSE of β is the m-vector whose jth component is
n−1

j

∑kj

i=kj−1+1 Xi, j = 1, ..., m.

Sometimes it is more convenient to use the following notation:

Xij = Xki−1+j, εij = εki−1+j, j = 1, ..., ni, i = 1, ..., m,

and
µi = µ + αi, i = 1, ..., m.

Then our model becomes

Xij = µ + αi + εij, j = 1, ..., ni, i = 1, ..., m, (8)

which is called a one-way analysis of variance (ANOVA) model.
Under model (8), β = (µ, α1, ..., αm) ∈ Rm+1.
The matrix Z under model (8) is not of full rank.
An LSE of β under model (8) is

β̂ =
(

X̄, X̄1· − X̄, ..., X̄m· − X̄
)

,

where X̄ is still the sample mean of Xij ’s and X̄i· is the sample mean of the ith group
{Xij, j = 1, ..., ni}.

The notation used in model (8) allows us to generalize the one-way ANOVA model to any
s-way ANOVA model with a positive integer s under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA). Suppose that

Xijk = µ + αi + βj + γij + εijk, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, (9)

where a, b, and c are some positive integers.
Model (9) is called a two-way balanced ANOVA model.
If we view model (9) as a special case of model (2), then the parameter vector β is

β = (µ, α1, ..., αa, β1, ..., βb, γ11, ..., γ1b, ..., γa1, ..., γab). (10)

One can obtain the matrix Z and show that it is n×p, where n = abc and p = 1+a+ b+ab,
and is of rank ab < p.
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It can also be shown that an LSE of β is given by the right-hand side of (10) with µ, αi,
βj , and γij replaced by µ̂, α̂i, β̂j, and γ̂ij, respectively, where µ̂ = X̄···, α̂i = X̄i·· − X̄···,

β̂j = X̄·j·− X̄···, γ̂ij = X̄ij· − X̄i·· − X̄·j· + X̄···, and a dot is used to denote averaging over the
indicated subscript, e.g.,

X̄·j· =
1

ac

a
∑

i=1

c
∑

k=1

Xijk

with a fixed j.

5



Lecture 36: The UMVUE and BLUE

Theorem 3.7. Consider model
X = Zβ + ε (1)

with assumption A1 (ε is distributed as Nn(0, σ2In) with an unknown σ2 > 0).
(i) The LSE lτ β̂ is the UMVUE of lτβ for any estimable lτβ.
(ii) The UMVUE of σ2 is σ̂2 = (n − r)−1‖X − Zβ̂‖2, where r is the rank of Z.
Proof. (i) Let β̂ be an LSE of β. By ZτZb = ZτX,

(X − Zβ̂)τZ(β̂ − β) = (XτZ − XτZ)(β̂ − β) = 0

and, hence,

‖X − Zβ‖2 = ‖X − Zβ̂ + Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 − 2βτZτX + ‖Zβ‖2 + ‖Zβ̂‖2.

Using this result and assumption A1, we obtain the following joint Lebesgue p.d.f. of X:

(2πσ2)−n/2exp
{

βτ Zτ x

σ2 − ‖x−Zβ̂‖2+‖Zβ̂‖2

2σ2 − ‖Zβ‖2

2σ2

}

.

By Proposition 2.1 and the fact that Zβ̂ = Z(ZτZ)−ZτX is a function of ZτX, the statistic
(ZτX, ‖X − Zβ̂‖2) is complete and sufficient for θ = (β, σ2).
Note that β̂ is a function of ZτX and, hence, a function of the complete sufficient statistic.
If lτβ is estimable, then lτ β̂ is unbiased for lτβ (Theorem 3.6) and, hence, lτ β̂ is the UMVUE
of lτβ.
(ii) From ‖X − Zβ‖2 = ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2 and E(Zβ̂) = Zβ (Theorem 3.6),

E‖X − Zβ̂‖2 =E(X − Zβ)τ(X − Zβ) − E(β − β̂)τZτZ(β − β̂)

= tr
(

Var(X) − Var(Zβ̂)
)

=σ2[n − tr
(

Z(ZτZ)−ZτZ(ZτZ)−Zτ
)

]

=σ2[n − tr
(

(ZτZ)−ZτZ
)

].

Since each row of Z ∈ R(Z), Zβ̂ does not depend on the choice of (ZτZ)− in β̂ =
(ZτZ)−ZτX (Theorem 3.6).
Hence, we can evaluate tr((ZτZ)−ZτZ) using a particular (ZτZ)−.
From the theory of linear algebra, there exists a p × p matrix C such that CCτ = Ip and

Cτ (ZτZ)C =







Λ 0

0 0






,
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where Λ is an r × r diagonal matrix whose diagonal elements are positive.
Then, a particular choice of (ZτZ)− is

(ZτZ)− = C







Λ−1 0

0 0






Cτ (2)

and

(ZτZ)−ZτZ = C







Ir 0

0 0






Cτ

whose trace is r.
Hence σ̂2 is the UMVUE of σ2, since it is a function of the complete sufficient statistic and

Eσ̂2 = (n − r)−1E‖X − Zβ̂‖2 = σ2.

In general,
Var(lτ β̂) = lτ (ZτZ)−ZτVar(ε)Z(ZτZ)−l. (3)

If l ∈ R(Z) and Var(ε) = σ2In (assumption A2), then the use of the generalized inverse
matrix in (2) leads to Var(lτ β̂) = σ2lτ (ZτZ)−l, which attains the Cramér-Rao lower bound
under assumption A1 (Proposition 3.2).

The vector X −Zβ̂ is called the residual vector and ‖X −Zβ̂‖2 is called the sum of squared

residuals and is denoted by SSR.
The estimator σ̂2 is then equal to SSR/(n − r).

Since X − Zβ̂ = [In − Z(ZτZ)−Zτ ]X and lτ β̂ = lτ (ZτZ)−ZτX are linear in X, they are
normally distributed under assumption A1.
Also, using the generalized inverse matrix in (2), we obtain that

[In − Z(ZτZ)−Zτ ]Z(ZτZ)− = Z(ZτZ)− − Z(ZτZ)−ZτZ(ZτZ)− = 0,

which implies that σ̂2 and lτ β̂ are independent (Exercise 58 in §1.6) for any estimable lτβ.
Furthermore,

[Z(ZτZ)−Zτ ]2 = Z(ZτZ)−Zτ

(i.e., Z(ZτZ)−Zτ is a projection matrix) and

SSR = Xτ [In − Z(ZτZ)−Zτ ]X.

The rank of Z(ZτZ)−Zτ is tr(Z(ZτZ)−Zτ ) = r.
Similarly, the rank of the projection matrix In − Z(ZτZ)−Zτ is n − r.
From

XτX = Xτ [Z(ZτZ)−Zτ ]X + Xτ [In − Z(ZτZ)−Zτ ]X

and Theorem 1.5 (Cochran’s theorem), SSR/σ2 has the chi-square distribution χ2
n−r(δ) with

δ = σ−2βτZτ [In − Z(ZτZ)−Zτ ]Zβ = 0.
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Thus, we have proved the following result.

Theorem 3.8. Consider model (1) with assumption A1. For any estimable parameter lτβ,
the UMVUE’s lτ β̂ and σ̂2 are independent; the distribution of lτ β̂ is N(lτβ, σ2lτ (ZτZ)−l);
and (n − r)σ̂2/σ2 has the chi-square distribution χ2

n−r.

Example 3.15. In Examples 3.12-3.14, UMVUE’s of estimable lτβ are the LSE’s lτ β̂, under
assumption A1. In Example 3.13,

SSR =
m

∑

i=1

ni
∑

j=1

(Xij − X̄i·)
2;

in Example 3.14, if c > 1,

SSR =
a

∑

i=1

b
∑

j=1

c
∑

k=1

(Xijk − X̄ij·)
2.

We now study properties of lτ β̂ and σ̂2 under assumption A2, i.e., without the normality
assumption on ε.
From Theorem 3.6 and the proof of Theorem 3.7(ii), lτ β̂ (with an l ∈ R(Z)) and σ̂2 are still
unbiased without the normality assumption.
In what sense are lτ β̂ and σ̂2 optimal beyond being unbiased?
We have the following result for the LSE lτ β̂.
Some discussion about σ̂2 can be found, for example, in Rao (1973, p. 228).

Theorem 3.9. Consider model (1) with assumption A2.
(i) A necessary and sufficient condition for the existence of a linear unbiased estimator of lτβ
(i.e., an unbiased estimator that is linear in X) is l ∈ R(Z).
(ii) (Gauss-Markov theorem). If l ∈ R(Z), then the LSE lτ β̂ is the best linear unbiased

estimator (BLUE) of lτβ in the sense that it has the minimum variance in the class of linear
unbiased estimators of lτβ.
Proof. (i) The sufficiency has been established in Theorem 3.6.
Suppose now a linear function of X, cτX with c ∈ Rn, is unbiased for lτβ. Then

lτβ = E(cτX) = cτEX = cτZβ.

Since this equality holds for all β, l = Zτc, i.e., l ∈ R(Z).
(ii) Let l ∈ R(Z) = R(ZτZ).
Then l = (ZτZ)ζ for some ζ and lτ β̂ = ζτ(ZτZ)β̂ = ζτZτX by ZτZb = ZτX.
Let cτX be any linear unbiased estimator of lτβ. From the proof of (i), Zτc = l. Then

Cov(ζτZτX, cτX − ζτZτX)= E(XτZζcτX) − E(XτZζζτZτX)

= σ2tr(Zζcτ) + βτZτZζcτZβ

− σ2tr(ZζζτZτ ) − βτZτZζζτZτZβ

= σ2ζτ l + (lτβ)2 − σ2ζτ l − (lτβ)2

= 0.
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Hence

Var(cτX) = Var(cτX − ζτZτX + ζτZτX)

= Var(cτX − ζτZτX) + Var(ζτZτX)

+ 2Cov(ζτZτX, cτX − ζτZτX)

= Var(cτX − ζτZτX) + Var(lτ β̂)

≥Var(lτ β̂).
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Lecture 37: Robustness of LSE’s

Consider model
X = Zβ + ε. (1)

under assumption A3 (E(ε) = 0 and Var(ε) is an unknown matrix).
An interesting question is under what conditions on Var(ε) is the LSE of lτβ with l ∈ R(Z)
still the BLUE.
If lτ β̂ is still the BLUE, then we say that lτ β̂, considered as a BLUE, is robust against
violation of assumption A2.
A statistical procedure having certain properties under an assumption is said to be robust
against violation of the assumption if and only if the statistical procedure still has the same
properties when the assumption is (slightly) violated.
For example, the LSE of lτβ with l ∈ R(Z), as an unbiased estimator, is robust against
violation of assumption A1 or A2, since the LSE is unbiased as long as E(ε) = 0, which can
be always assumed without loss of generality.
On the other hand, the LSE as a UMVUE may not be robust against violation of assumption
A1.

Theorem 3.10. Consider model (1) with assumption A3. The following are equivalent.
(a) lτ β̂ is the BLUE of lτβ for any l ∈ R(Z).
(b) E(lτ β̂ητX) = 0 for any l ∈ R(Z) and any η such that E(ητX) = 0.
(c) ZτVar(ε)U = 0, where U is a matrix such that ZτU = 0 and R(U τ ) + R(Zτ ) = Rn.
(d) Var(ε) = ZΛ1Z

τ + UΛ2U
τ for some Λ1 and Λ2.

(e) The matrix Z(ZτZ)−ZτVar(ε) is symmetric.
Proof. We first show that (a) and (b) are equivalent, which is an analogue of Theorem
3.2(i).
Suppose that (b) holds.
Let l ∈ R(Z).
If cτX is unbiased for lτβ, then E(ητX) = 0 with η = c − Z(ZτZ)−l.
Hence

Var(cτX) = Var(cτX − lτ β̂ + lτ β̂)

= Var(cτX − lτ (ZτZ)−ZτX + lτ β̂)

= Var(ητX + lτ β̂)

= Var(ητX) + Var(lτ β̂) + 2Cov(ητX, lτ β̂)

= Var(ητX) + Var(lτ β̂) + 2E(lτ β̂ητX)

= Var(ητX) + Var(lτ β̂)

≥Var(lτ β̂).

Suppose now that there are l ∈ R(Z) and η such that E(ητX) = 0 but δ = E(lτ β̂ητX) 6= 0.
Let ct = tη + Z(ZτZ)−l.
From the previous proof,

Var(cτ
t X) = t2Var(ητX) + Var(lτ β̂) + 2δt.
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As long as δ 6= 0, there exists a t such that Var(cτ
t X) < Var(lτ β̂).

This shows that lτ β̂ cannot be a BLUE and, therefore, (a) implies (b).

We next show that (b) implies (c).
Suppose that (b) holds.
Since l ∈ R(Z), l = Zτγ for some γ.
Let η ∈ R(U τ ).
Then E(ητX) = ητZβ = 0 and, hence,

0 = E(lτ β̂ητX) = E[γτZ(ZτZ)−ZτXXτη] = γτZ(ZτZ)−ZτVar(ε)η.

Since this equality holds for all l ∈ R(Z), it holds for all γ.
Thus,

Z(ZτZ)−ZτVar(ε)U = 0,

which implies
ZτZ(ZτZ)−ZτVar(ε)U = ZτVar(ε)U = 0,

since ZτZ(ZτZ)−Zτ = Zτ .
Thus, (c) holds.

To show that (c) implies (d), we need to use the following facts from the theory of linear
algebra: there exists a nonsingular matrix C such that Var(ε) = CCτ and C = ZC1 + UC2

for some matrices Cj (since R(U τ ) + R(Zτ ) = Rn).
Let Λ1 = C1C

τ
1 , Λ2 = C2C

τ
2 , and Λ3 = C1C

τ
2 .

Then
Var(ε) = ZΛ1Z

τ + UΛ2U
τ + ZΛ3U

τ + UΛτ
3Z

τ (2)

and ZτVar(ε)U = ZτZΛ3U
τU , which is 0 if (c) holds.

Hence, (c) implies

0 = Z(ZτZ)−ZτZΛ3U
τU(U τU)−U τ = ZΛ3U

τ ,

which with (2) implies (d).

If (d) holds, then Z(ZτZ)−ZτVar(ε) = ZΛ1Z
τ , which is symmetric.

Hence (d) implies (e).

To complete the proof, we need to show that (e) implies (b), which is left as an exercise.

As a corollary of this theorem, the following result shows when the UMVUE’s in model (1)
with assumption A1 are robust against the violation of Var(ε) = σ2In.

Corollary 3.3. Consider model (1) with a full rank Z, ε = Nn(0, Σ), and an unknown
positive definite matrix Σ. Then lτ β̂ is a UMVUE of lτβ for any l ∈ Rp if and only if one of
(b)-(e) in Theorem 3.10 holds.

Example 3.16. Consider model (1) with β replaced by a random vector β that is indepen-
dent of ε.
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Such a model is called a linear model with random coefficients.
Suppose that Var(ε) = σ2In and E(β) = β. Then

X = Zβ + Z(β − β) + ε = Zβ + e, (3)

where e = Z(β − β) + ε satisfies E(e) = 0 and

Var(e) = ZVar(β)Zτ + σ2In.

Since
Z(ZτZ)−ZτVar(e) = ZVar(β)Zτ + σ2Z(ZτZ)−Zτ

is symmetric, by Theorem 3.10, the LSE lτ β̂ under model (3) is the BLUE for any lτβ,
l ∈ R(Z).
If Z is of full rank and ε is normal, then, by Corollary 3.3, lτ β̂ is the UMVUE of lτβ for any
l ∈ Rp.

Example 3.17 (Random effects models). Suppose that

Xij = µ + Ai + eij , j = 1, ..., ni, i = 1, ..., m, (4)

where µ ∈ R is an unknown parameter, Ai’s are i.i.d. random variables having mean 0 and
variance σ2

a, eij ’s are i.i.d. random errors with mean 0 and variance σ2, and Ai’s and eij’s
are independent.
Model (4) is called a one-way random effects model and Ai’s are unobserved random effects.
Let εij = Ai + eij.
Then (4) is a special case of the general model (1) with

Var(ε) = σ2
aΣ + σ2In,

where Σ is a block diagonal matrix whose ith block is Jni
Jτ

ni
and Jk is the k-vector of ones.

Under this model, Z = Jn, n =
∑m

i=1 ni, and Z(ZτZ)−Zτ = n−1JnJτ
n .

Note that

JnJτ
nΣ =





















n1Jn1
Jτ

n1
n2Jn1

Jτ
n2

· · · nmJn1
Jτ

nm

n1Jn2
Jτ

n1
n2Jn2

Jτ
n2

· · · nmJn2
Jτ

nm

· · · · · · · · · · · · · · · · · · · · ·

n1Jnm
Jτ

n1
n2Jnm

Jτ
n2

· · · nmJnm
Jτ

nm





















,

which is symmetric if and only if n1 = n2 = · · · = nm.
Since JnJτ

nVar(ε) is symmetric if and only if JnJτ
nΣ is symmetric, a necessary and sufficient

condition for the LSE of µ to be the BLUE is that all ni’s are the same.
This condition is also necessary and sufficient for the LSE of µ to be the UMVUE when εij’s
are normal.

In some cases, we are interested in some (not all) linear functions of β.
For example, consider lτβ with l ∈ R(H), where H is an n × p matrix such that R(H) ⊂
R(Z).
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Proposition 3.4. Consider model (1) with assumption A3. Suppose that H is a matrix
such that R(H) ⊂ R(Z). A necessary and sufficient condition for the LSE lτ β̂ to be the
BLUE of lτβ for any l ∈ R(H) is H(ZτZ)−ZτVar(ε)U = 0, where U is the same as that in
(c) of Theorem 3.10.

Example 3.18. Consider model (1) with assumption A3 and Z = (H1 H2), where Hτ
1 H2 =

0.
Suppose that under the reduced model

X = H1β1 + ε,

lτ β̂1 is the BLUE for any lτβ1, l ∈ R(H1), and that under the reduced model

X = H2β2 + ε,

lτ β̂2 is not a BLUE for some lτβ2, l ∈ R(H2), where β = (β1, β2) and β̂j’s are LSE’s under
the reduced models.
Let H = (H1 0) be n × p.
Note that

H(ZτZ)−ZτVar(ε)U = H1(H
τ
1 H1)

−Hτ
1 Var(ε)U,

which is 0 by Theorem 3.10 for the U given in (c) of Theorem 3.10, and

Z(ZτZ)−ZτVar(ε)U = H2(H
τ
2 H2)

−Hτ
2 Var(ε)U,

which is not 0 by Theorem 3.10.
This implies that some LSE lτ β̂ is not a BLUE of lτβ but lτ β̂ is the BLUE of lτβ if l ∈ R(H).

Finally, we consider model (1) with Var(ε) being a diagonal matrix whose ith diagonal
element is σ2

i , i.e., εi’s are uncorrelated but have unequal variances.
A straightforward calculation shows that condition (e) in Theorem 3.10 holds if and only if,
for all i 6= j, σ2

i 6= σ2
j only when hij = 0, where hij is the (i, j)th element of the projection

matrix Z(ZτZ)−Zτ .
Thus, an LSE is not a BLUE in general, although it is still unbiased for estimable lτβ.

Suppose that the unequal variances of εi’s are caused by some small perturbations, i.e.,
εi = ei + ui, where Var(ei) = σ2, Var(ui) = δi, and ei and ui are independent so that
σ2

i = σ2 + δi.

Var(lτ β̂) = lτ (ZτZ)−
n

∑

i=1

σ2
i ZiZ

τ
i (ZτZ)−l.

If δi = 0 for all i (no perturbations), then assumption A2 holds and lτ β̂ is the BLUE of any
estimable lτβ with Var(lτ β̂) = σ2lτ (ZτZ)−l.
Suppose that 0 < δi ≤ σ2δ. Then

Var(lτ β̂) ≤ (1 + δ)σ2lτ (ZτZ)−l.

This indicates that the LSE is robust in the sense that its variance increases slightly when
there is a slight violation of the equal variance assumption (small δ).
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Lecture 38: Asymptotic properties of LSE’s

We consider first the consistency of the LSE lτ β̂ with l ∈ R(Z) for every n.

Theorem 3.11. Consider model
X = Zβ + ε (1)

under assumption A3 (E(ε) = 0 and Var(ε) is an unknown matrix).
Suppose that supn λ+[Var(ε)] < ∞, where λ+[A] is the largest eigenvalue of the matrix A,
and that limn→∞ λ+[(ZτZ)−] = 0. Then lτ β̂ is consistent in mse for any l ∈ R(Z).
Proof. The result follows from the fact that lτ β̂ is unbiased and

Var(lτ β̂) = lτ (ZτZ)−ZτVar(ε)Z(ZτZ)−l

≤λ+[Var(ε)]lτ (ZτZ)−l.

Without the normality assumption on ε, the exact distribution of lτ β̂ is very hard to obtain.
The asymptotic distribution of lτ β̂ is derived in the following result.

Theorem 3.12. Consider model (1) with assumption A3. Suppose that 0 < infn λ−[Var(ε)],
where λ−[A] is the smallest eigenvalue of the matrix A, and that

lim
n→∞

max
1≤i≤n

Zτ
i (ZτZ)−Zi = 0. (2)

Suppose further that n =
∑k

j=1 mj for some integers k, mj , j = 1, ..., k, with mj ’s bounded
by a fixed integer m, ε = (ξ1, ..., ξk), ξj ∈ Rmj , and ξj’s are independent.
(i) If supi E|εi|

2+δ < ∞, then for any l ∈ R(Z),

lτ (β̂ − β)
/
√

Var(lτ β̂) →d N(0, 1). (3)

(ii) Suppose that when mi = mj , 1 ≤ i < j ≤ k, ξi and ξj have the same distribution. Then
result (3) holds for any l ∈ R(Z).
Proof. Let l ∈ R(Z). Then

lτ (ZτZ)−ZτZβ − lτβ = 0

and

lτ (β̂ − β) = lτ (ZτZ)−Zτε =
k
∑

j=1

cτ
njξj ,

where cnj is the mj-vector whose components are lτ (ZτZ)−Zi, i = kj−1 + 1, ..., kj, k0 = 0,
and kj =

∑j
t=1 mt, j = 1, ..., k.

Note that
k
∑

j=1

‖cnj‖
2 = lτ (ZτZ)−ZτZ(ZτZ)−l = lτ (ZτZ)−l. (4)

Also,

max
1≤j≤k

‖cnj‖
2 ≤m max

1≤i≤n
[lτ (ZτZ)−Zi]

2

≤mlτ (ZτZ)−l max
1≤i≤n

Zτ
i (ZτZ)−Zi,

1



which, together with (4) and condition (2), implies that

lim
n→∞



max
1≤j≤k

‖cnj‖
2
/ k
∑

j=1

‖cnj‖
2



 = 0.

The results then follow from Corollary 1.3.

Under the conditions of Theorem 3.12, Var(ε) is a diagonal block matrix with Var(ξj) as the
jth diagonal block, which includes the case of independent εi’s as a special case.

Exercise 80 shows that condition (2) is almost a necessary condition for the consistency of
the LSE.

The following lemma tells us how to check condition (2).

Lemma 3.3. The following are sufficient conditions for (2).
(a) λ+[(ZτZ)−] → 0 and Zτ

n(ZτZ)−Zn → 0, as n → ∞.
(b) There is an increasing sequence {an} such that an → ∞, an/an+1 → 1, and ZτZ/an

converges to a positive definite matrix.
Proof. (a) Since ZτZ depends on n, we denote (ZτZ)− by An.
Let in be the integer such that hin = max1≤i≤n hi.
If limn→∞ in = ∞, then

lim
n→∞

hin = lim
n→∞

Zτ
in

AnZin ≤ lim
n→∞

Zτ
in

AinZin = 0,

where the inequality follows from in ≤ n and, thus, Ain − An is nonnegative definite.
If in ≤ c for all n, then

lim
n→∞

hin = lim
n→∞

Zτ
in

AnZin ≤ lim
n→∞

λn max
1≤i≤c

‖Zi‖
2 = 0.

Therefore, for any subsequence {jn} ⊂ {in} with limn→∞ jn = a ∈ (0,∞], limn→∞ hjn
= 0.

This shows that limn→∞ hin = 0.
(b) Omitted.

If n−1∑n
i=1 t2i → c and n−1∑n

i=1 ti → d in the simple linear regression model (Example 3.12),
where c is positive and c > d2, then condition (b) in Lemma 3.3 is satisfied with an = n and,
therefore, Theorem 3.12 applies.

In the one-way ANOVA model (Example 3.13),

max
1≤i≤n

Zτ
i (ZτZ)−Zi = λ+[(ZτZ)−] = max

1≤j≤m
n−1

j .

Hence conditions related to Z in Theorem 3.12 are satisfied if and only if minj nj → ∞.
Some similar conclusions can be drawn in the two-way ANOVA model (Example 3.14).
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Functions of unbiased estimators

If the parameter to be estimated is ϑ = g(θ) with a vector-valued parameter θ and Un is a
vector of unbiased estimators of components of θ, then Tn = g(Un) is often asymptotically
unbiased for ϑ.
Assume that g is differentiable and cn(Un − θ) →d Y . Then

amseTn
(P ) = E{[∇g(θ)]τY }2/c2

n

(Theorem 2.6). Hence, Tn has a good performance in terms of amse if Un is optimal in terms
of mse (such as the UMVUE or BLUE).

Example 3.22. Consider a polynomial regression of order p:

Xi = βτZi + εi, i = 1, ..., n,

where β = (β0, β1, ..., βp−1), Zi = (1, ti, ..., t
p−1
i ), and εi’s are i.i.d. with mean 0 and variance

σ2 > 0.
Suppose that the parameter to be estimated is tβ ∈ T ⊂ R such that

p−1
∑

j=0

βjt
j
β = max

t∈T

p−1
∑

j=0

βjt
j .

Note that tβ = g(β) for some function g.

Let β̂ be the LSE of β.
Then the estimator t̂β = g(β̂) is asymptotically unbiased and its amse can be derived under
some conditions.

Example 3.23. In the study of the reliability of a system component, we assume that

Xij = θ
τ
i z(tj) + εij, i = 1, ..., k, j = 1, ..., m.

Here Xij is the measurement of the ith sample component at time tj ;
z(t) is a q-vector whose components are known functions of the time t;
θi’s are unobservable random q-vectors that are i.i.d. from Nq(θ, Σ), where θ and Σ are
unknown;
εij’s are i.i.d. measurement errors with mean zero and variance σ2;
θi’s and εij’s are independent.
As a function of t, θ

τz(t) is the degradation curve for a particular component and θτz(t) is
the mean degradation curve.
Suppose that a component will fail to work if θ

τz(t) < η, a given critical value.
Assume that θ

τz(t) is always a decreasing function of t.
Then the reliability function of a component is

R(t) = P (θτz(t) > η) = Φ

(

θτz(t) − η

s(t)

)

,

3



where s(t) =
√

[z(t)]τΣz(t) and Φ is the standard normal distribution function.

For a fixed t, estimators of R(t) can be obtained by estimating θ and Σ, since Φ is a known
function.
It can be shown (exercise) that the BLUE of θ is the LSE

θ̂ = (ZτZ)−1ZτX̄,

where Z is the m × q matrix whose jth row is the vector z(tj), Xi = (Xi1, ..., Xim), and X̄
is the sample mean of Xi’s.
The estimation of Σ is more difficult.
It can be shown (exercise) that a consistent (as k → ∞) estimator of Σ is

Σ̂ =
1

k

k
∑

i=1

(ZτZ)−1Zτ (Xi − X̄)(Xi − X̄)τZ(ZτZ)−1 − σ̂2(ZτZ)−1,

where

σ̂2 =
1

k(m − q)

k
∑

i=1

[Xτ
i Xi − Xτ

i Z(ZτZ)−1ZτXi].

Hence an estimator of R(t) is

R̂(t) = Φ

(

θ̂τz(t) − η

ŝ(t)

)

,

where

ŝ(t) =
√

[z(t)]τ Σ̂z(t).

Yi1 = Xτ
i Z(ZτZ)−1z(t)

Yi2 = [Xτ
i Z(ZτZ)−1z(t)]2

Yi3 = [Xτ
i Xi − Xτ

i Z(ZτZ)−1ZτXi]/(m − q)
Yi = (Yi1, Yi2, Yi3) It is apparent that R̂(t) can be written as g(Ȳ ) for a function

g(y1, y2, y3) = Φ





y1 − η
√

y2 − y2
1 − y3[z(t)]τ (ZτZ)−1z(t)



 .

Suppose that εij has a finite fourth moment, which implies the existence of Var(Yi).

The amse of R̂(t) can be derived (exercise).
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Lecture 39: The method of moments

The method of moments is the oldest method of deriving point estimators.
It almost always produces some asymptotically unbiased estimators, although they may not
be the best estimators.

Consider a parametric problem where X1, ..., Xn are i.i.d. random variables from Pθ, θ ∈
Θ ⊂ Rk, and E|X1|

k < ∞.
Let µj = EXj

1 be the jth moment of P and let

µ̂j =
1

n

n
∑

i=1

Xj
i

be the jth sample moment, which is an unbiased estimator of µj, j = 1, ..., k.
Typically,

µj = hj(θ), j = 1, ..., k, (1)

for some functions hj on Rk.
By substituting µj’s on the left-hand side of (1) by the sample moments µ̂j, we obtain a

moment estimator θ̂, i.e., θ̂ satisfies

µ̂j = hj(θ̂), j = 1, ..., k,

which is a sample analogue of (1).
This method of deriving estimators is called the method of moments.
An important statistical principle, the substitution principle, is applied in this method.

Let µ̂ = (µ̂1, ..., µ̂k) and h = (h1, ..., hk).
Then µ̂ = h(θ̂).
If the inverse function h−1 exists, then the unique moment estimator of θ is θ̂ = h−1(µ̂).
When h−1 does not exist (i.e., h is not one-to-one), any solution of µ̂ = h(θ̂) is a moment
estimator of θ;
if possible, we always choose a solution θ̂ in the parameter space Θ.
In some cases, however, a moment estimator does not exist (see Exercise 111).

Assume that θ̂ = g(µ̂) for a function g.
If h−1 exists, then g = h−1.
If g is continuous at µ = (µ1, ..., µk), then θ̂ is strongly consistent for θ, since µ̂j →a.s. µj by
the SLLN.
If g is differentiable at µ and E|X1|

2k < ∞, then θ̂ is asymptotically normal, by the CLT
and Theorem 1.12, and

amseθ̂(θ) = n−1[∇g(µ)]τVµ∇g(µ),

where Vµ is a k × k matrix whose (i, j)th element is µi+j − µiµj.

Furthermore, the n−1 order asymptotic bias of θ̂ is

(2n)−1tr
(

∇2g(µ)Vµ

)

.

1



Example 3.24. Let X1, ..., Xn be i.i.d. from a population Pθ indexed by the parameter
θ = (µ, σ2), where µ = EX1 ∈ R and σ2 = Var(X1) ∈ (0,∞).
This includes cases such as the family of normal distributions, double exponential distribu-
tions, or logistic distributions (Table 1.2, page 20).
Since EX1 = µ and EX2

1 = Var(X1) + (EX1)
2 = σ2 + µ2, setting µ̂1 = µ and µ̂2 = σ2 + µ2

we obtain the moment estimator

θ̂ =

(

X̄,
1

n

n
∑

i=1

(Xi − X̄)2

)

=
(

X̄,
n − 1

n
S2
)

.

Note that X̄ is unbiased, but n−1
n

S2 is not.

If Xi is normal, then θ̂ is sufficient and is nearly the same as an optimal estimator such as
the UMVUE.
On the other hand, if Xi is from a double exponential or logistic distribution, then θ̂ is not
sufficient and can often be improved.

Consider now the estimation of σ2 when we know that µ = 0.
Obviously we cannot use the equation µ̂1 = µ to solve the problem.
Using µ̂2 = µ2 = σ2, we obtain the moment estimator σ̂2 = µ̂2 = n−1∑n

i=1 X2
i .

This is still a good estimator when Xi is normal, but is not a function of sufficient statistic
when Xi is from a double exponential distribution.
For the double exponential case one can argue that we should first make a transformation
Yi = |Xi| and then obtain the moment estimator based on the transformed data.
The moment estimator of σ2 based on the transformed data is Ȳ 2 = (n−1∑n

i=1 |Xi|)
2, which

is sufficient for σ2.
Note that this estimator can also be obtained based on absolute moment equations.

Example 3.25. Let X1, ..., Xn be i.i.d. from the uniform distribution on (θ1, θ2), −∞ <
θ1 < θ2 < ∞.
Note that

EX1 = (θ1 + θ2)/2

and
EX2

1 = (θ2
1 + θ2

2 + θ1θ2)/3.

Setting µ̂1 = EX1 and µ̂2 = EX2
1 and substituting θ1 in the second equation by 2µ̂1 − θ2

(the first equation), we obtain that

(2µ̂1 − θ2)
2 + θ2

2 + (2µ̂1 − θ2)θ2 = 3µ̂2,

which is the same as
(θ2 − µ̂1)

2 = 3(µ̂2 − µ̂2
1).

Since θ2 > EX1, we obtain that

θ̂2 = µ̂1 +
√

3(µ̂2 − µ̂2
1) = X̄ +

√

3(n−1)
n

S2

2



and
θ̂1 = µ̂1 −

√

3(µ̂2 − µ̂2
1) = X̄ −

√

3(n−1)
n

S2.

These estimators are not functions of the sufficient and complete statistic (X(1), X(n)).

Example 3.26. Let X1, ..., Xn be i.i.d. from the binomial distribution Bi(p, k) with unknown
parameters k ∈ {1, 2, ...} and p ∈ (0, 1).
Since

EX1 = kp

and
EX2

1 = kp(1 − p) + k2p2,

we obtain the moment estimators

p̂ = (µ̂1 + µ̂2
1 − µ̂2)/µ̂1 = 1 − n−1

n
S2/X̄

and
k̂ = µ̂2

1/(µ̂1 + µ̂2
1 − µ̂2) = X̄/(1 − n−1

n
S2/X̄).

The estimator p̂ is in the range of (0, 1).
But k̂ may not be an integer.
It can be improved by an estimator that is k̂ rounded to the nearest positive integer.

Example 3.27. Suppose that X1, ..., Xn are i.i.d. from the Pareto distribution Pa(a, θ) with
unknown a > 0 and θ > 2 (Table 1.2, page 20).
Note that

EX1 = θa/(θ − 1)

and
EX2

1 = θa2/(θ − 2).

From the moment equation,
(θ−1)2

θ(θ−2)
= µ̂2/µ̂

2
1.

Note that (θ−1)2

θ(θ−2)
− 1 = 1

θ(θ−2)
.

Hence
θ(θ − 2) = µ̂2

1/(µ̂2 − µ̂2
1).

Since θ > 2, there is a unique solution in the parameter space:

θ̂ = 1 +
√

µ̂2/(µ̂2 − µ̂2
1) = 1 +

√

1 + n
n−1

X̄2/S2

and

â =
µ̂1(θ̂ − 1)

θ̂

= X̄
√

1 + n
n−1

X̄2/S2
/(

1 +
√

1 + n
n−1

X̄2/S2
)

.
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Exercise 108. Let X1, ..., Xn be a random sample from the following discrete distribution:

P (X1 = 1) =
2(1 − θ)

2 − θ
, P (X1 = 2) =

θ

2 − θ
,

where θ ∈ (0, 1) is unknown.
Note that

EX1 =
2(1 − θ)

2 − θ
+

2θ

2 − θ
=

2

2 − θ
.

Hence, a moment estimator of θ is θ̂ = 2(1 − X̄−1), where X̄ is the sample mean.
Note that

Var(X1) =
2(1 − θ)

2 − θ
+

4θ

2 − θ
−

4

(2 − θ)2
=

4θ − 2θ2 − 4

(2 − θ)2
,

θ = 2(1 − µ−1) = g(µ),

g′(µ) = 2/µ2 = 2/[2/(2 − θ)]2 = (2 − θ)2/2.

By the central limit theorem and δ-method,

√
n(θ̂ − θ) →d N

(

0,
(2 − θ)2(2θ − θ2 − 2)

2

)

.

The method of moments can also be applied to nonparametric problems.
Consider, for example, the estimation of the central moments

cj = E(X1 − µ1)
j , j = 2, ..., k.

Since

cj =
j
∑

t=0

(

j

t

)

(−µ1)
tµj−t,

the moment estimator of cj is

ĉj =
j
∑

t=0

(

j

t

)

(−X̄)tµ̂j−t,

where µ̂0 = 1.
It can be shown (exercise) that

ĉj =
1

n

n
∑

i=1

(Xi − X̄)j , j = 2, ..., k, (2)

which are sample central moments.
From the SLLN, ĉj’s are strongly consistent.
If E|X1|

2k < ∞, then √
n (ĉ2 − c2, ..., ĉk − ck) →d Nk−1(0, D) (3)

where the (i, j)th element of the (k − 1) × (k − 1) matrix D is

ci+j+2 − ci+1cj+1 − (i + 1)cicj+2 − (j + 1)ci+2cj + (i + 1)(j + 1)cicjc2.
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Lecture 40: V-statistics and the weighted LSE

Let X1, ..., Xn be i.i.d. from P .
For every U-statistic Un as an estimator of ϑ = E[h(X1, ..., Xm)], there is a closely related
V-statistic defined by

Vn =
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

h(Xi1 , ..., Xim). (1)

As an estimator of ϑ, Vn is biased; but the bias is small asymptotically as the following
results show.
For a fixed sample size n, Vn may be better than Un in terms of their mse’s.

Proposition 3.5. Let Vn be defined by (1).
(i) Assume that E|h(Xi1 , ..., Xim)| < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Then the bias of Vn satisfies

bVn
(P ) = O(n−1).

(ii) Assume that E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the variance
of Vn satisfies

Var(Vn) = Var(Un) + O(n−2),

where Un is the U-statistic corresponding to Vn.

To study the asymptotic behavior of a V-statistic, we consider the following representation
of Vn in (1):

Vn =
m
∑

j=1

(

m

j

)

Vnj,

where

Vnj = ϑ +
1

nj

n
∑

i1=1

· · ·
n
∑

ij=1

gj(Xi1, ..., Xij )

is a “V-statistic” with

gj(x1, ..., xj) =hj(x1, ..., xj) −
j
∑

i=1

∫

hj(x1, ..., xj)dP (xi)

+
∑

1≤i1<i2≤j

∫ ∫

hj(x1, ..., xj)dP (xi1)dP (xi2) − · · ·

+ (−1)j

∫

· · ·
∫

hj(x1, ..., xj)dP (x1) · · ·dP (xj)

and hj(x1, ..., xj) = E[h(x1, ..., xj , Xj+1, ..., Xm)].
Using an argument similar to the proof of Theorem 3.4, we can show that

EV 2
nj = O(n−j), j = 1, ..., m, (2)

1



provided that E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m.
Thus,

Vn − ϑ = mVn1 + m(m−1)
2

Vn2 + op(n
−1), (3)

which leads to the following result similar to Theorem 3.5.

Theorem 3.16. Let Vn be given by (1) with E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤
im ≤ m.
(i) If ζ1 = Var(h1(X1)) > 0, then

√
n(Vn − ϑ) →d N(0, m2ζ1).

(ii) If ζ1 = 0 but ζ2 = Var(h2(X1, X2)) > 0, then

n(Vn − ϑ) →d

m(m − 1)

2

∞
∑

j=1

λjχ
2
1j ,

where χ2
1j ’s and λj ’s are the same as those in Theorem 3.5.

Theorem 3.16 shows that if ζ1 > 0, then the amse’s of Un and Vn are the same. If ζ1 = 0
but ζ2 > 0, then an argument similar to that in the proof of Lemma 3.2 leads to

amseVn
(P )=

m2(m − 1)2ζ2

2n2
+

m2(m − 1)2

4n2





∞
∑

j=1

λj





2

=amseUn
(P ) +

m2(m − 1)2

4n2





∞
∑

j=1

λj





2

(see Lemma 3.2). Hence Un is asymptotically more efficient than Vn, unless
∑

∞

j=1 λj = 0.

Example 3.28. Consider the estimation of µ2, where µ = EX1.
From the results in §3.2, the U-statistic Un = 1

n(n−1)

∑

1≤i<j≤n XiXj is unbiased for µ2.

The corresponding V-statistic is simply Vn = X̄2.
If µ 6= 0, then ζ1 6= 0 and the asymptotic relative efficiency of Vn w.r.t. Un is 1.
If µ = 0, then

nVn →d σ2χ2
1 and nUn →d σ2(χ2

1 − 1),

where χ2
1 is a random variable having the chi-square distribution χ2

1.
Hence the asymptotic relative efficiency of Vn w.r.t. Un is

E(χ2
1 − 1)2/E(χ2

1)
2 = 2/3.
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The weighted LSE

In the linear model
X = Zβ + ε, (4)

the unbiased LSE of lτβ may be improved by a slightly biased estimator when V = Var(ε)
is not σ2In and the LSE is not BLUE.

Assume that Z is of full rank so that every lτβ is estimable.
If V is known, then the BLUE of lτβ is lτ β̆, where

β̆ = (ZτV −1Z)−1ZτV −1X (5)

(see the discussion after the statement of assumption A3 in §3.3.1).
If V is unknown and V̂ is an estimator of V , then an application of the substitution principle
leads to a weighted least squares estimator

β̂w = (Zτ V̂ −1Z)−1Zτ V̂ −1X. (6)

The weighted LSE is not linear in X and not necessarily unbiased for β.
If the distribution of ε is symmetric about 0 and V̂ remains unchanged when ε changes to
−ε, then the distribution of β̂w − β is symmetric about 0 and, if Eβ̂w is well defined, β̂w is
unbiased for β.
In such a case the LSE lτ β̂ may not be a UMVUE (when ε is normal), since Var(lτ β̂w) may
be smaller than Var(lτ β̂).

Asymptotic properties of the weighted LSE depend on the asymptotic behavior of V̂ .
We say that V̂ is consistent for V if and only if

‖V̂ −1V − In‖max →p 0, (7)

where ‖A‖max = maxi,j |aij| for a matrix A whose (i, j)th element is aij .

Theorem 3.17. Consider model (4) with a full rank Z. Let β̆ and β̂w be defined by (5) and
(6), respectively, with a V̂ consistent in the sense of (7). Assume the conditions in Theorem
3.12. Then

lτ (β̂w − β)/an →d N(0, 1),

where l ∈ Rp, l 6= 0, and
a2

n = Var(lτ β̆) = lτ (ZτV −1Z)−1l.

Proof. Using the same argument as in the proof of Theorem 3.12, we obtain that

lτ (β̆ − β)/an →d N(0, 1).

By Slutsky’s theorem, the result follows from

lτ β̂w − lτ β̆ = op(an).
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Define
ξn = lτ (Zτ V̂ −1Z)−1Zτ (V̂ −1 − V −1)ε

and
ζn = lτ [(Zτ V̂ −1Z)−1 − (ZτV −1Z)−1]ZτV −1ε.

Then
lτ β̂w − lτ β̆ = ξn + ζn.

The result follows from ξn = op(an) and ζn = op(an) (details are in the textbook).

Theorem 3.17 shows that as long as V̂ is consistent in the sense of (7), the weighted LSE β̂w

is asymptotically as efficient as β̆, which is the BLUE if V is known.
By Theorems 3.12 and 3.17, the asymptotic relative efficiency of the LSE lτ β̂ w.r.t. the
weighted LSE lτ β̂w is

lτ (ZτV −1Z)−1l

lτ (ZτZ)−1ZτV Z(ZτZ)−1l
,

which is always less than 1 and equals 1 if lτ β̂ is a BLUE (in which case β̂ = β̆).

Finding a consistent V̂ is possible when V has a certain type of structure.

Example 3.29. Consider model (4). Suppose that V = Var(ε) is a block diagonal matrix
with the ith diagonal block

σ2Imi
+ UiΣU τ

i , i = 1, ..., k, (8)

where mi’s are integers bounded by a fixed integer m, σ2 > 0 is an unknown parameter, Σ is
a q×q unknown nonnegative definite matrix, Ui is an mi×q full rank matrix whose columns
are in R(Wi), q < infi mi, and Wi is the p × mi matrix such that Zτ = ( W1 W2 ... Wk ).
Under (8), a consistent V̂ can be obtained if we can obtain consistent estimators of σ2 and
Σ.
Let X = (Y1, ..., Yk), where Yi is an mi-vector, and let Ri be the matrix whose columns are
linearly independent rows of Wi. Then

σ̂2 =
1

n − kq

k
∑

i=1

Y τ
i [Imi

− Ri(R
τ
i Ri)

−1Rτ
i ]Yi (9)

is an unbiased estimator of σ2.
Assume that Yi’s are independent and that supi E|εi|

2+δ < ∞ for some δ > 0.
Then σ̂2 is consistent for σ2 (exercise). Let ri = Yi − W τ

i β̂ and

Σ̂ =
1

k

k
∑

i=1

[

(U τ
i Ui)

−1U τ
i rir

τ
i Ui(U

τ
i Ui)

−1 − σ̂2(U τ
i Ui)

−1
]

. (10)

It can be shown (exercise) that Σ̂ is consistent for Σ in the sense that ‖Σ̂ − Σ‖max →p 0 or,

equivalently, ‖Σ̂ − Σ‖ →p 0 (see Exercise 116).
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