Math (P)refresher Lecture 8: Unconstrained Optimization

September 2006

Today's Topics*: • Quadratic Forms • Definiteness of Quadratic Forms • Maxima and Minima in \mathbb{R}^n • First Order Conditions • Second Order Conditions • Global Maxima and Minima

1 Quadratic Forms

- Quadratic forms important because
 - 1. Approximates local curvature around a point e.g., used to identify max vs min vs saddle point.
 - 2. Simple, so easy to deal with.
 - 3. Have a matrix representation.
- Quadratic Form: A polynomial where each term is a monomial of degree 2:

$$Q(x_1, \cdots, x_n) = \sum_{i \le j} a_{ij} x_i x_j$$

which can be written in matrix terms

$$Q(\mathbf{x}) = \begin{pmatrix} x1 & x2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \cdots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{12} & a_{22} & \cdots & \frac{1}{2}a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2}a_{1n} & \frac{1}{2}a_{2n} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

or

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$

- Examples:
 - 1. Quadratic on \mathbf{R}^2 :

$$Q(x_1, x_2) = (x_1 \quad x_2) \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} \\ \frac{1}{2}a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2$$

2. Quadratic on \mathbf{R}^3 :

$$Q(x_1, x_2, x_3) = (x_1 \quad x_2 \quad x_3) \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \frac{1}{2}a_{13} \\ \frac{1}{2}a_{12} & a_{22} & \frac{1}{2}a_{23} \\ \frac{1}{2}a_{13} & \frac{1}{2}a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

^{*}Much of the material and examples for this lecture are taken from Simon & Blume (1994) Mathematics for Economists and Ecker & Kupferschmid (1988) Introduction to Operations Research.

$\mathbf{2}$ **Definiteness of Quadratic Forms**

- Definiteness helps identify the curvature of $Q(\mathbf{x})$ at \mathbf{x} .
- Definiteness: By definition, $Q(\mathbf{x}) = 0$ at $\mathbf{x} = 0$. The definiteness of the matrix A is determined by whether the quadratic form $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is greater than zero, less than zero, or sometimes both over all $\mathbf{x} \neq 0$.

1. Positive Definite	$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \forall \mathbf{x} \neq 0$	Min
2. Positive Semidefinite	$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0, \forall \mathbf{x} \ne 0$	
3. Negative Definite	$\mathbf{x}^T \mathbf{A} \mathbf{x} < 0, \forall \mathbf{x} \neq 0$	Max
4. Negative Semidefinite	$\mathbf{x}^T \mathbf{A} \mathbf{x} \le 0, \forall \mathbf{x} \ne 0$	
5. Indefinite	$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for some $\mathbf{x} \neq 0$ and	Neitł

0

• Examples:

ther $\mathbf{x}^T \mathbf{A} \mathbf{x} < 0$ for other $\mathbf{x} \neq 0$

$$Q(\mathbf{x}) = \mathbf{x}^T \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$
$$= x_1^2 + x_2^2$$

2. Positive Semidefinite:

$$Q(\mathbf{x}) = \mathbf{x}^T \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{x}$$
$$= (x_1 - x_2)^2$$

3. Indefinite:

3 Test for Definiteness using Principal Minors

- Given an $n \times n$ matrix **A**, kth order **principal minors** are the determinants of the $k \times k$ submatrices along the diagonal obtained by deleting n k columns and the same n k rows from **A**.
- Example: For a 3×3 matrix **A**,
 - 1. First order principle minors:

$$|a_{11}|, |a_{22}|, |a_{33}|$$

2. Second order principle minors:

 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}, \quad \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$

- 3. Third order principle minor: $|\mathbf{A}|$
- Define the kth leading principal minor M_k as the determinant of the $k \times k$ submatrix obtained by deleting the last n k rows and columns from **A**.
- Example: For a 3×3 matrix **A**, the three leading principal minors are

$$M_1 = |a_{11}|, \quad M_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad M_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

- Algorithm: If **A** is an $n \times n$ symmetric matrix, then
 - 1. $M_k > 0, \ k = 1, ..., n$ \implies Positive Definite 2. $M_k < 0, \text{ for odd } k \text{ and}$ \implies Negative Definite $M_k > 0, \text{ for even } k$ 3. $M_k \neq 0, \ k = 1, ..., n,$ \implies Indefinite.
 - 3. $M_k \neq 0, \ k = 1, \dots, n,$ \implies but does not fit the pattern of 1 or 2.
- If some leading principle minor is zero, but all others fit the pattern of the preceding conditions 1 or 2, then
 - 1. Every principal minor $\geq 0 \implies$ Positive Semidefinite
 - 2. Every principal minor of odd \implies Negative Semidefinite order ≤ 0 and every principal minor of even order ≥ 0

4 Maxima and Minima in \mathbb{R}^n

• Conditions for Extrema: The conditions for extrema are similar to those for functions on \mathbf{R}^1 . Let $f(\mathbf{x})$ be a function of n variables. Let $B(\mathbf{x}, \epsilon)$ be the ϵ -ball about the point \mathbf{x} . Then

1. $f(\mathbf{x}^*) > f(\mathbf{x}), \ \forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$	\implies	Strict Local Max
2. $f(\mathbf{x}^*) \ge f(\mathbf{x}), \forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$	\implies	Local Max
3. $f(\mathbf{x}^*) < f(\mathbf{x}), \ \forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$	\implies	Strict Local Min
4. $f(\mathbf{x}^*) \le f(\mathbf{x}), \forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$	\implies	Local Min

5 First Order Conditions

- When we examined functions of one variable x, we found critical points by taking the first derivative, setting it to zero, and solving for x. For functions of n variables, the critical points are found in much the same way, except now we set the partial derivatives equal to zero.[†]
- Given a function $f(\mathbf{x})$ in *n* variables, the **gradient** $\nabla f(\mathbf{x})$ is a column vector, where the *i*th element is the partial derivative of $f(\mathbf{x})$ with respect to x_i :

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

- \mathbf{x}^* is a critical point iff $\nabla f(\mathbf{x}^*) = 0$.
- Example: Find the critical points of $f(\mathbf{x}) = (x_1 1)^2 + x_2^2 + 1$
 - 1. The partial derivatives of $f(\mathbf{x})$ are

$$\frac{\partial f(\mathbf{x})}{\partial x_1} = 2(x_1 - 1)$$
$$\frac{\partial f(\mathbf{x})}{\partial x_2} = 2x_2$$

2. Setting each partial equal to zero and solving for x_1 and x_2 , we find that there's a critical point at $\mathbf{x}^* = (1, 0)$.

6 Second Order Conditions

- When we found a critical point for a function of one variable, we used the second derivative as an indicator of the curvature at the point in order to determine whether the point was a min, max, or saddle. For functions of *n* variables, we use second order partial derivatives as an indicator of curvature.
- Given a function $f(\mathbf{x})$ of *n* variables, the **Hessian** $\mathbf{H}(\mathbf{x})$ is an $n \times n$ matrix, where the (i, j)th element is the second order partial derivative of $f(\mathbf{x})$ with respect to x_i and x_j :

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{pmatrix}$$

• Curvature and The Taylor Polynomial as a Quadratic Form: The Hessian is used in a Taylor polynomial approximation to $f(\mathbf{x})$ and provides information about the curvature of $f(\mathbf{x})$ at \mathbf{x} — e.g., which tells us whether a critical point \mathbf{x}^* is a min, max, or saddle point.

[†]We will only consider critical points on the interior of a function's domain.

1. The second order Taylor polynomial about the critical point \mathbf{x}^* is

$$f(\mathbf{x}^* + \mathbf{h}) = f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)\mathbf{h} + \frac{1}{2}\mathbf{h}^T \mathbf{H}(\mathbf{x}^*)\mathbf{h} + R(\mathbf{h})$$

2. Since we're looking at a critical point, $\nabla f(\mathbf{x}^*) = 0$; and for small \mathbf{h} , $R(\mathbf{h})$ is negligible. Rearranging, we get

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) \approx \frac{1}{2}\mathbf{h}^T \mathbf{H}(\mathbf{x}^*)\mathbf{h}$$

- 3. The RHS is a quadratic form and we can determine the definiteness of $\mathbf{H}(\mathbf{x}^*)$.
 - (a) If $\mathbf{H}(\mathbf{x}^*)$ is positive definite, then the RHS is positive for all small h:

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) > 0 \implies f(\mathbf{x}^* + \mathbf{h}) > f(\mathbf{x}^*)$$

i.e., $f(\mathbf{x}^*) < f(\mathbf{x}), \forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$, so \mathbf{x}^* is a strict local min.

(b) Conversely, if H(x*) is negative definite, then the RHS is negative for all small h: f(x* + h) − f(x*) < 0 ⇒ f(x* + h) < f(x*)
i.e., f(x*) > f(x), ∀x ∈ B(x*, ε), so x* is a strict local max.

• Summary of Second Order Conditions:

Given a function $f(\mathbf{x})$ and a point \mathbf{x}^* such that $\nabla f(\mathbf{x}^*) = 0$,

- 1. $\mathbf{H}(\mathbf{x}^*)$ Positive Definite \implies Strict Local Min 2. $\mathbf{H}(\mathbf{x})$ Positive Semidefinite Local Min \implies $\forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$ 3. $\mathbf{H}(\mathbf{x}^*)$ Negative Definite Strict Local Max \implies 4. $\mathbf{H}(\mathbf{x})$ Negative Semidefinite Local Max \implies $\forall \mathbf{x} \in B(\mathbf{x}^*, \epsilon)$ 5. $\mathbf{H}(\mathbf{x}^*)$ Indefinite \implies Saddle Point
- Example: We found that the only critical point of $f(\mathbf{x}) = (x_1 1)^2 + x_2^2 + 1$ is at $\mathbf{x}^* = (1, 0)$. Is it a min, max, or saddle point?
 - 1. Recall that the gradient of $f(\mathbf{x})$ is

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 2(x_1 - 1) \\ 2x_2 \end{pmatrix}$$

Then the Hessian is

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix}$$

- 2. To check the definiteness of $\mathbf{H}(\mathbf{x}^*)$, we could use either of two methods:
 - (a) Determine whether $\mathbf{x}^{T}\mathbf{H}(\mathbf{x}^{*})\mathbf{x}$ is greater or less than zero for all $\mathbf{x} \neq \mathbf{0}$:

$$\mathbf{x}^{\mathbf{T}}\mathbf{H}(\mathbf{x}^*)\mathbf{x} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2x_1^2 + 2x_2^2$$

For any $\mathbf{x} \neq \mathbf{0}$, $2(x_1^2 + x_2^2) > 0$, so the Hessian is positive definite and \mathbf{x}^* is a strict local minimum.

(b) Using the method of leading principal minors, we see that $M_1 = 2$ and $M_2 = 4$. Since both are positive, the Hessian is positive definite and \mathbf{x}^* is a strict local minimum.

7 Global Maxima and Minima

• To determine whether a critical point is a global min or max, we can check the concavity of the function over its entire domain. Here again we use the definiteness of the Hessian to determine whether a function is globally concave or convex:

2. $\mathbf{H}(\mathbf{x})$ Negative Semidefinite $\forall \mathbf{x} \implies$ Globally Concave

Notice that the definiteness conditions must be satisfied over the entire domain.

- Given a function $f(\mathbf{x})$ and a point \mathbf{x}^* such that $\nabla f(\mathbf{x}^*) = 0$,
 - 1. $f(\mathbf{x})$ Globally Convex \implies Global Min
 - 2. $f(\mathbf{x})$ Globally Concave \implies Global Max
- Note that showing that $\mathbf{H}(\mathbf{x}^*)$ is negative semidefinite is not enough to guarantee \mathbf{x}^* is a local max. However, showing that $\mathbf{H}(\mathbf{x})$ is negative semidefinite for all \mathbf{x} guarantees that x^* is a global max. (The same goes for positive semidefinite and minima.)
- Example: Take $f_1(x) = x^4$ and $f_2(x) = -x^4$. Both have x = 0 as a critical point. Unfortunately, $f_1''(0) = 0$ and $f_2''(0) = 0$, so we can't tell whether x = 0 is a min or max for either. However, $f_1''(x) = 12x^2$ and $f_2''(x) = -12x^2$. For all x, $f_1''(x) \ge 0$ and $f_2''(x) \le 0$ — i.e., $f_1(x)$ is globally convex and $f_2(x)$ is globally concave. So x = 0 is a global min of $f_1(x)$ and a global max of $f_2(x)$.

8 One More Example

- Given $f(\mathbf{x}) = x_1^3 x_2^3 + 9x_1x_2$, find any maxima or minima.
 - 1. First order conditions. Set the gradient equal to zero and solve for x_1 and x_2 .

$$\frac{\partial f}{\partial x_1} = 3x_1^2 + 9x_2 = 0$$
$$\frac{\partial f}{\partial x_2} = -3x_2^2 + 9x_1 = 0$$

We have two equations in two unknowns. Solving for x_1 and x_2 , we get two critical points: $\mathbf{x}_1^* = (0,0)$ and $\mathbf{x}_1^* = (3,-3)$.

2. Second order conditions. Determine whether the Hessian is positive or negative definite. The Hessian is

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} 6x_1 & 9\\ 9 & -6x_2 \end{pmatrix}$$

Evaluated at \mathbf{x}_1^* ,

$$\mathbf{H}(\mathbf{x}_1^*) = \begin{pmatrix} 0 & 9\\ 9 & 0 \end{pmatrix}$$

The two leading principal minors are $M_1 = 0$ and $M_2 = -81$, so $\mathbf{H}(\mathbf{x}_1^*)$ is indefinite and $\mathbf{x}_1^* = (0,0)$ is a saddle point.

Evaluated at \mathbf{x}_2^* ,

$$\mathbf{H}(\mathbf{x}_2^*) = \begin{pmatrix} 18 & 9\\ 9 & 18 \end{pmatrix}$$

The two leading principal minors are $M_1 = 18$ and $M_2 = 243$. Since both are positive, $\mathbf{H}(\mathbf{x}_2^*)$ is positive definite and $\mathbf{x}_2^* = (3, -3)$ is a strict local min.

3. Global concavity/convexity. In evaluating the Hessians for \mathbf{x}_1^* and \mathbf{x}_2^* we saw that the Hessian is not everywhere positive semidefinite. Hence, we can't infer that $\mathbf{x}_2^* = (3, -3)$ is a global minimum. In fact, if we set $x_1 = 0$, the $f(\mathbf{x}) = -x_2^3$, which will go to $-\infty$ as $x_2 \to \infty$.