
11. Uniform convergence
Lehmann §2.6

In the definition of convergence in distribution, we saw pointwise convergence of distribution functions:
If F (x) is continuous, then Fn

L→F means that for each x, Fn(x) → F (x). In other words, for every x and
ε > 0, there exists N such that

|Fn(x)− F (x)| < ε for all n > N. (13)

A very important fact about the above wording is the stipulation that N depends on x. In other words, for
a given ε, a value of N that makes statement (13) true for some x might not work for some other x.

The idea of uniform convergence, on the other hand, is that we can choose N without regard to the value
of x. Thus, for a given ε, we can select N so that (13) is true for all x.

Definition 11.1 gn(x) converges uniformly to g(x) if for every ε > 0, there exists N such that

|gn(x)− g(x)| < ε for all n > N and for all x.

An equivalent definition of uniform convergence is as follows:

Theorem 11.1 gn(x) converges uniformly to g(x) if and only if supx |gn(x)− g(x)| → 0.

Unlike uniform convergence, pointwise convergence merely asserts that |gn(x) − g(x)| → 0 for all x. It is
tempting to believe that supx |gn(x)− g(x)| → 0 and |gn(x)− g(x)| → 0 for all x are equivalent statements,
but that would be a mistake.

Intuitively, gn(x) → g(x) uniformly if it is possible to draw an ε-band around the graph of g(x) that contains
all of the graphs of gn(x) for large enough n.

Example 11.1 It is easy to demonstrate that uniform convergence is not the same thing as point-
wise convergence by exhibiting examples in which pointwise convergence holds but uniform
convergence does not.

• If gn(x) = x(1 + 1/n) and g(x) = x, then obviously gn(x) → g(x) for all x (i.e., pointwise
convergence holds). However, since supx |gn(x)−g(x)| = ∞ for all n, uniform convergence
does not hold.

• If gn(x) = xn for all x ∈ (0, 1), then gn(x) → 0 for all fixed x as n → ∞, but
supx∈(0,1) |gn(x)| = 1.

Note that in both of these examples that for small ε > 0, an ε-band around g(x) = x in the
first example and g(x) = 0 in the second example fails to capture the graphs of any gn(x).

Thus, it is clear that pointwise convergence does not in general imply uniform convergence. However, the
following theorem gives a special case in which it does.

Theorem 11.2 If Fn(x) and F (x) are cdf’s and F (x) is continuous, then pointwise convergence of
Fn to F implies uniform convergence of Fn to F .

Problems
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Problem 11.1 This problem deals with the question of when Yn
L→Y implies E Yn → E Y . As

you know, this is not in general the case. As stated in the following definition and theorem
(which you are not asked to prove), a sufficient condition for E Yn → E Y is the uniform
integrability of the Yn.

Definition 11.2 The random variables Y1, Y2, . . . are said to be uniformly integrable
if

sup
n

E (|Yn| I{|Yn| ≥ α}) → 0 as α →∞.

Theorem 11.3 If Yn
L→Y and the Yn are uniformly integrable, then E Yn → E Y .

Prove that if there exists ε > 0 such that supn E |Yn|1+ε < ∞, then the Yn are uniformly
integrable.

Problem 11.2 Prove that if there exists a random variable Z such that E |Z| = µ < ∞ and
P (|Yn| ≥ t) ≤ P (|Z| ≥ t) for all n and for all t > 0, then the Yn are uniformly integrable. This
result gives one version of the dominated convergence theorem:

Theorem 11.4 If Yn
L→Y and |Yn| ≤ Z for all n for an integrable random variable Z,

then E Yn → E Y . (A random variable Z is defined to be integrable if E |Z| < ∞.)

You may use the fact (without proof) that for a nonnegative X,

E (X) =
∫ ∞

0

P (X ≥ t) dt.

Hints: Consider the random variables |Yn|I{|Yn| ≥ t} and |Z|I{|Z| ≥ t}. In addition, use the
fact that

E |Z| =
∞∑

i=1

E (|Z|I{i− 1 ≤ |Z| < i})

to argue that E (|Z|I{|Z| < α}) → E |Z| as α →∞.

Problem 11.3 Let X1, X2, . . . be iid Poisson random variables with mean λ = 1. Define Yn =√
n(Xn − 1).

(a) Find E (Y +
n ), where Y +

n = YnI{Yn > 0}.

(b) Find, with proof, the limit of E (Y +
n ) and prove Stirling’s formula

n! ∼
√

2π nn+1/2e−n.

Hint: Use the result of Problem 11.1.

Problem 11.4 (a) Prove that as x →∞,

1− Φ(x) ∼ 1√
2π

e−x2/2

x
,

where Φ(x) denotes the cdf of the standard normal distribution. (The asymptotic equivalence
∼ has the obvious definition for a continuous variable x →∞: f(x) ∼ g(x) if f(x)/g(x) → 1.)

(b) Create a table in which you give 1− Φ(x) exactly and using the approximation based on
part (a) for x ∈ {1, 2, 3, 5, 10, 15, 20}. Comment on the quality of the approximation.
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Hints: For part (a), try writing the left hand side as an integral and then use integration by
parts to express it as the right hand side plus another integral. For part (b), you’ll need to use
the fact that 1− Φ(x) = Φ(−x) or the software will simply report 0 for large x.

Problem 11.5 Do Problems 4.6 and 4.7 on p. 125. Of course, θ = 0 in each case. In the graphs
for 4.7(ii), use 1000 replications for each n and plot the four cdfs (three empirical and one
continuous) on the same graph (and label them) if possible. Use a = 1 for simulating from
4.6(ii).

Hint: Study Example 2.4.9 on p. 80.
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12. Central Limit Theorem, Part I: iid case
Lehmann §2.4; Ferguson §5

Theorem 12.1 Central limit theorem, iid case. If X1, X2, . . . are iid with E (Xi) = ξ and Var (Xi) =
σ2 < ∞, then

√
n(Xn − ξ)

σ

L→N(0, 1).

There are many examples in which this theorem is useful.

Example 12.1 Distribution of T statistics: Suppose X1, X2, . . . are iid with E (Xi) = ξ and
Var (Xi) = σ2 < ∞. Define

s2
n =

1
n

n∑
i=1

(Xi −Xn)2, (14)

and let

Tn =
√

n(Xn − ξ)
sn

.

Letting

An =
√

n(Xn − ξ)
σ

and Bn = σ/sn, clearly tn = AnBn. Therefore, since An
L→N(0, 1) by the central limit theorem

and Bn
P→ 1 by the weak law of large numbers, Slutsky’s theorem implies that tn

L→N(0, 1). In
other words, T statistics are asymptotically normal under the null hypothesis.

Example 12.2 Distribution of sample variance: Suppose that X1, X2, . . . are iid with E (Xi) = ξ,
Var (Xi) = σ2, and Var {(Xi − ξ)2} = τ2 < ∞. Define s2

n as in equation (14). Letting
Yi = Xi − ξ, it is not hard to verify that

s2
n =

1
n

n∑
i=1

Y 2
i − Y

2

n.

By the CLT, we know that

√
n

(
1
n

Y 2
i − σ2

)
L→N(0, τ2)

because E (Y 2
i ) = Var (Xi) = σ2. Furthermore, the fact that

√
nY n

L→N(0, σ2) means that
√

nY
2

n
P→ 0. Therefore, since

√
n(s2

n − σ2) =
√

n

(
1
n

Y 2
i − σ2

)
+
√

nY
2

n,

Slutsky’s theorem implies that
√

n(s2
n − σ2) L→N(0, τ2).

Notice that s2
n is defined in equation (14) to have the denominator n, whereas the sample

variance is often defined with n−1 as the denominator instead. However, it is possible through
an additional use of Slutsky’s theorem to prove that both versions of s2

n have the same limiting
behavior.
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Example 12.3 The assumptions made in the CLT are crucial. For example, if X1, X2, . . . are iid
standard Cauchy random variables, then the stipuation that Var (Xi) < ∞ is violated, and in
fact Xn is itself standard Cauchy.

It is possible to strengthen the CLT in a couple of directions. We consider one of them, the Berry-Esseen
theorem, here. Another one, called Edgeworth expansions, will not be covered, though it is an interesting
topic in its own right and you will find it in both Lehmann’s book and Ferguson’s book if you are interested.

As Ferguson puts it in Section 5, the convergence in the CLT is not uniform in the underlying distribution
in the sense that for any n, there are distributions satisfying the hypotheses of the CLT but for which the
distribution of

√
n(Xn − µ)/σ approximates the standard normal distribution arbitrarily poorly. However,

consider the following theorem:

Theorem 12.2 Berry-Esseen theorem: If X1, . . . , Xn are iid with mean µ, variance σ2 > 0, and
absolute third moment ρ = E |X − µ|3 < ∞, then

|Gn(x)− Φ(x)| < .7975ρ

σ3
√

n
for all x and n, (15)

where Gn(x) is the cdf of
√

n(Xn − µ)/σ and Φ(x) is the standard normal cdf.

Note that the Berry-Esseen theorem is not a limit theorem; it is true for all n. However, as n → ∞, the
right hand side goes to zero, which means that the CLT is implied for the case of a finite absolute third
moment. Interestingly, it is not known whether the constant .7975 is the best possible constant—it is only
known that the constant must be greater than .4097.

We won’t use the Berry-Esseen theorem extensively in this class, but we now give an example of the sort of
result it may be used to prove.

Example 12.4 Suppose that Xn ∼ binomial(n, pn). We would like to prove a central-limit-theorem-
like result for these Xn. View Xn as the sum

∑n
i=1 Yni of iid Bernoulli(pn) random variables.

Unfortunately, the CLT does not apply because the Yni are not iid. However, note that E |Yni−
pn|3 must be less than or equal to one. In this case, σ =

√
pn(1− pn), so the Berry-Esseen

theorem implies that
√

n(Xn/n− pn)√
pn(1− pn)

=
Xn − npn√
npn(1− pn)

L→N(0, 1)

as long as pn(1−pn) does not converge to zero. (The convergence is even possible if pn(1−pn) →
0; see Example 2.4.8 on page 79 of Lehmann’s book.)

Example 12.5 Distribution of sample median: Suppose X1, . . . , Xn are iid such that P (Xi ≤ x) =
F (x− θ) for some cdf F (x) with F (0) = 1/2 and F ′(0) exists and is positive. Let f(0) = F ′(0).
Note that θ is the population median. Suppose n is odd, n = 2m − 1, and let X̃n denote the
sample median. Then X̃n = X(m), the mth order statistic.

We may compute the cdf of
√

n(X(m) − θ) directly:

P
{√

n(X(m) − θ) ≤ x
}

= P

{
X(m) ≤

x√
n

+ θ

}
= P (Yn ≤ m− 1),

where Yn ∼ binomial{n, 1− F (x/
√

n)}. Let pn = 1− F (x/
√

n). Then

P (Yn ≤ m− 1) = P

{
Y − npn√
npn(1− pn)

≤
√

n(1− 2pn)− (1/
√

n)
2
√

pn(1− pn)

}
.
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Because pn → 1/2 in this case, Example 12.4 implies that

P (Yn ≤ m− 1)− Φ

{√
n(1− 2pn)− (1/

√
n)

2
√

pn(1− pn)

}
→ 0. (16)

The argument of Φ in expression (16) is clearly asymptotically equivalent to
√

n(1−2pn), which
equals

2x
F (x/

√
n)− F (0)

x/
√

n
. (17)

Since expression (17) converges to 2xf(0) by the definition of derivative, we conclude that
P (Yn ≤ m − 1) → Φ{2xf(0)}. Therefore, we finally obtain the asymptotic distribution of the
sample median:

√
n(X̃n − θ) L→N

(
0,

1
4f2(0)

)
.

Problems

Problem 12.1 Using the result of Example 12.2, prove that
√

n(vn − σ2) L→N(0, τ2), where

vn =
1

n− 1

n∑
i=1

(Xi −Xn)2

is the unbiased version of the sample variance and everything else is defined as in Example 12.2.
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13. Taylor’s theorem and the delta method
Lehmann §2.5; Ferguson §7

We begin with Taylor’s theorem:

Theorem 13.1 Taylor’s theorem:

• If f(x) has r derivatives at a, then as ∆ → 0,

f(a + ∆) = f(a) + ∆f ′(a) + · · ·+ ∆r

r!
f (r)(a) + o(∆r)

= f(a) + ∆f ′(a) + · · ·+ ∆r

r!

{
f (r)(a) + o(1)

}
.

• If f(x) has r + 1 derivatives in [a, a + ∆], then there exists ξ ∈ [a, a + ∆] such that

f(a + ∆) = f(a) + ∆f ′(a) + · · ·+ ∆r

r!
f (r)(a) +

∆r+1

(r + 1)!
f (r+1)(ξ).

Based on Taylor’s theorem, we have the delta method:

Theorem 13.2 Delta method: If g′(a) exists and nb(Xn−a) L→X for b > 0, then nb {g(Xn)− g(a)} L→ g′(a)X.

The proof of the delta method uses Taylor’s theorem: Since Xn − a
P→ 0,

nb {g(Xn)− g(a)} = nb(Xn − a) {g′(a) + oP (1)} ,

and thus Slutsky’s theorem together with the fact that nb(Xn − a) L→X proves the result.

Corollary 13.1 As a special case, we have Theorem 2.5.2 on page 86 of Lehmann, which states
that if g′(ξ) exists and

√
n(Xn − ξ) L→N(0, σ2), then

√
n

{
g(Xn)− g(ξ)

} L→N
{
0, σ2g′(ξ)2

}
.

Example 13.1 Asymptotic distribution of X
2

n Suppose X1, X2, . . . are iid with mean ξ and finite
variance σ2. Then by the central limit theorem,

√
n(Xn − ξ) L→N(0, σ2).

Therefore, the delta method gives

√
n(X

2

n − ξ2) L→N(0, 4ξ2σ2). (18)

However, this is not necessarily the end of the story. If ξ = 0, then the normal limit in (18) is
degenerate—that is, expression (18) merely states that

√
n(X

2

n) converges in probability to the
constant 0. This is not what we mean by the asymptotic distribution! Thus, we must treat the
case ξ = 0 separately, noting in that case that

√
nXn

L→N(0, σ2) by the central limit theorem,
which implies that

nXn
L→σ2χ2

1.
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Example 13.2 Estimating binomial variance: Suppose Xn ∼ binomial(n, p). Because Xn/n is the
MLE for p, the MLE for p(1 − p) is δn = Xn(n −Xn)/n2. The central limit theorem tells us
that

√
n(Xn/n− p) L→N(0, pq), so the delta method gives

√
n {δn − p(1− p)} L→N

{
0, p(1− p)(1− 2p)2

}
.

Note that in the case p = 1/2, this does not give the asymptotic distribution of δn.

We have seen in a couple of cases that if g′(a) = 0, then the delta method gives something other than the
asymptotic distribution we seek. However, if we carry the Taylor expansion out one more term in this case,
we obtain the following theorem:

Theorem 13.3 If g′(a) = 0 and g′′(a) exists, then nb(Xn − a) L→X implies that

n2b {g(Xn)− g(a)} L→ 1
2
g′′(a)X2.

We can carry this idea even further if we wish and prove an analagous result for the case in which g′(a) =
0, g′′(a) = 0, . . . , g(r−1)(a) = 0 and g(r)(a) exists.

We end this topic with a discussion of variance stabilizing transformations. Often, if E (Xi) = ξ is the
parameter of interest, the central limit theorem gives

√
n(Xn − ξ) L→N{0, σ2(ξ)}.

In other words, the variance of the limiting distribution is a function of ξ. This is a problem if we wish to
do inference for ξ, because ideally the limiting distribution should not depend on the unknown ξ. The delta
method gives a possible solution: Since

√
n

{
g(Xn)− g(ξ)

} L→N
{
0, σ2(ξ)g′(ξ)2

}
,

we may search for a transformation g(x) such that g′(ξ)σ(ξ) is a constant. Such a transformation is called
a variance stabilizing transformation.

Problems

Problem 13.1 (a) Do problem 5.6 on page 127. For the sake of simplicity, assume σ2 = 1. Note
that the case θ = 0 should be treated separately.

(b) Do problem 5.7 on page 127.

Problem 13.2 (a) Do Problem 5.4 on page 127. Note that this result states that f(x) = sin−1(
√

x)
is a variance-stabilizing transformation in the binomial case.

(b) Do Problem 5.9 (i) and (ii) on page 127.

(c) Evaluate the two confidence intervals in part (b) numerically for all combinations of n ∈
{10, 100, 1000} and p ∈ {.1, .5} as follows: For 1000 realizations of X ∼ bin(n, p), construct both
95% confidence intervals and keep track of how many times (out of 1000) that the confidence
intervals contain p. Report the observed proportion of successes for each (n, p) combination.
Comment on the quality of the two methods of producing confidence intervals.

Problem 13.3 (a) Suppose that X1, X2, . . . are iid Normal (0, σ2) random variables. Using the
result of Example 12.2, find a variance-stabilizing transformation for

s2
n =

1
n

n∑
i=1

(Xi −Xn)2.
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(b) Give an approximate test at α = .05 for H0 : σ2 = σ2
0 vs. Ha : σ2 6= σ2

0 based on part (a).

(c) For n = 25, estimate the true level of the test in part (b) by simulating 5000 samples of
size n = 25 from the null distribution with σ2

0 = 1. Report the proportion of cases in which you
reject the null hypothesis according to your test (ideally, this proportion will be about .05).
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