Math (P)refresher Lecture 8:

Unconstrained Optimization

September 2006

Today’s Topics*: e Quadratic Forms e Definiteness of Quadratic Forms e Maxima and Minima
in R" e First Order Conditions e Second Order Conditions e Global Maxima and Minima

1 Quadratic Forms

e Quadratic forms important because

1. Approximates local curvature around a point — e.g., used to identify max vs min vs
saddle point.
2. Simple, so easy to deal with.

3. Have a matrix representation.

e Quadratic Form: A polynomial where each term is a monomial of degree 2:

Qx1, - x0) = Y aijmiz;

i<j
which can be written in matrix terms
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e Examples:

1. Quadratic on R?:
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2. Quadratic on R3:
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Q(z1,22,73) = (3?1 T2 363) 5012 Q22 3023 T2
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2 2 2
= a117] + a22x3 + a33r3 + a1221x2 + 132123 + A23T2T3

*Much of the material and examples for this lecture are taken from Simon & Blume (1994) Mathematics for
Economists and Ecker & Kupferschmid (1988) Introduction to Operations Research.
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2 Definiteness of Quadratic Forms

e Definiteness helps identify the curvature of Q(x) at x.

e Definiteness: By definition, Q(x) = 0 at x = 0. The definiteness of the matrix A is
determined by whether the quadratic form Q(x) = x? Ax is greater than zero, less than zero,
or sometimes both over all x # 0.

1. Positive Definite x'Ax >0, Vx#0 Min

2. Positive Semidefinite xI'Ax >0, Vx #£0

3. Negative Definite xT'Ax <0, Vx#0 Max

4. Negative Semidefinite xTAx < 0, Vx#0

5. Indefinite xT"Ax > 0 for some x # 0 and  Neither

xT Ax < 0 for other x # 0

e Examples:
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3. Indefinite:
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3 Test for Definiteness using Principal Minors

e Given an n X n matrix A, kth order principal minors are the determinants of the k x k
submatrices along the diagonal obtained by deleting n — k columns and the same n — k rows
from A.

e Example: For a 3 x 3 matrix A,

1. First order principle minors:

la11], a2, |ass]
2. Second order principle minors:
air  ai12 ail a13 az2 023
a1 az|’ |as1 as3|’  |as2 ass

3. Third order principle minor: |A|

e Define the kth leading principal minor M as the determinant of the & x k submatrix
obtained by deleting the last n — k rows and columns from A.

e Example: For a 3 x 3 matrix A, the three leading principal minors are

ailp a2 a3

ai; a2
, M3z =lax a2 a3

M = |a11|, My =
as  ag

aszy asz2 ag3

e Algorithm: If A is an n X n symmetric matrix, then

1. M, >0, k=1,...,n = Positive Definite
2. My <0, for odd k and = Negative Definite
My, > 0, for even k
3. My #0, k=1,...,n, = Indefinite.
but does not fit the pattern of
1or 2.
e If some leading principle minor is zero, but all others fit the pattern of the preceding conditions
1 or 2, then
1. Every principal minor > 0 == Positive Semidefinite
2. Every principal minor of odd == Negative Semidefinite

order < 0 and every principal
minor of even order > 0

4 Maxima and Minima in R"

e Conditions for Extrema: The conditions for extrema are similar to those for functions on
R!. Let f(x) be a function of n variables. Let B(x,¢€) be the e-ball about the point x. Then

1. f(x*) > f(x), Vx € B(x*,¢) = Strict Local Max
2. f(x*) > f(x), Vx € B(x*,¢) = Local Max
3. f(x*) < f(x), Vx € B(x*,¢) = Strict Local Min
4. f(x*) < f(x), Vx € B(x*,¢) = Local Min
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5 First Order Conditions

e When we examined functions of one variable x, we found critical points by taking the first
derivative, setting it to zero, and solving for x. For functions of n variables, the critical points
are found in much the same way, except now we set the partial derivatives equal to zero.

e Given a function f(x) in n variables, the gradient V f(x) is a column vector, where the ith
element is the partial derivative of f(x) with respect to x;:

0f (%)
ox1

0f(x)
Vi) = | o

0f(x)
OTn

e x* is a critical point iff V f(x*) = 0.
e Example: Find the critical points of f(x) = (v1 — 1) + 22 +1
1. The partial derivatives of f(x) are

9f(x)

ofx) _
82?2 = 2:L‘2

2. Setting each partial equal to zero and solving for x1 and x5, we find that there’s a critical
point at x* = (1,0).

6 Second Order Conditions

e When we found a critical point for a function of one variable, we used the second derivative
as an indicator of the curvature at the point in order to determine whether the point was a
min, max, or saddle. For functions of n variables, we use second order partial derivatives as
an indicator of curvature.

e Given a function f(x) of n variables, the Hessian H(x) is an n x n matrix, where the (i, j)th
element is the second order partial derivative of f(x) with respect to z; and z;:

Pfx)  Pfx) . X
ox? 0x10x2 0x10zn
Pfx) Pf(x) .. 9f(x)
H(X) — O0x20x1 89:% 0x20Ty
f(x) P . P
0rn,0z1  Oxpndxo Or2

e Curvature and The Taylor Polynomial as a Quadratic Form: The Hessian is used in
a Taylor polynomial approximation to f(x) and provides information about the curvature of
f(x) at x — e.g., which tells us whether a critical point x* is a min, max, or saddle point.

fWe will only consider critical points on the interior of a function’s domain.
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1. The second order Taylor polynomial about the critical point x* is
1
FOx* + ) = f() + V(< )b+ ShH( )b+ R(b)

2. Since we're looking at a critical point, V f(x*) = 0; and for small h, R(h) is negligible.
Rearranging, we get

Fx 1) — f(x) = hTH(<)h

3. The RHS is a quadratic form and we can determine the definiteness of H(x*).

(a) If H(x*) is positive definite, then the RHS is positive for all small h:
FHh) - f(x) >0 = f(x+h) > f(x)

e, f(x*) < f(x), Vx € B(x*,€), so x* is a strict local min.

(b) Conversely, if H(x*) is negative definite, then the RHS is negative for all small h:
fX+h) - fx) <0 = [f(x"+h)<[f(x")

ie., f(x*) > f(x), Vx € B(x*,€), so x* is a strict local max.

e Summary of Second Order Conditions:

Given a function f(x) and a point x* such that Vf(x*) =0,

1. H(x*) Positive Definite = Strict Local Min
2. H(x) Positive Semidefinite = Local Min

Vx € B(x*,¢€)
3. H(x*) Negative Definite = Strict Local Max
4. H(x) Negative Semidefinite —> Local Max

Vx € B(x*,¢€)
5. H(x*) Indefinite = Saddle Point

e Example: We found that the only critical point of f(x) = (z1 — 1)+ 23 + 1 is at x* = (1,0).
Is it a min, max, or saddle point?

1. Recall that the gradient of f(x) is

vre = (%, )

21’2

=3 )

2. To check the definiteness of H(x*), we could use either of two methods:

Then the Hessian is

(a) Determine whether xTH(x*)x is greater or less than zero for all x # O:

20
xTH(x")x = (21 22) (0 2> (2) = 22% + 223

For any x # 0, 2(z} + 23) > 0, so the Hessian is positive definite and x* is a strict
local minimum.

(b) Using the method of leading principal minors, we see that M; = 2 and My = 4. Since
both are positive, the Hessian is positive definite and x* is a strict local minimum.



Math (P)refresher: Unconstrained Optimization 6
7 Global Maxima and Minima

e To determine whether a critical point is a global min or max, we can check the concavity
of the function over its entire domain. Here again we use the definiteness of the Hessian to
determine whether a function is globally concave or convex:

1. H(x) Positive Semidefinite Vx =  Globally Convex
2. H(x) Negative Semidefinite Vx =  Globally Concave

Notice that the definiteness conditions must be satisfied over the entire domain.
e Given a function f(x) and a point x* such that V f(x*) =0,

1. f(x) Globally Convex = Global Min
2. f(x) Globally Concave —> Global Max

e Note that showing that H(x*) is negative semidefinite is not enough to guarantee x* is a local
max. However, showing that H(x) is negative semidefinite for all x guarantees that z* is a
global max. (The same goes for positive semidefinite and minima.)

e Example: Take f1(z) = 2* and fo(x) = —2*. Both have x = 0 as a critical point. Unfortu-
nately, f{(0) = 0 and fJ(0) = 0, so we can’t tell whether x = 0 is a min or max for either.
However, fi'(x) = 1222 and f(x) = —122%. For all z, f'(x) > 0 and f(x) <0 —i.e., fi(z)
is globally convex and fa(z) is globally concave. So x = 0 is a global min of fi(z) and a
global max of fa(z).

8 One More Example
e Given f(x) = 23 — 23 + 9x179, find any maxima or minima.

1. First order conditions. Set the gradient equal to zero and solve for x; and xs.

of
of
Ba; — omt9m=0

We have two equations in two unknowns. Solving for x1 and xo, we get two critical
points: x7 = (0,0) and x] = (3, —3).

2. Second order conditions. Determine whether the Hessian is positive or negative definite.

The Hessian is
. 6:E1 9
H(x) = ( 9 —6@)

He) = (g )

The two leading principal minors are M; = 0 and My = —81, so H(x7}) is indefinite and
x; = (0,0) is a saddle point.

Evaluated at x7,
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H(xa) = <198 198)

The two leading principal minors are M; = 18 and My = 243. Since both are positive,
H(x3) is positive definite and x5 = (3, —3) is a strict local min.

Evaluated at x3,

3. Global concavity/convexity. In evaluating the Hessians for xj and x3 we saw that the
Hessian is not everywhere positive semidefinite. Hence, we can’t infer that x5 = (3, —3)
is a global minimum. In fact, if we set 1 = 0, the f(x) = —3, which will go to —co as
9 — OQ.



