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Appendix C

Useful Definite Integrals

Definite integrals that often arise in plasma physics are summarized in this
appendix.

C.1 Integrals Involving A Decaying Exponential

Integrals over temporally or spatially decaying processes (e.g., collisional damp-
ing at rate v = 1/7) often result in integrals of the form

(o) e}
/ dtt"e T = T”'H/ dra" e (C.1)
0 0

in which « = t/7. The most general definite, dimensionless integral involving
powers of a variable x and the exponential e* is that given by the gamma
(factorial) function, which is defined by Euler’s integral:

oo
I'(2) E/ dra*le ™, for Re(z) > 0. (C.2)
0
Integrating by parts, one obtains the important recursion relation

I'(z+1) = 2T(2). (C.3)

Using this relation recursively, the gamma function for any argument z > 1 can
be evaluated in terms of I'(z) for 0 < z < 1.

Two values of the argument z of fundamental interest for gamma functions
are z = 1 and z = 1/2. For z = 1 the gamma function becomes simply the
integral of a decaying exponential:

(1) :/000 dre ™ = 1. (C.4)

For z = 1/2, using the substitution = u? the gamma function becomes the
integral of a Gaussian distribution over an infinite domain:

r(1) = 2/000 due ™ = /7. (C.5)
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When the argument of the gamma function is a positive integer (z — n > 0),
the gamma function simplifies to a factorial function:

T'(n+1) =nlTn) =nn—-1Tn-1) =nn-1)(Mn-2)---1 = nl. (C.6)
Using this factorial form for the gamma function, one thus finds that

/ dtte /" =t nl forn=0,1,2,---, (C.7)
0

using the usual convention that 0! = 1. The first few of these integrals are

1 1 1
/ — t/T p et :/ dx x pe? = 1 3. (C.8)
o7 t2/72 0 x? 2

When the argument of the gamma function is a positive half integer (z —
n+1/2 > 0), the gamma function simplifies to a double factorial:

Fnt+3) = (n—HLn—4) = n—3)m-3Th-3)
= [@n—1)@2n—3)---1T(2)/2" = (2n—1) /7 /2"
(C.9)
C.2 Integrals Over A Maxwellian

When calculating various averages over a Maxwellian distribution, integrals of
the following type occur:

Im:/ dvv™ eV /v = v}”“/ duu™ e (C.10)
0 0

in which m is a nonnegative integer and in the second, dimensionless integral
u = v/vp. This integral can be calculated for arbitrary m > 0 by changing
the variable of integration from u to x = u? = v?/vZ and relating the resulting
integral to the gamma function, (C.2):

,Uerl [ee) ’Um+1
I, = 7T2 / do ™/ V2 e = TT L[(m+1)/2]. (C.11)
0

The integrals for the first few even m [for which (m + 1)/2 becomes a half
integer and (C.9) applies| are

1 1 1
/ d v? /v, e Vv :/ dul u? p e = vr 1/2
o Ur 0 2
vt /v, u? 3/4
(C.12)
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The integrals for the first few odd m [for which (m + 1)/2 becomes an integer
and (C.6) applies| are

~ v/vr - u 1/2
/ 00 w3 e*vz/v%:/ dud uwd $e ™ = 1/2 V. (C.13)
o T 5 /)5 0 5
v° Juy, u 1

The natural (orthogonal basis) energy weighting functions for expanding
distribution functions in terms of fluid moments are the Laguerre polynomials
L %(z), which are defined and discussed in Section B.6. The relevant di-
mensionless integral of products of Laguerre polynomials that indicates their
orthogonality and normalization is

/OO de 22 o2 L£’l+1/2) (z) LS,H/Q)(I)
0

L(l+n+3/2) (C-14)

I'(n+1)

- 51177/

T

in which x = v? /v = mv?/2T, and 6, is the Kronecker delta, which is unity
for n = n/ and vanishes if n # n’. The lowest order (n =0,1,2 and [ = 0,1,2)
integrals of interest are

2 1/2 1/2
. [L(()l/ )]2 [Ll/ ]2 [LQ/ ]2
/o duz'/ie x[L(()S/Q)P m[ng/z)]g x[ng/z)]Q
$2[L(5/2)]2 1’2[L(5/2)]2 1’2[L(5/2)]2
’ 1 ’ (C.15)
1 3/2 15/4
N
= 5 3/2 15/4 105/8
15/8 105/16 945/32

C.3 Integrals Over Sinusoidal Functions

Averaging linear and nonlinear quantities made up of sinusoidally oscillating
components result in integrals of the form

1 27

(sin™p cos"p), = dp sin™ @ cos™p. (C.16)

27 Jo

Trigonometric identities that are useful in reducing these integrals to simpler
forms are

2 sinp cosp = sin2¢p, (C.17)
2 sin’p = (1 — cos2¢p), (C.18)
2 cos?p = (1 4+ cos2¢p), (C.19)
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which are derivable from the more fundamental trigonometric identities

sin (1 + w2) = sinp cos pg + cos p; sin s, (C.20)
cos (1 + p2) = oSy COS Py — sin p; sin ps. (C.21)

These last two identities can be also combined to yield

2 sin 1 sinps = cos (1 + Y2) — cos (Y1 — ¥2), (C.22)
2 sin 1 cos pa = sin (1 + @2) + sin (@1 — ¥2), (C.23)
2 cospy cospy = cos (p1 + p2) + cos (p1 — p2). (C.24)

Using these trigonometric identities, and the facts that fo% dy sinny = 0 and
fOQW dy cosnp =0 for n =1,2,---, it can be shown that

1 sing cose 1 0 0
1 [ sing cosp  sin®p  cos?p _ 0 1/2 1/2
2 0 sing cos?p  sin®p  cosdyp o 0 0 0
sin?p cos?p sinte  costp 1/8 3/8 3/8

(C.25)

The natural (i.e., orthogonal basis) functions of sinusoidal functions in which

to expand spherical velocity space latitude angle dependences are the Legendre

polynomials P;(¢), which are defined and discussed in Section B.5. The rele-

vant argument of the Legendre polynomials is usually ¢ = cos®). The relevant

integral of products of Legendre polynomials that indicates their orthogonality
and normalization is

2 (Sll’
20+1

/ d¢ P(¢) Pr(Q) :/077 dd sind P;(cos) Py (cosv) = (C.26)

-1

in which §; is the Kronecker delta function which is unity if the indices are
equal and zero otherwise. The first few of these nonvanishing integrals are

1 P02 1 1 2
/ d¢ | P? E/ d(cos ) cos? = 2/3 |. (C.27)
-1 P3 -1 (3cos?y —1)2/4 2/5
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A limited but very useful table of integrals is:
Dwight, Tables of Integrals and Other Mathematical Data (1964) [?]
The most comprehensive tabulation of integrals is provided by:

Gradshteyn and Ryzhik, Table of Integrals, Series and Products (1965) [?]
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