Math (P)refresher Lecture 8: Unconstrained Optimization

September 2006

Today's Topics*: • Quadratic Forms • Definiteness of Quadratic Forms • Maxima and Minima in $\mathbf{R}^{n} \bullet$ First Order Conditions \bullet Second Order Conditions •Global Maxima and Minima

1 Quadratic Forms

- Quadratic forms important because

1. Approximates local curvature around a point - e.g., used to identify max vs min vs saddle point.
2. Simple, so easy to deal with.
3. Have a matrix representation.

- Quadratic Form: A polynomial where each term is a monomial of degree 2:

$$
Q\left(x_{1}, \cdots, x_{n}\right)=\sum_{i \leq j} a_{i j} x_{i} x_{j}
$$

which can be written in matrix terms

$$
Q(\mathbf{x})=\left(\begin{array}{llll}
x 1 & x 2 & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & \frac{1}{2} a_{12} & \cdots & \frac{1}{2} a_{1 n} \\
\frac{1}{2} a_{12} & a_{22} & \cdots & \frac{1}{2} a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{2} a_{1 n} & \frac{1}{2} a_{2 n} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

or

$$
Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

- Examples:

1. Quadratic on \mathbf{R}^{2} :

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \frac{1}{2} a_{12} \\
\frac{1}{2} a_{12} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}
\end{aligned}
$$

2. Quadratic on \mathbf{R}^{3} :

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}\right) & =\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \frac{1}{2} a_{12} & \frac{1}{2} a_{13} \\
\frac{1}{2} a_{12} & a_{22} & \frac{1}{2} a_{23} \\
\frac{1}{2} a_{13} & \frac{1}{2} a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& =a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}
\end{aligned}
$$

[^0]
2 Definiteness of Quadratic Forms

- Definiteness helps identify the curvature of $Q(\mathbf{x})$ at \mathbf{x}.
- Definiteness: By definition, $Q(\mathbf{x})=0$ at $\mathbf{x}=0$. The definiteness of the matrix \mathbf{A} is determined by whether the quadratic form $Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$ is greater than zero, less than zero, or sometimes both over all $\mathbf{x} \neq 0$.

1. Positive Definite
2. Positive Semidefinite
3. Negative Definite
4. Negative Semidefinite
5. Indefinite
$\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0, \quad \forall \mathbf{x} \neq 0 \quad$ Min
$\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0, \quad \forall \mathbf{x} \neq 0$
$\mathbf{x}^{T} \mathbf{A} \mathbf{x}<0, \quad \forall \mathbf{x} \neq 0 \quad \operatorname{Max}$
$\mathbf{x}^{T} \mathbf{A} \mathbf{x} \leq 0, \quad \forall \mathbf{x} \neq 0$
$\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$ for some $\mathbf{x} \neq 0$ and Neither $\mathbf{x}^{T} \mathbf{A} \mathbf{x}<0$ for other $\mathbf{x} \neq 0$

- Examples:

1. Positive Definite:

$$
\begin{aligned}
Q(\mathbf{x}) & =\mathbf{x}^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \mathbf{x} \\
& =x_{1}^{2}+x_{2}^{2}
\end{aligned}
$$

2. Positive Semidefinite:

$$
\begin{aligned}
Q(\mathbf{x}) & =\mathbf{x}^{T}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \mathbf{x} \\
& =\left(x_{1}-x_{2}\right)^{2}
\end{aligned}
$$

3. Indefinite:

$$
\begin{aligned}
Q(\mathbf{x}) & =\mathbf{x}^{T}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mathbf{x} \\
& =x_{1}^{2}-x_{2}^{2}
\end{aligned}
$$

3 Test for Definiteness using Principal Minors

- Given an $n \times n$ matrix \mathbf{A}, k th order principal minors are the determinants of the $k \times k$ submatrices along the diagonal obtained by deleting $n-k$ columns and the same $n-k$ rows from \mathbf{A}.
- Example: For a 3×3 matrix \mathbf{A},

1. First order principle minors:

$$
\left|a_{11}\right|, \quad\left|a_{22}\right|, \quad\left|a_{33}\right|
$$

2. Second order principle minors:

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|, \quad\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|, \quad\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|
$$

3. Third order principle minor: $|\mathbf{A}|$

- Define the k th leading principal minor M_{k} as the determinant of the $k \times k$ submatrix obtained by deleting the last $n-k$ rows and columns from \mathbf{A}.
- Example: For a 3×3 matrix \mathbf{A}, the three leading principal minors are

$$
M_{1}=\left|a_{11}\right|, \quad M_{2}=\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|, \quad M_{3}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

- Algorithm: If \mathbf{A} is an $n \times n$ symmetric matrix, then

1. $M_{k}>0, k=1, \ldots, n \quad \Longrightarrow \quad$ Positive Definite
2. $M_{k}<0$, for odd k and $\quad \Longrightarrow \quad$ Negative Definite $M_{k}>0$, for even k
3. $M_{k} \neq 0, k=1, \ldots, n, \quad \Longrightarrow \quad$ Indefinite. but does not fit the pattern of 1 or 2 .

- If some leading principle minor is zero, but all others fit the pattern of the preceding conditions 1 or 2 , then

1. Every principal minor $\geq 0 \quad \Longrightarrow \quad$ Positive Semidefinite
2. Every principal minor of odd $\quad \Longrightarrow \quad$ Negative Semidefinite order ≤ 0 and every principal minor of even order ≥ 0

4 Maxima and Minima in \mathbf{R}^{n}

- Conditions for Extrema: The conditions for extrema are similar to those for functions on \mathbf{R}^{1}. Let $f(\mathbf{x})$ be a function of n variables. Let $B(\mathbf{x}, \epsilon)$ be the ϵ-ball about the point \mathbf{x}. Then

1. $f\left(\mathbf{x}^{*}\right)>f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right) \quad \Longrightarrow \quad$ Strict Local Max
2. $f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right) \quad \Longrightarrow \quad$ Local Max
3. $f\left(\mathbf{x}^{*}\right)<f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right) \quad \Longrightarrow \quad$ Strict Local Min
4. $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right) \quad \Longrightarrow \quad$ Local Min

5 First Order Conditions

- When we examined functions of one variable x, we found critical points by taking the first derivative, setting it to zero, and solving for x. For functions of n variables, the critical points are found in much the same way, except now we set the partial derivatives equal to zero. ${ }^{\dagger}$
- Given a function $f(\mathbf{x})$ in n variables, the gradient $\nabla f(\mathbf{x})$ is a column vector, where the i th element is the partial derivative of $f(\mathbf{x})$ with respect to x_{i} :

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right)
$$

- \mathbf{x}^{*} is a critical point iff $\nabla f\left(\mathbf{x}^{*}\right)=0$.
- Example: Find the critical points of $f(\mathbf{x})=\left(x_{1}-1\right)^{2}+x_{2}^{2}+1$

1. The partial derivatives of $f(\mathbf{x})$ are

$$
\begin{aligned}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} & =2\left(x_{1}-1\right) \\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} & =2 x_{2}
\end{aligned}
$$

2. Setting each partial equal to zero and solving for x_{1} and x_{2}, we find that there's a critical point at $\mathbf{x}^{*}=(1,0)$.

6 Second Order Conditions

- When we found a critical point for a function of one variable, we used the second derivative as an indicator of the curvature at the point in order to determine whether the point was a \min, max, or saddle. For functions of n variables, we use second order partial derivatives as an indicator of curvature.
- Given a function $f(\mathbf{x})$ of n variables, the $\mathbf{H e s s i a n} \mathbf{H}(\mathbf{x})$ is an $n \times n$ matrix, where the (i, j) th element is the second order partial derivative of $f(\mathbf{x})$ with respect to x_{i} and x_{j} :

$$
\mathbf{H}(\mathbf{x})=\left(\begin{array}{cccc}
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}}
\end{array}\right)
$$

- Curvature and The Taylor Polynomial as a Quadratic Form: The Hessian is used in a Taylor polynomial approximation to $f(\mathbf{x})$ and provides information about the curvature of $f(\mathbf{x})$ at \mathbf{x} - e.g., which tells us whether a critical point \mathbf{x}^{*} is a min, max, or saddle point.

[^1]1. The second order Taylor polynomial about the critical point \mathbf{x}^{*} is

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)=f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right) \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} \mathbf{H}\left(\mathbf{x}^{*}\right) \mathbf{h}+R(\mathbf{h})
$$

2. Since we're looking at a critical point, $\nabla f\left(\mathbf{x}^{*}\right)=0$; and for small $\mathbf{h}, R(\mathbf{h})$ is negligible. Rearranging, we get

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)-f\left(\mathbf{x}^{*}\right) \approx \frac{1}{2} \mathbf{h}^{T} \mathbf{H}\left(\mathbf{x}^{*}\right) \mathbf{h}
$$

3. The RHS is a quadratic form and we can determine the definiteness of $\mathbf{H}\left(\mathbf{x}^{*}\right)$.
(a) If $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive definite, then the RHS is positive for all small \mathbf{h} :

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)-f\left(\mathbf{x}^{*}\right)>0 \quad \Longrightarrow \quad f\left(\mathbf{x}^{*}+\mathbf{h}\right)>f\left(\mathbf{x}^{*}\right)
$$

i.e., $f\left(\mathbf{x}^{*}\right)<f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right)$, so \mathbf{x}^{*} is a strict local min.
(b) Conversely, if $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is negative definite, then the RHS is negative for all small \mathbf{h} :

$$
f\left(\mathbf{x}^{*}+\mathbf{h}\right)-f\left(\mathbf{x}^{*}\right)<0 \quad \Longrightarrow \quad f\left(\mathbf{x}^{*}+\mathbf{h}\right)<f\left(\mathbf{x}^{*}\right)
$$

i.e., $f\left(\mathbf{x}^{*}\right)>f(\mathbf{x}), \forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right)$, so \mathbf{x}^{*} is a strict local max.

- Summary of Second Order Conditions:

Given a function $f(\mathbf{x})$ and a point \mathbf{x}^{*} such that $\nabla f\left(\mathbf{x}^{*}\right)=0$,

1. $\mathbf{H}\left(\mathbf{x}^{*}\right)$ Positive Definite $\quad \Longrightarrow \quad$ Strict Local Min
2. $\mathbf{H}(\mathbf{x})$ Positive Semidefinite $\quad \Longrightarrow \quad$ Local Min
$\forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right)$
3. $\mathbf{H}\left(\mathbf{x}^{*}\right)$ Negative Definite $\quad \Longrightarrow \quad$ Strict Local Max
4. $\mathbf{H}(\mathbf{x})$ Negative Semidefinite $\quad \Longrightarrow \quad$ Local Max $\forall \mathbf{x} \in B\left(\mathbf{x}^{*}, \epsilon\right)$
5. $\mathbf{H}\left(\mathbf{x}^{*}\right)$ Indefinite $\quad \Longrightarrow \quad$ Saddle Point

- Example: We found that the only critical point of $f(\mathbf{x})=\left(x_{1}-1\right)^{2}+x_{2}^{2}+1$ is at $\mathbf{x}^{*}=(1,0)$. Is it a min, max, or saddle point?

1. Recall that the gradient of $f(\mathbf{x})$ is

$$
\nabla f(\mathbf{x})=\binom{2\left(x_{1}-1\right)}{2 x_{2}}
$$

Then the Hessian is

$$
\mathbf{H}(\mathbf{x})=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

2. To check the definiteness of $\mathbf{H}\left(\mathbf{x}^{*}\right)$, we could use either of two methods:
(a) Determine whether $\mathbf{x}^{\mathbf{T}} \mathbf{H}\left(\mathbf{x}^{*}\right) \mathbf{x}$ is greater or less than zero for all $\mathbf{x} \neq \mathbf{0}$:

$$
\mathbf{x}^{\mathbf{T}} \mathbf{H}\left(\mathbf{x}^{*}\right) \mathbf{x}=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=2 x_{1}^{2}+2 x_{2}^{2}
$$

For any $\mathbf{x} \neq \mathbf{0}, 2\left(x_{1}^{2}+x_{2}^{2}\right)>0$, so the Hessian is positive definite and \mathbf{x}^{*} is a strict local minimum.
(b) Using the method of leading principal minors, we see that $M_{1}=2$ and $M_{2}=4$. Since both are positive, the Hessian is positive definite and \mathbf{x}^{*} is a strict local minimum.

7 Global Maxima and Minima

- To determine whether a critical point is a global min or max, we can check the concavity of the function over its entire domain. Here again we use the definiteness of the Hessian to determine whether a function is globally concave or convex:

1. $\mathbf{H}(\mathbf{x})$ Positive Semidefinite $\forall \mathbf{x} \quad \Longrightarrow \quad$ Globally Convex
2. $\mathbf{H}(\mathbf{x})$ Negative Semidefinite $\forall \mathbf{x} \quad \Longrightarrow \quad$ Globally Concave

Notice that the definiteness conditions must be satisfied over the entire domain.

- Given a function $f(\mathbf{x})$ and a point \mathbf{x}^{*} such that $\nabla f\left(\mathbf{x}^{*}\right)=0$,

1. $f(\mathbf{x})$ Globally Convex $\quad \Longrightarrow \quad$ Global Min
2. $f(\mathrm{x})$ Globally Concave $\quad \Longrightarrow \quad$ Global Max

- Note that showing that $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is negative semidefinite is not enough to guarantee x^{*} is a local max. However, showing that $\mathbf{H}(\mathbf{x})$ is negative semidefinite for all \mathbf{x} guarantees that x^{*} is a global max. (The same goes for positive semidefinite and minima.)
- Example: Take $f_{1}(x)=x^{4}$ and $f_{2}(x)=-x^{4}$. Both have $x=0$ as a critical point. Unfortunately, $f_{1}^{\prime \prime}(0)=0$ and $f_{2}^{\prime \prime}(0)=0$, so we can't tell whether $x=0$ is a min or max for either. However, $f_{1}^{\prime \prime}(x)=12 x^{2}$ and $f_{2}^{\prime \prime}(x)=-12 x^{2}$. For all $x, f_{1}^{\prime \prime}(x) \geq 0$ and $f_{2}^{\prime \prime}(x) \leq 0-$ i.e., $f_{1}(x)$ is globally convex and $f_{2}(x)$ is globally concave. So $x=0$ is a global min of $f_{1}(x)$ and a global max of $f_{2}(x)$.

8 One More Example

- Given $f(\mathbf{x})=x_{1}^{3}-x_{2}^{3}+9 x_{1} x_{2}$, find any maxima or minima.

1. First order conditions. Set the gradient equal to zero and solve for x_{1} and x_{2}.

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=3 x_{1}^{2}+9 x_{2}=0 \\
& \frac{\partial f}{\partial x_{2}}=-3 x_{2}^{2}+9 x_{1}=0
\end{aligned}
$$

We have two equations in two unknowns. Solving for x_{1} and x_{2}, we get two critical points: $\mathbf{x}_{1}^{*}=(0,0)$ and $\mathbf{x}_{1}^{*}=(3,-3)$.
2. Second order conditions. Determine whether the Hessian is positive or negative definite. The Hessian is

$$
\mathbf{H}(\mathbf{x})=\left(\begin{array}{cc}
6 x_{1} & 9 \\
9 & -6 x_{2}
\end{array}\right)
$$

Evaluated at \mathbf{x}_{1}^{*},

$$
\mathbf{H}\left(\mathbf{x}_{\mathbf{1}}^{*}\right)=\left(\begin{array}{ll}
0 & 9 \\
9 & 0
\end{array}\right)
$$

The two leading principal minors are $M_{1}=0$ and $M_{2}=-81$, so $\mathbf{H}\left(\mathbf{x}_{\mathbf{1}}^{*}\right)$ is indefinite and $\mathbf{x}_{1}^{*}=(0,0)$ is a saddle point.

Evaluated at \mathbf{x}_{2}^{*},

$$
\mathbf{H}\left(\mathbf{x}_{\mathbf{2}}^{*}\right)=\left(\begin{array}{cc}
18 & 9 \\
9 & 18
\end{array}\right)
$$

The two leading principal minors are $M_{1}=18$ and $M_{2}=243$. Since both are positive, $\mathbf{H}\left(\mathbf{x}_{2}^{*}\right)$ is positive definite and $\mathbf{x}_{2}^{*}=(3,-3)$ is a strict local min.
3. Global concavity/convexity. In evaluating the Hessians for \mathbf{x}_{1}^{*} and \mathbf{x}_{2}^{*} we saw that the Hessian is not everywhere positive semidefinite. Hence, we can't infer that $\mathbf{x}_{2}^{*}=(3,-3)$ is a global minimum. In fact, if we set $x_{1}=0$, the $f(\mathbf{x})=-x_{2}^{3}$, which will go to $-\infty$ as $x_{2} \rightarrow \infty$.

[^0]: ${ }^{*}$ Much of the material and examples for this lecture are taken from Simon \& Blume (1994) Mathematics for Economists and Ecker \& Kupferschmid (1988) Introduction to Operations Research.

[^1]: ${ }^{\dagger}$ We will only consider critical points on the interior of a function's domain.

