
Math (P)refresher Lecture 8:

Unconstrained Optimization

September 2006

Today’s Topics∗: • Quadratic Forms • Definiteness of Quadratic Forms • Maxima and Minima
in Rn • First Order Conditions • Second Order Conditions • Global Maxima and Minima

1 Quadratic Forms

• Quadratic forms important because

1. Approximates local curvature around a point — e.g., used to identify max vs min vs
saddle point.

2. Simple, so easy to deal with.
3. Have a matrix representation.

• Quadratic Form: A polynomial where each term is a monomial of degree 2:

Q(x1, · · · , xn) =
∑

i≤j

aijxixj

which can be written in matrix terms

Q(x) =
(
x1 x2 · · · xn

)



a11
1
2a12 · · · 1

2a1n
1
2a12 a22 · · · 1

2a2n
...

...
. . .

...
1
2a1n

1
2a2n · · · ann







x1

x2
...

xn




or
Q(x) = xTAx

• Examples:

1. Quadratic on R2:

Q(x1, x2) =
(
x1 x2

) (
a11

1
2a12

1
2a12 a22

)(
x1

x2

)

= a11x
2
1 + a12x1x2 + a22x

2
2

2. Quadratic on R3:

Q(x1, x2, x3) =
(
x1 x2 x3

)



a11
1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33







x1

x2

x3




= a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3

∗Much of the material and examples for this lecture are taken from Simon & Blume (1994) Mathematics for
Economists and Ecker & Kupferschmid (1988) Introduction to Operations Research.
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2 Definiteness of Quadratic Forms

• Definiteness helps identify the curvature of Q(x) at x.

• Definiteness: By definition, Q(x) = 0 at x = 0. The definiteness of the matrix A is
determined by whether the quadratic form Q(x) = xTAx is greater than zero, less than zero,
or sometimes both over all x 6= 0.

1. Positive Definite xTAx > 0, ∀x 6= 0 Min

2. Positive Semidefinite xTAx ≥ 0, ∀x 6= 0

3. Negative Definite xTAx < 0, ∀x 6= 0 Max

4. Negative Semidefinite xTAx ≤ 0, ∀x 6= 0

5. Indefinite xTAx > 0 for some x 6= 0 and
xTAx < 0 for other x 6= 0

Neither

• Examples:

1. Positive Definite:

Q(x) = xT

(
1 0
0 1

)
x

= x2
1 + x2

2

2. Positive Semidefinite:

Q(x) = xT

(
1 −1
−1 1

)
x

= (x1 − x2)2

3. Indefinite:

Q(x) = xT

(
1 0
0 −1

)
x

= x2
1 − x2

2
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3 Test for Definiteness using Principal Minors

• Given an n × n matrix A, kth order principal minors are the determinants of the k × k
submatrices along the diagonal obtained by deleting n− k columns and the same n− k rows
from A.

• Example: For a 3× 3 matrix A,

1. First order principle minors:
|a11|, |a22|, |a33|

2. Second order principle minors:
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ ,

∣∣∣∣
a11 a13

a31 a33

∣∣∣∣ ,

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣

3. Third order principle minor: |A|
• Define the kth leading principal minor Mk as the determinant of the k × k submatrix

obtained by deleting the last n− k rows and columns from A.

• Example: For a 3× 3 matrix A, the three leading principal minors are

M1 = |a11|, M2 =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ , M3 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

• Algorithm: If A is an n× n symmetric matrix, then

1. Mk > 0, k = 1, . . . , n =⇒ Positive Definite
2. Mk < 0, for odd k and

Mk > 0, for even k
=⇒ Negative Definite

3. Mk 6= 0, k = 1, . . . , n,
but does not fit the pattern of
1 or 2.

=⇒ Indefinite.

• If some leading principle minor is zero, but all others fit the pattern of the preceding conditions
1 or 2, then

1. Every principal minor ≥ 0 =⇒ Positive Semidefinite
2. Every principal minor of odd

order ≤ 0 and every principal
minor of even order ≥ 0

=⇒ Negative Semidefinite

4 Maxima and Minima in Rn

• Conditions for Extrema: The conditions for extrema are similar to those for functions on
R1. Let f(x) be a function of n variables. Let B(x, ε) be the ε-ball about the point x. Then

1. f(x∗) > f(x), ∀x ∈ B(x∗, ε) =⇒ Strict Local Max
2. f(x∗) ≥ f(x), ∀x ∈ B(x∗, ε) =⇒ Local Max
3. f(x∗) < f(x), ∀x ∈ B(x∗, ε) =⇒ Strict Local Min
4. f(x∗) ≤ f(x), ∀x ∈ B(x∗, ε) =⇒ Local Min
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5 First Order Conditions

• When we examined functions of one variable x, we found critical points by taking the first
derivative, setting it to zero, and solving for x. For functions of n variables, the critical points
are found in much the same way, except now we set the partial derivatives equal to zero.†

• Given a function f(x) in n variables, the gradient ∇f(x) is a column vector, where the ith
element is the partial derivative of f(x) with respect to xi:

∇f(x) =




∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xn




• x∗ is a critical point iff ∇f(x∗) = 0.

• Example: Find the critical points of f(x) = (x1 − 1)2 + x2
2 + 1

1. The partial derivatives of f(x) are

∂f(x)
∂x1

= 2(x1 − 1)

∂f(x)
∂x2

= 2x2

2. Setting each partial equal to zero and solving for x1 and x2, we find that there’s a critical
point at x∗ = (1, 0).

6 Second Order Conditions

• When we found a critical point for a function of one variable, we used the second derivative
as an indicator of the curvature at the point in order to determine whether the point was a
min, max, or saddle. For functions of n variables, we use second order partial derivatives as
an indicator of curvature.

• Given a function f(x) of n variables, the Hessian H(x) is an n×n matrix, where the (i, j)th
element is the second order partial derivative of f(x) with respect to xi and xj :

H(x) =




∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n




• Curvature and The Taylor Polynomial as a Quadratic Form: The Hessian is used in
a Taylor polynomial approximation to f(x) and provides information about the curvature of
f(x) at x — e.g., which tells us whether a critical point x∗ is a min, max, or saddle point.

†We will only consider critical points on the interior of a function’s domain.
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1. The second order Taylor polynomial about the critical point x∗ is

f(x∗ + h) = f(x∗) +∇f(x∗)h +
1
2
hTH(x∗)h + R(h)

2. Since we’re looking at a critical point, ∇f(x∗) = 0; and for small h, R(h) is negligible.
Rearranging, we get

f(x∗ + h)− f(x∗) ≈ 1
2
hTH(x∗)h

3. The RHS is a quadratic form and we can determine the definiteness of H(x∗).

(a) If H(x∗) is positive definite, then the RHS is positive for all small h:

f(x∗ + h)− f(x∗) > 0 =⇒ f(x∗ + h) > f(x∗)

i.e., f(x∗) < f(x), ∀x ∈ B(x∗, ε), so x∗ is a strict local min.

(b) Conversely, if H(x∗) is negative definite, then the RHS is negative for all small h:

f(x∗ + h)− f(x∗) < 0 =⇒ f(x∗ + h) < f(x∗)

i.e., f(x∗) > f(x), ∀x ∈ B(x∗, ε), so x∗ is a strict local max.

• Summary of Second Order Conditions:

Given a function f(x) and a point x∗ such that ∇f(x∗) = 0,

1. H(x∗) Positive Definite =⇒ Strict Local Min
2. H(x) Positive Semidefinite
∀x ∈ B(x∗, ε)

=⇒ Local Min

3. H(x∗) Negative Definite =⇒ Strict Local Max
4. H(x) Negative Semidefinite
∀x ∈ B(x∗, ε)

=⇒ Local Max

5. H(x∗) Indefinite =⇒ Saddle Point

• Example: We found that the only critical point of f(x) = (x1− 1)2 + x2
2 + 1 is at x∗ = (1, 0).

Is it a min, max, or saddle point?

1. Recall that the gradient of f(x) is

∇f(x) =
(

2(x1 − 1)
2x2

)

Then the Hessian is

H(x) =
(

2 0
0 2

)

2. To check the definiteness of H(x∗), we could use either of two methods:
(a) Determine whether xTH(x∗)x is greater or less than zero for all x 6= 0:

xTH(x∗)x =
(
x1 x2

) (
2 0
0 2

)(
x1

x2

)
= 2x2

1 + 2x2
2

For any x 6= 0, 2(x2
1 + x2

2) > 0, so the Hessian is positive definite and x∗ is a strict
local minimum.

(b) Using the method of leading principal minors, we see that M1 = 2 and M2 = 4. Since
both are positive, the Hessian is positive definite and x∗ is a strict local minimum.
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7 Global Maxima and Minima

• To determine whether a critical point is a global min or max, we can check the concavity
of the function over its entire domain. Here again we use the definiteness of the Hessian to
determine whether a function is globally concave or convex:

1. H(x) Positive Semidefinite ∀x =⇒ Globally Convex

2. H(x) Negative Semidefinite ∀x =⇒ Globally Concave

Notice that the definiteness conditions must be satisfied over the entire domain.

• Given a function f(x) and a point x∗ such that ∇f(x∗) = 0,

1. f(x) Globally Convex =⇒ Global Min

2. f(x) Globally Concave =⇒ Global Max

• Note that showing that H(x∗) is negative semidefinite is not enough to guarantee x∗ is a local
max. However, showing that H(x) is negative semidefinite for all x guarantees that x∗ is a
global max. (The same goes for positive semidefinite and minima.)

• Example: Take f1(x) = x4 and f2(x) = −x4. Both have x = 0 as a critical point. Unfortu-
nately, f ′′1 (0) = 0 and f ′′2 (0) = 0, so we can’t tell whether x = 0 is a min or max for either.
However, f ′′1 (x) = 12x2 and f ′′2 (x) = −12x2. For all x, f ′′1 (x) ≥ 0 and f ′′2 (x) ≤ 0 — i.e., f1(x)
is globally convex and f2(x) is globally concave. So x = 0 is a global min of f1(x) and a
global max of f2(x).

8 One More Example

• Given f(x) = x3
1 − x3

2 + 9x1x2, find any maxima or minima.

1. First order conditions. Set the gradient equal to zero and solve for x1 and x2.

∂f

∂x1
= 3x2

1 + 9x2 = 0

∂f

∂x2
= −3x2

2 + 9x1 = 0

We have two equations in two unknowns. Solving for x1 and x2, we get two critical
points: x∗1 = (0, 0) and x∗1 = (3,−3).

2. Second order conditions. Determine whether the Hessian is positive or negative definite.
The Hessian is

H(x) =
(

6x1 9
9 −6x2

)

Evaluated at x∗1,

H(x∗1) =
(

0 9
9 0

)

The two leading principal minors are M1 = 0 and M2 = −81, so H(x∗1) is indefinite and
x∗1 = (0, 0) is a saddle point.
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Evaluated at x∗2,

H(x∗2) =
(

18 9
9 18

)

The two leading principal minors are M1 = 18 and M2 = 243. Since both are positive,
H(x∗2) is positive definite and x∗2 = (3,−3) is a strict local min.

3. Global concavity/convexity. In evaluating the Hessians for x∗1 and x∗2 we saw that the
Hessian is not everywhere positive semidefinite. Hence, we can’t infer that x∗2 = (3,−3)
is a global minimum. In fact, if we set x1 = 0, the f(x) = −x3

2, which will go to −∞ as
x2 →∞.


