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1 Maximum Likelihood Estimation

1.1 The Likelihood Function

Let X1, . . . , Xn be an iid sample with probability density function (pdf) f(xi; θ),
where θ is a (k × 1) vector of parameters that characterize f(xi; θ). For example, if
Xi˜N(μ, σ

2) then f(xi; θ) = (2πσ2)−1/2 exp(− 1
2σ2
(xi − μ)2) and θ = (μ, σ2)0. The

joint density of the sample is, by independence, equal to the product of the marginal
densities

f(x1, . . . , xn; θ) = f(x1; θ) · · · f(xn; θ) =
nY
i=1

f(xi; θ).

The joint density is an n dimensional function of the data x1, . . . , xn given the para-
meter vector θ. The joint density1 satisfies

f(x1, . . . , xn; θ) ≥ 0Z
· · ·
Z

f(x1, . . . , xn; θ)dx1 · · · dxn = 1.

The likelihood function is defined as the joint density treated as a functions of the
parameters θ :

L(θ|x1, . . . , xn) = f(x1, . . . , xn; θ) =
nY
i=1

f(xi; θ).

Notice that the likelihood function is a k dimensional function of θ given the data
x1, . . . , xn. It is important to keep in mind that the likelihood function, being a
function of θ and not the data, is not a proper pdf. It is always positive butZ

· · ·
Z

L(θ|x1, . . . , xn)dθ1 · · · dθk 6= 1.

1If X1, . . . ,Xn are discrete random variables, then f(x1, . . . , xn; θ) = Pr(X1 = x1, . . . ,Xn = xn)
for a fixed value of θ.
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To simplify notation, let the vector x = (x1, . . . , xn) denote the observed sample.
Then the joint pdf and likelihood function may be expressed as f(x; θ) and L(θ|x).

Example 1 Bernoulli Sampling

Let Xi˜ Bernoulli(θ). That is, Xi = 1 with probability θ and Xi = 0 with proba-
bility 1− θ where 0 ≤ θ ≤ 1. The pdf for Xi is

f(xi; θ) = θxi(1− θ)1−xi , xi = 0, 1

Let X1, . . . , Xn be an iid sample with Xi˜ Bernoulli(θ). The joint density/likelihood
function is given by

f(x; θ) = L(θ|x) =
nY
i=1

θxi(1− θ)1−xi = θ
n
i=1 xi(1− θ)n−

n
i=1 xi

For a given value of θ and observed sample x, f(x; θ) gives the probability of observing
the sample. For example, suppose n = 5 and x = (0, . . . , 0). Now some values of θ
are more likely to have generated this sample than others. In particular, it is more
likely that θ is close to zero than one. To see this, note that the likelihood function
for this sample is

L(θ|(0, . . . , 0)) = (1− θ)5

This function is illustrated in figure xxx. The likelihood function has a clear maximum
at θ = 0. That is, θ = 0 is the value of θ that makes the observed sample x = (0, . . . , 0)
most likely (highest probability)
Similarly, suppose x = (1, . . . , 1). Then the likelihood function is

L(θ|(1, . . . , 1)) = θ5

which is illustrated in figure xxx. Now the likelihood function has a maximum at
θ = 1.

Example 2 Normal Sampling

Let X1, . . . , Xn be an iid sample with Xi˜N(μ, σ
2). The pdf for Xi is

f(xi; θ) = (2πσ
2)−1/2 exp

µ
− 1

2σ2
(xi − μ)2

¶
, −∞ < μ <∞, σ2 > 0, −∞ < x <∞

so that θ = (μ, σ2)0. The likelihood function is given by

L(θ|x) =
nY
i=1

(2πσ2)−1/2 exp

µ
− 1

2σ2
(xi − μ)2

¶

= (2πσ2)−n/2 exp

Ã
− 1

2σ2

nX
i=1

(xi − μ)2

!
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Figure xxx illustrates the normal likelihood for a representative sample of size n = 25.
Notice that the likelihood has the same bell-shape of a bivariate normal density
Suppose σ2 = 1. Then

L(θ|x) = L(μ|x) = (2π)−n/2 exp
Ã
−1
2

nX
i=1

(xi − μ)2

!
Now
nX
i=1

(xi − μ)2 =
nX
i=1

(xi − x̄+ x̄− μ)2 =
nX
i=1

£
(xi − x̄)2 + 2(xi − x̄)(x− μ̄) + (x̄− μ)2

¤
=

nX
i=1

(xi − x̄)2 + n(x̄− μ)2

so that

L(μ|x) = (2π)−n/2 exp
Ã
−1
2

"
nX
i=1

(xi − x̄)2 + n(x̄− μ)2

#!
Since both (xi− x̄)2 and (x̄− μ)2 are positive it is clear that L(μ|x) is maximized at
μ = x̄. This is illustrated in figure xxx.

Example 3 Linear Regression Model with Normal Errors

Consider the linear regression

yi = x0i
(1×k)

β
(k×1)

+ εi, i = 1, . . . , n

εi|xi ˜ iid N(0, σ2)

The pdf of εi|xi is

f(εi|xi;σ2) = (2πσ2)−1/2 exp
µ
− 1

2σ2
ε2i

¶
The Jacobian of the transformation for εi to yi is one so the pdf of yi|xi is normal
with mean x0iβ and variance σ

2 :

f(yi|xi; θ) = (2πσ2)−1/2 exp
µ
− 1

2σ2
(yi − x0iβ)

2

¶
where θ = (β0, σ2)0. Given an iid sample of n observations, y and X, the joint density
of the sample is

f(y|X; θ) = (2πσ2)−n/2 exp

Ã
− 1

2σ2

nX
i=1

(yi − x0iβ)
2

!

= (2πσ2)−n/2 exp

µ
− 1

2σ2
(y−Xβ)0(y−Xβ)

¶
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The log-likelihood function is then

lnL(θ|y,X) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(y−Xβ)0(y−Xβ)

Example 4 AR(1) model with Normal Errors

To be completed

1.2 The Maximum Likelihood Estimator

Suppose we have a random sample from the pdf f(xi; θ) and we are interested in
estimating θ. The previous example motives an estimator as the value of θ that
makes the observed sample most likely. Formally, the maximum likelihood estimator,
denoted θ̂mle, is the value of θ that maximizes L(θ|x). That is, θ̂mle solves

max
θ

L(θ|x)

It is often quite difficult to directly maximize L(θ|x). It usually much easier to
maximize the log-likelihood function lnL(θ|x). Since ln(·) is a monotonic function
the value of the θ that maximizes lnL(θ|x) will also maximize L(θ|x). Therefore, we
may also define θ̂mle as the value of θ that solves

max
θ
lnL(θ|x)

With random sampling, the log-likelihood has the particularly simple form

lnL(θ|x) = ln
Ã

nY
i=1

f(xi; θ)

!
=

nX
i=1

ln f(xi; θ)

Since the MLE is defined as a maximization problem, we would like know the
conditions under which we may determine the MLE using the techniques of calculus.
A regular pdf f(x; θ) provides a sufficient set of such conditions. We say the f(x; θ)
is regular if

1. The support of the random variables X,SX = {x : f(x; θ) > 0}, does not
depend on θ

2. f(x; θ) is at least three times differentiable with respect to θ

3. The true value of θ lies in a compact set Θ
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If f(x; θ) is regular then we may find the MLE by differentiating lnL(θ|x) and
solving the first order conditions

∂ lnL(θ̂mle|x)
∂θ

= 0

Since θ is (k × 1) the first order conditions define k, potentially nonlinear, equations
in k unknown values:

∂ lnL(θ̂mle|x)
∂θ

=

⎛⎜⎜⎝
∂ lnL(θ̂mle|x)

∂θ1
...

∂ lnL(θ̂mle|x)
∂θk

⎞⎟⎟⎠
The vector of derivatives of the log-likelihood function is called the score vector

and is denoted

S(θ|x) = ∂ lnL(θ|x)
∂θ

By definition, the MLE satisfies

S(θ̂mle|x) = 0
Under random sampling the score for the sample becomes the sum of the scores for
each observation xi :

S(θ|x) =
nX
i=1

∂ ln f(xi; θ)

∂θ
=

nX
i=1

S(θ|xi)

where S(θ|xi) = ∂ ln f(xi;θ)
∂θ

is the score associated with xi.

Example 5 Bernoulli example continued

The log-likelihood function is

lnL(θ|X) = ln
³
θ

n
i=1 xi(1− θ)n−

n
i=1 xi

´
=

nX
i=1

xi ln(θ) +

Ã
n−

nX
i=1

xi

!
ln(1− θ)

The score function for the Bernoulli log-likelihood is

S(θ|x) = ∂ lnL(θ|x)
∂θ

=
1

θ

nX
i=1

xi −
1

1− θ

Ã
n−

nX
i=1

xi

!
The MLE satisfies S(θ̂mle|x) = 0, which after a little algebra, produces the MLE

θ̂mle =
1

n

nX
i=1

xi.

Hence, the sample average is the MLE for θ in the Bernoulli model.
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Example 6 Normal example continued

Since the normal pdf is regular, we may determine the MLE for θ = (μ, σ2) by
maximizing the log-likelihood

lnL(θ|x) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2

nX
i=1

(xi − μ)2.

The sample score is a (2× 1) vector given by

S(θ|x) =
Ã

∂ lnL(θ|x)
∂μ

∂ lnL(θ|x)
∂σ2

!
where

∂ lnL(θ|x)
∂μ

=
1

σ2

nX
i=1

(xi − μ)

∂ lnL(θ|x)
∂σ2

= −n
2
(σ2)−1 +

1

2
(σ2)−2

nX
i=1

(xi − μ)2

Note that the score vector for an observation is

S(θ|xi) =
Ã

∂ ln f(θ|xi)
∂μ

∂ ln f(θ|xi)
∂σ2

!
=

µ
(σ2)−1(xi − μ)

−1
2
(σ2)−1 + 1

2
(σ2)−2(xi − μ)2

¶
so that S(θ|x) =

Pn
i=1 S(θ|xi).

Solving S(θ̂mle|x) = 0 gives the normal equations

∂ lnL(θ̂mle|x)
∂μ

=
1

σ̂2mle

nX
i=1

(xi − μ̂mle) = 0

∂ lnL(θ̂mle|x)
∂σ2

= −n
2
(σ̂2mle)

−1 +
1

2
(σ̂2mle)

−2
nX
i=1

(xi − μ̂mle)
2 = 0

Solving the first equation for μ̂mle gives

μ̂mle =
1

n

nX
i=1

xi = x̄

Hence, the sample average is the MLE for μ. Using μ̂mle = x̄ and solving the second
equation for σ̂2mle gives

σ̂2mle =
1

n

nX
i=1

(xi − x̄)2.

Notice that σ̂2mle is not equal to the sample variance.

6



Example 7 Linear regression example continued

The log-likelihood is

lnL(θ|y,X) = −n
2
ln(2π)− n

2
ln(σ2)

− 1

2σ2
(y −Xβ)0(y −Xβ)

The MLE of θ satisfies S(θ̂mle|y,X) = 0 where S(θ|y,X) = ∂
∂θ
lnL(θ|y,X) is the

score vector. Now

∂ lnL(θ|y,X)
∂β

=
1

2σ2
∂

∂β
[y0y − 2y0Xβ + β0X 0Xβ]

= −(σ2)−1[−X 0y +X 0Xβ]

∂ lnL(θ|y,X)
∂σ2

= −n
2
(σ2)−1 +

1

2
(σ2)−2(y −Xβ)0(y −Xβ)

Solving ∂ lnL(θ|y,X)
∂β

= 0 for β gives

β̂mle = (X
0X)−1X 0y = β̂OLS

Next, solving ∂ lnL(θ|y,X)
∂σ2

= 0 for σ2 gives

σ̂2mle =
1

n
(y −Xbβmle)

0(y −Xbβmle)

6= σ̂2OLS =
1

n− k
(y −XbβOLS)0(y −XbβOLS)

1.3 Properties of the Score Function

The matrix of second derivatives of the log-likelihood is called the Hessian

H(θ|x) = ∂2 lnL(θ|x)
∂θ∂θ0

=

⎛⎜⎜⎝
∂2 lnL(θ|x)

∂θ21
· · · ∂2 lnL(θ|x)

∂θ1∂θk
...

. . .
...

∂2 lnL(θ|x)
∂θk∂θ1

· · · ∂2 lnL(θ|x)
∂θ2k

⎞⎟⎟⎠
The information matrix is defined as minus the expectation of the Hessian

I(θ|x) = −E[H(θ|x)]

If we have random sampling then

H(θ|x) =
nX
i=1

∂2 ln f(θ|xi)
∂θ∂θ0

=
nX
i=1

H(θ|xi)
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and

I(θ|x) = −
nX
i=1

E[H(θ|xi)] = −nE[H(θ|xi)] = nI(θ|xi)

The last result says that the sample information matrix is equal to n times the
information matrix for an observation.
The following proposition relates some properties of the score function to the

information matrix.

Proposition 8 Let f(xi; θ) be a regular pdf. Then

1. E[S(θ|xi)] =
R
S(θ|xi)f(xi; θ)dxi = 0

2. If θ is a scalar then

var(S(θ|xi) = E[S(θ|xi)2] =
Z

S(θ|xi)2f(xi; θ)dxi = I(θ|xi)

If θ is a vector then

var(S(θ|xi) = E[S(θ|xi)S(θ|xi)0] =
Z

S(θ|xi)S(θ|xi)0f(xi; θ)dxi = I(θ|xi)

Proof. For part 1, we have

E[S(θ|xi)] =
Z

S(θ|xi)f(xi; θ)dxi

=

Z
∂ ln f(xi; θ)

∂θ
f(xi; θ)dxi

=

Z
1

f(xi; θ)

∂

∂θ
f(xi; θ)f(xi; θ)dxi

=

Z
∂

∂θ
f(xi; θ)dxi

=
∂

∂θ

Z
f(xi; θ)dxi

=
∂

∂θ
· 1

= 0.

The key part to the proof is the ability to interchange the order of differentiation and
integration.
For part 2, consider the scalar case for simplicity. Now, proceeding as above we

get

E[S(θ|xi)2] =
Z

S(θ|xi)2f(xi; θ)dxi =
Z µ

∂ ln f(xi; θ)

∂θ

¶2
f(xi; θ)dxi

=

Z µ
1

f(xi; θ)

∂

∂θ
f(xi; θ)

¶2
f(xi; θ)dxi =

Z
1

f(xi; θ)

µ
∂

∂θ
f(xi; θ)

¶2
dxi
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Next, recall that I(θ|xi) = −E[H(θ|xi)] and

−E[H(θ|xi)] = −
Z

∂2 ln f(xi; θ)

∂θ2
f(xi; θ)dxi

Now, by the chain rule

∂2

∂θ2
ln f(xi; θ) =

∂

∂θ

µ
1

f(xi; θ)

∂

∂θ
f(xi; θ)

¶
= −f(xi; θ)−2

µ
∂

∂θ
f(xi; θ)

¶2
+ f(xi; θ)

−1 ∂
2

∂θ2
f(xi; θ)

Then

−E[H(θ|xi)] = −
Z "
−f(xi; θ)−2

µ
∂

∂θ
f(xi; θ)

¶2
+ f(xi; θ)

−1 ∂
2

∂θ2
f(xi; θ)

#
f(xi; θ)dxi

=

Z
f(xi; θ)

−1
µ

∂

∂θ
f(xi; θ)

¶2
dxi −

Z
∂2

∂θ2
f(xi; θ)dxi

= E[S(θ|xi)2]−
∂2

∂θ2

Z
f(xi; θ)dxi

= E[S(θ|xi)2].

1.4 Concentrating the Likelihood Function

In many situations, our interest may be only on a few elements of θ. Let θ = (θ1, θ2)
and suppose θ1 is the parameter of interest and θ2 is a nuisance parameter (parameter
not of interest). In this situation, it is often convenient to concentrate out the nuisance
parameter θ2 from the log-likelihood function leaving a concentrated log-likelihood
function that is only a function of the parameter of interest θ1.
To illustrate, consider the example of iid sampling from a normal distribution.

Suppose the parameter of interest is μ and the nuisance parameter is σ2.We wish to
concentrate the log-likelihood with respect to σ2 leaving a concentrated log-likelihood
function for μ.We do this as follows. From the score function for σ2 we have the first
order condition

∂ lnL(θ|x)
∂σ2

= −n
2
(σ2)−1 +

1

2
(σ2)−2

nX
i=1

(xi − μ)2 = 0

Solving for σ2 as a function of μ gives

σ2(μ) =
1

n

nX
i=1

(xi − μ)2.
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Notice that any value of σ2(μ) defined this way satisfies the first order condition
∂ lnL(θ|x)

∂σ2
= 0. If we substitute σ2(μ) for σ2 in the log-likelihood function for θ we get

the following concentrated log-likelihood function for μ :

lnLc(μ|x) = −n
2
ln(2π)− n

2
ln(σ2(μ))− 1

2σ2(μ)

nX
i=1

(xi − μ)2

= −n
2
ln(2π)− n

2
ln

Ã
1

n

nX
i=1

(xi − μ)2

!

−1
2

Ã
1

n

nX
i=1

(xi − μ)2

!−1 nX
i=1

(xi − μ)2

= −n
2
(ln(2π) + 1)− n

2
ln

Ã
1

n

nX
i=1

(xi − μ)2

!
Now we may determine the MLE for μ by maximizing the concentrated log-

likelihood function lnL2(μ|x). The first order conditions are

∂ lnLc(μ̂mle|x)
∂μ

=

Pn
i=1(xi − μ̂mle)

1
n

Pn
i=1(xi − μ̂mle)

2
= 0

which is satisfied by μ̂mle = x̄ provided not all of the xi values are identical.
For some models it may not be possible to analytically concentrate the log-

likelihood with respect to a subset of parameters. Nonetheless, it is still possible
in principle to numerically concentrate the log-likelihood.

1.5 The Precision of the Maximum Likelihood Estimator

The likelihood, log-likelihood and score functions for a typical model are illustrated
in figure xxx. The likelihood function is always positive (since it is the joint density
of the sample) but the log-likelihood function is typically negative (being the log of
a number less than 1). Here the log-likelihood is globally concave and has a unique
maximum at θ̂mle. Consequently, the score function is positive to the left of the
maximum, crosses zero at the maximum and becomes negative to the right of the
maximum.
Intuitively, the precision of θ̂mle depends on the curvature of the log-likelihood

function near θ̂mle. If the log-likelihood is very curved or “steep” around θ̂mle, then
θ will be precisely estimated. In this case, we say that we have a lot of information
about θ. On the other hand, if the log-likelihood is not curved or “flat” near θ̂mle,
then θ will not be precisely estimated. Accordingly, we say that we do not have much
information about θ.
The extreme case of a completely flat likelihood in θ is illustrated in figure xxx.

Here, the sample contains no information about the true value of θ because every
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value of θ produces the same value of the likelihood function. When this happens we
say that θ is not identified. Formally, θ is identified if for all θ1 6= θ2 there exists a
sample x for which L(θ1|x) 6= L(θ2|x).
The curvature of the log-likelihood is measured by its second derivative (Hessian)

H(θ|x) = ∂2 lnL(θ|x)
∂θ∂θ0 . Since the Hessian is negative semi-definite, the information in

the sample about θ may be measured by −H(θ|x). If θ is a scalar then −H(θ|x) is
a positive number. The expected amount of information in the sample about the
parameter θ is the information matrix I(θ|x) = −E[H(θ|x)]. As we shall see, the
information matrix is directly related to the precision of the MLE.

1.5.1 The Cramer-Rao Lower Bound

If we restrict ourselves to the class of unbiased estimators (linear and nonlinear)
then we define the best estimator as the one with the smallest variance. With linear
estimators, the Gauss-Markov theorem tells us that the ordinary least squares (OLS)
estimator is best (BLUE). When we expand the class of estimators to include linear
and nonlinear estimators it turns out that we can establish an absolute lower bound
on the variance of any unbiased estimator θ̂ of θ under certain conditions. Then if an
unbiased estimator θ̂ has a variance that is equal to the lower bound then we have
found the best unbiased estimator (BUE).

Theorem 9 Cramer-Rao Inequality

Let X1, . . . , Xn be an iid sample with pdf f(x; θ). Let θ̂ be an unbiased estimator
of θ; i.e., E[θ̂] = θ. If f(x; θ) is regular then

var(θ̂) ≥ I(θ|x)−1

where I(θ|x) = −E[H(θ|x)] denotes the sample information matrix. Hence, the
Cramer-Rao Lower Bound (CRLB) is the inverse of the information matrix. If θ is a
vector then var(θ) ≥ I(θ|x)−1 means that var(θ̂)− I(θ|x) is positive semi-definite.

Example 10 Bernoulli model continued

To determine the CRLB the information matrix must be evaluated. The infor-
mation matrix may be computed as

I(θ|x) = −E[H(θ|x)]

or
I(θ|x) = var(S(θ|x))
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Further, due to random sampling I(θ|x) = n · I(θ|xi) = n · var(S(θ|xi)). Now, using
the chain rule it can be shown that

H(θ|xi) =
d

dθ
S(θ|xi) =

d

dθ

µ
xi − θ

θ(1− θ)

¶
= −

µ
1 + S(θ|xi)− 2θS(θ|xi)

θ(1− θ)

¶
The information for an observation is then

I(θ|xi) = −E[H(θ|xi)] =
1 +E[S(θ|xi)]− 2θE[S(θ|xi)]

θ(1− θ)

=
1

θ(1− θ)

since

E[S(θ|xi)] =
E[xi]− θ

θ(1− θ)
=

θ − θ

θ(1− θ)
= 0

The information for an observation may also be computed as

I(θ|xi) = var(S(θ|xi) = var
µ

xi − θ

θ(1− θ)

¶
=

var(xi)

θ2(1− θ)2
=

θ(1− θ)

θ2(1− θ)2

=
1

θ(1− θ)

The information for the sample is then

I(θ|x) = n · I(θ|xi) =
n

θ(1− θ)

and the CRLB is

CRLB = I(θ|x)−1 = θ(1− θ)

n

This the lower bound on the variance of any unbiased estimator of θ.
Consider the MLE for θ, θ̂mle = x̄. Now,

E[θ̂mle] = E[x̄] = θ

var(θ̂mle) = var(x̄) =
θ(1− θ)

n

Notice that the MLE is unbiased and its variance is equal to the CRLB. Therefore,
θ̂mle is efficient.
Remarks
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• If θ = 0 or θ = 1 then I(θ|x) =∞ and var(θ̂mle) = 0 (why?)

• I(θ|x) is smallest when θ = 1
2
.

• As n → ∞, I(θ|x) → ∞ so that var(θ̂mle) → 0 which suggests that θ̂mle is
consistent for θ.

Example 11 Normal model continued

The Hessian for an observation is

H(θ|xi) =
∂2 ln f(xi; θ)

∂θ∂θ0
=

∂S(θ|xi)
∂θ0

=

Ã
∂2 ln f(xi;θ)

∂μ2
∂2 ln f(xi;θ)

∂μ∂σ2

∂2 ln f(xi;θ)
∂σ2∂μ

∂2 ln f(xi;θ)
∂(σ2)2

!
Now

∂2 ln f(xi; θ)

∂μ2
= −(σ2)−1

∂2 ln f(xi; θ)

∂μ∂σ2
= −(σ2)(xi − μ)

∂2 ln f(xi; θ)

∂σ2∂μ
= −(σ2)(xi − μ)

∂2 ln f(xi; θ)

∂(σ2)2
=

1

2
(σ2)−2 − (σ2)−3(xi − μ)2

so that

I(θ|xi) = −E[H(θ|xi)]

=

µ
(σ2)−1 E[(xi − μ)](σ2)−2

E[(xi − μ)](σ2)−2 1
2
(σ2)−2 − (σ2)−3E[(xi − μ)2]

¶
Using the results2

E[(xi − μ)] = 0

E

∙
(xi − μ)2

σ2

¸
= 1

we then have

I(θ|xi) =
µ
(σ2)−1 0
0 1

2
(σ2)−2

¶
The information matrix for the sample is then

I(θ|x) = n · I(θ|xi) =
µ

n(σ2)−1 0
0 n

2
(σ2)−2

¶
2(xi − μ)2/σ2 is a chi-square random variable with one degree of freedom. The expected value

of a chi-square random variable is equal to its degrees of freedom.
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and the CRLB is

CRLB = I(θ|x)−1 =
µ

σ2

n
0

0 2σ4

n

¶
Notice that the information matrix and the CRLB are diagonal matrices. The CRLB
for an unbiased estimator of μ is σ2

n
and the CRLB for an unbiased estimator of σ2

is 2σ
4

n
.

The MLEs for μ and σ2 are

μ̂mle = x̄

σ̂2mle =
1

n

nX
i=1

(xi − μmle)
2

Now

E[μ̂mle] = μ

E[σ̂2mle] =
n− 1
n

σ2

so that μ̂mle is unbiased whereas σ̂
2
mle is biased. This illustrates the fact that mles

are not necessarily unbiased. Furthermore,

var(μ̂mle) =
σ2

n
= CRLB

and so μ̂mle is efficient.
The MLE for σ2 is biased and so the CRLB result does not apply. Consider the

unbiased estimator of σ2

s2 =
1

n− 1

nX
i=1

(xi − x̄)2

Is the variance of s2 equal to the CRLB? No. To see this, recall that

(n− 1)s2
σ2

∼ χ2(n− 1)

Further, if X ∼ χ2(n− 1) then E[X] = n− 1 and var(X) = 2(n− 1). Therefore,

s2 =
σ2

(n− 1)X

⇒ var(s2) =
σ4

(n− 1)2var(X) =
σ4

(n− 1)

Hence, var(s2) = σ4

(n−1) > CRLB = σ4

n
.

Remarks
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• The diagonal elements of I(θ|x)→∞ as n→∞

• I(θ|x) only depends on σ2

Example 12 Linear regression model continued

The score vector is given by

S(θ|y,X) =

µ
−(σ2)−1[−X 0y +X 0Xβ]

−n
2
(σ2)−1 + 1

2
(σ2)−2(y −Xβ)0(y −Xβ)

¶
=

µ
−(σ2)−1 (−X 0ε)

−n
2
(σ2)−1 + 1

2
(σ2)−2ε0ε

¶
where ε = y −Xβ. Now E[ε] = 0 and E[ε0ε] = nσ2 (since ε0ε/σ2 ∼ χ2(n)) so that

E[S(θ|y,X)] =
µ

−(σ2)−1 (−X 0E[ε])
−n
2
(σ2)−1 + 1

2
(σ2)−2E[ε0ε]

¶
=

µ
0
0

¶
To determine the Hessian and information matrix we need the second derivatives of
lnL(θ|y,X) :

∂2 lnL(θ|y,X)
∂β∂β0

=
∂

∂β0
¡
−(σ2)−1[−X 0y +X 0Xβ]

¢
= −(σ2)−1X 0X

∂2 lnL(θ|y,X)
∂β∂σ2

=
∂

∂σ2
¡
−(σ2)−1[−X 0y +X 0Xβ]

¢
= −(σ2)−2X 0ε

∂2 lnL(θ|y,X)
∂σ2∂β0

= −(σ2)−2ε0X

∂2 lnL(θ|y,X)
∂ (σ2)2

=
∂

∂σ2

µ
−n
2
(σ2)−1 +

1

2
(σ2)−2ε0ε

¶
=

n

2
(σ2)−2 − (σ2)−3ε0ε

Therefore,

H(θ|y,X) =
µ
−(σ2)−1X 0X −(σ2)−2X 0ε
−(σ2)−2ε0X n

2
(σ2)−2 − (σ2)−3ε0ε

¶
and

I(θ|y,X) = −E[H(θ|y,X)]

=

µ
−(σ2)−1X 0X −(σ2)−2X 0E[ε]
−(σ2)−2E[ε]0X n

2
(σ2)−2 − (σ2)−3E[ε0ε]

¶
=

µ
(σ2)−1X 0X 0

0 n
2
(σ2)−2

¶

15



Notice that the information matrix is block diagonal in β and σ2. The CRLB for
unbiased estimators of θ is then

I(θ|y,X)−1 =
µ

σ2(X 0X)−1 0
0 2

n
σ4

¶
Do theMLEs of β and σ2 achieve the CRLB? First, β̂mle is unbiased and var(βmle|X) =

σ2(X 0X)−1 = CRLB for an unbiased estimator for β. Hence, β̂mle is the most efficient
unbiased estimator (BUE). This is an improvement over the Gauss-Markov theorem
which says that β̂mle = β̂OLS is the most efficient linear and unbiased estimator
(BLUE). Next, note that σ̂2mle is not unbiased (why) so the CRLB result does not
apply. What about the unbiased estimator s2 = (n−k)−1(y−Xβ̂OLS)

0(y−Xβ̂OLS)?
It can be shown that var(s2|X) = 2σ4

n−k > 2
n
σ4 = CRLB for an unbiased estimator of

σ2. Hence s2 is not the most efficient unbiased estimator of σ2.

1.6 Invariance Property of Maximum Likelihood Estimators

One of the attractive features of the method of maximum likelihood is its invariance
to one-to-one transformations of the parameters of the log-likelihood. That is, if θ̂mle

is the MLE of θ and α = h(θ) is a one-to-one function of θ then α̂mle = h(θ̂mle) is the
mle for α.

Example 13 Normal Model Continued

The log-likelihood is parameterized in terms of μ and σ2 and we have the MLEs

μ̂mle = x̄

σ̂2mle =
1

n

nX
i=1

(xi − μmle)
2

Suppose we are interested in the MLE for σ = h(σ2) = (σ2)1/2, which is a one-to-one
function for σ2 > 0. The invariance property says that

σ̂mle = (σ̂
2
mle)

1/2 =

Ã
1

n

nX
i=1

(xi − μ̂mle)
2

!1/2

1.7 Asymptotic Properties of Maximum Likelihood Estima-
tors

Let X1, . . . , Xn be an iid sample with probability density function (pdf) f(xi; θ),
where θ is a (k × 1) vector of parameters that characterize f(xi; θ). Under general
regularity conditions (see Hayashi Chapter 7), the ML estimator of θ has the following
asymptotic properties
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1. θ̂mle
p→ θ

2.
√
n(θ̂mle − θ)

d→ N(0, I(θ|xi)−1), where

I(θ|xi) = −E [H(θ|xi)] = −E
∙
∂ ln f(θ|xi)

∂θ∂θ0

¸
That is,

avar(
√
n(θ̂mle − θ)) = I(θ|xi)−1

Alternatively,

θ̂mle ∼ N

µ
θ,
1

n
I(θ|xi)−1

¶
= N(θ, I(θ|x)−1)

where I(θ|x) = nI(θ|xi) = information matrix for the sample.

3. θ̂mle is efficient in the class of consistent and asymptotically normal estimators.
That is,

avar(
√
n(θ̂mle − θ))− avar(

√
n(θ̃ − θ)) ≤ 0

for any consistent and asymptotically normal estimator θ̃.

Remarks:

1. The consistency of the MLE requires the following

(a) Qn(θ) =
1
n

Pn
i=1 ln f(xi|θ)

p→ E[ln f(xi|θ)] = Q0(θ) uniformly in θ

(b) Q0(θ) is uniquely maximized at θ = θ0.

2. Asymptotic normality of θmle follows from an exact first order Taylor’s series
expansion of the first order conditions for a maximum of the log-likelihood about
θ0:

0 = S(θ̂mle|x) = S(θ0) +H(θ̄|x)(θ̂mle − θ0), θ̄ = λθ̂mle + (1− λ)θ0

⇒ H(θ̄|x)(θ̂mle − θ0) = −S(θ0)

⇒
√
n(θ̂mle − θ0) = −

µ
1

n
H(θ̄|x)

¶−1√
n

µ
1

n
S(θ0)

¶
Now

H(θ̄|x) =
1

n

nX
i=1

H(θ̄|xi)
p→ E[H(θ0|xi)] = −I(θ0|xi)

1√
n
S(θ0) =

1√
n

nX
i=1

S(θ0|xi) d→ N(0, I(θ0|xi))
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Therefore
√
n(θ̂mle − θ0)

d→ I(θ0|xi)−1N(0, I(θ0|xi))
= N(0, I(θ0|xi)−1)

3. Since I(θ|xi) = −E[H(θ|xi)] = var(S(θ|xi)) is generally not known, avar(
√
n(θ̂mle−

θ)) must be estimated. The most common estimates for I(θ|xi) are

Î(θ̂mle|xi) = −1
n

nX
i=1

H(θ̂mle|xi)

Î(θ̂mle|xi) =
1

n

nX
i=1

S(θ̂mle|xi)(θ̂mle|xi)0

The first estimate requires second derivatives of the log-likelihood, whereas
the second estimate only requires first derivatives. Also, the second estimate
is guaranteed to be positive semi-definite in finite samples. The estimate of
avar(

√
n(θ̂mle − θ)) then takes the form

davar(√n(θ̂mle − θ)) = Î(θ̂mle|xi)−1

To prove consistency of the MLE, one must show that Q0(θ) = E[ln f(xi|θ)] is
uniquely maximized at θ = θ0. To do this, let f(x, θ0) denote the true density and
let f(x, θ1) denote the density evaluated at any θ1 6= θ0. Define the Kullback-Leibler
Information Criteria (KLIC) as

K(f(x, θ0), f(x, θ1)) = Eθ0

∙
ln

f(x, θ0)

f(x, θ1)

¸
=

Z
ln

f(x, θ0)

f(x, θ1)
f(x, θ0)dx

where

ln
f(x, θ0)

f(x, θ1)
= ∞ if f(x, θ1) = 0 and f(x, θ0) > 0

K(f(x, θ0), f(x, θ1)) = 0 if f(x, θ0) = 0

The KLIC is a measure of the ability of the likelihood ratio to distinguish between
f(x, θ0) and f(x, θ1) when f(x, θ0) is true. The Shannon-Komogorov Information
Inequality gives the following result:

K(f(x, θ0), f(x, θ1)) ≥ 0

with equality if and only if f(x, θ0) = f(x, θ1) for all values of x.

Example 14 Asymptotic results for MLE of Bernoulli distribution parameters
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Let X1, . . . , Xn be an iid sample with X ∼Bernoulli(θ). Recall,

θ̂mle = X̄ =
1

n

nX
i=1

Xi

I(θ|xi) =
1

θ(1− θ)

The asymptotic properties of the MLE tell us that

θ̂mle
p→ θ

√
n(θ̂mle − θ)

d→ N (0, θ(1− θ))

Alternatively,

θ̂mle
A∼ N

µ
θ,
θ(1− θ)

n

¶
An estimate of the asymptotic variance of θ̂mle is

avar(θ̂mle) =
θ̂mle(1− θ̂mle)

n
=

x̄(1− x̄)

n

Example 15 Asymptotic results for MLE of linear regression model parameters

In the linear regression with normal errors

yi = x0iβ + εi, i = 1, . . . , n

εi|xi ˜ iid N(0, σ2)

the MLE for θ = (β0, σ2)0 isµ
β̂mle

σ̂2mle

¶
=

µ
(X 0X)−1X 0y

n−1(y −Xbβmle)
0(y −Xbβmle)

¶
and the information matrix for the sample is

I(θ|x) =
µ

σ−2X 0X 0
0 n

2
σ−4

¶
The asymptotic results for MLE tell us thatµ

β̂mle

σ̂2mle

¶
A∼ N

µµ
β
σ2

¶
,

µ
σ2(X 0X)−1 0

0 2
n
σ4

¶¶
Further, the block diagonality of the information matrix implies that β̂mle is asymp-
totically independent of σ̂2mle.
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1.8 Relationship Between ML and GMM

Let X1, . . . , Xn be an iid sample from some underlying economic model. To do ML
estimation, you need to know the pdf, f(xi|θ), of an observation in order to form the
log-likelihood function

lnL(θ|x) =
nX
i=1

ln f(xi|θ)

where θ ∈ Rp. The MLE satisfies the first order condtions

∂ lnL(θ̂mle|x)
∂θ

= S(θ̂mle|x) = 0

For general models, the first order condtions are p nonlinear equations in p unknowns.
Under regularity conditions, the MLE is consistent, asymptotically normally distrib-
uted, and efficient in the class of asymptotically normal estimators:

θ̂mle ∼ N

µ
θ,
1

n
I(θ|xi)−1

¶
where I(θ|xi) = −E[H(θ|xi)] = E[S(θ|xi)S(θ|xi)0].
To do GMM estimation, you need to know k ≥ p population moment condtions

E[g(xi, θ)] = 0

The GMM estimator matches sample moments with the population moments. The
sample moments are

gn(θ) =
1

n

nX
i=1

g(xi, θ)

If k > p, the efficient GMM estimator minimizes the objective function

J(θ, Ŝ−1) = ngn(θ)
0Ŝ−1gn(θ)

where S = E[g(xi, θ)g(xi,θ)
0]. The first order conditions are

∂J(θ̂gmm, S
−1)

∂θ
= G0

n(θ̂gmm)Ŝ
−1gn(θ̂gmm) = 0

Under regularity conditions, the efficient GMM estimator is consistent, asymptoti-
cally normally distributed, and efficient in the class of asymptotically normal GMM
estimators for a given set of moment conditions:

θ̂gmm ∼ N

µ
θ,
1

n
(G0S−1G)−1

¶
where G = E

h
∂gn(θ)
∂θ0

i
.
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The asymptotic efficiency of the MLE in the class of consistent and asymptotically
normal estimators implies that

avar(θ̂mle)− avar(θ̂gmm) ≤ 0

That is, the efficient GMM estimator is generally less efficient than the ML estimator.
The GMM estimator will be equivalent to the ML estimator if the moment condi-

tions happen to correspond with the score associated with the pdf of an observation.
That is, if

g(xi, θ) = S(θ|xi)
In this case, there are p moment conditions and the model is just identified. The
GMM estimator then satisfies the sample moment equations

gn(θ̂gmm) = S(θ̂gmm|x) = 0

which implies that θ̂gmm = θ̂mle. Since

G = E

∙
∂S(θ|xi)

∂θ0

¸
= E[H(θ|xi)] = −I(θ|xi)

S = E[S(θ|xi)S(θ|x0i)] = I(θ|xi)

the asymptotic variance of the GMM estimator becomes

(G0S−1G)−1 = I(θ|xi)−1

which is the asymptotic variance of the MLE.

1.9 Hypothesis Testing in a Likelihood Framework

Let X1, . . . , Xn be iid with pdf f(x, θ) and assume that θ is a scalar. The hypotheses
to be tested are

H0 : θ = θ0 vs. H1 : θ 6= θ0

A statistical test is a decision rule based on the observed data to either reject H0 or
not reject H0.

1.9.1 Likelihood Ratio Statistic

Consider the likelihood ratio

λ =
L(θ0|x)
L(θ̂mle|x)

=
L(θ0|x)

maxθ L(θ|x)

which is the ratio of the likelihood evaluated under the null to the likelihood evaluated
at the MLE. By construction 0 < λ ≤ 1. If H0 : θ = θ0 is true, then we should see
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λ ≈ 1; if H0 : θ = θ0 is not true then we should see λ < 1. The likelihood ratio
(LR) statistic is a simple transformation of λ such that the value of LR is large if
H0 : θ = θ0 is true, and the value of LR is small when H0 : θ = θ0 is not true.
Formally, the LR statistic is

LR = −2 lnλ = −2 ln L(θ0|x)
L(θ̂mle|x)

= −2[lnL(θ0|x)− lnL(θ̂mle|x)]

From Figure xxx, notice that the distance between lnL(θ̂mle|x) and lnL(θ0|x)
depends on the curvature of lnL(θ|x) near θ = θ̂mle. If the curvature is sharpe (i.e.,
information is high) then LR will be large for θ0 values away from θ̂mle. If, however,
the curvature of lnL(θ|x) is flat (i.e., information is low) the LR will be small for θ0
values away from θ̂mle.
Under general regularity conditions, if H0 : θ = θ0 is true then

LR
d→ χ2(1)

In general, the degrees of freedom of the chi-square limiting distribution depends on
the number of restrictions imposed under the null hypothesis. The decision rule for
the LR statistic is to reject H0 : θ = θ0 at the α× 100% level if LR > χ21−α(1), where
χ21−α(1) is the (1−α)× 100% quantile of the chi-square distribution with 1 degree of
freedom.

1.9.2 Wald Statistic

The Wald statistic is based directly on the asymptotic normal distribution of θ̂mle :

θ̂mle ∼ N(θ, Î(θ̂mle|x)−1)

where Î(θ̂mle|x) is a consistent estimate of the sample information matrix. An im-
plication of the asymptotic normality result is that the usualy t-ratio for testing
H0 : θ = θ0

t =
θ̂mle − θ0cSE(θ̂mle)

=
θ̂mle − θ0q
Î(θ̂mle|x)−1

=
³
θ̂mle − θ0

´q
Î(θ̂mle|x)

is asymptotically distributed as a standard normal random variable. Using the contin-
uous mapping theorem, it follows that the square of the t-statistic is asymptotically
distributed as a chi-square random variable with 1 degree of freedom. The Wald
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statistic is defined to be simply the square of this t-ratio

Wald =

³
θ̂mle − θ0

´2
Î(θ̂mle|x)−1

=
³
θ̂mle − θ0

´2
Î(θ̂mle|x)

Under general regularity conditions, if H0 : θ = θ0 is true, then

Wald
d→ χ2(1)

The intuition behind the Wald statistic is illustrated in Figure xxx. If the curva-
ture of lnL(θ|x) near θ = θ̂mle is big (high information) then the squared distance³
θ̂mle − θ0

´2
gets blown up when constructing the Wald statistic. If the curvature

of lnL(θ|x) near θ = θ̂mle is low, then Î(θ̂mle|x) is small and the squared distance³
θ̂mle − θ0

´2
gets attenuated when constucting the Wald statistic.

1.9.3 Lagrange Multiplier/Score Statistic

With ML estimation, θ̂mle solves the first order conditions

0 =
d lnL(θ̂mle|x)

dθ
= S(θ̂mle|x)

If H0 : θ = θ0 is true, then we should expect that

0 ≈ d lnL(θ0|x)
dθ

= S(θ0|x)

If H0 : θ = θ0 is not true, then we should expect that

0 6= d lnL(θ0|x)
dθ

= S(θ0|x)

The Lagrange multiplier (score) statistic is based on how far S(θ0|x) is from zero.
Recall the following properties of the score S(θ|xi). If H0 : θ = θ0 is true then

E[S(θ0|xi)] = 0

var(S(θ0|xi)) = I(θ0|xi)

Further, it can be shown that

√
nS(θ0|x) =

1√
n

nX
i=1

S(θ0|xi) d→ N(0, I(θ0|xi))

23



so that
S(θ0|x) ∼ N(0, I(θ0|x))

This result motivates the statistic

LM =
S(θ0|x)2
I(θ0|x)

= S(θ0|x)2I(θ0|x)−1

Under general regularity conditions, if H0 : θ = θ0 is true, then

LM
d→ χ2(1)
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