Lecture 5: Jacobians

- In 1D problems we are used to a simple change of variables, e.g. from x to u

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(x(u)) \frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u
$$

1D Jacobian
maps strips of width $\mathrm{d} x$ to strips of width $\mathrm{d} u$

- Example: $\int_{1}^{2} \frac{1}{x} \mathrm{~d} x=\ln (2) \quad$ Substitute $\quad x=u^{-1} \rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=-u^{-2}$

$$
=-\int_{1}^{\frac{1}{2}} \frac{u}{u^{2}} \mathrm{~d} u=[\ln u]_{\frac{1}{2}}^{1}=\ln (2)
$$

2D Jacobian

- For a continuous 1-to-1 transformation from (x, y) to (u, v)
- Then

$$
x=x(u, v) \text { and } y=y(u, v)
$$

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{R^{\prime}} f\left(x(u, v), y(u, v) \left\lvert\, \frac{\partial(x, y)}{\partial(u, v)} \mathrm{d} u \mathrm{~d} v\right.\right.
$$

- Where Region (in the $x y$ plane) maps onto region R in the $u v$ plane R^{\prime}

Why the 2D Jacobian works

- Transformation T yield distorted grid of lines of constant u and constant v
- For small $d u$ and $d v$, rectangles map onto parallelograms

$$
\begin{gathered}
\overrightarrow{\mathrm{d} u}=(\mathrm{d} u, 0) \text { and } \quad \overrightarrow{\mathrm{d} v}=(0, \mathrm{~d} v) \\
\overrightarrow{\mathrm{d} x}=\left(\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right)\binom{\mathrm{d} u}{0} \quad \overrightarrow{\mathrm{~d} y}=\left(\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right)\binom{0}{\mathrm{~d} v} \\
\mathrm{~d} A=|\overrightarrow{\mathrm{d} x} \times \mathrm{d} y|=\binom{x_{u} \mathrm{~d} u}{y_{u} \mathrm{~d} u} \times\binom{ x_{v} \mathrm{~d} v}{y_{v} \mathrm{~d} v}=\left(x_{u} y_{v} \mid-x_{v} y_{u}\right) \mathrm{d} u \mathrm{~d} v
\end{gathered}
$$

- This is a Jacobian, i.e. the determinant of the Jacobian Matrix

Relation between Jacobians

- The Jacobian matrix $\frac{\partial(x, y)}{\partial(u, v)}$ is the inverse matrix of $\frac{\partial(u, v)}{\partial(x, y)}$ i.e.,

$$
\begin{aligned}
& \left(\begin{array}{cc}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right)\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \text { and similarly for } \mathrm{d} y)
\end{aligned} \begin{aligned}
& =x_{u} \mathrm{~d} u+x_{v} \mathrm{~d} v=x_{v} \mathrm{~d} u+x_{v}\left(v_{x} \mathrm{~d} x+v_{y} \mathrm{~d} y\right) \\
& \begin{array}{l}
x \text { constant } \Rightarrow \mathrm{d} x=0 \Rightarrow 0=x_{u} u_{y}+x_{v} v_{y} \\
y \text { constant } \Rightarrow \mathrm{d} y=0 \Rightarrow 1=x_{u} u_{x}+x_{v} v_{x}
\end{array}
\end{aligned}
$$

- This makes sense because Jacobians measure the relative areas of $\mathrm{d} x \mathrm{~d} y$ and dudv, i.e

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1 \Rightarrow \operatorname{det}(A)=\frac{1}{\operatorname{det} B}
$$

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\frac{\partial(u, v)}{\partial(x, y)}\right|^{-1}
$$

Simple 2D Example

Area of circle $A=$

$$
\begin{gathered}
\iint_{A} \mathrm{~d} x \mathrm{~d} y \\
x=\rho \cos \theta \text { and } y=\rho \sin \theta
\end{gathered}
$$

$\left|\begin{array}{ll}\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{rr}\cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta\end{array}\right|=\rho\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\rho$
$A=\int_{\rho=0}^{\rho=r} \int_{\theta=0}^{\theta=2 \pi} \rho \mathrm{~d} \rho \mathrm{~d} \theta=\left[\frac{1}{2} \rho^{2}\right]_{0}^{r}[\theta]_{0}^{2 \pi}=\pi r^{2}$

Harder 2D Example

$x=x^{2}-y^{2}=1$
$v=2 x y=8$

where R is this
region of the $x y$

plane, which maps to
R

here
but $u^{2}+v^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}=\left(x^{2}+y^{2}\right)^{2}$ so $\frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{4 \sqrt{\left(u^{2}+v^{2}\right)}}$
$\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y=\frac{1}{4} \int_{1}^{9} \int_{4}^{8} \mathrm{~d} u \mathrm{~d} v=8$

An Important 2D Example

- Evaluate

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} \mathrm{~d} x
$$

- First consider

$$
\begin{aligned}
I_{a}^{2} & =\int_{-a}^{a} e^{-x^{2}} \mathrm{~d} x \int_{-a}^{a} e^{-y^{2}} \mathrm{~d} y \\
I_{a}^{2} & =\int_{-a}^{a} \int_{-a}^{a} e^{-\left(x^{2}+y^{2}\right)} \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

- Put $\quad x=r \cos \phi$ and $y=r \sin \phi \quad \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}\cos \phi & -r \cos \phi \\ \sin \phi & r \cos \phi\end{array}\right|=r$

$$
\int_{0}^{a} \int_{0}^{2 \pi} r e^{-r^{2}} \mathrm{~d} r \mathrm{~d} \phi<I_{a}^{2}<\int_{0}^{\sqrt{2} a} \int_{0}^{2 \pi} r e^{-r^{2}} \mathrm{~d} r \mathrm{~d} \phi
$$

- $\pi\left(1-e^{-a^{2}}\right)<I_{a}^{2}<\pi\left(1-e^{-2 a^{2}}\right)$ as

$$
a \rightarrow \infty \Rightarrow I_{a}=\sqrt{\pi}
$$

3D Jacobian

$$
x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)
$$

- maps volumes (consisting of small cubes of volume $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
-to small cubes of volume $\mathrm{d} u \mathrm{~d} v \mathrm{~d} w$

$$
\iiint_{V} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{V^{\prime}} F(u, v, w)\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| \mathrm{d} u \mathrm{~d} v \mathrm{~d} w
$$

- Where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right|
$$

3D Example

- Transformation of volume elements between Cartesian and spherical polar coordinate systems (see Lecture 4)

$$
\begin{gathered}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta \\
\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=\left|\begin{array}{rrr}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right| \\
=r^{2} \sin \theta
\end{gathered}
$$

