Empirical properties of asset returns: stylized facts and statistical issues

Rama Cont¹

Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France

E-mail: Rama.Cont@polytechnique.fr

Received 28 October 2000

Abstract

We present a set of stylized empirical facts emerging from the statistical analysis of price variations in various types of financial markets. We first discuss some general issues common to all statistical studies of financial time series. Various statistical properties of asset returns are then described: distributional properties, tail properties and extreme fluctuations, pathwise regularity, linear and nonlinear dependence of returns in time and across stocks. Our description emphasizes properties common to a wide variety of markets and instruments. We then show how these statistical properties invalidate many of the common statistical approaches used to study financial data sets and examine some of the statistical problems encountered in each case.

Although statistical properties of prices of stocks and commodities and market indexes have been studied using data from various markets and instruments for more than half a century, the availability of large data sets of high-frequency price series and the application of computer-intensive methods for analysing their properties have opened new horizons to researchers in empirical finance in the last decade and have contributed to the consolidation of a data-based approach in financial modelling.

The study of these new data sets has led to the settlement of some old disputes regarding the nature of the data but has also generated new challenges. Not the least of them is to be able to capture in a synthetic and meaningful fashion the information and properties contained in this huge amount of data. A set of properties, common across many instruments, markets and time periods, has been observed by independent studies and classified as 'stylized facts'. We present here a pedagogical overview of these stylized facts. With respect to previous reviews [10, 14, 16, 50, 95, 102, 109] on the same subject, the aim of the present paper is to focus more on the properties of empirical data than on those of statistical models and introduce the reader to some new insights provided by methods based on statistical techniques recently applied in empirical finance.

Our goal is to 'let the data speak for themselves' as much as possible. In terms of statistical methods, this is achieved by using so-called *non-parametric* methods which make only qualitative assumptions about the properties of the stochastic process generating the data: they do not assume that they belong to any prespecified parametric family.

Although non-parametric methods have the great theoretical advantage of being model free, they can only provide qualitative information about financial time series and in order to obtain a more precise description we will sometimes resort to semi-parametric methods which, without completely specifying the form of the price process, imply the existence of a parameter which describes a property of the process (for example the tail behaviour of the marginal distribution).

Before proceeding further, let us fix some notations. In the following, S(t) will denote the price of a financial asset—a stock, an exchange rate or a market index—and $X(t) = \ln S(t)$ its logarithm. Given a *time scale* Δt , which can range from a few seconds to a month, the log return at scale Δt is defined as:

$$r(t, \Delta t) = X(t + \Delta t) - X(t).$$
(1)

In many econometric studies, Δt is set implicitly equal to one in appropriate units, but we will conserve all along the variable Δt to stress the fact the properties of the returns depend

¹ Web address: http://www.cmap.polytechnique.fr/~rama

References

- Adler R, Feldman R and Taqqu M (eds) 1996 A Practical Guide to Heavy Tails: Statistical Techniques for Analyzing Heavy Tailed Distributions (Boston: Birkhauser)
- [2] Andersen T G and Bollerslev T 1997 Intraday periodicity and volatility persistence in financial markets J. Empirical Finance 4 115–58
- [3] Ané T and Geman H 1999 Stochastic volatility and transaction time: an activity based volatility estimator *J. Risk* 57–69
- [4] Arnéodo A, Muzy J F and Sornette D 1998 Causal cascade in the stock market from the infrared to the ultraviolet *Euro*. *Phys. J. B* 2 277–82
- [5] Ausloos M and Vandewalle N 1997 Coherent and random sequences in financial fluctuations *Physica* A 246 454–9
- [6] Bacry E, Muzy J F and Delour J 2001 Multifractal random walks *Phys. Rev.* E at press
- [7] Barndorff-Nielsen O E 1997 Normal inverse Gaussian distributions and the modelling of stock returns *Scandinavian J. Statistics* 24 1–13
- [8] Beran J 1992 Statistical methods for data with long range dependence *Stat. Sci.* 7 404–27
- [9] Blattberg R and Gonnedes N 1974 A comparison of stable and Student distribution as statistical models for stock prices J. Business 47 244–80
- [10] Bollerslev T, Chou R C and Kroner K F 1992 ARCH modelling in finance J. Econometrics 52 5–59
- [11] Bouchaud J-P and Potters M 1997 *Théorie des Risques Financiers* (Aléa-Saclay: Eyrolles)
- [12] Bouchaud J-P 2001 Power laws in economics and finance *Quantitative Finance* **1** 105–12
- [13] Bouchaud J-P, Matacz A and Potters M 2001 The leverage effect in financial markets: retarded volatility and market panic *Preprint*
 - http://xxx.lpthe.jussieu.fr/abs/cond-mat/0101120
- [14] Brock W A and de Lima P J F 1995 Nonlinear time series, complexity theory and finance *Handbook of Statistics Volume 14: Statistical Methods in Finance* ed G Maddala and C Rao (New York: North-Holland)
- [15] Campbell J, Grossmann S and Wang J 1993 Trading volume and serial correlation in stock returns Q. J. Economics 108 905–39
- [16] Campbell J, Lo A H and McKinlay C 1997 The Econometrics of Financial Markets (Princeton, NJ: Princeton University Press)
- [17] Campbell J, Lo A H and McKinlay C 1999 A Non-Random Walk Down Wall Street (Princeton, NJ: Princeton University Press)
- [18] Cizeau P, Potters M and Bouchaud J-P 2000 Correlations of extreme stock returns within a non-Gaussian one-factor model *Science & Finance Working Paper*
- [19] Clark P K 1973 A subordinated stochastic process model with finite variance for speculative prices *Econometrica* 41 135–55
- [20] Comte F and Renault E 1996 Long memory continuous time models J. Econometrics 73 101–50
- [21] Cont R, Potters M and J-P Bouchaud 1997 Scaling in stock market data: stable laws and beyond Scale Invariance and Beyond (Proc. CNRS Workshop on Scale Invariance, Les Houches, 1997) ed Dubrulle, Graner and Sornette (Berlin: Springer)
- [22] Cont R 1998 Statistical Finance: empirical and theoretical approaches to the statistical modelling of price variations in speculative markets *Doctoral Thesis, Université de Paris XI*
- [23] Cont R 1999 Statistical properties of financial time series Mathematical Finance: Theory and Practice. Lecture Series in Applied Mathematics ed R Cont and J Yong vol 1

(Beijing: Higher Education Press)

- [24] Cont R 1999 Modelling economic randomness: statistical mechanics of market phenomena *Statistical Physics on the Eve of the 21st Century* ed M Batchelor and L T Wille (Singapore: World Scientific)
- [25] Cont R 1998 Clustering and dependence in extreme market returns Extremes: Risk and Safety. Statistical Extreme Value Theory and Applications, Gothenburg, Sweden, 18–22 August 1998
- [26] Cont R 2000 Multiresolution analysis of financial time series Working Paper
- [27] Cutler D M, Poterba J M and Summers L 1989 What moves stock prices? J. Portfolio Management 4–12
- [28] Dacorogna M M, Müller U A, Pictet O V and de Vries C G 1992 The distribution of extremal foreign exchange rate returns in large data sets Olsen and Associates Internal document UAM. 19921022
- [29] Darolles S, Florens J P and Gourieroux Ch 1999 Kernel based nonlinear canonical analysis CREST Working Paper
- [30] Davidson J 1997 *Stochastic Limit Theory* (Oxford: Oxford University Press)
- [31] Davis R A and Mikosch T 1998 Limit theory for the sample ACF of stationary process with heavy tails with applications to ARCH Ann. Statistics 26 2049–80
- [32] Davis R A and Mikosch T 1999 The sample autocorrelations of financial time series models EURANDOM Working Paper 99–039
- [33] Davison A C and Cox D R 1989 Some simple properties of sums of random variables having long range dependence *Proc. R. Soc.* A 424 255–62
- [34] Ding Z, Granger C W J and Engle R F 1983 A long memory property of stock market returns and a new model *J. Empirical Finance* 1 83
- [35] Ding Z X and Granger C W J 1994 Stylized facts on the temporal distributional properties of daily data from speculative markets University of California, San Diego, Working Paper
- [36] Ding Z and Granger C W J 1996 Modelling volatility persistence of speculative returns: a new approach J. Econometrics 73 185–216
- [37] Eberlein E, Keller U and Prause K 1998 New insights into smile, mispricing and value at risk: the hyperbolic model *J. Business* 71 371–405
- [38] Embrechts P, Kluppelberg C and Mikosch T 1997 *Modelling Extremal Events*, (New York: Springer)
- [39] Engle R F 1995 ARCH: Selected Readings (Oxford: Oxford University Press)
- [40] Falconer K 1990 Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley)
- [41] Fama E F 1963 Mandelbrot and the stable paretian hypothesis *J. Business* **36** 420–29
- [42] Fama E F 1965 The behavior of stock market prices J. Business **38** 34–105
- [43] Fama E F 1971 Efficient capital markets: a review of theory and empirical work *J. Finance* **25** 383–417
- [44] Fama E F 1991 Efficient capital markets: II J. Finance 46 1575–613
- [45] Fisher A, Calvet L and Mandelbrot B 1998 Multifractal analysis of USD/DM exchange rates Yale University Working Paper
- [46] Ghashghaie S et al 1996 Turbulent cascades in foreign exchange markets Nature 381 767
- [47] Goodhart C E and O'Hara M 1997 High frequency data in financial markets: issues and applications *J. Empirical Finance* 4 73–114
- [48] Gourieroux C 1997 ARCH Models and Financial Applications (Berlin: Springer)
- [49] Gourieroux C, Jasiak J and Lefol G 1999 Intra-day market activity J. Financial Markets 2 193–226

- [50] Gourieroux Ch and Jasiak J 2001 Econometrics of finance Manuscript
- [51] Ghashghaie S *et al* 1996 Turbulent cascades in foreign exchange markets *Nature* **381** 767
- [52] Gopikrishnan P, Meyer M, Amaral L A N and Stanley H E 1998 Inverse cubic law for the distribution of stock price variations *Euro. Phys. J.* B **3** 139–40
- [53] Granger C W J and Morgenstern O 1970 Predictability of Stock Market Prices (Lexington, KY: Heath)
- [54] Granger C W J 1977 Long term dependence in common stock returns J. Financial Economics 4 339–49
- [55] Granger C W J and Ding Z 1996 Varieties of long memory models J. Econometrics 73 61–77
- [56] Guillaume D M, Dacorogna M M, Davé R R, Müller U A, Olsen R B and Pictet O V 1997 From the birds eye to the microscope: a survey of new stylized facts of the intra-day foreign exchange markets *Finance Stochastics* 1 95–130
- [57] Hall J, Brorsen B and Irwin S 1989 The distribution of future prices: a test of the stable paretian and mixture of normals hypothesis J. Financial Quantitative Anal. 24 105–16
- [58] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B L 1986 Fractal measures and their singularities: the characterization of strange sets *Phys. Rev.* A 33 1141–51
- [59] Harvey A C 1998 Long memory in stochastic volatility Forecasting volatility in financial markets ed Knight and Satchell (Oxford: Butterworth-Heinemann) pp 307–20
- [60] Hsieh D A 1988 The statistical properties of daily exchange rates J. Int. Economics 13 171–86
- [61] Hsieh D A 1989 Testing for nonlinear dependence in foreign exchange rates J. Business 62 339–668
- [62] Hwang W and Mallat S 1994 Characterization of self-similar multifractals with wavelet maxima Appl. Computational Harmonic Anal. 1 316–28
- [63] Härdle W 1990 *Applied Non Parametric Regression* (Cambridge: Cambridge University Press)
- [64] Hauksson H A, Dacorogna M M, Domenig T, Müller U and Samorodnitsky G 2001 Multivariate extremes, aggregation and risk estimation *Quantitative Finance* 1 79–95
- [65] Hosking J R M 1996 Asymptotic distributions of the sample mean, autocovariances and autocorrelations of long memory time series J. Econometrics 73 261–85
- [66] Jaffard S 1997 Multifractal formalism for functions I: results valid for all functions SIAM J. M. Anal. 28 944–70
- [67] Jaffard S 1997 Multifractal formalism for functions II: self-similar functions SIAM J. Math. Anal. 28 971–98
- [68] Jaffard S 1997 The multifractal nature of Lévy processes *Preprint*
- [69] Jain P C and Joh G-H 1988 The dependence between hourly prices and trading volume *J. Financial Quantitative Anal.* 23 269–84
- [70] Jansen D W and de Vries C G 1991 On the frequency of large stock returns: putting booms and busts into perspective *Rev. Economics Statistics* 73 18–24
- [71] Johansen A and Sornette D 1998 Stock market crashes are outliers *Euro. Phys. J.* B 1 141–3
- [72] Kon S 1984 Models of stock returns: a comparison J. Finance XXXIX 147–65
- [73] Lamoureux C G and Lastrapes W D 1990 Heteroskedasticity in stock return data: volume versus GARCH effects *J. Finance* XLV 221–9
- [74] Liu Y, Cizeau P, Meyer M, Peng C K and Stanley H E 1997 Correlations in economic time series *Physica* A 245 437
- [75] Lo A W 1991 Long term memory in stock market prices Econometrica 59 1279–313
- [76] Longin F 1996 The asymptotic distribution of extreme stock market returns J. Business 63 383–408
- [77] Lux T 1997 The limiting extremal behavior of speculative returns: an analysis of intradaily data from the Frankfurt

Stock exchange *University of Bonn Working Paper* [78] Laloux L, Cizeau P, Potters M and Bouchaud J-P 1999 Random matrix theory *Risk* **12** 69

- [79] Laloux L, Cizeau P, Bouchaud J-P and Potters M 1999 Noise dressing of financial correlation matrices *Phys. Rev. Lett.* 83 1467
- [80] Mandelbrot B 1963 The variation of certain speculative prices J. Business XXXVI 392–417
- [81] Mandelbrot B 1966 Forecasts of future prices, unbiased markets and martingale models J. Business 39 242–55
- [82] Mandelbrot B and Wallis J 1968 Noah, Joseph and operational hydrology *Water Resources Res.* 4 909–18
- [83] Mandelbrot B and Van Ness J W 1968 Fractional Brownian motion, fractional Brownian noises and applications SIAM Rev. 10 422–37
- [84] Mandelbrot B 1968 Forecasts of future prices, unbiased markets and martingale models J. Business 39 242–55
- [85] Mandelbrot B 1971 When can prices be arbitraged efficiently? A limit to the validity of random walk and martingale models *Rev. Economics Statistics* 53 225–36
- [86] Mandelbrot B 1974 Intermittent turbulence in self-similar cascades J. Fluid Mechanics 62 331
- [87] Mandelbrot B 1975 Limit theorems on the self normalized range for weakly and strongly dependent processes Zeitschrift fur Wahrscheinlichkeitstheorie und verwandete Gebiete 31 271–85
- [88] Mandelbrot B and Taqqu M 1979 Robust R/S analysis of long serial correlation *Bull. Int. Stat. Institute* II pp 59–104
- [89] Mandelbrot B 1997 Fractals and Scaling in Finance: Discontinuity, Concentration and Risk (New York: Springer)
- [90] Mandelbrot B, Fisher A and Calvet L 1997 The multifractal model of asset returns Cowles Foundation for Economic Research Working Paper
- [91] Mandelbrot B 2001 Scaling in financial prices: tails and dependence *Quantitative Finance* 1 113–23
- [92] Mallat S 1996 A Wavelet Tour of Signal Processing (New York: Academic)
- [93] Mantegna R N and Stanley H E 1995 Scaling behavior of an economic index *Nature* 376 46–9
- [94] Mehta M L 1990 Random Matrices (New York: Academic)
- [95] Maddala and Rao (ed) 1997 Handbook of Statistics: Statistical Methods in Finance vol 14 (Amsterdam: North-Holland)
- [96] Mikosch T and Starica C 2000 Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process *Ann. Statistics* 24 no 4
- [97] Müller U A, Dacorogna M, Davé R D, Olsen R B, Pictet O V and von Weizsacker J E 1997 Volatilities of different time resolutions—analyzing the dynamics of market components J. Empirical Finance 4 213–39
- [98] Müller U A, Dacorogna M A and Pictet O V 1996 Heavy tails in high-frequency financial data Olsen and Associates, Zürich, Preprint
- [99] Muzy J F, Bacry E and Arneodo A 1994 The multifractal formalism revisited with wavelets Int. J. Bifurcation Chaos 4 245
- [100] Muzy J F, Delour J and Bacry E 2000 Modelling fluctuations of financial time series: from cascade process to stochastic volatility model *Euro*. *Phys. J.* B at press
- [101] Parisi G and Frisch U 1985 On the singularity structure of fully developed turbulence *Proc. Int. School of Physics Enrico Fermi 1983* ed Ghil *et al* (Amsterdam: North-Holland) pp 84–7
- [102] Pagan A 1996 The econometrics of financial markets J. Empirical Finance 3 15–102
- [103] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N and Stanley H E 1999 Universal and nonuniversal properties of cross correlations in financial time series *Phys. Rev. Lett.*

R Cont

83 1471

- [104] Prause K 1998 The generalized hyperbolic model *PhD* Dissertation, University of Freiburg
- [105] Pictet O V, Dacorogna M, Müller U A, Olsen R B and Ward J R 1997 Statistical study of foreign exchange rates, empirical evidence of a price change scaling law and intraday analysis J. Banking Finance 14 1189–208
- [106] Rebonato R 1999 Volatility and Correlation (New York: Wiley)
- [107] Resnick S 1998 Why nonlinearities can ruin a heavy tail modelers day A Practical Guide to Heavy Tails: Statistical Techniques and Applications ed R J Adler, R E Feldman and M S Taqqu (Boston, MA: Birkhauser)
- [108] Bouye E, Durrleman V, Nikeghbali A, Riboulet G and Roncalli T 2000 Copulas for finance: a reading guide and some applications Groupe de Recherche Operationnelle, Credit Lyonnais

- [109] Shephard N 1996 Statistical aspects of ARCH and stochastic volatility *Time Series Models* ed D R Cox, D V Hinkley and O E Barndorff-Nielsen (London: Chapman & Hall)
- [110] Shiller R 1989 Market Volatility (Cambridge, MA: MIT Press)
- [111] Smith R and Weissman I 1994 Estimating the extremal index J. R. Stat. Soc. B 56 515–28
- [112] Starica C 1998 Multivariate extremes for models with constant condiational correlations *J. Empirical Finance* 6 515–53
- [113] Straetmans S 1998 Extreme financial returns and their comovements *PhD Thesis, Erasmus Universiteit, Rotterdam*
- [114] Veneziano D, Moglen G E and Bras R L 1995 Multifractal analysis: pitfalls of standard procedures and alternatives *Phys. Rev.* E 521387–98