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1 Indefinite Integration and Differentiation

Indefinite integration is the inverse operation to differentiation, and, before we
can understand what we mean by indefinite integration, we need to understand
what we mean by differentiation.

1.1 What is differentiation?

1. An analytic operation:
f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

.

2. An algebraic operation, satisfying (a + b)′ = a′ + b′, (ab)′ = a′b + b′a,
x′ = 1.

We note the different ways in which the fact that we mean “differentiation with
respect to x” is expressed in the two formulations.

1.1.1 Two interpretations of atan

Analytically, atan(x) = y : y = tan(x) and −π/2 < y < π/2.
Algebraically, atan(f)′ = f ′

1+f2 . Therefore only defined “up to a constant”.
Analytically, c is a constant iff c(x1) = c(x2)∀x1, x2, and, in this view, the
Heaviside function is not a constant.
Algebraically, c is a constant iff c′ = 0, and, in this view, the Heaviside function
is a constant.
∗The author is grateful to many people for their discussions of definite integration, notably

Andrews Adams, Jacques Carrette, Tony Hearn and Daniel Lichtblau.
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1.1.2 Comparing the two approaches

• The success of computer algebra is that one can model the first by the
second.

• The problem of computer algebra is that the model, particularly when it
comes to inverse differentiation and the handling of “up to a constant”, is
not perfect.

The first deals with functions (say R 7→ R), the second with algebraic expres-
sions.

1.2 Indefinite integration

• Solved for elementary functions (algebraic, exponential, trigonometric, hy-
perbolic and their inverses) [17, 18, 12, 20, 7];

• Solved for elementary and error functions [8];

• Solved for elementary functions and logarithmic integrals [9];

always subject to the underlying problem of deciding if constants are zero or
not [16].

Many possible expressions for the answer.

1.2.1 General outline

Let f ∈ C(x, θ1, . . . θn), θi elementary.

1. Consider f ∈ K(θn).

2. Let F be the most general form of
∫

f (Liouville’s Theorem).

3. Split f = F ′ into polynomial and rational function parts.

4. Polynomial part solve by equating coefficients of θn.

5. Rational part solve by integration by parts.

1.2.2 Most general form (Liouville)

Let f = p(θn) + q(θn)
r(θn) . Then F is

p(θn) +
q(θn)
r(θn)

+
∑

i

ci log vi,

where r, vi divide r and the ci are constants.
It is then simple to deduce degree bounds etc.
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But this theorem is hard to generalise, for example1
∫

erf(ax) erf(bx) involves
erf(

√
a2 + b2x)!

1.3 Examples of choice of integral

1.3.1 Which arctan?∫
1

x2 − 8x + 17
dx = arctan(x− 4) = arctan

(
x− 5
x− 3

)
(1)

[arctan(x− 4)]42 = arctan 2 ≈ 1.107[
arctan

(
x− 5
x− 3

)]4
2

=
−π

4
− arctan 3 ≈ −2.034

At x = 3 the second form of the integrand went through the “branch cut at
infinity” of arctan, so the two answers differ by

−π = lim
x→3+

arctan
x− 5
x− 3

− lim
x→3−

arctan
x− 5
x− 3

.

This particular case is resolved by [14], who show how to choose an expression
in arctan without such “spurious” branch cuts. Nonetheless, this very sim-
ple example shows what can go wrong with an over-simplistic use of indefinite
integration to do definite integration.

A further interesting phenomenon occurs when one tries to integrate one of
these alternatives: arctan

(
x−5
x−3

)
. Maple returns

(x− 3) arctan
(

x− 5
x− 3

)
+ln

(
−2

x− 3

)
−1

2
ln

(
1 +

(
x− 5
x− 3

)2
)
−arctan (x− 4)+

π

4
,

which at x = 2 evaluates to a real number, but at x = 4 evaluates to 1
2 ln 2+ iπ,

so a näıve implementation of definite integration through indefinite integration
would return a complex number after integrating a real function through a real
range. In fact, iπ is precisely the jump discontinuity in the integral as we pass
through x = 3, but it could as well have had a real part also.

1.3.2 Logarithms and signs

It would be natural to assume2 that∫
1

1− x
dx = − log(1− x), (2)

1More precisely:
∫

erf(ax) erf(bx)dx =

x erf (ax) erf (bx)+
e−a2x2

erf (bx)

a
√

π
+

e−b2x2
erf (ax)

b
√

π
−

b erf
(√

a2 + b2x
)

a
√

π
√

a2 + b2
−

a erf
(√

a2 + b2x
)

b
√

π
√

a2 + b2
.

2I am grateful to Jacques Carrette for this example.

3



and similarly that ∫
−1

x− 1
dx = − log(x− 1). (3)

The integrands in equations (2–3) are clearly equal in the normal algebra of
Q(x). However, the integrals differ by

−iπ x > 1
iπ x < 1
iπ =(x) > 0
−iπ =(x) < 0

.

Again, we see that “up to a constant” has a more subtle meaning than we might
expect, and what might seem a trivial choice has ramifications. In particular,
the right-hand side of (2) has its branch cut immediately above the real axis
(for x > 1).

In has been suggested [19] that the correct answer is∫
1

1− x
dx = − log |1− x|. (4)

This, of course, is only valid over R, and differs from the answer in either (2)
or (3) by ±iπ as necessary, to make it real everywhere on R.

1.4 The Fundamental Theorem of Calculus

There are many possible statements of this theorem, but we shall use the fol-
lowing one.

Theorem 1 Given f : [a, b] 7→ R ([a, b] may be infinite) and a function F , if

• f is Riemann-integrable on [a, b] and

• throughout [a, b]3, F ′ = f ,

then
∫ b

a
f(x)dx = F (b)− F (a).

It is well known that F has to be continuous, and differentiable.
The Appendix gives an exegesis of the Fundamental Theorem in terms of

elementary formulae, and gives a context in which the Theorem is applicable in
computer algebra.

1.5 Examples of ignoring integrability∫
1
x2 dx = −1

x . “So” ∫ 1

−1

1
x2

dx
?=
[
−1
x

]1
−1

= −1− 1 = −2.

3In fact, it suffices to have f(a) = limh→0+
F (a+h)−F (a)

h
and f(b) =

limh→0−
F (b+h)−F (b)

h
.
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∫
1
x3 dx = −1

2x2 . “So” ∫ 1

−1

1
x3

dx
?=
[
−1
2x2

]1
−1

= −1
2

+
1
2

= 0.

The first is plain wrong4, the second happens to yield the Cauchy principal
value of the integral (without warning).

1.6 So we should always check for Riemann integrability?

In theory, certainly. But:

• Riemann integrability is essentially an analytic question, and we have
historically tried to do computer algebra (not a good reason);

• I know of no general-purpose algorithm for doing so, and the definition is
hard to make constructive;

• I know of no computer algebra system which does so in general.

Instead most computer algebra systems implicitly rely on what I have come
to call

Hypothesis 1 (of closed form integrability) If f has no singularities in
[a, b] and has a closed form integral, then f is Riemann-integrable in [a, b].

What one can prove is that, if the elementary formula corresponding to f has no
apparent singularities in a closed interval, then f is Riemann-integrable in that

interval (see Appendix). One might ask about, say,
cos( 1

x )
x2 , whose integral is

− sin(1/x), but on an interval not including 0, it is in fact Riemann-integrable,
and at 0 it is undefined (indeed as we approach 0 it is unbounded in both
directions).

1.7 A pseudo-algorithm for definite integration

We assume that the interval of integration [a, b] is finite: if not, limiting processes
are in order, but the modifications are trivial5.

1. If f does not have an indefinite integral in closed form F , give up.

2. If f or F have singularities in (a, b), split the integral at each singularity6

and recurse.
4We are integrating a strictly positive, indeed ≥ 1, function.
5Provided that the singularities are bounded. If they are not, then purely algebraic tech-

niques seem doomed to failre, and we need to reason about a “generic” singularity.
6There will be problems here if there are infinitely many singularities, and theorem-proving

probably has much to offer in this case.
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3. If f has a singularity at a, consider

lim
c→a+

∫ b

c

f(x)dx.

4. If f has a singularity at b, consider

lim
d→b−

∫ d

a

f(x)dx.

1.8 Integration is dependent on limits?

Just as Riemann pointed out, but not in the same manner in practice.

• By assuming hypothesis 1, we are ignoring the problems of letting mesh
size tend to zero with bounded functions such as sin 1

x .

• The treatment of singularities at end-points is consistent with that of
Riemann integration.

• By treating internal singularities more carefully and combining limits, it
is possible to compute Cauchy principal values if requested . In the case of
the second example of section 1.5, we would write∫ 1

−1

1
x3

dx =
∫ 0

−1

1
x3

dx +
∫ 1

0

1
x3

dx

= lim
ε→0+

(∫ −ε

−1

1
x3

dx

)
+ lim

ε→0+

(∫ 1

ε

1
x3

dx

)
= (−∞) +∞ = undefined.

But, combining limits to get the Cauchy principal value,

= lim
ε→0+

(∫ −ε

−1

1
x3

dx

∫ 1

ε

1
x3

dx

)
= lim

ε→0+

(
1
2

+
−1
2ε2

− −1
2ε2

− 1
2

)
= lim

ε→0+
0 = 0

• Definite integration through indefinite integration cannot be better than
the (one-sided) “limit” software it uses.

• But this may need to be tuned to the problems that tend to come up this
way. However, special-purpose limit ideas in integration are bad [15].

1.9 Integration depends on singularity detection?

Certainly so. The integrator

• must detect all singularities, including jump discontinuities, in both f
and F .

6



• should not report apparent singularities, where in fact cancellation means
that there is not a problem.

* 3x2 sin
(

1
x

)
−x cos

(
1
x

)
(derivative of x3 sin

(
1
x

)
) does not have a singularity

at x = 0.

Strong interaction with the “limit” code.
Consider [15], following a MAA problem, the following results from Mathe-

matica. ∫ π

0

∫ π

0

| sin(x− y)|dydx = 2π (right)∫ 2π

0

∫ 2π

0

| sin(x− y)|dydx = 4π (wrong)

In both integrals the singularity x = y is recognised, but in the second, x ≡ y+π
(mod 2π) is not recognised as a (broken) singularity line, and therefore the
contributions from (0, π)× (π, 2π) and (π, 2π)× (0, π) were computed as if the
integrand were sin(x− y), and therefore gave 0.

2 Other ways of computing definite integrals

We are all familiar with other ways of computing definite integrals, as in(∫ ∞

0

exp(−x2/2)dx

)2

=
(∫ ∞

0

exp(−x2/2)dx

)(∫ ∞

0

exp(−y2/2)dy

)
=

∫ ∞

0

∫ ∞

0

exp(−(x2 + y2)/2)dxdy

=
∫ ∞

0

∫ π
2

0

exp(−r2/2)rdθdr

=
π

2

∫ ∞

0

exp(−r2/2)rdr

=
π

2
[
− exp(−r2/2)

]∞
0

=
π

2

⇒
∫ ∞

0

exp(−x2/2)dx =
√

π

2
.

2.1 Integration tables?

These seem to be the only way of handling such a variety of ad hoc techniques
at the moment, though one might hope that a suitable series of tactics for a
theorem prover might work.

• Notoriously unreliable; up to 26% error rates [13].
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• Unless there is an exact match7, there is the problem of ensuring that any
transformations are analytically valid.

• Need theorem-prover support for verification and application [2, 3].

2.2 Integration by convolution of Meijer G functions

To the best of my knowledge, this method is only implemented in Mathematica
and Maple.

2.2.1 Definition of Meijer G functions

Let:

as = [a1, . . . , am] Γ(1− as + y) =
m∏

i=1

Γ(1− ai + y);

bs = [b1, . . . , bn] Γ(bs − y) =
n∏

i=1

Γ(bi − y);

cs = [c1, . . . , cp] Γ(cs − y) =
p∏

i=1

Γ(ci − y);

ds = [d1, . . . , dq] Γ(1− ds + y) =
q∏

i=1

Γ(1− di + y).

G([as, bs], [cs, ds], z) =

Gmn
pq

(
z

∣∣∣∣ a1 . . . am am+1 = c1 . . . am+p = cp

b1 . . . bn bn+1 = d1 . . . bn+p = dq

)
=

1
2πi

∮
L

Γ(1− as + y)Γ(cs − y)
Γ(bs − y)Γ(1− ds + y)

zydy.

Where the integration path L is one of:

L∞ : from ∞+ iφ1 to ∞+ iφ2 with φ2 > φ1;

L−∞ : from −∞+ iφ1 to −∞+ iφ2 with φ2 > φ1;

Lγ+i∞ : from γ −∞ to γ + i∞.

In fact the Meijer G functions are precisely those functions which have an ex-
pansion of the form G(z) = zα

∑
fnzn where A(fn+1)

B(fn+1)
= C(fn)

D(fn) : A,B,C, D

polynomials.
7Of both integrand and range.
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2.2.2 Integration of Meijer G functions

If the integral is of the form
∫∞
0

zkG1(z)dz or
∫∞
0

zkG1(z)G2(z)dz (where G1

and G2 are MeijerG functions), then a method based on convolution of MeijerG
functions can compute the integral, subject to appropriate (Often quite hard to
check, and to do with convergence properties at infinity)8 conditions.

Since the Heaviside function Ht(x) =
{ 1 x ≥ t

0 x < t
can be represented as a

MeijerG function, we can compute∫ ∞

t

zkG1(z)dz =
∫ ∞

0

zkG1(z)Ht(z)dz.

Hence, if both integrals on the right converge,∫ t

0

zkG1(z)dz =
∫ ∞

0

zkG1(z)dz −
∫ ∞

t

zkG1(z)dz.

2.2.3 Common functions are Meijer G functions

z = G([[], [2]], [[1], [0]], z)
z ln z = −G([[], [2, 2]], [[1, 1], []], z)

exp(z) = G([[], []], [[0], []],−z)
z exp(z) = G([[], []], [[1], []],−z)

Ei(z) = G([[], [1]], [[0, 0], []], z)
(z + 1)Ei(z)− exp(z) = −G([[], [2]], [[0, 0], []],−z)

zEi(−z)− exp(−z) = G([[], [2]], [[1, 0], []], z)
zEi(z) = G([[], [2]], [[1, 1], []], z)

−(2γ − 1 + ln(−z))z +
z2

2 2F3(1, 1; 2, 2, 3;−z) = G([[], [2]], [[1, 1], [0]], z)

− (1 + γ + ln (z)) z − 1/2 (γ − 7/2 + ln (z)) z2 = G([[], [3, 3]], [[1, 1], [0]], z)
−
√

zI1(2
√

z) = G([[], []], [[1], [0]],−z)
(where I and J are Bessel’s functions)√

zJ1(2
√

z) = G([[], []], [[1], [0]], z)
zJ1(2z) = G([[], []], [[1], [0]], z2)

So many standard functions can be expressed in terms of MeijerG functions.

3 Pragmatics

Various issues come up in implementing these algorithms, which may affect
running time, intelligibility/usability of the answer, or even whether an answer
(as opposed to an error) is returned.

8Private Communication from Jacques Carrette
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3.1 To expand or not to expand?∫∞
0

(ei/x − 1) sinxdx must not be expanded [15], as the apparent singularities
cancel, at both 0 and ∞.
On the other hand, consider the integral:∫ 5

2

7x13 + 10x8 + 4x7 − 7x6 − 4x3 − 4x2 + 3x + 3
x14 − 2x8 + 2x7 − 2x4 − 4x3 − x2 + 2x + 1

dx.

This could be represented as∫ 5

2

7x13

x14 − 2x8 + 2x7 − 2x4 − 4x3 − x2 + 2x + 1
dx+∫ 5

2

10x8

x14 − 2x8 + 2x7 − 2x4 − 4x3 − x2 + 2x + 1
dx . . .

As it happens, Mathematica does not expand and gets [15]:

1
2

(
ln

6102576361
15553

+
√

2 ln

(
1

1
2 −

232482
√

2
9764515

− 1

))

Maple does, and gives a six-page answer, with three-line numbers.
But in many examples, expansion does help.

3.2 Conditional Results (parameters)

[15] considers
∫ 1

0

∫ 1

0
|x− y|ndxdy.

• Mathematica, by default, generates nonsense, e.g. 4.67 for n = 3.2.

• Maple, by default, fails to integrate.

• Mathematica, if asked to generate conditions, produces 2
2+3n+n2 if <(n) >

−1, otherwise unevaluated.

• Maple, if told9 [21] that n > −1, also produces 2
2+3n+n2 .

[15] also considers
∫∞
−∞ e−

a(x−b)2

σ2 dx.

• Mathematica integrates this via the MeijerG method (see section 2.2), for
which it is told a > 0, σ ∈ R.

• With condition generation, it gets
√

π
a |σ| if σ 6= 0 and <(b) < 0, otherwise

undefined.

• Without condition generation, it gets an unconditional 0, since the two
halves are integrated using contradictory assumptions on b — see section
3.3.

9It seems that, in Maple 8, trying to assume(Re(n)>-1) actually makes n real and > −1.
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• Maple gets the equivalent10{√
π 1√

a
σ2

csgn
(
aσ2

)
= 1

∞ otherwise
.

However, condition generation is not a panacea, since it can produce very un-
wieldy results: in Mathematica

∫ b

a
ln(x)dx can consume over half a page due

to the perceived problem of =(b) = =(a), whereas Maple simply produces the
(correct11) b ln b− b− a ln a + a.

3.3 R or C?

This is a question that bedevils the whole of computer algebra practice, but is
acute here.

• Systems do not clearly document when R is assumed, and when C: in
analysis the two are separate domains. R ⊂ C but R 6⊂ C (where the
bar indicates topological closure). See also section 1.3.2, where the “best”
answer over R is not valid over C.

• No system that I know has a clear internal design philosophy in this area.

• Contradictory assumptions on the sign of b got
∫∞
−∞ e−

a(x−b)2

σ2 dx wrong.

4 Conclusions

• Indefinite integration can be viewed as the inverse of differentiation, and
this can be viewed as an algebraic process.

• Definite integration is inherently an analytic process, and one cannot pass
from one to the other without taking care of the analysis,

• ad hoc treatments of the analysis tend to work only for the cases consid-
ered.

• A definite integrator is a test of a lot of the subroutines of an algebra
system! Examples we have seen are singularity detection, branch cut
detection and limit computation, but general branch-cut respecting sim-
plification is also required [4, 6, 5].

10Maple’s “csgn” function is a useful complex extension of the traditional “sign” function,

defined as csgn(x + iy) =


1 x > 0
−1 x < 0
1 x = 0, y > 0
−1 x = 0, y < 0
0 x = y = 0

.

11Whether by careful consideration of putative difficulties, or a cavalier disdain for them,
only the authors can say.
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4.1 Computer Algebra Systems

There are some lessions that the designers of computer algebra systems need to
take to heart if their systems are to have powerful definite integrators.

• If the subroutines are not powerful enough, the integrator will not be.
They need to be able to return three-valued logics: singularities/there are
none/cannot decide.

• The system needs to be able to check many transformations for analytic
validity.

• R versus C needs to be explicit.

• Condition generation needs to be at least an option, and possibly the
default for conditions not of measure zero.

4.2 Theorem provers using computer algebra

Here we outline some of the things that theorem-prover designers need to be
aware of if they are using computer algebra systems as “black boxes”.

• Use of computer algebra systems as oracles to compute indefinite integrals
is pretty safe, and a positive result should be checkable by the theorem
prover.

• In the current state of the art, use as oracles to compute arbitrary definite
integrals is a gamble. Numerical cross-checking is recommended (it’s what
we all do!).

• Specific classes of definite integrals may well be safe in specific systems,
e.g. rational functions (provided [14] is implemented).

4.3 Theorem provers to help computer algebra

Here we mention some of the ways in which a fruitful collaboration could be of
benefit.

• Computer algebra systems have great difficulties with infintely many ob-
jects, and functions with infinitely many singularities are no exception.
The ability to reason about “a generic singularity” would be helpful.

• Some of the proofs, and particularly side-conditions, on definite integrals
in tables, need to be checked mechanically.

• Neither party, to be best of my knowledge, has a really good theory of
branch cuts (but see [11, 5]).
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A Riemann Integrability of elementary functions

A.1 Preliminaries

Notation 1 Let K = C(x) be a differential field of characteristic zero, with
x′ = 1 and c′ = 0∀c ∈ C.

C will normally be a (constructive sub-field of) R.

Definition 1 Let L be a differential extension of K, and M = K(θ). We say
that M is an elementary extension of L if the constants of M are the constants
of L and one of the following three holds:

(i) θ is algebraic over L, in which case we may assume, without loss of gener-
ality, that the minimal polynomial of θ is monic;

(ii) θ is transcendental over L and ∃φ ∈ L with θ′ = φ′/φ, in which case we
say that θ is a logarithm of φ;

(iii) θ is transcendental over L and ∃φ ∈ L with θ′/θ = φ′, in which case we
say that θ is an exponential of φ.

We say that M is elementary over K if there is a chain K = L0 ≤ L1 ≤ . . . ≤
Ln = M and each Li is an elementary extension of Li−1. We say that φ is an
elementary formula if it can be written in some M an elementary extension of
K.
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Since trigonometric and hyperbolic functions and their inverses can be written
in terms of exponentials and logarithms, this covers them as well. We will
consider such functions as “first-class objects”, and not try to rewite them in
terms of (often complex) exponentials and logarithms. We should also note that
logarotihms are only defined up to an additiive constant, and exponentials up
to a (non=zero) multiplicative constant.

A.2 Formulae and Functions

In doing definite integration via indefinite integration, the algebraic side of the
theory is concerned with formulae, whereas the analytic side of the theory is
concerned with the (partial) functions R→ R that they denote.

Notation 2 Let greek letters denote formulae, and the corresponding latin let-
ters the (partial) functions R → R that they denote so that f is the function
denoted by φ, and G that denoted by Γ. We note that the map from formulae
to functions is many–one, as in equation (1).

We need to know precisely which function is denoted by a formula. For this we
use the branch cuts of [10], which refines, in terms of behaviour on the branch
cuts, those of [1], with one exception. Since we are concerned with functions

R→ R we will use n

√
to denote the real n-th root function12, viz. for n even,

the positive n-th root of a positive number, n
√

0 = 0, and undefined otherwise;
whereas for n odd n

√
x = y ∈ R where yn = x.

We can then regard elementary formulae as expression trees, which are to
be evaluated eagerly13 from the leaves to the root.

Definition 2 We say that φ is wholly real on [a, b] if and only if, for every
x ∈ [a, b], all nodes in the evaluation of φ at x give real values.

The “wholly real” properties of the various elementary operations are given in
table 1.

A.3 Applications to the Fundamental Theorem

Proposition 1 If φ is an elementary formula which is wholly real on [a, b],
then the corresponding function f is continuous, and hence Riemann-integrable,
on [a, b].

This follows from the fact that the composition of continuous functions is con-
tinuous, and, from the definition of “wholly real”, no singularities intervene.
The examples of section 1.5 are not counter-examples, since 1

x2 and 1
x3 are not

wholly real on [−1, 1] because of the case x = 0.

12Maple refers to this as the surd function.
13That is to say that every node is evaluated, even if we know that it is later to be multiplied

by 0, as in evaluating (x− 3) arctan
(

x−5
x−3

)
.
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Table 1: Properties of elementary operations
Operation(s) Wholly real on
+,−,× (−∞,∞)× (−∞,∞)
/ (−∞,∞)× (−∞, 0), (−∞,∞)× (0,∞)
n

√ {
[0,∞) n even
(−∞,∞) n odd

Other algebraic functions depends on principal branch
(no standard definition of this)

ln (0,∞)
exp, sin, cos, sinh, cosh, tanh, sech (−∞,∞)
tan, sec Any interval without a (n + 1

2 )π : n ∈ Z
cot, cosec Any interval without a nπ : n ∈ Z
coth, cosech, arccsch (−∞, 0), (0,∞)
arcsin, arccos [−1, 1]
arctan, arccot, arcsinh (−∞,∞)
arcsec, arccoth (−∞,−1), (1,∞)
arccsch (1,∞)
arccosh [1,∞)
arctanh (−1, 1)
arcsech (0, 1]

Theorem 2 (Computer algebra’s Fundamental Theorem of Calculus)
If φ and Φ are elementary formulae which are wholly real on [a, b], with Φ′ = φ,
then F is an indefinite integral (in the analytic sense) of f , and

∫ b

a
f(x)dx =

F (b)− F (a).

Because Φ is wholly real, F is continuous. Since Φ′ = φ, F ′ = f wherever both
are defined, since both algebraic differentiation of Φ and analytic differentiation
of F obey the same rules, and therefore throughout [a, b]. By Proposition 1,
f is Riemann-integrable on [a, b]. Therefore the conditions of the Fundamental
Theorem of Calculus (Theorem 1) are verified, and the conclusion follows.

The example of section 1.3.1 fails to be a counter-example, since 1/(x − 3)
is not wholly real at x = 3, and hence the proposed integral arctan

(
x−5
x−3

)
is not totally real in [2, 4]. We note that γ = (x − 3) arctan

(
x−5
x−3

)
is, by our

definition, not wholly real in [2, 4], even though the corresponding g can be made
continuous in [2, 4] by defining g(3) = 0, as limits suggest. This precaution in
our definition is necessary to avoid concealed jump discontinuities.

A.4 Higher Functions

The same argument applied to any liouvillian functions, i.e. those generated
by the solution of first-order linear differential equations. However, in order to
apply the result, one needs the equivalent entries to table A.2, and the limiting
routines need to know the appropriate behaviours of these new functions.
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