
Infinite Series
Infinite series are among the most powerful and useful tools that you’ve encountered in your introductory
calculus course. It’s easy to get the impression that they are simply a clever exercise in manipulating
limits and in studying convergence, but they are among the majors tools used in analyzing differential
equations, in developing methods of numerical analysis, in defining new functions, in estimating the
behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should memorize and should know just as well as you do
the multiplication table. The first of these is the geometric series,

1 + x+ x2 + x3 + x4 + · · · =
∞∑
0

xn =
1

1− x
for |x| < 1. (2.1)

It’s very easy derive because in this case you can sum the finite form of the series and then take a limit.
Write the series out to the term xN and multiply it by (1− x).

(1 + x+ x2 + x3 + · · ·+ xN )(1− x) =

(1 + x+ x2 + x3 + · · ·+ xN )−(x+ x2 + x3 + x4 + · · ·+ xN+1) = 1− xN+1 (2.2)

If |x| < 1 then as N →∞ this last term, xN+1, goes to zero and you have the answer. If x is outside
this domain the terms of the infinite series don’t even go to zero, so there’s no chance for the series to
converge to anything.

The finite sum up to xN is useful on its own. For example it’s what you use to compute the
payments on a loan that’s been made at some specified interest rate. You use it to find the pattern of
light from a diffraction grating.

N∑
0

xn =
1− xN+1

1− x
(2.3)

Some other common series that you need to know are power series for elementary functions:

ex = 1 + x+
x2

2!
+ · · · =

∞∑
0

xk

k!

sinx = x− x
3

3!
+ · · · =

∞∑
0

(−1)k
x2k+1

(2k + 1)!

cosx = 1− x
2

2!
+ · · · =

∞∑
0

(−1)k
x2k

(2k)!

ln(1 + x) = x− x
2

2
+
x3

3
− · · · =

∞∑
1

(−1)k+1x
k

k
(|x| < 1) (2.4)

(1 + x)α = 1 + αx+
α(α− 1)x2

2!
+ · · · =

∞∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk (|x| < 1)

James Nearing, University of Miami 1
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Of course, even better than memorizing them is to understand their derivations so well that you
can derive them as fast as you can write them down. For example, the cosine is the derivative of the
sine, so if you know the latter series all you have to do is to differentiate it term by term to get the
cosine series. The logarithm of (1 + x) is an integral of 1/(1 + x) so you can get its series from that
of the geometric series. The geometric series is a special case of the binomial series for α = −1, but
it’s easier to remember the simple case separately. You can express all of them as special cases of the
general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the answer, 0.1, or
to more accuracy, 0.1− 0.001/6 = 0.099833

What is the square root of 1.1?
√

1.1 = (1 + .1)1/2 = 1 + 1
2

. 0.1 = 1.05

What is 1/1.9? 1/(2 − .1) = 1/[2(1 − .05)] = 1
2(1 + .05) = .5 + .025 = .525 from the first

terms of the geometric series.
What is 3

√
1024? 3

√
1024 = 3

√
1000 + 24 = 3

√
1000(1 + 24/1000) =

10(1 + 24/1000)1/3 = 10(1 + 8/1000) = 10.08
As you see from the last two examples you have to cast the problem into a form fitting the

expansion that you know. When you want to use the binomial series, rearrange and factor your expression
so that you have (

1 + something small
)α

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such a series
exists and then to deduce its coefficients in sequence. Take the sine for example, assume that you can
write

sinx = A+Bx+Cx2 +Dx3 +Ex4 + · · ·

Evaluate this at x = 0 to get

sin 0 = 0 = A+B0 +C02 +D03 +E04 + · · · = A

so the first term, A = 0. Now differentiate the series, getting

cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·

Again set x = 0 and all the terms on the right except the first one vanish.

cos 0 = 1 = B + 2C0 + 3D02 + 4E03 + · · · = B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sinx = A+Bx+Cx2 +Dx3 +Ex4 + · · ·
cosx = B + 2Cx+ 3Dx2 + 4Ex3 + · · ·
− sinx = 2C + 6Dx+ 12Ex2 + · · ·
− cosx = 6D + 24Ex+ 60Fx2 + · · ·

sinx = 24E + 120Fx+ · · ·
cosx = 120F + · · ·

sin 0 = 0 = A

cos 0 = 1 = B

− sin 0 = 0 = 2C

− cos 0 = −1 = 6D

sin 0 = 0 = 24E

cos 0 = 1 = 120F

This shows the terms of the series for the sine as in Eq. (2.4).
Does this show that the series converges? If it converges does it show that it converges to the

sine? No to both. Each statement requires more work, and I’ll leave the second one to advanced
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calculus books. Even better, when you understand the subject of complex variables, these questions
about series become much easier to understand.

The generalization to any function is obvious. You match the coefficients in the assumed expan-
sion, and get

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) +

x4

4!
f ′′′′(0) + · · ·

You don’t have to do the expansion about the point zero. Do it about another point instead.

f(t) = f(t0) + (t− t0)f ′(t0) +
(t− t0)2

2!
f ′′(t0) + · · · (2.5)

What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by determining a
series solution to a new differential equation. (Chapter 4)
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration, differentiation,
interpolation, and many other common numerical methods. (Chapter 11)
To understand the behavior of complex-valued functions of a complex variable you will need to under-
stand these series for the case that the variable is a complex number. (Chapter 14)

All the series that I’ve written above are power series (Taylor series), but there are many other
possibilities.

ζ(z) =

∞∑
1

1

nz
(2.6)

x2 =
L2

3
+

4L2

π2

∞∑
1

(−1)n
1

n2
cos
(nπx
L

)
(−L ≤ x ≤ L) (2.7)

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in statistical
mechanics among other places.
The second is an example of a Fourier series. See chapter five for more of these.
Still another type of series is the Frobenius series, useful in solving differential equations: its form is∑
k akx

k+s. The number s need not be either positive or an integer. Chapter four has many examples
of this form.

There are a few technical details about infinite series that you have to go through. In introductory
calculus courses there can be a tendency to let these few details overwhelm the subject so that you are
left with the impression that that’s all there is, not realizing that this stuff is useful. Still, you do need
to understand it.*

2.3 Convergence

Does an infinite series converge? Does the limit as N → ∞ of the sum,
∑N

1 uk, exist? There are a
few common and useful ways to answer this. The first and really the foundation for the others is the
comparison test.

Let uk and vk be sequences of real numbers, positive at least after some value of k. Also assume
that for all k greater than some finite value, uk ≤ vk. Also assume that the sum,

∑
k vk does converge.

The other sum,
∑
k uk then converges too. This is almost obvious, but it’s worth the little effort that

a proof takes.

* For animations showing how fast some of these power series converge, check out
www.physics.miami.edu/nearing/mathmethods/power-animations.html

http://www.physics.miami.edu/nearing/mathmethods/power-animations.html
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The required observation is that an increasing sequence of real numbers, bounded above, has a
limit.

After some point, k = M , all the uk and vk are positive and uk ≤ vk. The sum an =
∑n
M vk

then forms an increasing sequence of real numbers, so by assumption this has a limit (the series
converges). The sum bn =

∑n
M uk is an increasing sequence of real numbers also. Because uk ≤ vk

you immediately have bn ≤ an for all n.

bn ≤ an ≤ lim
n→∞

an

this simply says that the increasing sequence bn has an upper bound, so it has a limit and the theorem
is proved.

Ratio Test
To apply this comparison test you need a stable of known convergent series. One that you do have is
the geometric series,

∑
k x

k for |x| < 1. Let this xk be the vk of the comparison test. Assume at least
after some point k = K that all the uk > 0.
Also that uk+1 ≤ xuk.

Then uK+2 ≤ xuK+1 and uK+1 ≤ xuK gives uK+2 ≤ x2uK

You see the immediate extension is
uK+n ≤ xnuK

As long as x < 1 this is precisely set up for the comparison test using
∑
n uKx

n as the series that
dominates the

∑
n un. This test, the ratio test is more commonly stated for positive uk as

If for large k,
uk+1

uk
≤ x < 1 then the series

∑
uk converges (2.8)

This is one of the more commonly used convergence tests, not because it’s the best, but because it’s
simple and it works a lot of the time.

Integral Test
The integral test is another way to check for convergence or divergence. If f is a decreasing posi-
tive function and you want to determine the convergence of

∑
n f(n), you can look at the integral∫∞ dx f(x) and check it for convergence. The series and the integral converge or diverge together.

1 2 3 4 5

f(1)

f(2)
f(3)
f(4) f(x)

From the graph you see that the function f lies between the tops of the upper and the lower
rectangles. The area under the curve of f between n and n + 1 lies between the areas of the two
rectangles. That’s the reason for the assumption that f is decreasing and positive.

f(n) . 1 >
∫ n+1

n
dx f(x) > f(n+ 1) . 1
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Add these inequalities from n = k to n =∞ and you get

f(k) + f(k + 1) + · · · >
∫ k+1

k
+

∫ k+2

k+1
+ · · · =

∫ ∞
k

dx f(x)

> f(k + 1) + f(k + 2) + · · · >
∫ ∞
k+1

dx f(x) > f · · · (2.9)

The only difference between the infinite series on the left and on the right is one term, so either
everything converges or everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the sum of a
series that would be too tedious to sum by itself. For example

∞∑
1

1

n2
= 1 +

1

22
+

1

32
+
∞∑
4

1

n2

This last sum lies between two integrals.∫ ∞
3

dx
1

x2
>
∞∑
4

1

n2
>
∫ ∞

4
dx

1

x2
(2.10)

that is, between 1/3 and 1/4. Now I’ll estimate the whole sum by adding the first three terms explicitly
and taking the arithmetic average of these two bounds.

∞∑
1

1

n2
≈ 1 +

1

22
+

1

32
+

1

2

(
1

3
+

1

4

)
= 1.653 (2.11)

The exact sum is more nearly 1.644934066848226, but if you use brute-force addition of the original
series to achieve accuracy equivalent to this 1.653 estimation you will need to take about 120 terms.
This series converges, but not very fast. See also problem 2.24.

Quicker Comparison Test
There is another way to handle the comparison test that works very easily and quickly (if it’s applicable).
Look at the terms of the series for large n and see what the approximate behavior of the nth term is.
That provides a comparison series. This is better shown by an example:

∞∑
1

n3 − 2n+ 1/n
5n5 + sinn

For large n, the numerator is essentially n3 and the denominator is essentially 5n5, so for large n this
series is approximately like

∞∑ 1

5n2

More precisely, the ratio of the nth term of this approximate series to that of the first series goes to
one as n → ∞. This comparison series converges, so the first one does too. If one of the two series
diverges, then the other does too.

Apply the ratio test to the series for ex.

ex =
∞∑
0

xk/k! so
uk+1

uk
=
xk+1/(k + 1)!

xk/k!
=

x
k + 1
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As k →∞ this quotient approaches zero no matter the value of x. This means that the series converges
for all x.

Absolute Convergence
If a series has terms of varying signs, that should help the convergence. A series is absolutely convergent
if it converges when you replace each term by its absolute value. If it’s absolutely convergent then it
will certainly be convergent when you reinstate the signs. An example of a series that is convergent
but not absolutely convergent is

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− . . . = ln(1 + 1) = ln 2 (2.12)

Change all the minus signs to plus and the series is divergent. (Use the integral test.)
Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If a series

is convergent but not absolutely convergent, then each of the two series, the positive terms and the
negative terms, is separately divergent. In this case you can rearrange the terms of the series to converge
to anything you want! Take the series above that converges to ln 2. I want to rearrange the terms
so that it converges to

√
2. Easy. Just start adding the positive terms until you’ve passed

√
2. Stop

and now start adding negative ones until you’re below that point. Stop and start adding positive terms
again. Keep going and you can get to any number you want.

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
− 1

3
etc.

2.4 Series of Series
When you have a function whose power series you need, there are sometimes easier ways to the result
than a straight-forward attack. Not always, but you should look first. If you need the expansion of
eax

2+bx about the origin you can do a lot of derivatives, using the general form of the Taylor expansion.
Or you can say

eax
2+bx = 1 + (ax2 + bx) +

1

2
(ax2 + bx)2 +

1

6
(ax2 + bx)3 + · · · (2.13)

and if you need the individual terms, expand the powers of the binomials and collect like powers of x:

1 + bx+ (a+ b2/2)x2 + (ab+ b3/6)x3 + · · ·

If you’re willing to settle for an expansion about another point, complete the square in the exponent

eax
2+bx = ea(x2+bx/a) = ea(x2+bx/a+b2/4a2)−b2/4a = ea(x+b/2a)2−b2/4a = ea(x+b/2a)2e−b

2/4a

= e−b
2/4a[1 + a(x+ b/2a)2 + a2(x+ b/2a)4/2 + · · ·

]
and this is a power series expansion about the point x0 = −b/2a.

What is the power series expansion of the secant? You can go back to the general formulation
and differentiate a lot or you can use a combination of two known series, the cosine and the geometric
series.

secx =
1

cosx
=

1

1− 1
2!x

2 + 1
4!x

4 + · · ·
=

1

1−
[

1
2!x

2 − 1
4!x

4 + · · ·
]

= 1 +
[ ]

+
[ ]2

+
[ ]3

+ · · ·

= 1 +
[

1
2!x

2 − 1
4!x

4 + · · ·
]

+
[

1
2!x

2 − 1
4!x

4 + . . .
]2

+ · · ·
= 1 + 1

2!x
2 +

(
− 1

4! + ( 1
2!)

2
)
x4 + · · ·

= 1 + 1
2!x

2 + 5
24x

4 + · · ·

(2.14)
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This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging into the
general formula for the Taylor series Eq. (2.5).

What is 1/ sin3 x?

1

sin3 x
=

1(
x− x3/3! + x5/5!− · · ·

)3 =
1

x3
(
1− x2/3! + x4/5!− · · ·

)3
=

1

x3
(
1 + z

)3 =
1

x3
(1− 3z + 6z2 − · · ·)

=
1

x3

(
1− 3(−x2/3! + x4/5!− . . .) + 6(−x2/3! + x4/5!− . . .)2

=
1

x3
+

1

2x
+

51x
360

+ · · ·

which is a Frobenius series.

2.5 Power series, two variables
The idea of a power series can be extended to more than one variable. One way to develop it is to use
exactly the same sort of brute-force approach that I used for the one-variable case. Assume that there
is some sort of infinite series and successively evaluate its terms.

f(x, y) = A+Bx+Cy +Dx2 +Exy + Fy2 +Gx3 +Hx2y + Ixy2 + Jy3 · · ·

Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with the single
variable, evaluate it at the origin, the point (0, 0).

f(0, 0) = A+ 0 + 0 + · · ·

Now differentiate, but this time you have to do it twice, once with respect to x while y is held constant
and once with respect to y while x is held constant.

∂f
∂x

(x, y) = B + 2Dx+Ey + · · · then
∂f
∂x

(0, 0) = B

∂f
∂y

(x, y) = C +Ex+ 2Fy + · · · then
∂f
∂y

(0, 0) = C

Three more partial derivatives of these two equations gives the next terms.

∂2f
∂x2

(x, y) = 2D + 6Gx+ 2Hy · · ·

∂2f
∂x∂y

(x, y) = E + 2Hx+ 2Iy · · ·

∂2f
∂y2

(x, y) = 2F + 2Ix+ 6Jy · · ·

Evaluate these at the origin and you have the values of D, E, and F . Keep going and you have all the
coefficients.

This is awfully cumbersome, but mostly because the crude notation that I’ve used. You can
make it look less messy simply by choosing a more compact notation. If you do it neatly it’s no harder
to write the series as an expansion about any point, not just the origin.

f(x, y) =

∞∑
m,n=0

Amn(x− a)m(y − b)n (2.15)
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Differentiate this m times with respect to x and n times with respect to y, then set x = a and y = b.
Only one term survives and that is

∂m+nf
∂xm∂yn

(a, b) = m!n!Amn

I can use subscripts to denote differentiation so that ∂f
∂x is fx and ∂3f

∂x2∂y is fxxy. Then the

two-variable Taylor expansion is

f(x, y) = f(0)+fx(0)x+ fy(0)y+

1

2

[
fxx(0)x2 + 2fxy(0)xy + fyy(0)y2

]
+

1

3!

[
fxxx(0)x3 + 3fxxy(0)x2y + 3fxyy(0)xy2 + fyyy(0)y3

]
+ · · · (2.16)

Again put more order into the notation and rewrite the general form using Amn as

Amn =
1

(m+ n)!

(
(m+ n)!

m!n!

)
∂m+nf
∂xm∂yn

(a, b) (2.17)

That factor in parentheses is variously called the binomial coefficient or a combinatorial factor. Standard
notations for it are

m!

n!(m− n)!
= mCn =

(
m
n

)
(2.18)

The binomial series, Eq. (2.4), for the case of a positive integer exponent is

(1 + x)m =
m∑
n=0

(
m
n

)
xn, or more symmetrically

(a+ b)m =

m∑
n=0

(
m
n

)
anbm−n (2.19)

(a+ b)2 = a2 + 2ab+ b2, (a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you choose n
objects from a collection of m of them, mCn is the answer.

2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and Gaussian
integrals provides a useful approximate value for the factorial of large n.

n! ∼
√

2πnnne−n for large n (2.20)

Start from the Gamma function of n+ 1.

n! = Γ(n+ 1) =

∫ ∞
0

dt tne−t =

∫ ∞
0

dt e−t+n ln t

The integrand starts at zero, increases, and drops back down to zero as t → ∞. The graph roughly
resembles a Gaussian, and I can make this more precise by expanding the exponent around the point
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where it is a maximum. The largest contribution to the whole integral comes from the region near this
point. Differentiate the exponent to find the maximum:

t = n = 5

t5e−t

21.06

t

d
dt

(
− t+ n ln t

)
= −1 +

n
t

= 0 gives t = n

Expand about this point

f(t) = −t+ n ln t = f(n) + (t−n)f ′(n) + (t− n)2f ′′(n)/2 + · · ·
= −n+n lnn + 0 + (t−n)2(−n/n2)/2 + · · ·

Keep terms to the second order and the integral is approximately

n! ∼
∫ ∞

0
dt e−n+n lnn−(t−n)2/2n = nne−n

∫ ∞
0

dt e−(t−n)2/2n (2.21)

At the lower limit of the integral, at t = 0, this integrand is e−n/2, so if n is even moderately large
then extending the range of the integral to the whole line −∞ to +∞ won’t change the final answer
much.

nne−n
∫ ∞
−∞

dt e−(t−n)2/2n = nne−n
√

2πn

where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).
To see how good this is, try a few numbers

n n! Stirling ratio difference
1 1 0.922 0.922 0.078
2 2 1.919 0.960 0.081
5 120 118.019 0.983 1.981

10 3628800 3598695.619 0.992 30104.381

You can see that the ratio of the exact to the approximate result is approaching one even though the
difference is getting very large. This is not a handicap, as there are many circumstances for which this
is all you need. This derivation assumed that n is large, but notice that the result is not too bad even
for modest values. The error is less than 2% for n = 5. There are even some applications, especially in
statistical mechanics, in which you can make a still cruder approximation and drop the factor

√
2πn.

That is because in that context it is the logarithm of n! that appears, and the ratio of the logarithms
of the exact and even this cruder approximate number goes to one for large n. Try it.

Although I’ve talked about Stirling’s approximation in terms of factorials, it started with the
Gamma function, so Eq. (2.20) works just as well for Γ(n+ 1) for any real n:
Γ(11.34 = 10.34 + 1) = 8 116 833.918 and Stirling gives 8 051 701.
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Asymptotic
You may have noticed the symbol that I used in Eqs. (2.20) and (2.21). “∼” doesn’t mean “ap-
proximately equal to” or “about,” because as you see here the difference between n! and the Stirling
approximation grows with n. That the ratio goes to one is the important point here and it gets this
special symbol, “asymptotic to.”

Probability Distribution
In section 1.4 the equation (1.17) describes the distribution of the results when you toss a coin. It’s
straight-forward to derive this from Stirling’s formula. In fact it is just as easy to do a version of it for
which the coin is biased, or more generally, for any case that one of the choices is more likely than the
other.

Suppose that the two choices will come up at random with fractions a and b, where a+ b = 1.
You can still picture it as a coin toss, but using a very unfair coin. Perhaps a = 1/3 of the time it
comes up tails and b = 2/3 of the time it comes up heads. If you toss two coins, the possibilities are

TT HT TH HH

and the fractions of the time that you get each pair are respectively

a2 ba ab b2

This says that the fraction of the time that you get no heads, one head, or two heads are

a2 = 1/9, 2ab = 4/9, b2 = 4/9 with total (a+ b)2 = a2 + 2ab+ b2 = 1 (2.22)

Generalize this to the case where you throw N coins at a time and determine how often you
expect to see 0, 1, . . . , N heads. Equation (2.19) says

(a+ b)N =

N∑
k=0

(
N
k

)
akbN−k where

(
N
k

)
=

N !

k!(N − k)!

When you make a trial in which you toss N coins, you expect that the “a” choice will come up N
times only the fraction aN of the trials. All tails and no heads. Compare problem 2.27.

The problem is now to use Stirling’s formula to find an approximate result for the terms of this
series. This is the fraction of the trials in which you turn up k tails and N − k heads.

akbN−k
N !

k!(N − k)!
∼ akbN−k

√
2πN NNe−N√

2πk kke−k
√

2π(N − k) (N − k)N−ke−(N−k)

= akbN−k
1√
2π

√
N

k(N − k)

NN

kk(N − k)N−k
(2.23)

The complicated parts to manipulate are the factors with all the exponentials of k in them. Pull them
out from the denominator for separate handling, leaving the square roots behind.

kk(N − k)N−ka−kb−(N−k)

The next trick is to take a logarithm and to do all the manipulations on it.

ln→ k lnk + (N − k) ln(N − k)− k lna− (N − k) ln b = f(k) (2.24)
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The original function is a maximum when this denominator is a minimum. When the numbers N and
k are big, you can treat k as a continuous variable and differentiate with respect to it. Then set this
derivative to zero and finally, expand in a power series about that point.

d
dk
f(k) = ln k + 1− ln(N − k)− 1− lna+ ln b = 0

ln
k

N − k
= ln

a
b
,

k
N − k

=
a
b
, k = aN

This should be no surprise; a is the fraction of the time the first choice occurs, and it says that the
most likely number of times that it occurs is that fraction times the number of trials. At this point,
what is the second derivative?

d2

dk2
f(k) =

1

k
+

1

N − k

when k = aN, f ′′(k) =
1

k
+

1

N − k
=

1

aN
+

1

N − aN
=

1

aN
+

1

bN
=

1

abN

About this point the power series for f(k) is

f(k) = f(aN) + (k − aN)f ′(aN) +
1

2
(k − aN)2f ′′(aN) + · · ·

= N lnN +
1

2abN
(k − aN)2 + · · · (2.25)

To substitute this back into Eq. (2.23), take its exponential. Then because this will be a fairly sharp
maximum, only the values of k near to aN will be significant. That allows me to use this central value
of k in the slowly varying square root coefficient of that equation, and I can also neglect higher order
terms in the power series expansion there. Let δ = k − aN . The result is the Gaussian distribution.

1√
2π

√
N

aN(N − aN)
. NN

NNeδ2/2abN
=

1√
2abNπ

e−δ
2/2abN (2.26)

When a = b = 1/2, this reduces to Eq. (1.17).

When you accumulate N trials at a time (large N) and then look for the distribution in these
cumulative results, you will commonly get a Gaussian. This is the central limit theorem, which says
that whatever set of probabilities that you start with, not just a coin toss, you will get a Gaussian by
averaging the data. (Not really true. There are some requirements* on the probabilities that aren’t
always met, but if as here the variable has a bounded domain then it’s o.k. See problems 17.24 and
17.25 for a hint of where a näıve assumption that all distributions behave the same way that Gaussians
do can be misleading.) If you listen to the clicks of a counter that records radioactive decays, they sound
(and are) random, and the time interval between the clicks varies greatly. If you set the electronics to
click at every tenth count, the result will sound regular, and the time interval between clicks will vary
only slightly.

* finite mean and variance
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2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are probably
not the sort of thing you’d think of until you’ve seen them once. Example: what is the sum of

1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·?

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce to do
integrals as in Eq. (1.5). Consider the series with the parameter x in it.

f(x) = x− x
3

3
+
x5

5
− x

7

7
+
x9

9
− · · · (2.27)

Differentiate this with respect to x to get

f ′(x) = 1− x2 + x4 − x6 + x8 − · · ·

That looks a bit like the geometric series except that it has only even powers and the signs alternate.
Is that too great an obstacle? As 1/(1− x) has only plus signs, then change x to −x, and 1/(1 + x)
alternates in sign. Instead of x as a variable, use x2, then you get exactly what you’re looking for.

f ′(x) = 1− x2 + x4 − x6 + x8 − · · · = 1

1 + x2

Now to get back to the original series, which is f(1) recall, all that I need to do is integrate this
expression for f ′(x). The lower limit is zero, because f(0) = 0.

f(1) =

∫ 1

0
dx

1

1 + x2
= tan−1 x

∣∣∣∣1
0

=
π
4

This series converges so slowly however that you would never dream of computing π this way. If you
take 100 terms, the next term is 1/201 and you can get a better approximation to π by using 22/7.

The geometric series is 1 +x+x2 +x3 + · · ·, but what if there’s an extra factor in front of each
term?

f(x) = 2 + 3x+ 4x2 + 5x3 + · · ·

Multiply this by x and it is 2x+ 3x2 + 4x3 + 5x4 + · · ·, starting to look like a derivative.

xf(x) = 2x+ 3x2 + 4x3 + 5x4 + · · · = d
dx

(
x2 + x3 + x4 + · · ·

)
Again, the geometric series pops up, though missing a couple of terms.

xf(x) =
d
dx

(
1 + x+ x2 + x3 + · · · − 1− x

)
=

d
dx

[
1

1− x
− 1− x

]
=

1

(1− x)2
− 1

The final result is then

f(x) =
1

x

[
1− (1− x)2

(1− x)2

]
=

2− x
(1− x)2
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2.8 Diffraction
When light passes through a very small opening it will be diffracted so that it will spread out in a
characteristic pattern of higher and lower intensity. The analysis of the result uses many of the tools
that you’ve looked at in the first two chapters, so it’s worth showing the derivation first.

The light that is coming from the left side of the figure has a wavelength λ and wave number
k = 2π/λ. The light passes through a narrow slit of width = a. The Huygens construction for the
light that comes through the slit says that you can effectively treat each little part of the slit as if it is
a source of part of the wave that comes through to the right. (As a historical note, the mathematical
justification for this procedure didn’t come until about 150 years after Huygens proposed it, so if you
think it isn’t obvious why it works, you’re right.)

y

dy

y sin θ

θ

r

r0

Call the coordinate along the width of the slit y, where 0 < y < a. I want to find the total light
wave that passes through the slit and that heads at the angle θ away from straight ahead. The light
that passes through between coordinates y and y + dy is a wave

Ady cos(kr − ωt)

Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy that I am
considering. The coordinate along the direction of the wave is r. The total wave that will head in this
direction is the sum (integral) over all these little pieces of the slit.

Let r0 be the distance measured from the bottom of the slit to where the light is received far
away. Find the value of r by doing a little trigonometry, getting

r = r0 − y sin θ

The total wave to be received is now the integral

∫ a

0
Ady cos

(
k(r0 − y sin θ)− ωt

)
= A

sin
(
k(r0 − y sin θ)− ωt

)
−k sin θ

∣∣∣∣∣
a

0

Put in the limits to get

A
−k sin θ

[
sin
(
k(r0 − a sin θ)− ωt

)
− sin

(
kr0 − ωt

)]
I need a trigonometric identity here, one that you can easily derive with the techniques of complex
algebra in chapter 3.

sinx− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
(2.28)
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Use this and the light amplitude is

2A
−k sin θ

sin

(
−ka

2
sin θ

)
cos
(
k(r0 −

a
2

sin θ)− ωt
)

(2.29)

The wave is the cosine factor. It is a cosine of (k . distance− ωt), and the distance in question
is the distance to the center of the slit. This is then a wave that appears to be coming from the middle
of the slit, but with an amplitude that varies strongly with angle. That variation comes from the other
factors in Eq. (2.29).

It’s the variation with angle that’s important. The intensity of the wave, the power per area,
is proportional to the square of the wave’s amplitude. I’m going to ignore all the constant factors, so
there’s no need to worry about the constant of proportionality. The intensity is then (up to a factor)

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

(2.30)

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth of a
millimeter. The size of ka/2 is then about

ka/2 = πa/λ ≈ 3 . 0.1 mm/500 nm ≈ 1000

When you plot this intensity versus angle, the numerator vanishes when the argument of sin2() is nπ,
with n an integer, +, −, or 0. This says that the intensity vanishes in these directions except for θ = 0.
In that case the denominator vanishes too, so you have to look closer. For the simpler case that θ 6= 0,
these angles are

nπ =
ka
2

sin θ ≈ ka
2
θ n = ±1, ±2, . . .

Because ka is big, you have many values of n before the approximation that sin θ = θ becomes invalid.
You can rewrite this in terms of the wavelength because k = 2π/λ.

nπ =
2πa
2λ

θ, or θ = nλ/a

What happens at zero? Use power series expansions to evaluate this indeterminate form. The
first term in the series expansion of the sine is θ itself, so

I =
sin2

(
(ka/2) sin θ

)
sin2 θ

−→
(
(ka/2)θ

)2
θ2

=

(
ka
2

)2

(2.31)

What is the behavior of the intensity near θ = 0? Again, use power series expansions, but keep
another term

sin θ = θ − 1

6
θ3 + · · · , and (1 + x)α = 1 + αx+ · · ·

Remember, ka/2 is big! This means that it makes sense to keep just one term of the sine expansion
for sin θ itself, but you’d better keep an extra term in the expansion of the sin2(ka . . .).

I ≈
sin2

(
(ka/2)θ

)
θ2

=
1

θ2

[(
ka
2
θ

)
− 1

6

(
ka
2
θ

)3

+ · · ·

]2

=
1

θ2

(
ka
2
θ

)2
[

1− 1

6

(
ka
2
θ

)2

+ · · ·

]2

=

(
ka
2

)2
[

1− 1

3

(
ka
2
θ

)2

+ · · ·

]
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When you use the binomial expansion, put the binomial in the standard form, (1 + x) as in the second
line of these equations. What is the shape of this function? Forget all the constants, and it looks like
1− θ2. That’s a parabola.

The dots are the points where the intensity goes to zero, nλ/a. Between these directions it
reaches a maximum. How big is it there ? These maxima are about halfway between the points where
(ka sin θ)/2 = nπ. This is

ka
2

sin θ = (n+ 1/2)π, n = ±1, ±2, . . .

At these angles the value of I is, from Eq. (2.30),

I =

(
ka
2

)2( 1

(2n+ 1)π/2

)2

The intensity at θ = 0 is by Eq. (2.31), (ka/2)2, so the maxima off to the side have intensities that
are smaller than this by factors of

1

9π2/4
= 0.045,

1

25π2/4
= 0.016, . . .

2.9 Checking Results
When you solve any problem, or at least think that you’ve solved it, you’re not done. You still have to
check to see whether your result makes any sense. If you are dealing with a problem whose solution is
in the back of the book then do you think that the author is infallible? If there is no back of the book
and you’re working on something that you would like to publish, do you think that you’re infallible?
Either way you can’t simply assume that you’ve made no mistakes; you have to look at your answer
skeptically.

There’s a second reason, at least as important, to examine your results: that’s where you can
learn some physics and gain some intuition. Solving a complex problem and getting a complicated
answer may involve a lot of mathematics but you don’t usually gain any physical insight from doing it.
When you analyze your results you can gain an understanding of how the mathematical symbols are
related to physical reality. Often an approximate answer to a complicated problem can give you more
insight than an exact one, especially if the approximate answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you are
computing a length and your result is a velocity then you are wrong. If you have something in your
result that involves adding a time to an acceleration or an angle to a distance, then you’ve made a
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mistake; go back and find it. You can do this sort of analysis everywhere, and it is one technique that
provides an automatic error finding mechanism. If an equation is dimensionally inconsistent, backtrack
a few lines and see whether the units are wrong there too. If they are correct then you know that your
error occurred between those two lines; then further narrow the region where the mistake happened by
looking for the place at which the dimensions changed from consistent to inconsistent and that’s where
the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the result and
to see what happens when you vary them. Especially see what happens when you push them to an
extreme value. This is best explained by some examples. Start with some simple mechanics to see the
procedure.

m1 ax
M

m2

Two masses are attached by a string of negligible mass and that is wrapped around a pulley
of mass M so that it can’t slip on the pulley. Analyze them to determine what is wrong with each.
Assume that there is no friction between m1 and the table and that the string does not slip on the
pulley.

(a) ax =
m2 −m1

m2 +m1
g (b) ax =

m2

m2 +m1 −M/2
g (c) ax =

m2 −M/2

m2 +m1 +M/2
g

(a) If m1 � m2, this is negative, meaning that the motion of m1 is being slowed down. But
there’s no friction or other such force to do this.
OR If m1 = m2, this is zero, but there are still unbalanced forces causing these masses to accelerate.

(b) If the combination of masses is just right, for example m1 = 1 kg, m2 = 1 kg, and M = 2 kg,
the denominator is zero. The expression for ax blows up — a very serious problem.
OR If M is very large compared to the other masses, the denominator is negative, meaning that ax is
negative and the acceleration is a braking. Without friction, this is impossible.

(c) If M �m1 and m2, the numerator is mostly −M/2 and the denominator is mostly +M/2.
This makes the whole expression negative, meaning that m1 and m2 are slowing down. There is no
friction to do this, and all the forces are the direction to cause acceleration toward positive x.
OR If m2 = M/2, this equals zero, saying that there is no acceleration, but in this system, ax will
always be positive.

The same picture, but with friction µk between m1 and the table.

(a) ax =
m2

m2 + µkm1 +M/2
g (b) ax =

m2 − µkm1

m2 −M/2
g (c) ax =

m2

m2 + µkm1 −M/2
g

(a) If µk is very large, this approaches zero. Large friction should cause m1 to brake to a halt
quickly with very large negative ax.
OR If there is no friction, µk = 0, then m1 plays no role in this result but if it is big then you know
that it will decrease the downward acceleration of m2.

(b) The denominator can vanish. If m2 = M/2 this is nonsense.
(c) This suffers from both of the difficulties of (a) and (b).

Trajectory Example
When you toss an object straight up with an initial speed v0, you may expect an answer for the motion
as a function of time to be something like
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vy(t) = v0 − gt, y(t) = v0t−
1

2
gt2 (2.32)

Should you expect this? Not if you remember that there’s air resistance. If I claim that the answers are

vy(t) = −vt +
(
v0 + vt

)
e−gt/vt , y(t) = −vtt+ (v0 + vt)

vt
g

[
1− e−gt/vt

]
(2.33)

then this claim has to be inspected to see if it makes sense. And I never bothered to tell you what
the expression “vt” means anyway. You have to figure that out. Fortunately that’s not difficult in this
case. What happens to these equations for very large time? The exponentials go to zero, so

vy −→ −vt +
(
v0 + vt

)
. 0 = −vt, and y −→ −vtt+ (v0 + vt)

vt
g

vt is the terminal speed. After a long enough time a falling object will reach a speed for which the force
by gravity and the force by the air will balance each other and the velocity then remains constant.

Do they satisfy the initial conditions? Yes:

vy(0) = −vt +
(
v0 + vt

)
e0 = v0, y(0) = 0 + (v0 + vt)

vt
g

.(1− 1) = 0

What do these behave like for small time? They ought to reduce to something like the expressions
in Eq. (2.32), but just as important is to determine what the deviation from that simple form is. Keep
some extra terms in the series expansion. How many extra terms? If you’re not certain, then keep one
more than you think you will need. After some experience you will usually be able to anticipate what
to do. Expand the exponential:

vy(t) = −vt +
(
v0 + vt

) [
1 +
−gt
vt

+
1

2

(
−gt
vt

)2

+ · · ·

]

= v0 −
(

1 +
v0

vt

)
gt+

1

2

(
1 +

v0

vt

)
g2t2

vt
+ · · ·

The coefficient of t says that the object is slowing down more rapidly than it would have without air
resistance. So far, so good. Is the factor right? Not yet clear, so keep going. Did I need to keep terms
to order t2? Probably not, but there wasn’t much algebra involved in doing it, so it was harmless.

Look at the other equation, for y.

y(t) = −vtt+ (v0 + vt)
vt
g

[
1−

[
1− gt

vt
+

1

2

(
gt
vt

)2

− 1

6

(
gt
vt

)3

+ · · ·

]]

= v0t−
1

2

(
1 +

v0

vt

)
gt2 − 1

6

(
1 +

v0

vt

)
g2t3

vt
+ · · ·

Now differentiate this approximate expression for y with respect to time and you get the approximate
expression for vy. That means that everything appears internally consistent, and I haven’t introduced
any obvious error in the process of approximation.

What if the terminal speed is infinite, so there’s no air resistance. The work to answer this is
already done. Expanding e−gt/vt for small time is the same as for large vt, so you need only look back
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at the preceding two sets of equations and let vt −→ ∞. The result is precisely the equations (2.32),
just as you should expect.

You can even determine something about the force that I assumed for the air resistance: Fy =
may = mdvy/dt. Differentiate the approximate expression that you already have for vy, then at least
for small t

Fy = m
d
dt

[
v0 −

(
1 +

v0

vt

)
gt+

1

2

(
1 +

v0

vt

)
g2t2

vt
+ · · ·

]
= −m

(
1 +

v0

vt

)
g + · · · = −mg −mgv0/vt + · · · (2.34)

This says that the force appears to be (1) gravity plus (2) a force proportional to the initial velocity.
The last fact comes from the factor v0 in the second term of the force equation, and at time zero, that
is the velocity. Does this imply that I assumed a force acting as Fy = −mg − (a constant times)vy?
To this approximation that’s the best guess. (It happens to be correct.) To verify it though, you would
have to go back to the original un-approximated equations (2.33) and compute the force from them.

a
b

c

Electrostatics Example
Still another example, but from electrostatics this time: Two thin circular rings have radii a and b and
carry charges Q1 and Q2 distributed uniformly around them. The rings are positioned in two parallel
planes a distance c apart and with axes coinciding. The problem is to compute the force of one ring
on the other, and for the single non-zero component the answer is (perhaps)

Fz =
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + (b− a)2 + 4ab sin2 θ

]3/2
. (2.35)

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c2)3/2 = 1/c3, where
c is one of the lengths. Combine this with the factors in front of the integral and one of the lengths (c’s)
cancels, leaving Q1Q2/ε0c2. This is (again dimensionally) the same as Coulomb’s law, q1q2/4πε0r2,
so it passes this test.

When you’ve done the dimensional check, start to consider the parameters that control the result.
The numbers a, b, and c can be anything: small, large, or equal in any combination. For some cases
you should be able to say what the answer will be, either approximately or exactly, and then check
whether this complicated expression agrees with your expectation.

If the rings shrink to zero radius this has a = b = 0, so Fz reduces to

Fz →
Q1Q2c
2π2ε0

∫ π/2

0
dθ

1

c3
=
Q1Q2c
2π2ε0

π
2c3

=
Q1Q2

4πε0c2

and this is the correct expression for two point charges a distance c apart.
If c � a and b then this is really not very different from the preceding case, where a and b are

zero.
If a = 0 this is

Fz →
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + b2

]3/2
=
Q1Q2c
2π2ε0

π/2[
c2 + b2

]3/2
=

Q1Q2c

4πε0
[
c2 + b2

]3/2
(2.36)
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The electric field on the axis of a ring is something that you can compute easily. The only component of
the electric field at a point on the axis is itself along the axis. You can prove this by assuming that it’s

false. Suppose that there’s a lateral component of ~E and say that it’s to the right. Rotate everything

by 180◦ about the axis and this component of ~E will now be pointing in the opposite direction. The

ring of charge has not changed however, so ~E must be pointing in the original direction. This supposed
sideways component is equal to minus itself, and something that’s equal to minus itself is zero.

All the contributions to ~E except those parallel the axis add to zero. Along the axis each piece
of charge dq contributes the component

b

c dq
4πε0[c2 + b2]

. c√
c2 + b2

The first factor is the magnitude of the field of the point charge at a distance r =
√
c2 + b2 and the

last factor is the cosine of the angle between the axis and r. Add all the dq together and you get Q1.
Multiply that by Q2 and you have the force on Q2 and it agrees with the expressions Eq. (2.36)

If c → 0 then Fz → 0 in Eq. (2.35). The rings are concentric and the outer ring doesn’t push
the inner ring either up or down.

But wait. In this case, where c → 0, what if a = b? Then the force should approach infinity
instead of zero because the two rings are being pushed into each other. If a = b then

Fz =
Q1Q2c
2π2ε0

∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
(2.37)

If you simply set c = 0 in this equation you get

Fz =
Q1Q20

2π2ε0

∫ π/2

0

dθ[
4a2 sin2 θ

]3/2

The numerator is zero, but look at the integral. The variable θ goes from 0 to π/2, and at the end
near zero the integrand looks like

1[
4a2 sin2 θ

]3/2
≈ 1[

4a2θ2
]3/2

=
1

8a3θ3

Here I used the first term in the power series expansion of the sine. The integral near the zero end is
then approximately ∫ ...

0

dθ
θ3

=
−1

2θ2

∣∣∣∣...
0

and that’s infinite. This way to evaluate Fz is indeterminate: 0 .∞ can be anything. It doesn’t show
that this Fz gives the right answer, but it doesn’t show that it’s wrong either.

Estimating a tough integral
Although this is more difficult, even tricky, I’m going to show you how to examine this case for small
values of c and not for c = 0. The problem is in figuring out how to estimate the integral (2.37) for
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small c, and the key is to realize that the only place the integrand gets big is in the neighborhood of
θ = 0. The trick then is to divide the range of integration into two pieces∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
=

∫ Λ

0
+

∫ π/2

Λ

For any positive value of Λ the second piece of the integral will remain finite even as c→ 0. This means
that in trying to estimate the way that the whole integral approaches infinity I can ignore the second
part of the integral. Now choose Λ small enough that for 0 < θ < Λ I can use the approximation
sin θ = θ, the first term in the series for sine. (Perhaps Λ = 0.1 or so.)

for small c,
∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
≈
∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
+ lower order terms

This is an elementary integral. Let θ = (c/2a) tanφ.∫ Λ

0

dθ[
c2 + 4a2θ2

]3/2
=

∫ Λ′

0

(c/2a) sec2 φdφ

[c2 + c2 tan2 φ]3/2
=

1

2ac2

∫ Λ′

0
cosφ =

1

2ac2
sin Λ′

The limit Λ′ comes from Λ = (c/2a) tan Λ′, so this implies tan Λ′ = 2aΛ/c. Now given the tangent
of an angle, I want the sine — that’s the first page of chapter one.

sin Λ′ =
2aΛ/c√

1 + (2aΛ/c)2
=

2aΛ√
c2 + 4a2Λ2

As c → 0, this approaches one. Put all of this together and you have the behavior of the integral in
Eq. (2.37) for small c. ∫ π/2

0

dθ[
c2 + 4a2 sin2 θ

]3/2
∼ 1

2ac2
+ lower order terms

Insert this into Eq. (2.37) to get

Fz ∼
Q1Q2c
2π2ε0

. 1

2ac2
=

Q1Q2

4π2ε0ac

Now why should I believe this any more than I believed the original integral? When you are very
close to one of the rings, it will look like a long, straight line charge and the linear charge density on it is
then λ = Q1/2πa. What is the electric field of an infinitely long uniform line charge? Er = λ/2πε0r.
So now at the distance c from this line charge you know the E-field and to get the force on Q2 you
simply multiply this field by Q2.

Fz should be
λ

2πε0c
Q2 =

Q1/2πa
2πε0c

Q2 (2.38)

and that’s exactly what I found in the preceding equation. After all these checks I think that I may
believe the result, and more than that you begin to get an intuitive idea of what the result ought to
look like. That’s at least as valuable. It’s what makes the difference between understanding the physics
underlying a subject and simply learning how to manipulate the mathematics.
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Exercises

1 Evaluate by hand cos 0.1 to four places.

2 In the same way, evaluate tan 0.1 to four places.

3 Use the first two terms of the binomial expansion to estimate
√

2 =
√

1 + 1. What is the relative
error? [(wrong−right)/right]

4 Same as the preceding exercise, but for
√

1.2.

5 What is the domain of convergence for x− x4 + x9 − x42 + x52 − · · ·

6 Does
∞∑
n=0

cos(n)− cos(n+ 1) converge?

7 Does
∞∑
n=1

1√
n

converge?

8 Does
∞∑
n=1

n!

n2
converge?

9 What is the domain of convergence for
x

1 . 2
− x2

2 . 22
+

x3

3 . 33
− x4

4 . 44
+ · · ·?

10 From Eq. (2.1), find a series for
1

(1− x)2
.

11 If x is positive, sum the series 1 + e−x + e−2x + e−3x + · · ·

12 What is the ratio of the exact value of 20! to Stirling’s approximation for it?

13 For the example in Eq. (2.22), what are the approximate values that would be predicted from
Eq. (2.26)?

14 Do the algebra to evaluate Eq. (2.25).

15 Translate this into a question about infinite series and evaluate the two repeating decimal numbers:
0.444444 . . ., 0.987987987 . . .

16 What does the integral test tell you about the convergence of the infinite series
∑∞

1 n−p?

17 What would the power series expansion for the sine look like if you require it to be valid in arbitrary
units, not just radians? This requires using the constant “C” as in section 1.1.



2—Infinite Series 22

Problems

2.1 (a) If you borrow $200,000 to buy a house and will pay it back in monthly installments over 30 years
at an annual interest rate of 6%, what is your monthly payment and what is the total money that you
have paid (neglecting inflation)? To start, you have N payments p with monthly interest i and after
all N payments your unpaid balance must reach zero. The initial loan is L and you pay at the end of
each month.

((L(1 + i)− p)(1 + i)− p)(1 + i)− p · · · N times = 0

Now carry on and find the general expression for the monthly payment. Also find the total paid.
(b) Does your general result for arbitrary N reduce to the correct value if you pay everything back at
the end of one month? [L(1 + i) = p]
(c) For general N , what does your result become if the interest rate is zero? Ans: $1199.10, $431676

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. Now what is the total
amount of money that you’ve paid in constant dollars? That is, one hundred dollars in the year 2010 is
worth just $100/1.0210 = $82.03 as expressed in year-2000 dollars. Each payment is paid with dollars
of gradually decreasing value. Ans: $324211

2.3 Derive all the power series that you’re supposed to memorize, Eq. (2.4).

2.4 Sketch graphs of the functions

e−x
2

xe−x
2

x2e−x
2

e−|x| xe−|x| x2e−|x| e−1/x e−1/x2

2.5 The sample series in Eq. (2.7) has a simple graph (x2 between −L and +L) Sketch graphs of one,
two, three terms of this series to see if the graph is headed toward the supposed answer.

2.6 Evaluate this same Fourier series for x2 at x = L; the answer is supposed to be L2. Rearrange
the result from the series and show that you can use it to evaluate ζ(2), Eq. (2.6). Ans: π2/6

2.7 Determine the domain of convergence for all the series in Eq. (2.4).

2.8 Determine the Taylor series for coshx and sinhx.

2.9 Working strictly by hand, evaluate 7
√

0.999. Also
√

50. Ans: Here’s where a calculator can tell you
better than I can.

2.10 Determine the next, x6, term in the series expansion of the secant. Ans: 61x6/720

2.11 The power series for the tangent is not as neat and simple as for the sine and cosine. You can
derive it by taking successive derivatives as done in the text or you can use your knowledge of the series
for the sine and cosine, and the geometric series.

tanx =
sinx
cosx

=
x− x3/3! + · · ·
1− x2/2! + · · ·

=
[
x− x3/3! + · · ·

][
1 + (−x2/2! + · · ·)

]−1

Use the expansion for the geometric series to place all the x2, x4, etc. terms into the numerator,
treating every term after the “1” as a single small thing. Then collect the like powers to obtain the
series at least through x5.
Ans: x+ x3/3 + 2x5/15 + 17x7/315 + · · ·
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2.12 What is the series expansion for cscx = 1/ sinx? As in the previous problem, use your knowledge
of the sine series and the geometric series to get this result at least through x5. Note: the first term
in this series is 1/x. Ans: 1/x+ x/6 + 7x3/360 + 31x5/15120 + · · ·

2.13 The exact relativistic expression for the kinetic energy of an object with non-zero mass is

K = mc2
(
γ − 1

)
where γ =

(
1− v2/c2

)−1/2

and c is the speed of light in vacuum. If the speed v is small compared to the speed of light, find
an approximate expression for K to show that it reduces to the Newtonian expression for the kinetic
energy, but include the next term in the expansion to determine how large the speed v must be in order
that this correction term is 10% of the Newtonian expression for the kinetic energy? Ans: v ≈ 0.36 c

2.14 Use series expansions to evaluate

lim
x→0

1− cosx
1− coshx

and lim
x→0

sin kx
x

2.15 Evaluate using series; you will need both the sine series and the binomial series.

lim
x→0

(
1

sin2 x
− 1

x2

)
Now do it again, setting up the algebra differently and finding an easier (or harder) way. Ans: 1/3

2.16 For some more practice with series, evaluate

lim
x→0

(
2

x
+

1

1−
√

1 + x

)
Ans: Check experimentally with a few values of x on a pocket calculator.

2.17 Expand the integrand to find the power series expansion for

ln(1 + x) =

∫ x

0
dt (1 + t)−1

Ans: Eq. (2.4)

2.18 (a) The error function erf(x) is defined by an integral. Expand the integrand, integrate term
by term, and develop a power series representation for erf. For what values of x does it converge?
Evaluate erf(1) from this series and compare it to the result of problem 1.34. (b) Also, as further
validation of the integral in problem 1.13, do the power series expansion of both sides of the equation
and verify the expansions of the two sides of the equation agree .

2.19 Verify that the combinatorial factor mCn is really what results for the coefficients when you
specialize the binomial series Eq. (2.4) to the case that the exponent is an integer.

2.20 Determine the double power series representation about (0, 0) of 1
/[

(1− x/a)(1− y/b)
]

2.21 Determine the double power series representation about (0, 0) of 1
/

(1− x/a− y/b)



2—Infinite Series 24

2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’s approximation to the
exact value. You may not be able to find the difference of two such large numbers. An improvement
on the basic Stirling’s formula is

√
2πnnne−n

(
1 +

1

12n

)
What is the ratio of approximate to exact for n = 1, 2, 10?
Ans: 0.99898, 0.99948, . . .

2.23 Evaluate the sum
∑∞

1 1/n(n+1). To do this, write the single term 1/n(n+1) as a combination
of two fractions with denominator n and (n+ 1) respectively, then start to write out the stated infinite
series to a few terms to see the pattern. When you do this you may be tempted to separate it into two
series, of positive and of negative terms. Examine the problem of convergence and explain why this is
wrong. Ans: 1

2.24 (a) You can sometimes use the result of the previous problem to improve the convergence of a
slow-converging series. The sum

∑∞
1 1/n2 converges, but not very fast. If you add zero to it you don’t

change the answer, but if you’re clever about how you add it you can change this into a much faster
converging series. Add 1−

∑∞
1 1/n(n+1) to this series and combine the sums. (b) After Eq. (2.11) it

says that it takes 120 terms to get the stated accuracy. Verify this. For the same accuracy, how many
terms does this improved sum take? Ans: about 8 terms

2.25 The electric potential from one point charge is kq/r. For two point charges, you add the
potentials of each: kq1/r1 + kq2/r2. Place a charge −q at the origin; place a charge +q at position
(x, y, z) = (0, 0, a). Write the total potential from these at an arbitrary position P with coordinates

(x, y, z). Now suppose that a is small compared to the distance of P to the origin
(
r =

√
x2 + y2 + z2

)
and expand your result to the first non-vanishing power of a, or really of a/r. This is the potential
of an electric dipole. Also express your answer in spherical coordinates. See section 8.8 if you need.
Ans: kqa cos θ/r2

2.26 Do the previous problem, but with charge −2q at the origin and charges +q at each of the two
points (0, 0, a) and (0, 0,−a). Again, you are looking for the potential at a point far away from the
charges, and up to the lowest non-vanishing power of a. In effect you’re doing a series expansion in
a/r and keeping the first surviving term. Also express the result in spherical coordinates. The angular
dependence should be proportional to P2(cos θ) = 3

2 cos2 θ − 1
2 , a “Legendre polynomial.” The r

dependence will have a 1/r3 in it. This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (2.18) is supposed to be the number of different ways of choosing
n objects out of a set of m objects. Explicitly verify that this gives the correct number of ways for
m = 1, 2, 3, 4. and all n from zero to m.

2.28 Pascal’s triangle is a visual way to compute the values of mCn. Start with the single digit 1 on
the top line. Every new line is computed by adding the two neighboring digits on the line above. (At
the end of the line, treat the empty space as a zero.)

1

1 1

1 2 1

1 3 3 1
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Write the next couple of lines of the triangle and then prove that this algorithm works, that is that the
mth row is the mCn, where the top row has m = 0. Mathematical induction is the technique that I
recommend.

2.29 Sum the series and show
1

2!
+

2

3!
+

3

4!
+ · · · = 1

2.30 You know the power series representation for the exponential function, but now apply it in a
slightly different context. Write out the power series for the exponential, but with an argument that
is a differential operator. The letter h represents some fixed number; interpret the square of d/dx as
d2/dx2 and find

eh
d
dxf(x)

Interpret the terms of the series and show that the value of this is f(x+ h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have different
formulas. The Doppler effect for light, including relativistic effects is different still. Show that for low
speeds they are all about the same.

f ′ = f
v − vo
v

f ′ = f
v

v + vs
f ′ = f

√
1− v/c
1 + v/c

The symbols have various meanings: v is the speed of sound in the first two, with the other terms
being the velocity of the observer and the velocity of the source. In the third equation c is the speed
of light and v is the velocity of the observer. And no, 1 = 1 isn’t good enough; you should get these
at least to first order in the speed.

2.32 In the equation (2.30) for the light diffracted through a narrow slit, the width of the central
maximum is dictated by the angle at the first dark region. How does this angle vary as you vary the
width of the slit, a? What is this angle if a = 0.1 mm and λ = 700 nm? And how wide will the central
peak be on a wall 5 meters from the slit? Take this width to be the distance between the first dark
regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n. (For example,
water.) When viewed from directly above the object in air (i.e. use small angle approximation), the
object appears to be a distance below the surface given by (maybe) one of the following expressions.
Show why most of these expressions are implausible; that is, give reasons for eliminating the wrong
ones without solving the problem explicitly.

(1) d
√

1 + n2
/
n (2) dn

/√
1 + n2 (3) nd (4) d/n (5) dn2

/√
1 + n2

d
ay

2.34 A mass m1 hangs from a string that is wrapped around a pulley of mass M . As the mass m1

falls with acceleration ay, the pulley rotates. An anonymous source claims that the acceleration of m1
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is one of the following answers. Examine them to determine if any is plausible. That is, examine each
and show why it could not be correct. NOTE: solving the problem and then seeing if any of these agree
is not what this is about.

(1) ay = Mg/(m1 −M) (2) ay = Mg/(m1 +M) (3) ay = m1g/M

p q

R θ

2.35 Light travels from a point on the left (p) to a point on the
right (q), and on the left it is in vacuum while on the right of
the spherical surface it is in glass with an index of refraction n.
The radius of the spherical surface is R and you can parametrize
the point on the surface by the angle θ from the center of the
sphere. Compute the time it takes light to travel on the indicated
path (two straight line segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and
show that the function T (θ) has a minimum if the distance q is
small enough, but that it switches to a maximum when q exceeds a particular value. This position is
the focus.

2.36 Combine two other series to get the power series in θ for ln(cos θ).
Ans: −1

2θ
2 − 1

12θ
4 − 1

45θ
6 + · · ·

2.37 Subtract the series for ln(1 − x) and ln(1 + x). For what range of x does this series converge?
For what range of arguments of the logarithm does it converge?
Ans: −1 < x < 1, 0 < arg <∞

2.38 A function is defined by the integral

f(x) =

∫ x

0

dt
1− t2

Expand the integrand with the binomial expansion and derive the power (Taylor) series representation
for f about x = 0. Also make a hyperbolic substitution to evaluate it in closed form.

p

q

Rθ

2.39 Light travels from a point on the right (p), hits a spherically
shaped mirror and goes to a point (q). The radius of the spherical
surface is R and you can parametrize the point on the surface by
the angle θ from the center of the sphere. Compute the time
it takes light to travel on the indicated path (two straight line
segments) as a function of the angle θ.
Expand the time through second order in a power series in θ and
show that the function T (θ) has a minimum if the distance q is
small enough, but that it switches to a maximum when q exceeds
a particular value. This is the focus.

2.40 (a) The quadratic equation ax2 + bx + c = 0 is almost a linear equation if a is small enough:
bx+ c = 0⇒ x = −c/b. You can get a more accurate solution iteratively by rewriting the equation as

x = −c
b
− a
b
x2

Solve this by neglecting the second term, then with this approximate x1 get an improved value of the
root by

x2 = −c
b
− a
b
x2

1
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and you can repeat the process. For comparison take the exact solution and do a power series expansion
on it for small a. See if the results agree.
(b) Where does the other root come from? That value of x is very large, so the first two terms in
the quadratic are the big ones and must nearly cancel. ax2 + bx = 0 so x = −b/a. Rearrange the
equation so that you can iterate it, and compare the iterated solution to the series expansion of the
exact solution.

x = − b
a
− c
ax

Solve 0.001x2 + x+ 1 = 0. Ans: Solve it exactly and compare.

2.41 Evaluate the limits

(a) lim
x→0

sinx− tanx
x

, (b) lim
x→0

sinx− tanx
x2

, (c) lim
x→0

sinx− tanx
x3

Ans: Check with a pocket calculator for x = 1.0, 0.1, 0.01

2.42 Fill in the missing steps in the derivation of Eq. (2.26).

2.43 Is the result in Eq. (2.26) normalized properly? What is its integral dδ over all δ? Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom they will
vote for as dog-catcher-in-chief. The results are 49.0% for T.I. Hulk and 51.0% for T.A. Spiderman.
Assume that these numbers are representative, an unbiased sample of the electorate. The number
0.49 × 1500 = aN is now your best estimate for the number of votes Mr. Hulk will get in a sample
of 1500. Given this estimate, what is the probability that Mr. Hulk will win the final vote anyway?
(a) Use Eq. (2.26) to represent this estimate of the probability of his getting various possible outcomes,
where the center of the distribution is at k = aN . Using δ = k − aN , this probability function is
proportional to exp

(
− δ2/2abN

)
, and the probability of winning is the sum of all the probabilities of

having k > N/2, that is,
∫∞
N/2 dk. (b) What would the answer be if the survey had asked 150 or 15000

people with the same 49-51 results? Ans: (a) 1
2

[
1− erf

(√
N/2ab (1

2 − a)
)]

. 22%, (b) 40%, 0.7%

2.45 For the function defined in problem 2.38, what is its behavior near x = 1? Compare this result

to equation (1.4). Note: the integral is
∫ Λ

0 +
∫ x

Λ . Also, 1 − t2 = (1 + t)(1 − t), and this ≈ 2(1 − t)
near 1.

2.46 (a) What is the expansion of 1/(1 + t2) in powers of t for small t. (b) That was easy, now what
is it for large t? In each case, what is the domain of convergence?

2.47 The “average” of two numbers a and b commonly means (a+ b)/2, the arithmetic mean. There
are many other averages however. (a, b > 0)

Mn(a, b) =
[
(an + bn)/2

]1/n
is the nth mean, also called the power mean, and it includes many others as special cases. n = 2:
root-mean-square, n = −1: harmonic mean. Show that this includes the geometric mean too:

√
ab =

limn→0Mn(a, b). It can be shown that dMn/dn > 0; what inequalities does this imply for various
means? Ans: harmonic ≤ geometric ≤ arithmetic ≤ rms

2.48 Using the definition in the preceding problem, show that dMn/dn > 0. [Tough!]
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2.49 In problem 2.18 you found the power series expansion for the error function — good for small
arguments. Now what about large arguments?

erf(x) =
2√
π

∫ x

0
dt e−t

2
= 1− 2√

π

∫ ∞
x

dt e−t
2

= 1− 2√
π

∫ ∞
x

dt
1

t
. te−t

2

Notice that you can integrate the te−t
2

factor explicitly, so integrate by parts. Then do it again and
again. This provides a series in inverse powers that allows you evaluate the error function for large
arguments. What is erf(3)? Ans: 0.9999779095 See Abramowitz and Stegun: 7.1.23.

2.50 A friend of mine got a different result for Eq. (2.35). Instead of sin2 θ in the denominator, he
got a sin θ. Analyze his answer for plausibility.

2.51 Find the minimum of the function f(r) = ar+b/r for a, b, r > 0. Then find the series expansion
of f about that point, at least as far as the first non-constant term.

2.52 In problem 2.15 you found the limit of a function as x→ 0. Now find the behavior of the same
function as a series expansion for small x, through terms in x2. Ans: 1

3 + 1
15x

2. To test whether this
answer or yours or neither is likely to be correct, evaluate the exact and approximate values of this for
moderately small x on a pocket calculator.

2.53 Following Eq. (2.34) the tentative conclusion was that the force assumed for the air resistance was
a constant times the velocity. Go back to the exact equations (2.33) and compute this force without
approximation, showing that it is in fact a constant times the velocity. And of course find the constant.

2.54 An object is thrown straight up with speed v0. There is air resistance and the resulting equation
for the velocity is claimed to be (only while it’s going up)

vy(t) = vt
v0 − vt tan(gt/vt)

vt + v0 tan(gt/vt)

where vt is the terminal speed of the object after it turns around and has then been falling long enough.
(a) Check whether this equation is plausible by determining if it reduces to the correct result if there
is no air resistance and the terminal speed goes to infinity. (b) Now, what is the velocity for small
time and then use Fy = may to infer the probable speed dependence of what I assumed for the air
resistance in deriving this expression. See problem 2.11 for the tangent series. (c) Use the exact vy(t)
to show that no matter how large the initial speed is, it will stop in no more than some maximum time.
For a bullet that has a terminal speed of 100 m/s, this is about 16 s.

2.55 Under the same circumstances as problem 2.54, the equation for position versus time is

y(t) =
v2
t

g
ln

(
vt cos(gt/vt) + v0 sin(gt/vt)

vt

)
(a) What is the behavior of this for small time? Analyze and interpret what it says and whether it
behaves as it should. (b) At the time that it reaches its maximum height (vy = 0), what is its position?
Note that you don’t need to have an explicit value of t for which this happens; you use the equation
that t satisfies.

2.56 You can get the individual terms in the series Eq. (2.13) another way: multiply the two series:

eax
2+bx = eax

2
ebx

Do so and compare it to the few terms found after (2.13).
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