
 

variables.13,14 Moreover, the interpretation of the null 
hypothesis being tested with the WMW test is not easily 
described;2 conventional interpretation (including exam-
ples provided by statistical packages15) would have it 
that the null hypothesis is one of equal group medians, 
but such is not the case; rather it is a test for equality of 
group mean ranks.16 Because the WMW test is a test of 
both location and shape, its interpretation as a test of 
medians is valid when the only distributional difference 
is a shift in location.17 That is, for the MWM test to be 
“distribution free”, under the null hypothesis of equal 
medians, the two populations being compared are 
assumed to be continuous and have the same shape.9 
Technically, the above condition will be satisfied if the 
distribution location parameter is the median (for 
example a Cauchy distribution); otherwise the location 
parameter is usually the mean. If the means/medians are 
similar but the two distributions have different spreads, 
the WMW test has poor power under the alternative 
hypothesis. The (Mood) median test also has low power 
in small samples and is not recommended.18 That the 
differences in spread may be as important as (putative) 
differences in medians is often overlooked. Further-
more, there are different outcomes from WMW test 
dependent upon the statistical package; these differences 
relate to the handling of ties, the use of the continuity 
correction and the use of the asymptotic approximation 
versus the exact permutation distribution. The latter 
form of the WMW test would appear to be the preferred 
option.15 

Point of view 
 
Worrying about normality 
 
 Some recent debates have highlighted the recurring 
problem of which statistical approach to use in the 
analysis of non-normally distributed data and/or small 
unequal data-sets. Received wisdom suggests that,1,2 
when comparing two independent groups in the 
presence of one or both of the above conditions, the t-
test may be unreliable and the Wilcoxon-Mann-Whitney 
(WMW) test is preferable.3-5 That is, type I and II error 
rates are affected by violation of underlying test 
assumptions; type I errors are “liberal”, resulting in 
spurious rejection of the null hypothesis, and power 
rates are depressed resulting in undetected effects.6 
Modifications of the t-test do exist, for both inequality 
of variance7 and skewness8 (similarly for the WMW 
test)9 and these have been implemented variously in 
statistical packages. The important point to note is that 
such recommendations tend also to be detail non-
specific, to the extent that they do not address the 
question of the degree of non-normality or “how small”. 
That such a conventional strategy of preference for the 
WMW test for “non-normal data” analysis may lead to 
strikingly different conclusions was demonstrated by 
Barber and Thompson using a cost data-set:3 a p value 
for the WMW test of 0.011 and for the t-test, 0.71. That 
one would select the p-value according to the under-
lying hypothesis is unconscionable, but not unknown, in 
the same manner as the presentation of the standard 
error (SE) instead of standard deviation (SD) to make 
the data look “better”.10 Moreover, such a “test dredg-
ing” approach, involving multiple standard tests, increa-
ses the Type I error beyond the nominal 5% level.11 

 To overcome some of these problems, data trans-
formation (log, square root and reciprocal) to achieve 
approximate normality is often used, but such trans-
formations result in comparisons of geometric (for log 
transformation19) and harmonic (for reciprocal trans-
formation) means and statistical inference in comparing 
these means cannot be equated with the test of arith-
metic means, unless (for geometric means, at least) the 
variances on the log-scale are equal.20-22 Due note of the 
potential loss of power (ranging from 2 to 10%) in 
analysing transformed data must also be undertaken.23 
Back transformation (to the original scale) may also be 
problematic for “differences” following square root or 
reciprocal transformations; with logarithmic transform-
ation, the antilog of a mean log difference gives the 
ratio of geometric means.24 Although frequently used in 
environmental and chemical research, the geometric 
mean has not been without its critics as an appropriate 
data summary statistic.25 Moreover, the geometric mean 
is a biased estimator of the arithmetic mean and the 
latter statistic may be appropriate in considering such 
variables as costs and their surrogates; that is, where 
consideration of total costs is of importance (total costs 
= average costs x number of patients). The skewness26 
of the distributions of costs and length of stay27 may 

 When considering the use of statistical tests such as 
the t-test and the WMW test, an important and frequen-
tly overlooked assumption is that of independence of 
observations. Assuming independence is highly likely to 
be reasonable in the clinical trial context, but this is not 
necessarily so for epidemiological studies, where for 
example, patients may be clustered by disease state or 
other criteria. As Cox and Hinkley observed some time 
ago, “The main emphasis in distribution-free tests is on 
avoiding assumptions about distributional form. In 
many applications, however, the most critical assumpti-
ons are those of independence.” 12 
 It is important to realize that the WMW test gives no 
more protection against false-positive inference than the 
t-test;4 the WMW test, in its normal approximation, 
being equivalent to the t-test on the ranks of the original 
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mandate, for descriptive purposes, the reporting of 
summary statistics such as mean and standard deviation, 
median and range (see for example Esteban et al28). 
However, such does not negate the appropriateness of 
the arithmetic mean for statistical inference.29 
 The above being said, what is known of the 
performance of the two tests under varying conditions? 
Lumley et al,2 reviewing a number of studies of t-test 
performance under conditions of non-normality, with 
sample sizes ranging from as low as 3 to greater than 
80, found the performance to be acceptable in terms of 
Type I and II errors; kurtosis30 having less impact than 
severe skewness (the effect of positive skewness 
actually results in the sampling distribution of the t 
statistic becoming negatively skewed).31 This also 
applied to extreme distributional situations of “floor 
effects” or “discrete mass at zero”; that is, when up to 
50% of subjects record zero for the measured 
variable.32,33 It also is often forgotten that at sample 
sizes of 25 to 30 and above, by virtue of the Central 
Limit Theorem, the sampling distribution of t is effect-
ively normal.34,35 With respect to comparisons with the 
WMW test, results have been variable, dependent upon 
the experimental set-up; in particular, the use of 
“mathematically convenient” distributions or “real life” 
data sets from different disciplines, including psychol-
ogy and education.36 Skovlund and Fenstad,37 in a 
simulation study with sample sizes ranging from 5 to 15 
and using combinations of equal and unequal variances 
and sample sizes, and distributions as normal, heavy 
tailed and skewed, reported that the t-test (and the 
Welch variant, for unequal variances) again had 
acceptable performance for most of the combinations, 
except for severely skewed distributions with unequal 
sample size and unequal variances. The WMW test was 
shown to be very sensitive to unequal variances (that is, 
deviations from a pure shift model) and was not 
recommended for any combination of data character-
istics when this condition was present. Under these 
circumstances, the Welch t-test variant and/or data 
transformation was recommended. Similar results were 
noted by Zimmerman,38 who varied both normality and 
homogeneity of variance; in particular, the Type I error 
probabilities of the WMW test were more severely 
distorted with heavy tailed densities, unequal variances 
and sizes, with larger variances associated with the 
smaller sample size (n varying from 15 to 40). Bridge 
and Sawilowsky,39 investigating the power (ability to 
detect a false null hypothesis) of the two tests in 
multimodal, mass at zero and extreme asymmetry 
distributions, with small n, found a comparative power 
advantage for the MWM test, which was substantial in 
some instances; supporting the previous study of 
Zimmermann and Zumbo.14 However, these compar-
isons involved a location shift only and were not subject 

to multiple violations of assumptions, which, as 
Zimmerman observed,38 can produce “anomalous 
effects not observed in separate violations”. 
 The t-test would thus appear to be surprisingly 
robust to violation of assumptions, and any advantage of 
the MWM test would appear to be in situations of 
extreme skewness of underlying distributions (albeit 
such advantage may be compromised by variance non-
homogeneity of the two groups being compared) or 
extreme outliers. Paradoxically, the WMW test becomes 
far less robust with increase in sample sizes.31,35 
However, alternatives to these tests are available.40 On 
the basis that biomedical research usually involves 
small samples and proceeds via randomisation of a non-
random sample rather than random sampling, and thus 
the randomisation, not the population model applies, 
Ludbrook has argued for the use of permutation 
tests.41,42 With appropriate software,43 permutation 
tests44 have become a feasible option and noted to have 
some advantage.45 A second approach is the non-
parametric bootstrap,46 in which an empirical estimate 
of the sampling distribution of the statistic in question is 
obtained by repeated sampling (for example, 1000 
times) with replacement from the observed data. A 
number of recent papers have used bootstrap techniques 
in the analysis of skewed data.20,24,47,48 The lack of 
widespread use of these two alternative approaches to 
the t-test and the WMW test may reflect the previously 
described lag-time of diffusion of statistical techniques 
into the medical literature.49 
 The points raised above are illustrated by a 
consideration of intensive care unit (ICU) cost data in 
dollars, for two different hospitals, previously reported 
(Table 1).50 
 
Table 1. Intensive care costs for two hospitals 
Hospital   patient  mean median SD  min  max 
       number 
1       410   $5463  $2478  $8767  $242 $69327 
2       244   $6366  $3155  $9113  $605 $69426 
Total     654   $5800  $2804  $8901  $242 $69426 
 
 The costs (both total and for each hospital) 
demonstrated significant kurtosis (p = 0.001) and 
skewness (p = 0.001), albeit there was no variance 
inequality between the hospitals (p = 0.50). Log 
transformation, in this case, did not effect normality 
(Shapiro-Wilk test, p = 0.0001) and served only to 
exacerbate variance disparity (p = 0.006). The 
difference in mean costs between the hospitals via the t-
test was non-significant with a p = 0.21, whereas the 
WMW test suggested a difference between hospital 
costs at the 0.0001 level. Log transformation of costs 
resulted in a significant t-test (p = 0.0004), but as noted 
above, such refers to a comparison between geometric 
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means and not a test of the “original” null hypothesis, of 
equality of arithmetic means, a point reiterated by Zhou 
et al.51 Using the BCa bootstrap method,52 no significant 
difference was noted between mean costs for the 
hospitals (95% CI of the difference: -$337 to $2552); 
similarly, the two-sided p value for the (exact) 
permutation two-sample test, using the raw data as 
scores, was 0.11. It would appear, therefore, that no 
difference existed between the (mean) ICU costs of the 
two hospitals. 
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