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Introduction

This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri-
butions. It is constructed in chapters of distribution family with a section for each distribution.
Each section focuses on the tryptic: definition - estimation - application.

Ultimate bibles for probability distributions are |Wimmer & Altmann (1999) which lists 750
univariate discrete distributions and Johnson et al.| (1994) which details continuous distributions.

In the appendix, we recall the basics of probability distributions as well as “common” mathe-
matical functions, cf. section And for all distribution, we use the following notations

X a random variable following a given distribution,

e z a realization of this random variable,

f the density function (if it exists),

e [ the (cumulative) distribution function,

P(X = k) the mass probability function in k,

e M the moment generating function (if it exists),

G the probability generating function (if it exists),

¢ the characteristic function (if it exists),

Finally all graphics are done the open source statistical software R and its numerous packages
available on the Comprehensive R Archive Network (CRAN*). See the CRAN task view' on prob-
ability distributions to know the package to use for a given “non standard” distribution, which is
not in base R.

“http://cran.r-project.org
Thttp://cran.r-project.org/web /views/Distributions.html|


http://cran.r-project.org
http://cran.r-project.org/web/views/Distributions.html

Part 1

Discrete distributions



Chapter 1

Classic discrete distribution

1.1 Discrete uniform distribution

1.1.1 Characterization

The discrete uniform distribution can be de-
fined in terms of its elementary distribution
(sometimes called mass probability function):

where k € S = {ki,...,kn} (a finite set of or-
dered values). Typically, the k;’s are consecu-
tive positive integers.

Equivalenty, we have the following cumula-
tive distribution function:

1 n
F(k) = - Z L, <k)>
i—1

where 1 is the indicator function.

Furthermore, the probability generating
function is given by

A 1~
G(t) = B(t") =~ >tk
i=1

with the special cases where the k;’s are {1,...,n}, we get
1—2"
G(t) =
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Figure 1.1: Mass probability function for discrete
uniform distribution
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when z # 1.

Finally, the moment generating function is expressed as follows

A 1 — _
M(t) 2 B(Y) = =Y e,
i=1

with the special case e 11__6;:1 when S = {1,...,n}.

1.1.2 Properties

The expectation is X, the empirical mean: E(X) = 13" k;. When S = {1,...,n}, this is just
2+ The variance is given by Var(X) = 13"  (k; — E(X)? which is "251 for S ={1,...,n}.

n 1

1.1.3 Estimation

Since there is no parameter to estimate, calibration is pretty easy. But we need to check that
sample values are equiprobable.

1.1.4 Random generation
The algorithm is simply

e generate U from a uniform distribution,
e compute the generated index as I = [n x U],

e finally X is kj.

where [.] denotes the upper integer part of a number.

1.1.5 Applications

A typical application of the uniform discrete distribution is the statistic procedure called bootstrap
or others resampling methods, where the previous algorithm is used.

1.2 Bernoulli/Binomial distribution

1.2.1 Characterization
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Since the Bernoulli distribution is a special case
of the binomial distribution, we start by ex-
plaining the binomial distribution. The mass
probability distribution is

P(X =k)=Chp*(1—p)"F,

where C¥ is the combinatorial number ﬁlk)"
k € Nand 0 < p < 1 the ’success’ probabil-
ity. Let us notice that the cumulative distribu-
tion function has no particular expression. In
the following, the binomial dsitribuion is de-
noted by B(n,p). A special case of the bino-
mial dsitribution is the Bernoulli when n = 1.
This formula explains the name of this distri-
bution since elementary probabilities P(X = k)
are terms of the development of (p + (1 — p))"
according the Newton’s binom formula.

mass probability function
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Figure 1.2: Mass probability function for binomial
distributions

Another way to define the binomial distribution is to say that’s the sum of n identically and
independently Bernoulli distribution B(p). Demonstration can easily be done with probability
generating function. The probability generating function is

G(t) = (1 —-p+p2)",

while the moment generating function is

M(t) = (1 —p+pe')™.

The binomial distribution assumes that the events are binary, mutually exclusive, independent

and randomly selected.

1.2.2 Properties

The expectation of the binomial distribution is then E(X) = np and its variance Var(X) =
np(l — p). A useful property is that a sum of binomial distributions is still binomial if success

probabilities are the same, i.e. B(ni,p) + B(na,p) £ B(ni + na,p).

We have an asymptotic distribution for the binomial distribution. If n — 400 and p — 0 such
that np tends to a constant, then B(n,p) — P(np).
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1.2.3 Estimation
Bernoulli distribution

Let (X;)i<i<m be an ii.d. sample of binomial distributions B(n,p). If n = 1 (i.e. Bernoulli

distribution, we have
1 m
ﬁm = E Z X
=1
is the unbiased and efficient estimator of p with minimum variance. It is also the moment-based

estimator.

There exists a confidence interval for the Bernoulli distribution using the Fischer-Snedecor
distribution. We have

m-—T+1 -t m—"T -1
Ia(p) = [(1 + sz(m—T+1),2T,§> ; <1 T f2(m—T)72(T+1)vg> ] :

where T' = ZZZI X; and f,, 1,,o the 1 —a quantile of the Fischer-Snedecor distribution with vy and
vo degrees of freedom.

We can also use the central limit theorem to find an asymptotic confidence interval for p

Ia<p) = [ﬁm - % Pm(1 _ﬁm)7ﬁm + %M} )

where u,, is the 1 — o quantile of the standard normal distribution.

Binomial distribution

When n is not 1, there are two cases: either n is known with certainty or n is unknown. In the
first case, the estimator of p is the same as the Bernoulli distribution. In the latter case, there are
no closed form for the maximum likelihood estimator of n.

One way to solve this problem is to set n to the maximum number of ’success’ at first. Then
we compute the log likelihood for wide range of integers around the maximum and finally choose
the likeliest value for n.

Method of moments for n and p is easily computable. Equalling the 2 first sample moments,
we have the following solution

with the constraint that 7 € N.

Exact confidence intervals cannot be found since estimators do not have analytical form. But
we can use the normal approximation for p and 7.
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1.2.4 Random generation

It is easy to simulate Bernoulli distribution with the following heuristic:

e generate U from a uniform distribution,

e compute X as 1 if U < p and 0 otherwise.

The binomial distribution is obtained by summing n i.i.d. Bernoulli random variates.

1.2.5 Applications

The direct application of the binomial distribution is to know the probability of obtaining exactly
n heads if a fair coin is flipped m > n times. Hundreds of books deal with this application.

In medecine, the article[Haddow et al.| (1994) presents an application of the binomial distribution
to test for a particular syndrome.

In life actuarial science, the binomial distribution is useful to model the death of an insured or
the entry in invalidity /incapability of an insured.

1.3 Zero-truncated or zero-modified binomial distribution

1.3.1 Characterization

mass probability function

The zero-truncated version of the binomial dis- o [ o
tribution is defined as follows e
Ck k(1 — pyn—k < |
P(X — k) — nP ( p) ) o 8
1—(1—-p)"
where k € {1,...,n}, n,p usual parameters. S ® °
The distribution function does not have partic- £ 0

ular form. But the probability generating func-
tion and the moment generating function exist

I+p-1)"=(1-p)"

0.2

0.1

G(t) = .
©) [T T
and g | % T T T T
1 t_ " — (1 — n 0 1 2 3 4
ary = (L2 =) = (1= p)" k
I—(1=p)

In the following distribution, we denote the
zero-truncated version by By(n, p). Figure 1.3: Mass probability function for zero-

modified binomial distributions
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For the zero-modified binomial distribution,
which of course generalizes the zero-truncated
version, we have the following elementary probabilities

(P it k=0
PX =k) = { KCFpF(1 —p)"=*  otherwise

where K is the constant — —p n,p,p are the parameters. In terms of probability/moment

1—p)™>
generating functions we have:

~|—

G(t)=p+K((1—-p+p2)" —(1-p)") and M(t)=p+K(1—-p+pe)" —(1-p").

The zero-modified binomial distribution is denoted by B(n, p, p).

1.3.2 Properties

The expectation and the variance for the zero-truncated version is E(X) = % and Var(X) =
np(l_pagali—;?f))él_p)n). For the zero-modified version, we have E(X) = Knp and Var(X) =
Knp(1 —p).

1.3.3 Estimation

From Cacoullos & Charalambides| (1975)), we know there is no minimum variance unbiased estimator
for p. NEED HELP for the MLE... NEED Thomas & Gart| (1971)

Moment based estimators are numerically computable whatever we suppose n is known or
unknown.

Confidence intervals can be obtained with bootstrap methods.

1.3.4 Random generation

The basic algorithm for the zero-truncated version By(n, p) is simply

e do; generate X binomially distributed B(n,p); while X =0

e return X

In output, we have a random variate in {1,...,n}.

The zero-modified version B(n, p,p) is a little bit tricky. We need to use the following heuristic:

e generate U from an uniform distribution
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o if U <p, then X =0
e otherwise
— do; generate X binomially distributed B(n,p); while X =0

e return X

1.3.5 Applications

Human genetics???

1.4 Quasi-binomial distribution

1.4.1 Characterization

The quasi-binomial distribution is a “small” pertubation of the binomial distribution. The mass
probability function is defined by

P(X =k)=Ckp(p+ ko) (1 —p— ko)™,

where k € {0,...,n}, n,p usual parameters and ¢ €] — £ l;p[. Of course, we retrieve the binomial

n’> n
distribution with ¢ set to 0.

1.4.2 Properties

NEED REFERENCE

1.4.3 Estimation

NEED REFERENCE

1.4.4 Random generation

NEED REFERENCE

1.4.5 Applications

NEED REFERENCE
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1.5 Poisson distribution

1.5.1 Characterization

The Poisson distribution is characterized by the

. . mass probability function
following elementary probabilities

g1 — P&
s —
P(X = k) = EC s .
where \ > 0 is the shape parameter and k € N. ° e
The cumulative distribution function has no 5 °o o
particular form, but the probability generating & _
function is given by ° ] o 8 °
G(t) = 0, 5 . °
and the moment generating function is o .0 °o
g - o o 8 o o 8
M(t) = XD, 0 2 . 5 5 10

k

Figure 1.4: Mass probability function for Poisson

Another way to characterize the Poisson dis- distributions

tribution is to present the Poisson process (cf.

Saporta; (1990)). We consider independent and

identically events occuring on a given period of time ¢t. We assume that those events can not occur
simultaneously and their probability to occur only depends on the observation period ¢. Let ¢ be
the average number of events per unit of time (¢ for cadency). We can prove that the number of
events N occuring during the period [0, ¢] is

k
(C]z') e—ct’

P(N =n) =

since the interoccurence are i.i.d. positive random variables with the property of ’lack of memory’*.

1.5.2 Properties

The Poisson distribution has the ’interesting’ but sometimes annoying property to have the same
mean and variance. We have E(X) =\ = Var(X).

The sum of two independent Poisson distributions P(A) and P(u) (still) follows a Poisson
distribution P(\ + ).

Let N follows a Poisson distribution P(A). Knowing the value of N = n, let (X;)1<i<n be a
sequence of i.i.d. Bernoulli variable B(g), then > | X; follows a Poisson distribution P(\g).

*i.e. interoccurence are exponentially distributed, cf. the exponential distribution.
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1.5.3 Estimation

The estimator maximum likelihood estimator of \ is \ = X, for a sample (X;);. It is also the
moment based estimator, an unbiased estimator A and an efficient estimator.

From the central limit theorem, we have asymptotic confidence intervals

~ Uq ~ ~ Uq ~
Ioz A) = An - AmaAn )\m )
) [ Jn tm

where u,, is the 1 — a quantile of the standard normal distribution.

1.5.4 Random generation

A basic way to generate Poisson random variate is the following:

e initialize variable n to 0, [ to e~ and P to 1,

e do
— generate U from a uniform distribution,
- P=PxU,
—n=n+1,
while P > [,

e return n — 1.

See [Knuth| (2002) for details.
TOIMPROVE

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified
normal distributions. ACM Transactions on Mathematical Software, 8, 1637179.

1.5.5 Applications

TODO

1.6 Zero-truncated or zero-modified Poisson distribution

1.6.1 Characterization
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The zero-truncated version of the Poisson dis- mass probability function
tribution is defined the zero-truncated binomial

distribution for the Poisson distribution. The 1= R
elementary probabilities is defined as I

1.0

0.8

DU i
PE=R=%@

0.6
1
o

P(X=k)

where £ € N*. We can define probabil-
ity /moment generating functions for the zero-
truncated Poisson distribution Py(A): °

0.4
1

0.2
[ele]

et —1 |
G(t):e/\i—l and M(t):e)‘i—l o

0.0

8
0 1 2 :": 4 5 6
The zero-modified version of the Poisson k
distribution (obviously) generalized the zero-
truncated version. We have the following mass
probability function

Figure 1.5: Mass probability function for zero-
modified Poisson distributions

P(X = k) = P if k=0
7 K ),‘c—];e_/\ otherwise

where K is the constant 1:5] <. The “generating functions” for the zero-modified Poisson distribu-
tion P(A,p) are

Gt)=p+K(eM—1) and M(t) =p+ K(e* —1).

1.6.2 Properties

The expectation of the zero-truncated Poisson distribution is E(X) = 1_2, x and K\ for the zero-
modified version. While the variance are respectively Var(X) = (176/\—*) and K\ + (K — K?)\2.

1.6.3 Estimation

Zero-truncated Poisson distribution

Let (X;); be i.i.d. sample of truncated Poisson random variables. Estimators of A for the zero-
truncated Poisson distribution are studied in Tate & Goen (1958). Here is the list of possible
estimators for A:

2St—l

o )= L(1- —¢r) is the minimum variance unbiased estimator,
o\ = %( - %) is the Plackett’s estimator,
. 5\, the solution of equation % = ﬁ, is the maximum likelihood estimator,
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where T = Y. | X;, 2S* denotes the Stirling number of the second kind and N; the number of
observations equal to 1. Stirling numbers are costly do compute, see Tate & Goen| (1958]) for
approximate of theses numbers.

Zero-modified Poisson distribution

NEED REFERENCE

1.6.4 Random generation

The basic algorithm for the zero-truncated version Py(\) is simply

e do; generate X Poisson distributed P(\); while X =0

o return X

In output, we have a random variate in N*,

The zero-modified version P(A, p) is a little bit tricky. We need to use the following heuristic:

generate U from an uniform distribution

if U <p,then X =0

otherwise

— do; generate X Poisson distributed P(A); while X =0

return X

1.6.5 Applications

NEED REFERENCE

1.7 Quasi-Poisson distribution

NEED FOLLOWING REFERENCE

Biom J. 2005 Apr;47(2):219-29. Generalized Poisson distribution: the property of mixture of
Poisson and comparison with negative binomial distribution. Joe H, Zhu R.

Ecology. 2007 Nov;88(11):2766-72. Quasi-Poisson vs. negative binomial regression: how should
we model overdispersed count data? Ver Hoef JM, Boveng PL.



18 CHAPTER 1. CLASSIC DISCRETE DISTRIBUTION

1.7.1 Characterization

TODO

1.7.2 Properties

TODO

1.7.3 Estimation

TODO

1.7.4 Random generation

TODO

1.7.5 Applications

1.8 Geometric distribution

1.8.1 Characterization

The geometric distribution represents the first
outcome of a particular event (with the proba-
bility ¢ to raise) in a serie of i.i.d. events. The
mass probability function is

P(X =k)=q(1-q",

where k € N and 0 < ¢ < 1. In terms of cumu-
lative distribution function, it is the same as

F(k)=1-(1- ¢k

The whole question is wether this outcome
could be null or at least one (event). If we con-
sider the distribution to be valued in N*, please
see the truncated geometric distribution.

mass probability function

S 4 — 6
— G(113)
— G(1/4)
(o)
S 1 o©
< |
o
— o
x
I ™
X o 7
o
o o
o
~
o o
8
o
g 8
o]
o o o
[e] [e]
o [e]
o | ° °
o
T T T T T T T
0 1 2 3 4 5 6

Figure 1.6: Mass probability function for Geomet-
ric distributions
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The probability generating function of the
geometric G(q) is

q
O e

and its moment generating function

q

MO =T e

1.8.2 Properties

The expecation of a geometric distribution is simply E(X) = % and its variance Var(X) = 1(1;2.

£

The sum of n i.i.d. geometric G(q) random variables follows a negative binomial distribution

NB(n,q).

The minimum of n independent geometric G(g;) random variables follows a geometric distribu-
tion G(g.) with ¢ =1 —-T]" (1 — ¢).

The geometric distribution is the discrete analogue of the exponential distribution thus it is
memoryless.

1.8.3 Estimation

The maximum likelihood estimator of ¢ is § = which is also the moment based estimator.

1
1+X,°
NEED REFERENCE
1.8.4 Random generation

A basic algorithm is to use i.i.d. Bernoulli variables as follows

e initialize X to 0 and generate U from an uniform distribution,
e while U > p do ; generate U from an uniform distribution; X = X + 1;

e return X.

TOIMPROVE WITH Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-
Verlag, New York. Page 480.
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1.8.5 Applications

NEED MORE REFERENCE THAN Macutek| (2008])

1.9 Zero-truncated or zero-modified geometric distribution

1.9.1 Characterization

. . . mass probability function
The zero-truncated version of the geometric dis- P y

tribution is defined as e Gum
— G(1/3,0)
P(X — k) — p(l _p)kfl — G(1/3,1/4)
where n € NT. Obviously, the distribution
takes values in {1,...,n,...}. Its distribution .
function is
F(k)=1—(1—p)*. £ 37
Finally the probability/moment generating o 0 ©
functions are o o
pt pe! 5 g o
Gt)=——+———, and M(t) = ————. 0
®) 1—(1-p)t’ ®) 1—(1—pet ° o S
In the following, it is denoted by Gy(p). i y y y y y \
0 1 2 3 4 5 6

The zero-modified version of the geometric
distribution is characterized as follows

P(X = k) = { p i if k :'0 ’ Figure 1.7: Mass probability function for zero-
Kq(1-q) otherwise modified geometric distributions

where the constant K is % and k£ € N. Of course special cases of the zero modified version of the
geometric G(q,p) are the zero-truncated version with p = 0 and ¢ = p and the classic geometric
distribution with p = ¢. The distribution function is expressed as follows

F(z)=p+ K(1—(1-p)"),

where k > 0. The probability/moment generating functions are

G(t):p+K<1_(1q_q)tq> and M(t):erK(l_(lq_q)etq).

1.9.2 Properties

The expectation of the geometric Gy(p) distribution is E(X) = 1% and its variance Var(X) = %.

For the zero-modified geometric distribution G(g,p), we have E(X) = K % and Var(X) =
KL
q
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1.9.3 Estimation
Zero-truncated geometric distribution

According to|Cacoullos & Charalambides| (1975), the (unique) minimim variance unbiased estimator
of ¢ for the zero-truncated geometric distribution is
gt—1
(j = tibitv
n
where ¢ denotes the sum Y7 ; X;, S¢ is defined by 5 S°7_ (=1)"*C¥(k+t—1),*. The maximum

likelihood estimator of ¢ is given by
1

q:z;

which is also the moment based estimator. By the uniqueness of the unbiased estimator, § is a
biased estimator.

Zero-modified geometric distribution
Moment based estimators for the zero-modified geometric distribution G(p, ¢) are given by § = )5%

and p=1— X2,

NEED REFERENCE

1.9.4 Random generation

For the zero-truncated geometric distribution, a basic algorithm is to use i.i.d. Bernoulli variables
as follows

e initialize X to 1 and generate U from an uniform distribution,
e while U > ¢ do ; generate U from an uniform distribution; X = X + 1;

e return X.

While for the zero-modified geometric distribution, it is a little bit tricky

e generate U from an uniform distribution
o if U < p, then X =0

e otherwise

*where C¥’s are the binomial coefficient and (n),, is the falling factorial.
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— initialize X to 1 and generate U from an uniform distribution

— while U > ¢ do ; generate U from an uniform distribution; X = X + 1;

e return X

1.9.5 Applications

NEED REFERENCE

1.10 Negative binomial distribution

1.10.1 Characterization
1.10.2 Characterization

The negative binomial distribution can be char-
acterized by the following mass probability
function

P(X =k)=Cp o p™(1-p)",

where k € N, C’fn 4k—1 8 are combinatorial num-
bers and parameters m,p are constraint by
0 < p<1and m € N*. However a second
parametrization of the negative binomial distri-
bution is

PR = Fé(;j) <1iﬁ>T <1fﬁ>k’

where k € N and r, 3 > 0. We can retrieve the
first parametrization N'B(m, p) from the second
parametrization N'B(r, 3) with

1 _
8~ P
r=m

The probability generating functions for
these two parametrizations are

mass probability function

=)
S o — NB(4,112)
— NB(4.1/3)
—— NB(3,112)
Yo}
N
o
o
Q4
e o o
¥ o o o
X = 7
a ° o
o o o
=) o
s ] o o
o o o © °
o o
S | ° o o ° °
< o
o
o . o
o
=) °© © o
3 4
o
T T T T T T
0 2 4 6 8 10

Figure 1.8: Mass probability function for negative
binomial distributions

60~ (=) G0~ (15— ) -

and their moment generating functions are

0= (=) 0= ()
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One may wonder why there are two parametrization for one distribution. Actually, the first
parametrization N'B(m, p) has a meaningful construction: it is the sum of m i.i.d. geometric G(p)
random variables. So it is also a way to characterize a negative binomial distribution. The name
comes from the fact that the mass probability function can be rewritten as

PX=k =CF ., <1_p)k <1> o :

p p

which yields to
P(X = k) = Ck PFQ ™™,

This is the general term of the development of (P — Q)~™.

1.10.3 Properties

The expectation of negative binomial N'B(m, p) (or NB(m,p)) is E(X) = m(lpfp) or (r3), while its
variance is Var(X) = % or (rB(1+p)).

Let N be Poisson distributed P(AO) knowing that © = 6 where © is gamma distributed G(a, a).
Then we have N is negative binomial distributed BN (a, 2)

1.10.4 Estimation

B

~ 2
Moment based estimators are given by g = % —land 7=

NEED REFERENCE

1.10.5 Random generation

The algorithm to simulate a negative binomial distribution N'B(m,p) is simply to generate m
random variables geometrically distributed and to sum them.

NEED REFERENCE
1.10.6 Applications
From |Simon| (1962)), here are some applications of the negative binomial distribution

e number of bacterial colonies per microscopic field,
e quality control problem,

e claim frequency in non life insurance.
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1.11 Zero-truncated or zero-modified negative binomial distribu-
tion

1.11.1 Characterization

The zero-truncated negative binomial distribution is characterized by

B
1+

L(r+k)

PE=0 = Rt oy 1

)k?

(

where k € N*, r, § usual parameters. In terms of probability generating function, we have

(I-pF-1) -@1+p8)""
1—(r+p8) '

G(t) =

The zero-modified version is defined as follows

= — r k ‘ 7
K é(rj;kl)(ﬁ)r(ﬁ)k otherwise
where K is defined as 17(11)” r, 3 usual parameters and p the new parameter. The probability
1458

generating function is given by

1 o1
60 = (G—gi=y ~ (135" ).

1 S T
M(t):<(1—ﬂ(et—1>) (1+ﬁ)>

and

for the moment generating function.

1.11.2 Properties

Expectations for these two distribution are E(X) = — "8 and Krf respectively for the zero-

1=(r+8)"
truncated and the zero-modified versions. Variances are Var(X) = 2042 _(1(1:{5 jgﬁ))(;*ﬁ ") and

Krp(1+p) + (K — K?)E?[X].

1.11.3 Estimation

According to|Cacoullos & Charalambides| (1975), the (unique) minimim variance unbiased estimator
of p for the zero-truncated geometric distribution is

Qt—1
~ Sr,n

— 5*%

)
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where ¢ denotes the sum Y7 ; X;, S¢ is defined by 5 S°7_ (=1)"*C¥(k+t—1),*. The maximum
likelihood estimator of ¢ is given by

which is also the moment based estimator. By the uniqueness of the unbiased estimator, ¢ is a
biased estimator.
1.11.4 Random generation

1.11.5 Applications
1.12 Pascal distribution

1.12.1 Characterization

The negative binomial distribution can be constructed by summing m geometric distributed vari-
ables G(p). The Pascal distribution is got from summing n geometrically distributed Gy(p) variables.
Thus possible values of the Pascal distribution are in {n,n+1,...}. The mass probability function
is defined as

P(X =k) =Cp=lp"(1—p)k,

where k € {n,n+1,...}, n € N* and 0 < p < 1. The probability/moment generating functions are

50 = (=) =0 0= (i)

1.12.2 Properties

For the Pascal distribution Pa(n, p), we have E(X) = 2 and Var(X) = %. The link between
Pascal distribution Pa(n,p) and the negative binomial distribution BN (n,p) is to substract the
constant n, i.e. if X ~ Pa(n,p) then X —n ~ BN (n,p).

*where C¥’s are the binomial coefficient and (n),, is the increasing factorial.
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1.12.3 Estimation
1.12.4 Random generation

1.12.5 Applications
1.13 Hypergeometric distribution

1.13.1 Characterization

The hypergeometric distribution is characterized by the following elementary probabilities
Ck Cn—k:
P(X =k) =2 N=m
Cx

where N € N, (m,n) € {1,...,N}? and k € {0,...,min(m,n)}.

It can also be defined though its probability generating function or moment generating function:

o C;\Lfim 2F1(—'TL, —m;N -—m-n-+ 1;t)
= C]T\Lf

_ C}%/meFl(_n, —m;N —m—n+ 1;61})

G(t) and M(t) = cn ,

where o F} is the hypergeometric function of second kind.

1.13.2 Properties

nm nm(N-—n)(N—m)

The expectation of an hypergeometric distribution is E(X) = ** and Var(X) = NZN-1)

We have the following asymptotic result: H(N,n,m) +— B(n, ;) when N and m are large such
that 7 — 0<p<1l
N—+o00

1.13.3 Estimation
1.13.4 Random generation
1.13.5 Applications

Let N be the number of individuals in a given population. In this population, m has a particular
property, hence a proportion of 3. If we draw n individuals among this population, the random
variable associated with the number of people having the desired property follows a hypergeometric
distribution H(N,n,m). The ratio % is called the survey rate.



Chapter 2

Not so-common discrete distribution

2.1 Conway-Maxwell-Poisson distribution

2.1.1 Characterization

TODO

2.1.2 Properties

TODO

2.1.3 Estimation

TODO

2.1.4 Random generation

TODO
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2.1.5 Applications

2.2 Delaporte distribution

2.2.1 Characterization

TODO

2.2.2 Properties

TODO

2.2.3 Estimation

TODO

2.2.4 Random generation
TODO

2.2.5 Applications

2.3 Engen distribution
2.3.1 Characterization

TODO

2.3.2 Properties

TODO

2.3.3 Estimation

TODO



2.4. LOGARITMIC DISTRIBUTION
2.3.4 Random generation

TODO

2.3.5 Applications

2.4 Logaritmic distribution
2.4.1 Characterization

TODO

2.4.2 Properties

TODO

2.4.3 Estimation

TODO

2.4.4 Random generation

TODO

2.4.5 Applications
2.5 Sichel distribution
2.5.1 Characterization

TODO

2.5.2 Properties

TODO
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2.5.3 Estimation

TODO

2.5.4 Random generation

TODO

2.5.5 Applications

2.6 Zipf distribution

The name “Zipf distribution” comes from George Zipf’s work on the discretized version of the Pareto
distribution, cf. |/Arnold (1983).

2.6.1 Characterization

See Arnold(83) for relationship with Pareto’s distribution.

2.6.2 Properties

TODO

2.6.3 Estimation

TODO

2.6.4 Random generation

TODO



2.7. THE GENERALIZED ZIPF DISTRIBUTION
2.6.5 Applications

2.7 The generalized Zipf distribution
2.7.1 Characterization

TODO

2.7.2 Properties

TODO

2.7.3 Estimation

TODO

2.7.4 Random generation

TODO

2.7.5 Applications
2.8 Rademacher distribution
2.8.1 Characterization

TODO

2.8.2 Properties

TODO

2.8.3 Estimation

TODO
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2.8.4 Random generation

TODO

2.8.5 Applications

2.9 Skellam distribution

2.9.1 Characterization

TODO

2.9.2 Properties

TODO

2.9.3 Estimation

TODO

2.9.4 Random generation

TODO

2.9.5 Applications

2.10 Yule distribution

2.10.1 Characterization

TODO

2.10.2 Properties

TODO



2.11. ZETA DISTRIBUTION

2.10.3

TODO

2.104

TODO

2.10.5

2.11

2.11.1

TODO

2.11.2

TODO

2.11.3

TODO

2.114

TODO

2.11.5

Estimation

Random generation

Applications

Zeta distribution

Characterization

Properties

Estimation

Random generation

Applications
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Continuous distributions
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Chapter 3

Finite support distribution

3.1 Uniform distribution

3.1.1 Characterization

The uniform distribution is the most intuitive
distribution, its density function is density function
1 — — U©.1)

1
= — U2
b— a’ — U(0,3)

1.0

/()

0.8
1

where z € [a,b] and a < b € R. So the uniform
U(a,b) is only valued in [a,b]. From this, we
can derive the following distribution function

0.6

0 if x<a
Flz)=¢ 3= ifa<z<b .

a
1 otherwise

0.4
1

0.2

Another way to define the uniform distribu-
tion is to use the moment generating function ! w w x x x w

0.0

etb _ eta M

MO=Y—a

Figure 3.1: Density function for uniform distribu-
whereas its characteristic function is tion
6ibt o eiat

P(t) = b= a)t

3.1.2 Properties

(b—a)®
i -

The expectation of a uniform distribution is E(X) = %5 and its variance Var(X) =

35
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If U is uniformally distributed ¢(0, 1), then (b—a) x U +a follows a uniform distribution U (a, b).

The sum of two uniform distribution does not follow a uniform distribution but a triangle
distribution.

The order statistic Xk., of a sample of n i.i.d. uniform ¢/(0, 1) random variable is beta distributed
Beta(k,n — k +1).

Last but not least property is that for all random variables Y having a distribution function
Fy, the random variable Fy (Y') follows a uniform distribution (0, 1). Equivalently, we get that
the random variable Fy.'(U) has the same distribution as ¥ where U ~ U(0,1) and F,' is the
generalized inverse distribution function. Thus, we can generate any random variables having a
distribution from the a uniform variate. This methods is called the inverse function method.

3.1.3 Estimation

For a sample (X;); of i.i.d. uniform variate, maximum likelihood estimators for a and b are respec-
tively X1., and X,,.,, where X;.,, denotes the order statistics. But they are biased so we can use
the following unbiased estimators

A n 1 X 1
a = TXIR + _7annzn and b= lezn +

n
——— X
-1 T

n2 —

Finally the method of moments gives the following estimators
a=X,—/352 and b= X, + /352.
3.1.4 Random number generation

Since this is the core distribution, the distribution can not be generated from another distribution.
In our modern computers, we use deterministic algorithms to generate uniform variate initialized
with the machine time. Generally, Mersenne-Twister algorithm (or its extensions) from Matsumoto
& Nishimura (1998)) is implemented, cf. Dutang (2008) for an overview of random number genera-
tion.

3.1.5 Applications

The main application is sampling from an uniform distribution by the inverse function method.

3.2 Triangular distribution

3.2.1 Characterization
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density function

The triangular distribution has the following
density

— T(0.2.1)
— T(0,2,1/2)
— T(0,2,4/3)

2(x—a .
fy=| Taew Hesese 3

where z € [a,b],a € R, a <band a < ¢ <b.

The associated distribution function is &
(2-a)® : *]
F(z) = (b—a)(c(;a) . if a<z<c
_ .
1-— —a)=0) if e<z<b 5

0.0

As many finite support distribution, we have

a characteristic function and a moment gener- 00 05 10 15 20

ating function. They have the following expre- x

sion: Figure 3.2: Density function for triangular distri-
(b—c)ei — (b —a)e™ —2(c — a)ditttions

o(t) = —2(b—a)(c—a)(b— c)t? * (b—a)(c—a)(b—c)t?

(b—c)e® — (b—a)e n 2(c — a)e
2(b—a)(c—a)(b—c)t2  (b—a)(c—a)(b—c)t?

M(t) =

3.2.2 Properties

The expectation of the triangle distribution is E(X) = %+ whereas its variance is Var(X) =

a?+b%>4+c?  abtactbe
18 18 :

3.2.3 Estimation

Maximum likelihood estimators for a, b, ¢ do not have closed form. But we can maximise the log-
likelihood numerically. Furthermore, moment based estimators have to be computed numerically
solving the system of sample moments and theoretical ones. One intuitive way to estimate the
parameters of the triangle distribution is to use sample minimum, maximum and mode: a = X1,
b= X, and é = mode(X1, ..., X,), where mode(Xj,...,X,) is the middle of the interval whose
bounds are the most likely order statistics.

3.2.4 Random generation

The inverse function method can be used since the quantile function has a closed form:

F—l(u){aJ”/ if 0<u< et
b—\/(l—u)( a)( —c) if =S <u<l
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Thus F~1(U) with U a uniform variable is triangular distributed.

Stein & Keblis (2008) provides new kind of methods to simulate triangular variable. An algo-
rithm for the triangular 7(0, 1, ¢) distribution is provided. It can be adapted for a,b,c in general.

Let ¢ be =% which is in ]0, 1[. The “minmax” algorithm is

e generate U,V (idependently) from a uniform distribution,

e X=a+(b—a)x[(1—-2¢min(U,V)+ émax(U,V)].

This article also provides another method using a square root of uniform variate, which is called
“one line method”, but it is not necessary more fast if we use vector operation.

3.2.5 Applications

A typical of the triangle distribution is when we know the minimum and the maximum of outputs
of an interest variable plus the most likely outcome, which represent the parameter a,b and c. For
example we may use it in business decision making based on simulation of the outcome, in project
management to model events during an interval and in audio dithering.

3.3 Beta type I distribution

3.3.1 Characterization

The beta distribution of first kind is a distribu-
tion valued in the interval [0,1]. Its density is
defined as ) — Sgﬁi

— B(1.,5)
Arcsine

density function

2.0

xa_l(l - x)b—l

B(aa b) 7 -

where = € [0,1], a,b > 0 and (., .) is the beta
function defined in terms of the gamma func- 4

fz) =

1.5

tion.

Since a,b can take a wide range of values,
this allows many different shapes for the beta
density:

0.5

e ¢ = b = 1 corresponds to the uniform 0.0 02 04 08 08 10
distribution x

o Figure 3.3: Density function for beta distributions
e when a,b < 1, density is U-shapped



3.3. BETA TYPE I DISTRIBUTION 39

e whena <1,b>1ora=1,b> 1, density
is strictly decreasing

— for a = 1,b > 2, density is strictly
convex

— for a = 1,b = 2, density is a straight
line

—for a = 1,1 < b < 2, density is
strictly concave

e whena=1,b<1lora>1b<1, density
is strictly increasing

— for a > 2,b =1, density is strictly convex
— for a = 2,b =1, density is a straight line
— for 1 < a < 2,b=1, density is strictly concave

e when a,b > 1, density is unimodal.

Let us note that a = b implies a symmetric density.

From the density, we can derive its distribution function

B(a,b,x)
B(a,b)

where z € [0, 1] and f(.,.,.) denotes the incomplete beta function. There is no analytical formula
for the incomplete beta function but can be approximated numerically.

F(x) =

There exists a scaled version of the beta I distribution. Let 6 be a positive scale parameter.
The density of the scaled beta I distribution is given by

xa*1(9 _ x)bfl

flw) = gat=153(a,b) ’
where z € [0, 0]. We have the following distribution function

Blab5)

P = 5t

Beta I distributions have moment generating function and characteristic function expressed in

terms of series:
a+r \tF
-3 (550 )

and
o(t) =1F1(a;a + b;it),

where 1 F] denotes the hypergeometric function.
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3.3.2 Special cases

A special case of the beta I distribution is the arcsine distribution, when a = b = % In this special

case, we have
1

/(1 —2)

from which we derive the following distribution function

fz) =

F(z) = 2 arcsin(v/3).

™

Another special case is the power distribution when b = 1, with the following density
f(z) =az®' and F(z) =z

for 0 <z < 1.

3.3.3 Properties

The moments of the beta I distribution are F(X) = 43 and Var(X) = m (and f—fb,
Ml))ﬁigibm for the scaled version respectively).
Raw moments for the beta I distribution are given by
B - e+ Al <)
F(a+ B+ 7r)(a)
while central moments have the following expression
T
E((X - B(X))) = (—af‘; ) JFi (a, ot B azﬁ) |

For the arcsine distribution, we have % and % respectively. Let us note that the expectation of
a arcsine distribution is the least probable value!

Let n be an integer. If we consider n i.i.d. uniform ¢(0, 1) variables U;, then the distribution
of the maximum max U; of these random variables follows a beta I distribution B(n,1).
<i<n

3.3.4 Estimation

Maximum likelihood estimators for a and b do not have closed form, we must solve the system
= leog(Xz') = B(a,b)(¢(a +b) — ¢P(a))
5 ; log(1 — X;) = B(a, b)(¥(a+b) — (b))
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numerically, where ¢(.) denotes the digamma function.

Method of moments gives the following estimators

3.3.5 Random generation

NEED REFERENCE

3.3.6 Applications

The arcsine distribution (a special case of the beta I) can be used in game theory. If we have two
players playint at head/tail coin game and denote by (5;);>1 the serie of gains of the first player
for the different game events, then the distribution of the proportion of gains among all the S;’s
that are positive follows asymptotically an arcsine distribution.

3.4 Generalized beta I distribution

3.4.1 Characterization

The generalized beta dist}"ibution is the distri-
bution of the variable 0. X = when X is beta dis-

density function

tributed. Thus it has the following density E — e
— B(3,1,1/2,2)
B(1/2,2,1/3,2)
2/0)% Y1 — (x/9))~ ! <
fla)= @O A= @/ T
f(a,b) x

2.0

for 0 < z < 0 and a,b,7,0 > 0. 0 is a scale
parameter while a, b, 7 are shape parameters.

1.5

f(x)

1.0

As for the beta distribution, the distribution
function is expressed in terms of the incomplete
beta function

0.5

0.0
1

7b7 2 T T T T T T

F(z) = ﬂ(aﬁ(a (be)) )’ 0.0 05 10 15 20

for 0 < x < @6. Figure 3.4: Density function for generalized beta
distributions
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3.4.2 Properties

Moments of the generalized beta distribution
are given by the formula

Bla+7)

BXT) =05 s

For 7 = 6 = 1, we retrieve the beta I distribution.

3.4.3 Estimation

Maximum likelihood estimators as well as moment based estimators have no chance to have explicit
form, but we can compute it numerically. NEED REFERENCE

3.4.4 Random generation

NEED REFERENCE

3.4.5 Applications

NEED REFERENCE

3.5 Generalization of the generalized beta I distribution

3.5.1 Characterization

A generalization of the generalized beta distribution has been studied in Nadarajah & Kotz (2003).
Its density is given by

b3 (a,b)

mxa+b_12Fl(1 - 7,a,a+b, x)a

flz) =

where 0 < x < 1 and oF} denotes the hypergeometric function. Its distribution function is also
expressed in terms of the hypergeometric function:

b3 (a,b)

@ Bty ARl paatbtla),

F(x) =
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3.5.2 Special cases

Nadarajah & Kotz (2003) list specials cases of this distribution: If a + b+ v = 1 then we get

B bL(b)zto=1(1 — )@
 T'(1—a)(a+b)

f(z)

If a+ b+~ =2 then we get

bla+b—1)5(a,b)
Bla,2 —a)

f(z) = Bla+b—1,1—a,x)

If in addition

e a+b—1€N, we have

bla+b—1)B@b)fatb-11-a) (| N~ Tli-a) 1 i
B(a,2 —a) <1 Z I( (4) (t=2) )

fz) =

e a=1/2 and b =1, we have

f(x) = — arctan 1 f .
e a=1/2 and b=k € N, we have
k—1
f(z) = k2k = 1)B(1/2 k)BA/2 k = 1/2) <2 arctan T z(l—2)) di(z, k:))
T 0 1-2z P

If v = 0 then, we get
fx)=bla+b—1)1—-2)"""'8a+b—1,1—b,2)

If in addition

e a+b—1¢€N, we have

a+b—1

F(@) = bla+b—1)B(a,0)Ba+b—1,1—a) <1 -y mgji—l(l _ x)l_b)
=1

e a=1and b=1/2, we have

e a =k €N, we have

C(2k—1)B(1/2,k—1/2) (2 - =)
f(z) = Wi-z (ﬂ arctan\/:_ z(1—x) 3 dz(x,k)>

1=




44 CHAPTER 3. FINITE SUPPORT DISTRIBUTION

If v =1, then we get a power function
F@) = (a+ bast!

If a = 0, then we get a power function

f(x) = ba® 1
If b = 0, then we get
_ Bla,v,2)
10 = G +1)

If in addition

a € N, we have

v € N, we have

[ ]
IS

Il
2

Il
—_
~
N
S
@
g
<
@)

a=k—1/2and v=j—1/2 with k,j € N, we have

f(z) = (“ + 1) (i arctan \/Z - \/mki1 di(z, k) + jzlci(x, k))

Y i=1 i=1

Where ¢;, d; functions are defined by

D(k4i—1)zb V21 — z)=1/2
T(k—1/2)T(i +1/2)

ci(z, k) =

and

L(i)a' 1
di(x, k) = T(i+1/2)[(1/2)

3.5.3 Properties

Moments for this distribution are given by

b3 (a,b)

E(X") = (n+a+b)3a,b+7)

2R (1 —~,a,n+a+b+1,a+bn+a+b+1,1),

where 3F] is a hypergeometric function.
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3.5.4 Estimation

NEED REFERENCE

3.5.5 Random generation

NEED REFERENCE

3.5.6 Applications

NEED REFERENCE

3.6 Kumaraswamy distribution

3.6.1 Characterization

The Kumaraswamy distribution has the follow-
ing density function

density function

3.0
1

F@) = aba® (1 — 2%,

25

where = € [0,1], a,b > 0. Its distribution func-
tion is

20

F(z)=1—(1—a%"

)
15

A construction of the Kumaraswamy distribu- g
tion use minimum/maximum of uniform sam-
ples. Let n be the number of samples (each with
m i.i.d. uniform variate), then the distribution
of the minimumm of all maxima (by sample) 3
is a Kumaraswamy Ku(m,n), which is also the
distribution of one minus the maximum of all

1.0

0.0
|

L. T T T T T T
minima. 0.0 0.2 0.4 0.6 0.8 1.0

X

, the shapes of the density Figure 3.5: Density function for Kumaraswamy

distributions

From |Jones| (2009)
behaves as follows

a,b > 1 implies unimodal density,

a > 1,b < 1 implies increasing density,
e g = b =1 implies constant density,

e g <1,b>1 implies decreasing density,
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e a,b < 1 implies uniantimodal,

which is examplified in the figure on the right.

3.6.2 Properties

Moments for a Kumaraswamy distribution are available and computable with
E(X™) =b3(1+ L,b)
a

when 7 > —a with (3(.,.) denotes the beta function. Thus the expectation of a Kumaraswamy

distribution is E(X) = % and its variance Var(X) = b8(1 + 2,b) — b*5%(1 + 1 ,b).

3.6.3 Estimation

From [Jones| (2009), the maximum likelihood estimators are computable by the following procedure

n Y;logY;

1. solve the equation 2 <1 +i3 lffg,/j + Z?illlogl(lziYi)> with ¥; = X¢ to find a*,

2. compute b=-n (Z?zl log(1 — Xid))_l-

3.6.4 Random generation

Since the quantile function is explicit
1

F(u) = (1 (1 u)%) ,

an inversion function method F~(U) with U uniformly distributed is easily computable.

3.6.5 Applications

From wikipedia, we know a good example of the use of the Kumaraswamy distribution: the storage
volume of a reservoir of capacity 2.4, Whose upper bound is z,,4; and lower bound is 0.

*the solution for this equation exists and is unique.



Chapter 4

The Gaussian family

4.1 The Gaussian (or normal) distribution

The normal distribution comes from the study of astronomical data by the German mathematician
Gauss. That’s why it is widely called the Gaussian distribution. But there are some hints to
think that Laplace has also used this distribution. Thus sometimes we called it the Laplace Gauss
distribution, a name introduced by K. Pearson who wants to avoid a querelle about its name.

4.1.1 Characterization

The density of a normal distribution N (u, o?)

is
1 _(e=p)? density function
x) = e 202
J@)=—7—
where z € R and p(€ R) denotes the mean
of the distribution (a location parameter) and

o%(> 0) its variance (a scale parameter).

0.6
Il

Its distribution function is then

r 1 _(@=p)?
F(x) = e 307 du,
—oo OV 2T

0.2
Il

which has no explicit expressions. Many soft-
wares have this distribution function imple-
mented, since it is The basic distribution. Gen-
erally, we denote by ® the distribution function { x x x \
a N(0,1) normal distribution, called the stan- 4 2 0 2 N
dard normal distribution. F' can be rewritten
as

T —
F(x)=9® < > M> . Figure 4.1: The density of Gaussian distributions

47
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Finally, the normal distribution can also be characterized through its moment generating func-
tion
02t2
M(t) =™t 2,
as well as its characteristic function

U2t2

o(t) = ™2

4.1.2 Properties

It is obvious, but let us recall that the expectation (and the median) of a normal distribution

N (p,0?) is p and its variance 0. Furthermore if X ~ A(0,1) we have that E(X™) = 0 if z is odd

(2n)!

and 7 if  is even.

The biggest property of the normal distribution is the fact that the Gaussian belongs to the
family of stable distribution (i.e. stable by linear combinations). Thus we have

o if X ~ N(u,0?) and Y ~ N (v, p?), then aX +bY ~ N (ap+bv, a*o? +b*p? + 2abCov(X,Y)),

with the special case where X,Y are independent cancelling the covariance term.

o if X ~ N(p,0?%), a,b two reals, then aX + b ~ N(au + b,a’0?).

If we consider an i.i.d. sample of n normal random variables (X;)1<;<n, then the sample mean

X, follows a NV (p, %2) independently from the sample variance S2 such that % follows a chi-square
distribution with n — 1 degrees of freedom.

A widely used theorem using a normal distribution is the central limit theorem:
If (X;)1<i<n are i.i.d. with mean m and finite variance s?, then 21227\)/(;{7”” £, N(0,1). If we

drop the hypothesis of identical distribution, there is still an asymptotic convergence (cf. theorem
of Lindeberg-Feller).

4.1.3 Estimation
The maximum likelihood estimators are

o X, =11 X, ~N(u, %2) is the unbiased estimator with minimum variance of y,

o 52=_L-5" (X;—X,)?~ x2_, is the unbiased estimator with minimum variance of o,

n—1
A~ n—lr( 2’)
* I =\ T2 T

/52 is the unbiased estimator with minimum variance of o but we generally

Confidence intervals for these estimators are also well known quantities

*This estimator is not the maximum likelihood estimator since we unbias it.
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— 52 — /2
i I(/") = |:Xn - Tntn—l,a/Q;Xn =+ T:Ltn—l,oc/2:|a

2y _ [_Sin . Sim
* I(U )_ |:Zn71,a/27 Zn—1,1-a/2 |’

where ¢, _1 o2 and z,_1 4/2 are quantiles of the Student and the Chi-square distribution.

4.1.4 Random generation
The Box-Muller algorithm produces normal random variates:

e generate U, V from a uniform ¢/(0,1) distribution,

e compute X = +/—2logU cos(27V') and Y = /—2log U sin(27V).

In outputs, X and Y follow a standard normal distribution (independently).

But there appears that this algorithm under estimates the tail of the distribution (called the
Neave effect, cf. [Patard| (2007))), most softwares use the inversion function method, consist in
computing the quantile function ®~! of a uniform variate.

4.1.5 Applications
From wikipedia, here is a list of situations where approximate normality is sometimes assumed

e In counting problems (so the central limit theorem includes a discrete-to-continuum approx-
imation) where reproductive random variables are involved, such as Binomial random vari-
ables, associated to yes/no questions or Poisson random variables, associated to rare events;

e In physiological measurements of biological specimens: logarithm of measures of size of living
tissue (length, height, skin area, weight) or length of inert appendages (hair, claws, nails,
teeth) of biological specimens, in the direction of growth; presumably the thickness of tree bark
also falls under this category or other physiological measures may be normally distributed,
but there is no reason to expect that a priori;

e Measurement errors are often assumed to be normally distributed, and any deviation from
normality is considered something which should be explained;

e Financial variables: changes in the logarithm of exchange rates, price indices, and stock
market indices; these variables behave like compound interest, not like simple interest, and
so are multiplicative; or other financial variables may be normally distributed, but there is
no reason to expect that a priori;

e Light intensity: intensity of laser light is normally distributed or thermal light has a Bose-
Einstein distribution on very short time scales, and a normal distribution on longer timescales
due to the central limit theorem.
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4.2 Log normal distribution

4.2.1 Characterization

One way to characterize a random variable fol-
lows a log-normal distribution is to say that its
logarithm is normally distributed. Thus the dis- densities of log-normal distribution
tribution function of a log-normal distribution

(LG(p,0?)) is = — LN(0,1)
LN(0,2)
log(x) — o | —— LN(0,1/2)
F(:):)_<I>< g(x) u)j i
o
© |
where ® denotes the distribution function of the = °
standard normal distribution and z > 0. s
o
From this we can derive an explicit expres- ~
sion for the density £G(u,o?) °
1 ) o |
(log(a)—p) o
— I T T T T T T
f(x) i/ € ) 0 2 4 6 8 10

for z >0, 4 € R and o2 > 0.

A log-normal distribution does not have fi-
nite characteristic function or moment generat-
ing function.

Figure 4.2: The density of log-normal distribu-
tions

4.2.2 Properties

The expectation and the variance of a log-

0_2
normal distribution are E(X) = eft2 and
Var(X) = (¢ —1)e2+t7° . And raw moments

are given by E(X") = " +*3~ The median of a log-normal distribution is e*.

From Klugman et al.| (2004]), we also have a formula for limited expected values
0,2
E ((X A L)k) = FHE By — ko) + LF(1 — B(u)),

where u = %.

Since the Gaussian distribution is stable by linear combination, log-normal distribution is stable
by product combination. That is to say if we consider X and Y two independent log-normal
variables (£G(u, 0?) and LG (v, p?)), we have XY follows a log-normal distribution £G (u+v, o2 +p?).
Let us note that % also follows a log-normal distribution £G(u — v, 02 + p?).
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An equivalence of the Limit Central Theorem for the log-normal distribution is the product of
i.i.d. random variables (X;)1<i<n asymptotically follows a log-normal distribution with paramter
nE(log(X)) and nVar(log(X)).

4.2.3 Estimation

Maximum likelihood estimators for p and o2 are simply

e i =21%" log(z;) is an unbiased estimator of p,
o 2= L5 (log(z;) — f1)? is an unbiased estimator of o2*.

One amazing fact about parameter estimations of log-normal distribution is that those estimators
are very stable.

4.2.4 Random generation

Once we have generated a normal variate, it is easy to generate a log-normal variate just by taking
the exponential of normal variates.

4.2.5 Applications

There are many applications of the log-normal distribution. [Limpert et al. (2001) focuses on
application of the log-normal distribution. For instance, in finance the Black & Scholes assumes
that assets are log-normally distributed (cf. |Black & Scholes| (1973) and the extraordinary number
of articles citing this article). |Singh et al| (1997) deals with environmental applications of the
log-normal distribution.

*As for the o2 estimator of normal distribution, this estimator is not the maximum likelihood estimator since we
unbias it.
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4.3 Shifted log normal distribution

4.3.1 Characterization

An extension to the log-normal distribution is
the translated log-normal distribution. It is the
distribution of X 4 v where X follows a log- 31— ng]?i
normal distribution. It is characterized by the e

following distribution function

Fla) = (bg(fﬂ—V)—ﬂ> 7

g

density function

0.6

where ® denotes the distribution function of
the standard normal distribution and = > 0.

Then we have this expression for the density S
TLG (v, 1, 0?)
1 _ (og(e—v)—w)? S -
f(l') - 6 : 20_2 - ) T T T T T

o(x — I/)\/% 0.0 05 1.0 15 20

X

2
for £ >0, p,v €R and o° > 0. Figure 4.3: The density of shifted log-normal dis-

. . tributions
As for the log-normal distribution, there is

no moment generating function nor character-
istic function.

4.3.2 Properties

o2
The expectation and the variance of a log-normal distribution are F(X) = v+e*" 2 and Var(X) =

(e”" —1)e2#t°* . And raw moments are given by E(X™) = "3

4.3.3 Estimation

An intuitive approach is to estimate v with Xj.,, then estimate parameters on shifted samples
(Xl — V)i.

4.3.4 Random generation

Once we have generated a normal variate, it is easy to generate a log-normal variate just by taking
the exponential of normal variates and adding the shifted parameter v.



4.4. INVERSE GAUSSIAN DISTRIBUTION 53

4.3.5 Applications

An application of the shifted log-normal distribution to finance can be found in Haahtela| (2005) or
Brigo et al.| (2002).

4.4 Inverse Gaussian distribution

4.4.1 Characterization

The density of an inverse Gaussian distribution densities of inv-gauss distribution

ZG(v,\) is given by

3 ( )2 2 — InvG(1,2)
Tr—v — 1InvG(2,2)
f(z) = o3 P [_)‘zygx ] ) InvG(1,1/2)
while its distribution function is e
A A -
rwy=o |2 (2 -1)| e [ M e
T \v T \v
Te]
forxz > 0,v € R, A > 0 and ® denotes the usual S 7
standard normal distribution.
Its characteristic function is S

¢(t):e(5){1W] 0 1 2 3 4 5 8

The moment generating function is ex- Figure 4.4: The density of inverse Gaussian dis-
pressed as tributions

G)[-vi-me]

M(t)=e

4.4.2 Properties

The expectation of an inverse Gaussian distribution ZG(v, A) is v and its variance 4.

n—1 F(n+i) (%)Z

Moments for the inverse Gaussian distribution are given E(X") = v™ ) " T =)

for n integer.

From [Yu/ (2009), we have the following properties

e if X isinverse Gaussian distributed ZG(v, A), then a X follows an inverse Gaussian distribution
ZG(av,aX) for a > 0

e if (X;); are i.i.d. inverse Gaussian variables, then the sum > 7" ; X; still follows an inverse
Gaussian distribution ZG(nv,n?\)
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4.4.3 Estimation

Maximum likelihood estimators of v and \ are

_ A /1 1))
=Xy andA-n(Z(X—ﬂ>>

=1

From previous properties, fi follows an inverse gaussian distribution ZG(u,n\) and % follows a
chi-squared distribution x2_;.

4.4.4 Random generation

NEED

Mitchael,J.R., Schucany, W.R. and Haas, R.W. (1976). Generating random roots from variates
using transformations with multiple roots. American Statistician. 30-2. 88-91.

4.4.5 Applications

NEED REFERENCE

4.5 The generalized inverse Gaussian distribution

This section is taken from Breymann & Lithi| (2008).

4.5.1 Characterization density function
@ | — GIG(-1/2,5,1)
. . . . .. — GIG(-1,2,3)
A generalization of the inverse Gaussian distri- A

bution exists but there is no closed form for its
distribution function and its density used Bessel
functions. The latter is as follows

A
p\2 ! 1/x
10 (2) o (L (X))
X/ 2Kx\(vVxv) 2\
where x > 0 and K, denotes the modified
Bessel function. Parameters must satisfy

1.0

f(x)

0.5

0.0
1

e Y >0,v >0, when A <0,

e x>0,9% >0, when A =0,

Figure 4.5: The density of generalized inverse
Gaussian distributions
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e x>0,% >0, when A > 0.

The generalized inverse Gaussian is noted as

GIG(A, ¥, x).

Closed form for distribution function??
Plot

The moment generating function is given by

v \M KA (@ = 2)
M(t) = . 4.1
0=(745) "R -y
4.5.2 Properties
The expectation is given by
X K1 (V)
b KA(VXY)
and more generally the n-th moment is as follows
n X\ ? Kxpn(VXP)
EX"M)=|5] ——/—=—=—.
= (5) R
Thus we have the following variance
Var(x) = X (@) x (KM@))?
v K\(Vxy) v\ Ka(VxY)
Furthermore,
_ OdE(X“)

Note that numerical calculations of E(log X') may be performed with the integral representation as
well.

4.5.3 Estimation

NEED REFERENCE

4.5.4 Random generation

NEED REFERENCE



Chapter 5

Exponential distribution and its
extensions

5.1 Exponential distribution

5.1.1 Characterization

The exponential is a widely used and widely
known distribution. It is characterized by the

density function

following density < -
—Az — E(112)
flx) =A™,
for x > 0 and A > 0. Its distribution function 2
is
F(z)=1—e2
Since it is a light-tailed distribution, the mo-
ment generating function of an exponential dis-
tribution £(A) exists which is °
A
M) = ——,
(1) =+— .
while its characteristic function is ’ ‘ ‘ ‘ ‘
)\ 0.0 0.5 1.0 15 2.0
o) == '
Figure 5.1: Density function for exponential dis-
tributions

5.1.2 Properties

The expectation and the variance of an exponential distribution £(\) are % and % Furthermore

the n-th moment is given by
I'(n+1)

E(X") = T

56
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The exponential distribution is the only one continuous distribution to verify the lack of memory
property. That is to say if X is exponentially distributed, we have

P(X >t+s)

PX>s) =P(X > 1),

where t,s > 0.

If we sum n ii.d. exponentially distributed random variables, we get a gamma distribution

G(n, A).

5.1.3 Estimation

The maximum likelihood estimator and the moment based estimator are the same

n 1

5\ = =S <~ — =
Z?:l Xl Xn
for a sample (X;)1<i<n. But the unbiased estimator with mininum variance is

n—1
Z?:l Xi'

Exact confidence interval for parameter A is given by

\ =

“2n,1-% “2n,g
- n ) n )
221:1 Xi 222‘:1 X

where 2, o denotes the a quantile of the chi-squared distribution.

In(N)

5.1.4 Random generation

Despite the quantile function is F~!(u) = —%log(l — u), generally the exponential distribution

E(N) is generated by applying —3 log(U) on a uniform variate U.

5.1.5 Applications

From wikipedia, the exponential distribution occurs naturally when describing the lengths of the
inter-arrival times in a homogeneous Poisson process.

The exponential distribution may be viewed as a continuous counterpart of the geometric distri-
bution, which describes the number of Bernoulli trials necessary for a “discrete” process to change
state. In contrast, the exponential distribution describes the time for a continuous process to change
state.

In real-world scenarios, the assumption of a constant rate (or probability per unit time) is rarely
satisfied. For example, the rate of incoming phone calls differs according to the time of day. But
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if we focus on a time interval during which the rate is roughly constant, such as from 2 to 4 p.m.
during work days, the exponential distribution can be used as a good approximate model for the
time until the next phone call arrives. Similar caveats apply to the following examples which yield
approximately exponentially distributed variables:

e the time until a radioactive particle decays, or the time between beeps of a geiger counter;
e the time it takes before your next telephone call

e the time until default (on payment to company debt holders) in reduced form credit risk
modeling

Exponential variables can also be used to model situations where certain events occur with a
constant probability per unit “distance”:

e the distance between mutations on a DNA strand;

o the distance between roadkill on a given road;

In queuing theory, the service times of agents in a system (e.g. how long it takes for a bank
teller etc. to serve a customer) are often modeled as exponentially distributed variables. (The inter-
arrival of customers for instance in a system is typically modeled by the Poisson distribution in most
management science textbooks.) The length of a process that can be thought of as a sequence of
several independent tasks is better modeled by a variable following the Erlang distribution (which
is the distribution of the sum of several independent exponentially distributed variables).

Reliability theory and reliability engineering also make extensive use of the exponential distri-
bution. Because of the “memoryless” property of this distribution, it is well-suited to model the
constant hazard rate portion of the bathtub curve used in reliability theory. It is also very conve-
nient because it is so easy to add failure rates in a reliability model. The exponential distribution is
however not appropriate to model the overall lifetime of organisms or technical devices, because the
“failure rates” here are not constant: more failures occur for very young and for very old systems.

In physics, if you observe a gas at a fixed temperature and pressure in a uniform gravitational
field, the heights of the various molecules also follow an approximate exponential distribution. This
is a consequence of the entropy property mentioned below.
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5.2 Shifted exponential

5.2.1 Characterization

The distribution of the shifted exponential dis-
tribution is simply the distribution of X — 7

density function

when X is exponentially distributed. Therefore S — )
the density is given by — E(122)
flz) = re™0=) N
for x > 7. The distribution function is given by *
Flz)=1- o~ Mz—T) g 31
for x > 7. S A
As for the exponential distribution, there S
exists a moment generating function
M) = e c L s

and also a characteristic function Figure 5.2: Density function for shifted exponen-

; A tial distributions
t) = —itT )
o) = Ty
5.2.2 Properties

The expectation and the variance of an exponential distribution £(A, 7) are 7 + % and /\%

Furthermore the n-th moment (for n integer) is computable with the binomial formula by

B(X") = Z n! | (—T)n”

5.2.3 Estimation

Maximum likelihood estimator for 7 and A are given by

F=Xpp and A= —n

>t (X = 7)

where X;.,, denotes the ith order statistic. Since the minimum Xj., follows a shifted exponential
distribution £(nA, 7), we have 7 is biased but asympotically unbiased.

NEED REFERENCE for unbiased estimators
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5.2.4 Random generation

The random generation is simple: just add 7 to the algorithm of exponential distribution.

5.2.5 Applications

NEED REFERENCE

5.3 Inverse exponential

5.3.1 Characterization

This is the distribution of the random variable

% when X is exponentially distributed. The

density defined as

density function

~ — IE(1)
— IE@Q)
— IE@3)

0.6

fa) = e 2,

X

0.5

0.4

where x > 0 and A > 0. The distribution func-
tion can then be derived as

f(x)
03
1

F(z)=¢ =.

0.2

We can define inverse exponential distributions
with characteristic or moment generating func-
tions

0.1

0.0
1

o) = 2/ =iEy (2=00) S

and Figure 5.3: Density function for inverse exponen-

M(t) = 2V —itAK; <2V —At> . tial distributions

where K (.) denotes the modified Bessel function.

5.3.2 Properties

Moments of the inverse exponential distribution are given by
EX")=X"«T'(1-r)

for r < 1. Thus the expectation and the variance of the inverse exponential distribution do not
exist.
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5.3.3 Estimation
Maximum likelihood estimator of A is
n 1 -1
A= —

which is also the moment based estimator with E(X 1) = A~1,

5.3.4 Random generation

The algorithm is simply to inverse an exponential variate of parameter %, i.e. (—Alog(U))~! for
an uniform variable U.

5.3.5 Applications

NEED REFERENCE

5.4 Gamma distribution

5.4.1 Characterization

The gamma distribution is a generalization of
the exponential distribution. Its density is de-

fined as —

i — G(2,2)
G(1/2,1)

density function

1.0

where x > 0, o, A > 0 and I' denotes the gamma
function. We retrieve the exponential distribu-  _
tion by setting a to 1. When « is an integer,
the gamma distribution is sometimes called the
Erlang distribution.

0.6
1

0.4

0.2

The distribution function can be expressed
in terms of the incomplete gamma distribution. —
We get T T T T T T

(e, Az)
Flax)="—-+—
@) =155

o
N
w
IS
(4]

Figure 5.4: Density function for gamma distribu-
where (., .) is the incomplete gamma function. g
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There is no analytical formula except when
we deal with Erlang distribution (i.e. a € N).
In this case, we have

For the gamma distribution, the moment generating and characteristic functions exist.

o0 =(52%)

o= ()"

and

5.4.2 Properties

The expectation of a gamma distribution G(a, A) is E(X) = §, while its variance is Var(X) = 3.

For a gamma distribution G(«, ), the 7th moment is given by

™\ __ Tr(a—i_r)
BXT) = N =15

provided that o + 7 > 0.

As for the exponential, we have a property on the convolution of gamma distributions. Let
X and Y be gamma distributed G(a, A) and G(3, \), we can prove that X + Y follows a gamma
distribution G(a + 3, \).

For X and Y gamma distributed (G(a, A) and G(3, A) resp.), we also have that XLJFY follows a
beta distribution of the first kind with parameter o« and .

5.4.3 Estimation

Method of moments give the following estimators

(Xn)?
S2

n

and \ =

a =

)2

with X,, and S? the sample mean and variance.

Maximum likelihood estimators of a;, A verify the system

{ log o — () =log(1 37 X;) — 1577 | log X;

)\_ no bl
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where (.) denotes the digamma function. The first equation can be solved numerically* to get &
A= 2 )

and then )—% But X is biased, so the unbiased estimator with minimum variance of A is
. an &
)= — —
an—1X,

NEED REFERENCE for confidence interval

5.4.4 Random generation

Simulate a gamma G(a, A) is quite tricky for non integer shape parameter. Indeed, if the shape
parameter « is integer, then we simply sum « exponential random variables £(A). Otherwise we
need to add a gamma variable G(a— |, A). This is carried out by an acceptance/rejection method.

NEED REFERENCE

5.4.5 Applications

NEED REFERENCE

5.5 Generalized Erlang distribution

5.5.1 Characterization

As the gamma distribution is the distribution
of the sum of i.i.d. exponential distributions,
the generalized Erlang distribution is the dis-
tribution of the sum independent exponential
distributions. Sometimes it is called the hypo-
exponential distribution. The density is defined
as

where z > 0 and A; > 0’st are the paremeters
(for each exponential distribution building the
generalized Erlang distribution). There is an

*algorithm can be initialized with &.

fwith the constraint that all A;’s are strictly different.

density function

Erlang(1,2,3)
Erlang(1,2,4)
Erlang(1,3,5)
Erlang(2,3,4)

0.6
1

0.4
L

f(x)

0.0
|

o
N
w
IS
o

Figure 5.5: Density function for generalized Er-
lang distributions
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explicit form for the distribution function:

F)=> | ]I AAA_in (1 —e ),

i=1 \j=1j#i "’

This distribution is noted Erlang(\i,...,Aq).
Of course, we retrieve the Erlang distribution when Vi, A\; = .

Finally, the characteristic and moment generating functions of generalized Erlang distribution

are
o(t) = [ -2 and M(t) = [[ 2
LL; —it LLA -t
j=1"7 j=1"7
5.5.2 Properties
d
The expectation of the generalized Erlang distribution is simply E(X) = /\i and its variance
i=1""
Var(X)=>_ )\—12
i=1""

5.5.3 Estimation

NEED REFERENCE

5.5.4 Random generation

The algorithm is very easy simulate independently d random variables exponentially £(\;) dis-
tributed and sum them.

5.5.5 Applications

NEED REFERENCE

5.6 Chi-squared distribution

A special case of the gamma distribution is the chi-squared distribution. See section
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5.7 Inverse Gamma

5.7.1 Characterization

The inverse gamma distribution is the distribu-

. . 1 . density function
tion of a random variable + when X is gamma

distributed. Hence the density is — IvG(a2,1)
— InvG(3/2,3/2)

— InvG(1,3)

1.5

A N

f(ﬂf)—We =,

1.0

where z > 0 and 3,a > 0. From this, we can
derive the distribution function

f(x)

g
2
Il
05
|

We can define inverse gamma distributions
with characteristic or moment generating func- ‘ ‘ ‘ ‘ ‘ ‘ :

tions 0.0 0.5 1.0 1.5 2.0 25 3.0
3 (0%
b(t) = 24/ —1t Ka(2\/j>\t) Figure 5.6: Density function for inverse gamma
[(a) distributions
and

Aﬂn=2¥a?zg@¢am.

where K (.) denotes the modified Bessel function.

5.7.2 Properties

The expectation exists only when o > 1 and in this case F(X) = ﬁ, whereas the variance is only

finite if o > 2 and Var(X) = =g

5.7.3 Estimation

Method of moments give the following estimators

o o
()g;) and A= X,(a—1)

a=2+

with X,, and S2 the sample mean and variance. If the variance does not exist, then a will be 2, it
means we must use the maximum likelihood estimator (which works also for o < 2).
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Maximum likelihood estimators of «, A verify the system

loga — () =log(3 20, %) — 3 2iei log <
—1 ,
A=a iy %)

where ¢(.) denotes the digamma function. The first equation can be solved numerically* to get &
and then )\ with the second equation.

5.7.4 Random generation

Simply generate a gamma variable G(«, 1/)) and inverse it.

5.7.5 Applications

NEED REFERENCE

5.8 Transformed or generalized gamma

5.8.1 Characterization

The transformed gamma distribution is defined
by the following density function

density function

2 4 — TG(3,1/2,1)
G =
7’(%)0”—_16_ 5y 112,
f(fL') - )\F(a) ? g |
where x > 0 and o, A, 7 > 0. Thus, the distri- o |
bution function is _c
aa )T ; n
ORI )
[(a)
This is the distribution of the variable A X =
when X is gamma distributed G(a, 1). o |
0 | 2 s ) :

Obviously, a special case of the transformed
gamma is the gamma distribution with 7 = 1.
But we get the Weibull distribution with & = 1. Figure 5.7: Density function for transformed
gamma distributions

*algorithm can be initialized with &.
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5.8.2 Properties

The expectation of the transformed gamma dis-

1
tribution is E(X) = % and its variance

AT (a+2
Var(X) = 105 — B2[x).

From |Venter| (1983) moments are given by
E(X") =\

with o+ £ > 0.

5.8.3 Estimation

Maximum likelihood estimators verify the following syste

,

-

n
Y(a) —loga = T% Z log X; — log(%

=1 7

1

n n
o= x7 (35 x710exi- (3
1=1

i=1
-

A= (; > Xz) a7
i=1

-
It

where 9 denotes the digamma function. This system can

TODO : use Gomes et al.| (2008))

5.8.4 Random generation

Generate a gamma distributed variable (G(«, 1)), raise it

5.8.5 Applications

67

I'la+ %)

1m

n -1
) (tmen)
=1

be solved numerically.

to power % and multiply it by A.

In an actuarial context, the transformed gamma may be useful in loss severity, for example, in

workers’ compensation, see Venter| (1983).
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5.9 Inverse transformed Gamma

5.9.1 Characterization

The transformed gamma distribution is defined
by the following density function

Ayar o =(3)7
r(2)ere(3
@) = —"—~—,

zl(«)

where x > 0 and o, A, 7 > 0. Thus, the distri-
bution function is

This is the distribution of (%); when X is
gamma distributed G(«, 1).

5.9.2 Properties

The expectation of the transformed gamma dis-

. . . Al(a—2) . .
tribution is E(X) = oy~ and its variance
AT (a—2) 9
Var(X) = @ —F [X].

From Klugman et al.| (2004)), we have the
following formula for the moments

AT(a— 1)

P =710

5.9.3 Estimation

NEED REFERENCE

5.9.4 Random generation

density function

— ITG(3,2,1)
— ITG(3,2,1/2)
2 4 — ITG(3,2,4/3)

25
Il

2.0

f(x)

1.0

0.5

0.0 0.5 1.0 1.5 20 25 3.0

Figure 5.8: Density function for inverse trans-
formed gamma distributions

Simply simulate a gamma G(«, 1) distributed variable, inverse it, raise it to power é and multiply

it by A.

5.9.5 Applications

NEED REFERENCE
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5.10 Log Gamma

5.10.1 Characterization

Density function for log-gamma distribution is expressed as

pe—a %
ek e

for x > 0, where a is the location parameter, b > 0 the scale parameter and £ > 0 the shape

parameter. The distribution function is

for > 0. This is the distribution of a 4+ blog(X) when X is gamma G(k,1).

5.10.2 Properties

The expectation is F(X) = a+ by(k) and the variance Var(X) = b% (k) where 1 is the digamma
function and v the trigamma function.

5.10.3 Estimation

NEED REFERENCE

5.10.4 Random generation

Simply simulate a gamma G(k, 1) distributed variable and returns a + blog(X).

5.10.5 Applications

NEED REFERENCE

5.11 Weibull distribution

5.11.1 Characterization
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density function

Despite the fact the Weibull distribution is not E &géi
particularly related to the chi distribution, its = W(4.3)
density tends exponentially fast to zero, as chi’s
related distribution. The density of a Weibull @ |
distribution is given by
ﬁ 1 —_(z=\B 5 S
fl@) = alte O, )
where x > 0 and 1,8 > 0. In terms of dis-
tribution function, the Weibull can be defined S A
as \
Flz)=1-¢ 3" 3
0 2 4 6 8 10
There exists a second parametrization of the *
Weibull distribution. We have Figure 5.9: Density function for Weibull distribu-

tions
flz) = Az te ™

with the same constraint on the parameters 7, A\ > 0. In this context, the distribution function is
F(z)=1- e

We can pass from the first parametrization to the second one with
=
=34
n

5.11.2 Properties

The expectation of a Weibull distribution W(n, ) is E(X) = nI'(1+ %) and the variance Var(X) =

1
772[11(%) - F(%)Q] In the second parametrization, we have E(X) = T(i\tf) and Var(X) =

|~

(r(1+ %) —7(1+ %)2)

A

>

The rth raw moment E(X") of the Weibull distribution W(n, 3) is given by nI'(1+ ) for r > 0.

The Weibull distribution is the distribution of the variable XTB where X follows an exponential
distribution £(1).

5.11.3 Estimation

We work in this sub-section with the first parametrization. From the cumulative distribution, we
have

log(—log |1 — F(x)|) = Blogz — Blogn.
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Thus we can an estimation of 5 and 7 by regressing log(— log |%|) on log X;.,,. Then we get the
following estimators

S

f=a and n=e a,
where @ and b are respectively the slope and the intercept of the regression line.

The maximum likelihood estimators verify the following system

~2 4 B T @) = 0
t — nn(n) + S0y In(a) — S0 In(e)(2)7 =0

which can be solved numerically (with algorithm initialized by the previous estimators).
5.11.4 Random generation

1
Using the inversion function method, we simply need to compute 3(—log(l — U))n for the first

1
S —log(1-U)\ X . . .
parametrization or (%) for the second one where U is an uniform variate.

5.11.5 Applications

The Weibull was created by Weibull when he studied machine reliability.
NEED REFERENCE
5.12 Inverse Weibull distribution

5.12.1 Characterization

density function

The inverse Weibull distribution is defined as

— InvW(3,1)

— IVW(3,2)
e . — e
flz) = Tl
where z > 0 and 7,8 > 0. Its distribution
function is =
F(x) = e (), R

This is the distribution of 1/X when X is
Weibull distributed W(371, 7).

0.0 0.5 1.0 1.5 2.0
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5.12.2 Properties

The expectation is given by nI'(1 — %) and the

variance n? [F(%) - P(%)Q]

The rth moment of the Weibull distribution
IW(n, B) is given by n"T'(1 — ) for r > 0.

5.12.3 Estimation

Maximum likelihood estimators for 8 and 7 ver-
ify the following system

n—1
b=1xm (£)
n
Ltog(B) = 2300, (£) tog (£ ) + £ X1, log(X3)
while the method of moment has the following system

(82 4+ (X)2)L2(1 = 1) = (X,)?0(1 - 2)
Both are to solve numerically.

5.12.4 Random generation

Simply generate a Weibull variable W(3~!,7) and inverse it.

5.12.5 Applications

NEED REFERENCE
TODO |Carrasco et al.| (2008))
5.13 Laplace or double exponential distribution

5.13.1 Characterization

Density for the Laplace distribution is given by

density function

= 71 s 2 A — L(0,1)
flw) = 2026 T ° — Lo

0.4

.3
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for x € R, m the location parameter and o >
0 the scale parameter. We have the following
distribution function

1 —m=z .
se o if x<m
_ 2
F(:IZ) - 1 —r—m .
1—g5e % otherwise

There exists a moment generating function for
this distribution, which is

emt

M{(t) = 1 —o2t2’

for [t| < 1. The characteristic function is ex-
pressed as
eimt
)= ———
60 = T,

for t € R.

5.13.2 Properties

The expectation for the Laplace distribution is given by E(X) = m while the variance is Var(X)

202.

5.13.3 Estimation

Maximum likelihood estimators for m and o are

{ X%;n+Xn+2 n

hy — 5 if n is even

X 12)m otherwise

where X.,, denotes the kth order statistics and

1 n
5=—=3"|X; .
n <
=1

5.13.4 Random generation

Let U be a uniform variate. Then the algorithm is

o V=U-1/2
o X =m+ osign(V)log(1 —2|V|)

e return X

73
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5.13.5 Applications

NEED

The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator
Robert M. Norton The American Statistician, Vol. 38, No. 2 (May, 1984), pp. 135-136



Chapter 6

Chi-squared’s ditribution and related

extensions

6.1 Chi-squared distribution

6.1.1 Characterization

There are many ways to define the chi-squared
distribution. First, we can say a chi-squared
distribution is the distribution of the sum

k

2
2 X%
i=1

where (X;); are iid. normally distributed
N(0,1) and a given k. In this context, k is
assumed to be an integer.

We can also define the chi-squared distribu-
tion by its density, which is

where k is the so-called degrees of freedom and
2 > 0. One can notice that is the density of a
gamma distribution g(%, 3), so k is not neces-
sarily an integer. Thus the distribution function
can be expressed with the incomplete gamma

function

density function

0.5

0.4

0.3
1

f(x)

0.1

0.0

Figure 6.1: Density function for chi-squared dis-
tributions
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Thirdly, the chi-squared distribution can be defined in terms of its moment generating function
M(H) = (1-26)"2,

or its characteristic function

o(t) = (1 — 2it)"2.

6.1.2 Properties

The expectation and the variance of the chi-squared distribution are simply E(X) = k and
Var(X) = 2k. Raw moments are given by

6.1.3 Estimation

Same as gamma distribution 77

6.1.4 Random generation

For an integer k, just sum the square of k& normal variable. Otherwise use the algorithm for the
gamma distribution.

6.1.5 Applications

The chi-squared distribution is widely used for inference, typically as pivotal function.
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6.2 Chi distribution

6.2.1 Characterization

This is the distribution of the sum

density function

0.6
1

k
2
2 X
i=1

0.5
L

where (Xj;); are ii.d. normally distributed
N(0,1) and a given k. This is equivalent as the
distribution of a square root of a chi-squared
distribution (hence the name).

04

f(x)
0.3
1

0.2
L

The density function has a closed form

xh-1 22 S
fl@) = 7= 7,
E_1p(k
2271 (3) 3
where x > 0. The distribution function can 0 ! 2 : ¢
be expressed in terms of the gamma incomplete *
function Figure 6.2: Density function for chi distributions
(5. %)
F(z) = 2’k2 ,
r(s)

for x > 0.

Characteristic function and moment generating function exist and are expressed by

k1 -2\  D(H)
P(t) = 111 (2,2,2> +itV2 T é)
and 2 k+1
k1t r
M(t) = 1 1(272,2> tV2 I‘((E))

6.2.2 Properties

ver(dt

The expectation and the variance of a chi distribution are given by E(X) = ) and Var(X) =

k — E?(X). Other moments are given by

E(X") =232

for k+r > 0.
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6.2.3 Estimation
The maximum likelihood estimator of k satisfies the following equation

1 (kY log(2) 1 '
§¢ (2> + 5 = n;bg(Xz)a

where 1) denotes the digamma function. This equation can be solved on the positive real line or
just the set of positive integers.

6.2.4 Random generation

Take the square root of a chi-squared random variable.

6.2.5 Applications

NEED REFERENCE

6.3 Non central chi-squared distribution

6.3.1 Characterization

The non central chi-squared distribution is the
distribution of the sum

density function

—— Chisq(2)
—— Chisq(2,1)
—— Chisq(4)

k
2 ]
Z Xz 9 Chisq(4,1)
=1

where (X;); are independent normally dis-
tributed N (;, 1), i.e. non centered normal ran-
dom variable. We generally define the non cen-
tral chi-squared distribution by the density

1o\ _oma
f@=3(5) " e Fna(Va). \
for x > 0, k > 2 the degree of freedom, A the

non central parameter and I, the Bessel’s mod- { w w w x 1

0.4
|

f(x)

0.2
|

ified function. X is related to the previous sum ° 2 ¢ ° ? "
by "
k Figure 6.3: Density function for non central chi-
A= Z 2. squared distributions
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The distribution function can be expressed
in terms of a serie

T)= e 'P(—I—E) )
= J'TG+5

for > 0 where v(.,.) denotes the incomplete gamma function.

Moment generating function for the non central chi-squared distribution exists

At

el-2t
M(t) = ——
(1—2t)2
and the characteristic function _
eliZQtit
¢(t> =T k>
(1 —2it)>2

from which we see it is a convolution of a gamma distribution and a compound Poisson distribution.

6.3.2 Properties
Moments for the non central chi-squared distribution are given by
S (n—1) '23 L ,
E(X™) = 2" n — DIk +n) + Z (k+ jA)E(X"),
7j=1
where the first raw moment is

EX)=k+ A\
The variance is Var(X) = 2(k + 2\).

6.3.3 Estimation

Li & Yu/ (2008) and Saxena & Alam (1982])

6.3.4 Random generation

For integer k degrees of freedom, we can use the definition of the sum, i.e. sum k idependent normal

random variables N (\/% ,1).

6.3.5 Applications

NEED REFERENCE



80 CHAPTER 6. CHI-SQUARED’S DITRIBUTION AND RELATED EXTENSIONS

6.4 Non central chi distribution

6.4.1 Characterization

This is the distribution of the sum

k
2
> X2
=1

where (X;); are i.i.d. normally distributed M (u;,1) and a given k. This is equivalent as the
distribution of a square root of a non central chi-squared distribution (hence the name).

We generally define the non central chi distribution by

AzF 24a2

f(x) = (/\x)ge ng_l(/\x)7

where > 0 and I (.) denotes the modified Bessel’s function. The distribution function can be
expressed in terms of the gamma incomplete function

F(x) =77,

for x > 0.

6.4.2 Properties

The expectation and the variance of a chi distribution are given by

T _ —)\2
BX) = \g ! <2>

Var(X) = k+ A\ — E*(X),

and

where LF') denotes the generalized Laguerre polynomials. Other moments are given by
E(X") =17,

for k+r > 0.

6.4.3 Estimation

NEED REFERENCE

6.4.4 Random generation

NEED REFERENCE
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6.4.5 Applications

NEED REFERENCE

6.5 Inverse chi-squared distribution

The inverse chi-squared distribution is simply

. . . 1 . . density function
the distribution of 5 when X is chi-squared

distributed. We can also define the chi-squared T [mctisa(2
distribution by its density, which is © — InvChisq(4)
InvChisq(2.5)
_k
272 k-2 1 o
f(CC) = k r 2 e 2,
I'(3)

where k is the so-called degrees of freedom and
x > 0. Thus the distribution function can be °
expressed with the incomplete gamma function

L(5, 55)

F(z) = F(%) , .

where I'(., .) the upper incomplete gamma func-

tion.
Figure 6.4: Density function for inverse chi-

Thirdly, the chi-squared distribution can be Sdquared distributions

defined in terms of its moment generating func-
tion

M(t) = Fé) (j) K (V2)

or its characteristic function

6.5.1 Properties

The expectation and the variance of the chi-squared distribution are simply E(X) = 15 if k > 2

and Var(X) = m. Raw moments are given by

B(X") =77
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6.5.2 Estimation

Maximum likelihood estimator for k verifies the equation

(2 (S) = —log(2) — % ;log(a:i),

where 1) denotes the digamma function.

6.5.3 Random generation

Simply inverse a chi-squared random variable

6.5.4 Applications

NEED REFERENCE

6.6 Scaled inverse chi-squared distribution

6.6.1 Characterization

TODO

6.6.2 Properties

TODO

6.6.3 Estimation

TODO

6.6.4 Random generation

TODO
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6.6.5 Applications

TODO

83



Chapter 7

Student and related distributions

7.1 Student t distribution

Intro?

7.1.1 Characterization

There are many ways to define the student dis-
tribution. One can say that it is the distribution
of ' —
vax =

C )

density function

0.3
1

where N is a standard normal variable indepen-
dent of C' a chi-squared variable with d degrees
of freedom. We can derive the following density
function

f(x)

0.2

for x € R. d is not necessarily an integer, it
could be a real but greater than 1.

0.0

The distribution function of the student t

distribution is given by Figure 7.1: Density function for student distribu-

tions
1 d+1.3 2
1 d+1\ 2f1 (5’%@—%)
F(z)= - +al ;i ,
2 2 Vv T(§)

where oF) denotes the hypergeometric function.

84
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7.1.2 Properties

The expectation of a student distribution is E(X) = 0 if d > 1, infinite otherwise. And the variance
is given by Var(X) = d%‘lQ if d> 2.

Moments are given by

where r is an even integer.

7.1.3 Estimation

Maximum likelihood estimator for d can be found by solving numerically this equation
" d+1 Zl 1+X2 d+1z": (Xi/d)?
[ O —_— —
2 s n 1y X2

where 1 denotes the digamma function.

7.1.4 Random generation

The algorithm is simply

e generate a standard normal distribution N

e generate a chi-squared distribution C'

e return \@V

7.1.5 Applications

The main application of the student is when dealing with a normally distributed sample, the
derivation of the confidence interval for the standard deviation use the student distribution. Indeed
for a normally distributed A/(m, 0?) sample of size n we have that

X,—m
52

n

vn

follows a student n distribution.
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7.2 Cauchy distribution

7.2.1 Characterization
7.2.2 Characterization

The Cauchy distribution is a special case of the
Student distribution when a degree of freedom
of 1. Therefore the density function is

1 —— Cauchy
f(z) = m, o |

where x € R. Its distribution function is

density function

0.6

0.4

1 1
F(z) = - arctan(x) + 3

There exists a scaled and shifted version of
the Cauchy distribution coming from the scaled
and shifted version of the student distribution.

The density is J &

0.2

0.1

,72 2
f(x) = = [,YQ T (x — 5)2]’ 4 2 0 2 4
while its distribution function is *
1 r—23 1 Figure 7.2: Density function for Cauchy distribu-
F(x) = — arctan <> —. tions
us ol 2

Even if there is no moment generating function, the Cauchy distribution has a characteristic function

o(t) = exp(8it — t]).

7.2.3 Properties

The Cauchy distribution C(d, ) has the horrible feature not to have any finite moments. How-
ever, the Cauchy distribution belongs to the family of stable distribution, thus a sum of Cauchy
distribution is still a Cauchy distribution.

7.2.4 Estimation

Maximum likelihood estimators verify the following system

There is no moment based estimators.
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7.2.5 Random generation

Since the quantile function is F~!(u) = § + ytan((u — 1/2)7), we can use the inversion function
method.

7.2.6 Applications

NEED REFERENCE

7.3 Fisher-Snedecor distribution

7.3.1 Characterization

TODO

7.3.2 Properties

TODO

7.3.3 Estimation

TODO

7.3.4 Random generation

TODO

7.3.5 Applications

TODO



Chapter 8

Pareto family

8.1 Pareto distribution

name??

8.1.1 Characterization

The Pareto is widely used by statistician across
the world, but many parametrizations of the
Pareto distribution are used. Typically two
different generalized Pareto distribution are
used in extrem value theory with the work of
Pickands et al. and in loss models by Klugman
et al. To have a clear view on Pareto distribu-
tions, we use the work of |Arnold| (1983). Most
of the time, Pareto distributions are defined in
terms of their survival function F, thus we omit
the distribution function. In the following, we
will define Pareto type I, II, IIT and IV plus the
Pareto-Feller distributions.

Pareto 1

The Pareto type I distribution Pas(o, a) is de-
fined by the following survival function

Py =(3)

(o

where x > o and « > 0. Therefore, its density is

density function

1.0

f(x)

0.5
1

0.0
1

Figure 8.1: Density function for Pareto I distri-
butions

O
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89

still for z > 0. « is the positive slope parameter* (sometimes called the Pareto’s index) and o is
the scale parameter. Pareto type I distribution is sometimes called the classical Pareto distribution

or the European Pareto distribution.

Pareto 11

The Pareto type II distribution Pasr(u, o, «) is
characterized by this survival function

F(z) = <1+$_“)_a,

o

where x > pand 0, > 0. Again « is the shape
parameter, while u is the location parameter.
We can derive the density from this definition:

f<:c>:“(1+””"“‘)_a—1,

g

for x > pu. We retrieve the Pareto I distribu-
tion with p = o, i.e. if X follows a Pareto 1
distribution then p — o + X follows a Pareto 11
distribution. The Pareto II is sometimes called
the American Pareto distribution.

Pareto III

A similar distribution to the type II distribution
is the Pareto type III Payrr(p, o,7y) distribution
defined as

Fz) = <1+ (x;“y)_l,

where x > p, 7,0 > 0. The ~ parameter is
called the index of inequality, and in the special
case of p =0, it is the Gini index of inequality.
The density function is given by

- (5) (7))

where x > p. The Pareto III is not a general-
isation of the Pareto II distribution, but from
these two distribution we can derive more gen-
eral models. It can be seen as the following
transformation p+ o Z7, where Z is a Pareto 11
PCL[[(O, 1, 1).

density function

3 — P2(2,1)
— P2(2.2)
— P2(2,3)
P2(3,2)
©w
= 2 |
©
o
| ¥
o

Figure 8.2: Density function for Pareto II distri-
butions

density function

el
W

1.5 2.0
Il

f(x)

1.0

0.5
Il

0.0

Figure 8.3: Density function for Pareto III distri-
butions

*the slope of the Pareto chart log F'(x) vs. log z, controlling the shape of the distribution.
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Pareto IV

The Pareto type IV Pary(u, 0,7, «) distribu-
tion is defined by

density function

— P4(0,1,1,1)

1\ —@ —— P4(,0,2,1,1)

n T — v > | —— P4(0,1,3/2,1)

F(x) =1+ < 'u> , P4(0,1,1,2)
g

where x > p and «,0,7 > 0. The associated
density function is expressed as follows

w5 (207 ()T

for x > p.

25

2.0
|

1.5

1.0

Quantile functions for Pareto distributions
are listed in sub-section random generation.

0.0

The generalized Pareto used in extreme «
value theory due to [Pickands| (1975) has a lim-
iting distribution with Pareto II Pas;(0, 0, a),
see chapter on EVT for details. Finally, the
Feller-Pareto is a generalisation of the Pareto
IV distribution, cf. next section.

Figure 8.4: Density function for Pareto IV distri-
butions

8.1.2 Properties
Equivalence

It is easy to verify that if X follows a Pareto I distribution Pa(o, a), then log X follows a translated
exponential distribution 7€ (o, a?).

The Pareto type III distribution is sometimes called the log-logistic distribution, since if X has
a logistic distribution then eX has a Pareto type III distribution with p = 0.

Moments

oo a02

Moments for the Pareto I distribution are given by E(X) = 2% if a > 1, Var(X) = (CELCE)
and B(X7) =72 fora>71and o= 1.

Moments for the Pareto II, IIT can be derived from those of Pareto IV distribution, which are

L+ 7 (a = 77)

E(X") =0 o) :

with —1 <7y < a and p = 0.
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Convolution and sum

The convolution (i.e. sum) of Pareto I distributions does not have any particular form but the
product of Pareto I distributions does have a analytical form.

If we consider of n i.i.d. Pareto I Paj(c,«) random variables, then the product II has the
following density
o (olog(252))" " (2)

fu(z) = 2T (n) ’

where z > o.

If we consider only independent Pareto I distribution Paj(o;, a;), then we have for the density

of the product
n
_ oy (o 1 oy
fn(:”)_,z o (O‘) Hai—ak’
=1 k#i

where z > []1; 0i.

Other Pareto distributions??

Order statistics

Let (X;); be a sample of Pareto distributions. We denote by (Xj.,); the associated order statistics,
i.e. Xq., is the minimum and X,,.,, the maximum.

For Pareto I distribution, the ith order statistic has the following survival function

% . %
_ x\ —a(n—j+1) n—10+1
Fx (@)= (1+2) e
Xin(2) =) (142 I1 I
]:1 =1
14
where x > 0. Furthermore moments are given by

n!l T(n—i+1—71a™t)

EX] )=0c"
(Xin) =0 n—i)! Tln+1—71a"1) ’

for 7 € R.

For Pareto II distribution, we get

% —a(n—j+1) 1
_ T — U n—1+1
o) = 32 (1455 ==
=1

1£i

Jj=1

where x > p. Moments can be derived from those in the case of the Pareto I distribution using the
fact X, = 4 — 0 + Y5, with Y., order statistic for the Pareto I case.

For Pareto III distribution, the ith order statistic follows a Feller-Pareto FPa(u, o,7,i,n—i+1).
Moments of order statistics can be obtained by using the transformation of Pareto II random
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variable: we have X;.,, = u + UZZn follows a Pareto III distribution, where Z is a Pareto II
Parr(0,1,1). Furthermore, we know the moments of the random variable Z:

Fe+r)I'(n—i+7+1)

E(Zin) = T((n—i+1)

The minimum of Pareto IV distributions still follows a Pareto IV distribution. Indeed if we
consider n independent random variables Pareto IV Pary (u, 0,7, ;) distributed, we have

n
min(Xq,..., X,) ~ Payy <u,a,7, ZO‘Z) .
i=1

But the ith order statistic does not have a particular distribution. The intermediate order statistic
can be approximated by the normal distibution with

Ximn — N (F_1 (i/n),i/n (1 —i/n) f> (F_1 (i/n)) n_l)

n—-+oo

where f and F' denotes respectively the density and the distribution function of the Pareto IV
distribution. Moments for the order statistics are computable from the moments of the minima

since we have
n

E(XL,)= Y (1) "IC O B(XT,).
r=n—i+1

Since X7, still follows a Pareto IV distribution Pry (p, 0,7, ra), we have
E(Xirr) = E((/,L + UZIZT)T)7

where Z1., ~ Pary(0,1,7,7a) and E(Z],) = %&f“—m)

Truncation

Let us denote by X|X > x( the random variable X knowing that X > xy. We have the following
properties (with zg > u):

o if X ~Paj(o,a) then X|X > x¢ ~ Pas(xg, a)*

o if X ~Pasr(p,o,a) then X|X > xg ~ Par(zo, 0 + xo — i, @)

More general distributions do not have any particular form.

*In this case, the truncation is a rescaling. It comes from the lack of memory property of the log variable since
the log variable follows an exponential distribution.
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Record values
Geometric minimization
8.1.3 Estimation

Estimation of the Pareto distribution in the context of actuarial science can be found in |Rytgaard
(1990).

Pareto I

Arnold (1983) notices that from a log transformation, the parameter estimation reduces to a prob-
lem for a translated exponentiallly distributed data. From this, we have the following maximum
likelihood estimator for the Pareto I distribution

o o, = Xy,

-1

» o= [nxies(25)]

where (X;)1<i<n denotes a sample of i.i.d. Pareto variables. Those estimators are strongly consis-
tent estimator of  and o. Let us note that for these estimator we have better than the asymptotic
normality (due to the maximum likelihoodness). The distributions for these two estimators are
respectively Pareto I and Gamma distribution:

e &, ~ Pr(o,na),

e 6,1 ~G(n—1,(an)t).

From this, we can see these estimators are biased, but we can derive unbiased estimators with
minimum variance:

L4 dn = n;an’

[ ]
Qe
3
I
L—
—_
|
=X .
—_
Q>
3

Since those statistics &, and &, are sufficient, it is easy to find unbiased estimators of functions of
these parameters h(a, o) by plugging in &, and &, (i.e. h(an,dy)).

However other estimations are possible, for instance we may use a least square regression on the
Pareto chart (plot of log F'(x) against logz). We can also estimate parameters by the method of
moments by equalling the sample mean and minimum to corresponding theoretical moments. We
get
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where we assume a finite expectation (i.e. o > 1).

Finally, we may also calibrate a Pareto I distribution with a quantile method. We numerically

solve the System
‘<Ln Jin
D1 1— (¢

_ XLn Jin @
et (535)

for two given probabilities pi, ps.

Pareto II-ITI-IV

Estimation of parameters for Pareto II, III and IV are more difficult. If we write the log-likelihood
for a sample (X;)i1<i<n Pareto IV distributed, we have

n n 1
1 i — i —
log L(p,0,7v,a) = <7 — 1> E log <$ . 'u>—(oz+1) E log (1 + (x > ,u) 7)—n10g'y—nlog0+nloga,
i=1

=1

with the constraint that V1 < i < n,x; > p. Since the log-likelihood is null when z1.,, < p and a
decreasing function of  otherwise the maximum likelihood estimator of  is the minimum g = X1.,.

Then if we substract { to all observations, we get the following the log-likelihood

log L(o,v,a) = <i — 1> Zn:log (%) — (a+ 1)zn:10g <1 + (?)i> —nlogvy —nlogo + nloga,
i=1 i=1

which can be maximised numerically. Since there are no close form for estimators of o,~, a, we do
not know their distributions, but they are asymptotically normal.

We may also use the method of moments, where again i is Xy.,. Substracting this value to all
observations, we use the expression of moments above to have three equations. Finally solve the
system numerically. A similar scheme can be used to estimate parameters with quantiles.

8.1.4 Random generation

It is very easy to generate Pareto random variate using the inverse function method. Quantiles
function can be easily calculated

o for P;(0, ) distribution, F~'(u) = o(1 — u) =,

e for Prr(u, 0, ) distribution, F~1(u) =0 |[(1 —u)™ — 1| + pu,
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for Prrr(,0,7) distribution, F~(u) = o [(1 - u)™ —1)7 + p,

for Pry (u, 0, ) distribution, F~1(u) = o [(1 - u)%1 - 1F + p.

Therefore algorithms for random generation are simply

for P; (o, a) distribution, F~!(u) = gU%l,
for Prr(u, 0, ) distribution, F~1(u) = o [U%l _ 1] + 4,
for Prrr(u,o,7) distribution, F~1(u) = o [U*l 1

for Prv(u, 0, ) distribution, F~1(u) = o [U? — 1} + 4,

where U is an uniform random variate.

8.1.5 Applications

From wikipedia, we get the following possible applications of the Pareto distributions:

the sizes of human settlements (few cities, many hamlets/villages),

file size distribution of Internet traffic which uses the TCP protocol (many smaller files, few
larger ones),

clusters of Bose-Einstein condensate near absolute zero,

the values of oil reserves in oil fields (a few large fields, many small fields),

the length distribution in jobs assigned supercomputers (a few large ones, many small ones),
the standardized price returns on individual stocks,

sizes of sand particles,

sizes of meteorites,

numbers of species per genus (There is subjectivity involved: The tendency to divide a genus
into two or more increases with the number of species in it),

areas burnt in forest fires,

severity of large casualty losses for certain lines of business such as general liability, commercial
auto, and workers compensation.

In the litterature, |Arnold| (1983) uses the Pareto distribution to model the income of an individual
and [Froot & O’Connell (2008)) apply the Pareto distribution as the severity distribution in a context
of catastrophe reinsurance. Here are just a few applications, many other applications can be listed.
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8.2 Feller-Pareto distribution

8.2.1 Characterization

As described in [Arnold| (1983), the Feller-Pareto distribution is the distribution of

U\"
X = b
w+o <V> ,
where U and V are independent gamma variables (G(d1,1) and G(d2, 1) respectively). Let us note

that the ratio of these two variables follows a beta distribution of the second kind. In term of
distribution function, using the transformation of the beta variable, we get

5(51,52,1%3,) . z—p\7

with > u, B(.,.) denotes the beta function and (., .,.) the incomplete beta function.
We have the following density for the Feller-Pareto distribution FP(u, 0,7, d1,0d2) :
()7

f(x) N L ’
75(617 (52)x(1 + (%)7)514—52

where ¢ > u. Let y be %, the previous expression can be rewritten as

1 1\” TN
Yy yv

f‘/l: = 1- —

(=) YB(01,02) \ 1 4 47 14yr /)

for > p. In this expression, we see more clearly the link with the beta distribution as well as the
transformation of the variable %

There is a lot of special cases to the Feller-Pareto distribution FP(u, 0,7, d1,02). When p = 0,
we retrieve the transformed beta distribution® of |Klugman et al.| (2004) and if in addition v = 1,
we get the “generalized” Pareto distribution! (as defined by Klugman et al.| (2004)).

Finally the Pareto IV distribution is obtained with §; = 1. Therefore we have the following
equivalences

Pr(o,a) = FP(o,0,1,1,a),
L4 PII(M707 Oé) = fp(,u’a g, 17 17 Oé),

,PIII(M7O-77) - fp(ﬂ: 0,7, 17 1)7

PIV(,“v 0,7, CK) = f,P(,LL, g,7%, 1,04).

*sometimes called the generalized beta distribution of the second kind.
fwhich has nothing to do with the generalized Pareto distribution of the extreme value theory.
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8.2.2 Properties

When p = 0, raw moments are given by

o+ ry)T(d2 — )
['(01)I'(d2) ’

E(XT’) — UTP(

0w B2
for S Sr< 2

8.2.3 Estimation

NEED REFERENCE

8.2.4 Random generation

B

Once we have simulated a beta I distribution B, we get a beta II distribution* with B = -5

~\Y
Finally we shift, scale and take the power X = u+ o (B) to get a Feller-Pareto random variable.

8.2.5 Applications

NEED REFERENCE

*We can also use two gamma variables to get the beta II variable.
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8.3 Inverse Pareto

8.3.1 Characterization

From the Feller-Pareto distribution, we get the
inverse Pareto distribution with 4 =0, 6; = 1
and v = 1. Thus the density is

1 N B
1@ = 3.5 <1+§> [+zz

It can be rewritten as the density

TArT !

f(@zm

which implies the following distribution func-

tion
:L' T
F(x) =
@=(15)

for x > 0. Let us note this is the distribution
of % when X is Pareto II.

8.3.2 Properties

CHAPTER 8. PARETO FAMILY

density function

< InvP(1,1)
InvP(2,1)
InvP(2,2)
InvP(1,2)

f(x)

Figure 8.5: Density function for inverse Pareto
distributions

AL(7+1)

The expectation of the inverse Pareto distribution is E(X) = NORE but the variance does not

exist.

8.3.3 Estimation

NEED REFERENCE

8.3.4 Random generation

Simply inverse a Pareto II variable.

8.3.5 Applications

NEED REFERENCE
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8.4 Generalized Pareto distribution

8.4.1 Characterization
density function

. c . . — GPD(0)
The generalized Pareto distribution was intro- ; — GPD(1/2)
. . i --- GPD(1)
duced in [Embrechts et al. (1997) in the context N GPD(2)
i - GPD(3)
of extreme value theory. i —— GPD(-1/3)
i --- GPD(-2/3)
i - GPD(-1)
w i -~~~ GPD(-5/4)

We first define the standard generalized
Pareto distribution by the following distribu-
tion function

I

Fla) = 1—(1+éx) & if €40
1—e® if £€=0

where z € Ry if £ > 0 and x € [O,—H oth- L ‘ | | ‘ ‘ ‘ ‘
erwise. This distribution function is generally 00 05 10 e 20 25 80
denoted by G¢. *
Figure 8.6: Density function for standard gener-
We can see the impact of the shape parame- alized Pareto distributions
ter £ on the figure on the right. The case where
§ = 0 can be seen as a limiting case of G¢ when

£&— 0.

To get the “full” generalized Pareto distribution, we introduce a scale 8 and a location parameter
w. We get

=

1-(1+§$;’)_ if £>0
Flz)=q 1—¢ 7 if €=0 ,
1— (1+§$g”)_E it £<0

where z lies in [v, +00[, [V, +00[ and [V, v — g} respectively. We denote it by G¢, g(x) (which is

simply Gg(xg”)). Let us note when & > 0, we have a Pareto II distribution, when & = 0 a shifted
exponential distribution and when £ < 0 a generalized beta I distribution.

From these expression, we can derive a density function for the generalized Pareto distribution

=

(1+§Ig”)_é_1 it €50
-5 if €=0 ,

31— (5)%;)1’51 if €<0

for x in the same supports as above.
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8.4.2 Properties

For a generalized Pareto distribution G¢ o g, we have results on raw moments (for simplicity v = 0).
The expectation E(X) is finite if and only if £ < 1. In this case we have

EN\ ) 1 1
E((l—i—ﬁX) >1+§r’ for r > ¢

k
E((log (1+ZX)) ):g’%!, for ke N

) " 3 r+1
E(XF(X))—(,,+1_§)(r+1)’ for e

AR ) 1
E (Xk) = FF T +£71)k!, for £ < o

>0

see [Embrechts et al.| (1997) for details.

If X follows a generalized Pareto distribution GPD(§,0,3), then the treshold excess random
variable X — u|X > w still follows a generalized Pareto distribution GPD(¢,0, 8 + u). Let F, be
the distribution function of X —u|X > u. We have F' is in the maximum domain of attraction Hg
if and only if

lim  sup  |Fy(x) — Geopw ()] =0,
U Tf0<z<zf—u

where 3 is a positive function. This makes the link between the generalized Pareto distribution
and the generalized extreme value distribution.

8.4.3 Estimation

In this sub-section, we assume v = 0.

Peak Over a Treshold

We briefly present the Peak Over a Treshold (POT) method to fit the generalized Pareto distribu-
tion. Let (X;)1<i<n an i.i.d. sample whose distribution function belongs to a maximum domain of
attraction H¢. For a deterministic treshold w > 0, we define the number of exceedances by

N, = Card(1 <i < n,X; >u),

with the corresponding excesses (Y;)i<i<n,. We want to fit the excess distribution function F,
with the GPD distribution function G¢ g g(u)-

First we can use the linearity of the mean excess function

Eu
é-?

E(X —ulX >u) = 1+
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for a given u. This can be estimated by the empirical mean of the sample (Y;)1<;<n, . [Embrechts
et al. (1997) warn us about the difficulty of chosing u, since they are many wu for wich the plot of
(u, YNu )

Once we find the treshold u, we can use conditional likelihood estimation on sample (Y;)1<i<n, -
Let 7 be —¢/3. However we can also use a linear regression to fit the shape and the scale parameter.

Maximum likelihood estimation

Maximum likelihood estimators of & and ( are solutions of the system

( ) Z ﬁ2+ﬂ£X = %

n
_ (1 X;
= ; log (1 + BXi> =G+ 2 s

but the system may be instable for { < —1 / 2. When £ > 1/2, we have some asymptotical properties
of maximum likelihood estimators f and f3:

\/ﬁ<£§721> i>-/\/‘(O’]\4_1)a

where the variance/covariance matrix for the bivariate normal distribution is
1+¢ 1
1
M7 =(1+¢) ( 1 9 > :

Let us note that if we estimate a £ as zero, then we can try to fit a shifted exponential distribution.

Method of moments

From the properties, we know the theoretical expression of E(X) and E (XF(X)). From wich we
get the relation

2E(X)E (XF(X))
E(X)-2E (XF(X))

E(X)

b= E(X) —2E (XF(X))"

and £ =2—

We simply replace E(X) and E (X F(X )) by the empirical estimators.

8.4.4 Random generation

We have an explicit expression for the quantile function

v —w)t =) i €#£0
E (u)_{y—élog(l—u) if =0

thus we can use the inversion function method to generate GPD variables.
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8.4.5 Applications

The main application of the generalized Pareto distribution is the extreme value theory, since
there exists a link between the generalized Pareto distribution and the generalized extreme value
distribution. Typical applications are modeling flood in hydrology, natural disaster in insurance
and asset returns in finance.

8.5 Burr distribution

8.5.1 Characterization

density function

The Burr distribution is defined by the follow-
ing density \

Burr(1,1,1)
Burr(2,1,1)
Burr(2,2,1)
Burr(2,2,2)

ot (z/A)7H
T =50 e

1.5

where x > 0, A the scale parameter and o, 7 > 0
the shape parameters. Its distribution function
is given by

AT “
F -1
(x) <)\T+:L'T) b

for x > 0. In a slightly different rewritten form, : : : : : ‘ :
we recognise the Pareto IV distribution 00 05 10 15 20 25 3.0

1.0

f(x)

0.5

0.0
|

Fz) = (1 T (;)T) _0‘7 Eigure 8.7: Density function for Burr distribu-
tions

with a zero location parameter.

8.5.2 Properties

The raw moment of the Burr distribution is given by

T(1+ Z)T(a— L)

T

I'(a) ’

E(X")=)\"
hence the expectation and the variance are

I+ HI(e—1)
ING)

E(X)=2X\ and Var(X) =\
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8.5.3 Estimation

Maximum likelihood estimators are solution of the system

n X T
n .
o= 210g<1+ (T) )
i=1
n __ w 1 X; a+l < 1 X; X7
T=—Ylog () +7o X log () v
i=1 i=1 i
n T7—1 2 1 a+1 2 1
F= R LA L
\ i=1"" i=1 @

which can be solved numerically.

8.5.4 Random generation

From the quantile function F~1(u) = A((1 — u)é - 1)%, it is easy to generate Burr random variate
with A(U a— 1)% where U is a uniform variable.

8.5.5 Applications

NEED REFERENCE
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8.6 Inverse Burr distribution

8.6.1 Characterization

density function

1.4

The inverse Burr distribution (also called the
Dagum distribution) is a special case of the
Feller Pareto distribution FP with 6 = 1.
That is to say the density is given by

ay ()M

(+( ))VH’ £, ]

where z < p, p the location parameter, o the
scale parameter and «,y the shape parameters.
Klugman et al.| (2004) defines the inverse Burr
distribution with p = 0, since this book deals
with insurance loss distributions. In this ex- : : ‘ ‘ ‘ ‘ ‘
pression, it is not so obvious that this is the 00 08 10 15 20 25 3.0
inverse Burr distribution and not the Burr dis- x

tribution. But the density can be rewritten as  Figure 8.8: Density function for inverse Burr dis-

tributions
- a+1
o (%)
f(l‘) = 7 o y+1°
((z) +1)

From this, the distribution function can be derived to

InvBurr(
InvBurr(
(
(

InvBurr
InvBurr

1.2

1,1,1,0)
1,2,1,0)
2,2,1,0)
1,2,2,0)

1.0

0.8
Il

0.4 0.6
Il

0.2
Il

7o |
(%) +1

for © > p. Here it is also clearer that this is the inverse Burr distribution since we notice the
survival function of the Burr distribution taken in % We denotes the inverse Burr distribution by

IB(vy, o, B, ).

8.6.2 Properties

The raw moments of the inverse Burr distribution are given by

Bxr) — o L0 B0 = 2)
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and
_ PO+ T =2) L0+ )0 —3)
Var(X) =0 o) o £

Furthermore, we have the following special cases

e with v = «a, we get the inverse paralogistic distribution,
e with v =1, we have the log logistic distribution,

e with a = 1, this is the inverse Pareto distribution.

8.6.3 Estimation

The maximum likelihood estimator of u is simply gt = X;.,, for a sample (X;);, then working on the
transformed sample Y; = X; — [i, other maximum likelihood estimators are solutions of the system

n (0%
2= Sog (14 (2)")
7 =1 ' . N
g:_zllog(%)ﬂvﬂ),zllog(%)ﬁ ’
i= =
n_ S 1 2ty oo
o—(04+ )E:IYZ'JF‘T a— ‘1Yia+cr°‘
i= =

8.6.4 Random generation

1
Since the quantile function is F~'(u) = g+ o1 (u" 7 — 1)_é, we can use the inverse function

method.

8.6.5 Applications

NEED REFERENCE

8.7 Beta type II distribution

8.7.1 Characterization

There are many ways to characterize the beta type II distribution. First we can say it is the
distribution of % when X is beta I distributed. But this is also the distribution of the ratio %
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when U and V' are gamma distributed (G(a, 1) and G(b, 1) resp.). The distribution function of the
beta of the second distribution is given by

Bla, b, Ti7)
Bla,b)

for x < 0. The main difference with the beta I distribution is that the beta II distribution takes
values in R4 and not [0, 1].

F(z) =

The density can be expressed as

a—1

B(a,b)(1 + x)atb’

flz) =

for z < 0. It is easier to see the transformation = if we rewrite the density as

i0-() (152) e

As already mentioned above, this is a special case of the Feller-Pareto distribution.

8.7.2 Properties

The expectation and the variance of the beta II are given by E(X) = ;% and Var(X) = %

when b > 1 and b > 2. Raw moments are expressed as follows

a4+ r)T'(b—r1)

P =" are

for b > r.

8.7.3 Estimation

Maximum likelihood estimators for a and b verify the system

M=

¥(a) = (a+b) =3 3 (log(1+ X;) — log(X;))

Y(b) —pla+b) =5

1

<.
I

-

Il
—

log(1 + X;)

)

where 1 denotes the digamma function. We may also use the moment based estimators given by

Xn( Xy +1) - _

b=2+ 52 and a=(b—1)X,,

which have the drawback that b is always greater than 2.
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8.7.4 Random generation

We can simply use the construction of the beta II, i.e. the ratio of % when X is beta I distributed.
However we may also use the ratio of two gamma variables.

8.7.5 Applications

NEED REFERENCE



Chapter 9

Logistic distribution and related
extensions

9.1 Logistic distribution

9.1.1 Characterization

The logistic distribution is defined by the following distribution function

where x € R, u the location parameter and s the scale parameter. TODO

9.1.2 Properties

TODO

9.1.3 Estimation

TODO

9.1.4 Random generation

TODO

108
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9.1.5 Applications
9.2 Half logistic distribution

9.2.1 Characterization
9.2.2 Properties

9.2.3 Estimation

9.2.4 Random generation

9.2.5 Applications
9.3 Log logistic distribution

9.3.1 Characterization
9.3.2 Properties

9.3.3 Estimation

9.3.4 Random generation

9.3.5 Applications
9.4 Generalized log logistic distribution

9.4.1 Characterization
9.4.2 Properties

9.4.3 Estimation

9.4.4 Random generation

9.4.5 Applications

9.5 Paralogisitic distribution



Chapter 10

Extrem Value Theory distributions

10.1 Gumbel distribution

10.1.1 Characterization

The standard Gumbel distribution is defined by
the following density function

Jla)=e,

density function

— Gum(0,1)
— Gum(1/2,1)
— Gum(0,1/2)

Gum(-1,2)

0.7

where x € R. Its distribution function is ex-
pressed as follows

0.5

0.4

F(z)=e"° . =

0.3
1

A scaled and shifted version of the Gumbel
distribution exists. The density is defined as

fla) = 2e e g &

0.2

0.0

o
. 2 0 2 .

where z € R, 4 € R and ¢ > 0. We get back to

the standard Gumbel distribution with u = 0 ”

and 0 = 1. The distribution function of the

Gumbel I distribution is simply Figure 10.1: Density function for Gumbel distri-

e butions
Flx)y=e° 7,

for x € R.

There exists a Gumbel distribution of the second kind defined by the following distribution
function
T—p

Flz)=1—¢"°" |

111
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for x € R. Hence we have the density

1 z—n T—p

fl@)=—e 77 .

o
This is the distribution of —X when X is Gumbel I distributed.

The characteristic function of the Gumbel distribution of the first kind exists
B(t) =T(1 —iot)e™,
while its moment generating function are

M(t) = T(1 — ot)et.

10.1.2 Properties

The expectation of a Gumbel type I distribution is E(X) = ~, the Euler constant, roughly 0.57721.
Its variance is Var(X) = %2. Thus for the Fisher-Tippett distribution, we have E(X) = u + oy

and Var(X) = “26"2.

For the Gumbel type 11, expectation exists if ¢ > 1 and variance if a > 2.

10.1.3 Estimation

Maximum likelihood estimators are solutions of the following system

n X;—p
— 1y
1—5 (& 4

=1

n n X — )
1 1 .
L Xi=5 2 Xem e
i=1 1

i=

which can solved numerically initialized by the moment based estimators

_ 652
i =X, — oy and 6:\/72”,

where v is the FEuler constant.

10.1.4 Random generation

The quantile function of the Gumbel I distribution is simply F~!(u) = u — o log(—log(u)), thus
we can use the inverse function method.

10.1.5 Applications

The Gumbel distribution is widely used in natural catastrophe modelling, especially for maximum
flood. NEED REFERENCE
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10.2 Fréchet distribution

A Fréchet type distribution is a distribution whose distribution function is

F(x) = 6_(%)767

for x > p. One can notice this is the inverse Weibull distribution, see section for details.

10.3 Weibull distribution

A Weibull type distribution is characterized by the following distribution function

Fle)=1—e (554,

for x > p. See section for details.

10.4 Generalized extreme value distribution

10.4.1 Characterization

The generalized extreme value distribution is defined by the following distribution function

_1
F(z) = e~ (146558) ¢

for 1+¢& (%) > 0, £ the shape parameter, u the location parameter and o > 0 the scale parameter.
We can derive a density function

1 r—p _%_171 syt
f(m)za<1+£ = ) o~(6252)

This distribution is sometimes called the Fisher-Tippett distribution.

Let us note that the values can be taken in R, R_ or Ry according to the sign of £&. The dis-
tribution function is generally noted by H¢ , -, wich can expressed with the “standard” generalized
extreme value distribution Hgo; with a shift and a scaling. When ¢ tends to zero, we get the
Gumbel I distribution

T—p
e o

He y0() p—s e

10.4.2 Properties

The expectation and the variance are

2

E(X)=p— %m —¢) and Var(X)= %(m —26) —T%(1 - ¢€))
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if they exist.

From the extreme value theory, we have the following theorem. Let (X;)i<i<n be an i.i.d.
sample and X;.,, the order statistics. If there exits two sequences (ay,), and (b, ), valued in R and

R respectively, such that
P (Xn:n - bn)
Gn,

have a limit in probability distribution. Then the limiting distribution H for the maximum belongs

to the type of one the following three distribution functions

e~ x>0,6>0, MDA of Fréchet

H(x)={ e (2 2<0,6<0, MDA of Weibull
e ", xzeR, =0, MDA of Gumbel

where MDA stands for maximum domains of attraction®. For all distribution, there is a unique
MDA. We quickly see that the limiting distribution for the maximum is nothing else than the gen-
eralized extreme value distribution H¢ ;. This theorem is the Fisher-Tippett-Gnedenko theorem.

For the minimum, assuming that P <%> has a limit, the limiting distribution belongs to

l—e_zﬁ, x>0,6>0
Hx)=q 1—e 2" £<0,8<0
1—e ¢, reR,6=0

Again there are three types for the limiting distribution?.

In the MDA of Fréchet, we have the Cauchy, the Pareto, the Burr, the log-gamma and the stable
distributions, while in the Weibull MDA we retrieve the uniform, the beta and bounded support
power law distribution. Finally, the MDA of Gumbel contains the exponential, the Weibull, the
gamma, the normal, the lognormal, the Benktander distributions.

From the Embrechts et al.| (1997)), we also have some equivalence given a MDA:

e a distribution function F belongs to the MDA of Fréchet if and only if 1 — F(x) = z7“L(x)
for some slowly varying function L,

e a distribution function F' belongs to the MDA of Weibull if and only if 1 — F(zp — 1/z) =
x~*L(x) for some slowly varying function L and zp < 400,

e a distribution function F belongs to the MDA of Gumbel if and only if there exists z < zp

— (o9
such that 1 — F(z) = c(z)e J 2@ for some measurable function ¢, g and a continuous
function a.

e~

*Sometimes the distribution characterized by the distribution function e~ is called the extreme maximal-value

distribution.
o

tSometimes the distribution characterized by the distribution function 1—e~ * is called the extreme minimal-value

distribution.



10.5. GENERALIZED PARETO DISTRIBUTION 115

10.4.3 Estimation

According to Embrechts et al.| (1997) maximum likelihood estimation is not very reliable in the case
of the generalized extreme value fitting. But that’s not surprising since the generalized extreme
value distribution is a limiting distribution to very heterogeneous distribution, such as heavy tailed,
light tailed or bounded distributions.

We can use weighted moment method, where we estimate moments
wr(fa Ky U) = E(XHE,H,J(X))
by its empirical equivalent

1 n
~ r
Gy == XjlUh,
n “
=1

where U7, are the order statistics of an uniform sample (which can be replaced by its expectation

(sznil)ll)! (TET_L;Z )r!)! ). Equalling the theoretical and the empirical moments, we get that £ is a solution

(o)
3y —@y  35—1
21— 26—1"

Then we estimate the other two parameters with

(201 — @) .
— d o=
Pa-fEE-1 T rTET

(1-T(1=¢)).

o=

| Qy

10.4.4 Random generation

The quantile function of the generalized extreme value distribution is F~!(u) = p+ g ((—log u)~8)—
1 for £ # 0. So we can use the inverse function method.

10.4.5 Applications

The application of the generalized extreme value distribution is obviously the extremex value theory
which can be applied in many fields : natural disaster modelling, insurance/finance extreme risk
management,. . .

10.5 Generalized Pareto distribution

See section for details.
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Chapter 11

Generalization of common
distributions

11.1 Generalized hyperbolic distribution

This part entirely comes from Breymann & Liithi (2008)).

11.1.1 Characterization

The first way to characterize generalized hyperbolic distributions is to say that the random vector
X follows a multivariate GH distribution if

XEu+Wy+VWAZ (11.1)
where
1. Z ~ Ny (0, I})
2. A e Rk
3. p,y € R?
4. W > 0 is a scalar-valued random variable which is independent of Z and has a Generalized

Inverse Gaussian distribution, written GIG(A, x, ¥).

Note that there are at least five alternative definitions leading to different parametrizations.

Nevertheless, the parameters of a GH distribution given by the above definition admit the
following interpretation:

e )\, x,v¥ determine the shape of the distribution, that is, how much weight is assigned to the
tails and to the center. In general, the larger those parameters the closer is the distribution
to the normal distribution.

117
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e i is the location parameter.
e Y = AA’ is the dispersion-matrix.

e v is the skewness parameter. If v = 0, then the distribution is symmetric around p.

Observe that the conditional distribution of X|W = w is normal,

X|W =w ~ Ng(p + wvy,wd), (11.2)

Another way to define a generalized hyperbolic distribution is to use the density. Since the
conditional distribution of X given W is Gaussian with mean p + W+ and variance WX the GH
density can be found by mixing X|W with respect to W.

fx(z) = /OOOfXW(x|w)fW(w)dw (113)
- OOM(%X _Q) _ 13y wdw
- /0 (2m)% 2|3 w$ p{ 2w Q/w}fW( )d

(IDOM + 951 Ea g (VO QENW +75)) 7™

(2m)% |52 KA(VXO) (VX + Q@)@ +~57))2

where K)(-) denotes the modified Bessel function of the third kind and @Q(z) denotes the maha-
lanobis distance Q(z) = (z — u)’X " (z — u) (i.e. the distance with ¥~! as norm). The domain of
variation of the parameters A, x and % is given in section [11.1.2

)

A last way to characterize generalized hyperbolic distributions is the usage of moment generating
functions. An appealing property of normal mixtures is that the moment generating function is
easily calculated once the moment generating function of the mixture is known. Based on equation
(11.4]) we obtain the moment generating function of a GH distributed random variable X as

M(t) = E(E(exp {t’X} W) = etl“E(eXp {W (t'y +1/2 t’Et)})
_ < Y )W Fa(y/d(x — 2ty — 1531)
b=ty - %t KA

For moment generating functions of the special cases of the GH distribution we refer to |[Prause
(1999) and [Paolella) (2007)).

X > 2ty + /%t

11.1.2 Parametrization

There are several alternative parametrizations for the GH distribution. In the R package ghyp the
user can choose between three of them. There exist further parametrizations which are not imple-

mented and not mentioned here. For these parametrizations we refer to [Prause (1999) and [Paolella
(2007)).

Table describes the parameter ranges for each parametrization and each special case.
Clearly, the dispersion matrices ¥ and A have to fulfill the usual conditions for covariance ma-
trices, i.e., symmetry and positive definiteness as well as full rank.
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(A, X, ¥, 1, 2, v)-Parametrization
A X (4 7 by Y
ghyp AeR x>0 p>0 peRY YeR® v € R4
hyp A= x>0 >0 peRY LeR® v eRE
NIG A=-1 x>0 p>0 peRY YeR® v € R4
t A<0 x>0 p=0 pcRY YeR® v €R?
VG A>0 x=0 >0 peR? L eR® v € R4
(\, &, p, X3, v)-Parametrization
A a I % v
ghyp AER a>o0 peER? TLeR¥ ~HeR?
hyp A= a>o peRY BNeR¥ ycRY
NIG =1 a>0 peR? YeR®S ~eR?
t A=-%< -1 a=0 peERY TLeR® ~eR?
VG A>0 a=0 peRT YeR¥ ycRd
(A, a, 1, 2, 6, B)-Parametrization
A a 5 [ A 3
ghyp AER a>0 §>0 pueR? AcR® pgec{recR?:a?—2'Azr >0}
hyp )\:d%l a>0 §>0 peR?Y AcR? Be{recR?:a?—2'Az >0}
NIG A=-1 a>0 §>0 peR? AeR® pe{reR?:a?—-2'Ar >0}
t A<0 a=+FAB §>0 pecR¢Y AcRA B eR?
VG A>0 a>0 §=0 peR? AeR® pe{reR?:a?-2'Ar >0}

Table 11.1: The domain of variation for the parameters of the GH distribution and some of its
special cases for different parametrizations. We denote the set of all feasible covariance matrices in
R4 with R¥. Furthermore, let R® = {4 € R* : |A| = 1}.

Internally, he package ghyp uses the (A, x, ¥, i, ¥, v)-parametrization. However, fitting is done
in the (A, @, u, X, 7)-parametrization since this parametrization does not necessitate additional con-
straints to eliminate the redundant degree of freedom. Consequently, what cannot be represented
by the (A, a, p, 3, 0, f)-parametrization cannot be fitted (cf. section .

(A, X, ¥, 1, 2, v)-Parametrization

The (A, x, ¥, p, &, v)-parametrization is obtained as the normal mean-variance mixture distribution
when W ~ GIG(A,x,%). This parametrization has a drawback of an identification problem.
Indeed, the distributions GHg(\, x, ¥, p, X,v) and GHg(\, x/k, kv, p, kX, k7) are identical for any
k > 0. Therefore, an identifying problem occurs when we start to fit the parameters of a GH
distribution to data. This problem could be solved by introducing a suitable contraint. One
possibility is to require the determinant of the dispersion matrix ¥ to be 1.
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(A, @, p, X, v)-Parametrization

There is a more elegant way to eliminate the degree of freedom. We simply constrain the expected
value of the generalized inverse Gaussian distributed mixing variable W to be 1 (cf. . This
makes the interpretation of the skewness parameters v easier and in addition, the fitting procedure
becomes faster (cf. [11.1.5)).

We define ( )
X K1 (VX
EW)=, -2 2 =1, 114
W)=\ Ralvnw) -y
and set
a=/xv. (11.5)
It follows that &) ) @)
- K)\+1 (0% . O_éi A K/\ o
y=2a Ky(@) and x v “Kaaa) (116)

The drawback of the (A, &, u, X, v)-parametrization is that it does not exist in the case @ = 0 and
A € [—1,0], which corresponds to a Student-t distribution with non-existing variance. Note that
the (A, @, p, X, v)-parametrization yields to a slightly different parametrization for the special case
of a Student-t distribution.

(A, o, 1, 2,9, f)-Parametrization

When the GH distribution was introduced in Barndorff-Nielsen| (1977)), the following parametriza-
tion for the multivariate case was used.

(a? — BAB)M? Ky _af a\/(52 WAz — ) e =
om) I AP KA(/a? — BAD) (/P i & p A (s m)i

where the determinant of A is constrained to be 1. In the univariate case the above expression
reduces to

fx(x) = , (11.7)

(a2_ﬂ2))\/2 o
Ix@) = e T G eV e, )

which is the most widely used parametrization of the GH distribution in literature.

Switching between different parametrizations

The following formulas can be used to switch between the (A, @, u,X,7v), (A, x, ¥, p, %,v), and
the (A, a, u, 2, 9, B)-parametrization. The parameters A and p remain the same, regardless of the
parametrization.

The way to obtain the (A,a,pu,X,d, f)-parametrization from the (A, @, p, X, y)-parametrization
yields over the (A, x, ¥, i, 3, )-parametrization:

()\7d7l’l’7 E?’Y) : (>\7X7/¢)7/‘1/7E77) <:) ()\’a’/“’l/’ Z)’(57/8)
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(A, @, i, 2,7) — (A, x, ¥, 1, 5,7v): Use the relations in (11.6]) to obtain x and ¢. The parameters ¥
and - remain the same.

_ K
(A X%, 15,7) = (A, @ 1,5, 7): Set k=, [XEanOA0),

a=+/x, Y=kX, y=kvy (11.9)
(Axo s, B,7) = (N a, i1, 2,6, 5):
A=g[max , g=3x"l

§=1/xI=l oz:\/IE\‘%(ibJrv’E*lfy) (11.10)

(A7 a7 H7 27 57 ﬁ) - ()\7 X7 /(/]7 /"[’7277):
Y=A, v=Af, x=0% v=ado®-FA%. (11.11)

11.1.3 Properties
Moments

The expected value and the variance are given by
EX) = p+EW)y (11.12)
Var(X) = E(Cov(X|W))+ Cov(E(X|X)) (11.13)
= Var(W)yy + E(W)X.

Linear transformation

The GH class is closed under linear transformations: If X ~ GHy(\, x, ¥, 1, 3,7v) and Y = BX +b,
where B € R**? and b € R¥, then Y ~ GHy(\ x,¢, By + b, BEB’,By). Observe that by
introducing a new skewness parameter 7 = ¥y, all the shape and skewness parameters (A, x, ¥, 7)
become location and scale-invariant, provided the transformation does not affect the dimensionality,
that is B € R™? and b € R%.

11.1.4 Special cases
The GH distribution contains several special cases known under special names.

o If \ = % the name generalized is dropped and we have a multivariate hyperbolic (hyp)
distribution. The univariate margins are still GH distributed. Inversely, when A = 1 we get
a multivariate GH distribution with hyperbolic margins.

e If A = —1 the distribution is called Normal Inverse Gaussian (NIG).
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o If x =0 and A > 0 one gets a limiting case which is known amongst others as Variance
Gamma (VG) distribution.

e If » = 0 and A < —1 one gets a limiting case which is known as a generalized hyperbolic
Student-t distribution (called simply Student-t in what follows).

11.1.5 Estimation

Numerical optimizers can be used to fit univariate GH distributions to data by means of maximum
likelihood estimation. Multivariate GH distributions can be fitted with expectation-maximazion
(EM) type algorithms (see Dempster et al.| (1977)) and [Meng & Rubin/ (1993)).

EM-Scheme

Assume we have iid data x1, ..., x, and parameters represented by © = (A, @, 1, 2,7). The problem
is to maximize

InL(©;x1,...,2,) = Zlnfx(xi;@). (11.14)
i=1

This problem is not easy to solve due to the number of parameters and necessity of maximizing
over covariance matrices. We can proceed by introducing an augmented likelihood function

n n
InL(O;x1,...,&n,w1,...,w,) = Zlnfx|w($i|wz'§ X, y) + Zln fw (wis A, @) (11.15)
=1 =1

and spend the effort on the estimation of the latent mixing variables w; coming from the mixture
representation (11.2). This is where the EM algorithm comes into play.

E-step: Calculate the conditional expectation of the likelihood function ((11.15) given the data
Z1,..., 2, and the current estimates of parameters ©¥. This results in the ob jective function

Q(6; @[k}) =F (lni(@;zl, ey Ty Wy e W) | T, ey Ty G[k]> . (11.16)

M-step: Maximize the objective function with respect to © to obtain the next set of estimates

Olk+1]

Alternating between these steps yields to the maximum likelihood estimation of the parameter
set ©. In practice, performing the E-Step means maximizing the second summand of ((11.15]
numerically. The log density of the GIG distribution (cf. is

A 1
In fiy(w) = 5 In(¢/x) —In(2K\(v/x¥)) + (A=1)Inw — ga - %w. (11.17)
When using the (A, @)-parametrization this problem is of dimension two instead of three as it is in

the (A, x, 1)-parametrization. As a consequence the performance increases.
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Since the w;’s are latent one has to replace w, 1/w and Inw with the respective expected values in
order to maximize the log likelihood function. Let

nzm =F (wi | 24 G)W) , (5l[k] =F <wi_1 | 4 @[k]> ; xiz[-k} =FE (lnwi | 2 @[k]> : (11.18)

We have to find the conditional density of w; given x; to calculate these quantities.

MCECM estimation

In the R implementation a modified EM scheme is used, which is called multi-cycle, expectation,
conditional estimation (MCECM) algorithm (Meng & Rubin/|1993, McNeil, Frey & Embrechts
2005d). The different steps of the MCECM algorithm are sketched as follows:

(1) Select reasonable starting values for Okl For example A =1, a = 1, W is set to the sample
mean, Y to the sample covariance matrix and ~ to a zero skewness vector.

(2) Calculate ¥ and ¥ as a function of @ using (11.6).
3) Use (11.18)), (11.12) to calculate the weights TIW and 5[k]. Average the weights to get

Zn[k] and 5% Za[’“] (11.19)

(4) If an asymmetric model is to be fitted set v to 0, else set

1" Mz — 1)
(k+1] _ = Lui=1" v
v R} RN (11.20)

(5) Update pu and X:

k
k+1]  _ 1 Zz 19 ), ]( V[kﬂ])
a n 51k]

w1 Z 5[k] — plE Uy (g — by Rl ey ] (11.22)

(11.21)

Z[k’2], 51[]“2] and a:z'gk’ﬂ using

(6) Set ©F2 = (AIFl glFl (k1] slk+1] ~F+1) and calculate weights 7
(19, (@) and (T3

(7) Maximize the second summand of (11.15)) with density (11.17) with respect to A, x and 9 to
complete the calculation of ©%2 and go back to step (2). Note that the objective function
must calculate x and 1 in dependence of A and @ using relation (11.6)).

11.1.6 Random generation

We can simply use the first characterization by adding
w+Wy+vWAZ

where Z is a multivariate gaussian vector Ny (0, Ix) and W follows a Generalized Inverse Gaussian
GIG(A, X, ¥).
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11.1.7 Applications

Even though the GH distribution was initially ivented to study the distribution of the logarithm
of particle sizes, we will focus on applications of the GH distribution family in finance and risk
measurement.

We have seen above that the GH distribution is very flexible in the sense that it nests several
other distributions such as the Student-t (cf. [7.1]).

To give some references and applications of the GH distribution let us first summarize some
of its important properties. Beside of the above mentioned flexibility, three major facts led to the
popularity of GH distribution family in finance:

(1) The GH distribution features both fat tails and skewness. These properties account for the
stylized facts of financial returns.

(2) The GH family is naturally extended to multivariate distributions*. A multivariate GH
distribution does exhibit some kind of non-linear dependence, for example tail-dependence.
This reflects the fact that extremes mostly occure for a couple of risk-drivers simultaneously
in financial markets. This property is of fundamental importance for risk-management, and
can influence for instance the asset allocation in portfolio theory.

(3) The GH distribution is infinitely divisible (cf. Barndorff-Nielsen & Halgreen| (1977)). This is
a necessary and sufficient condition to build Lévy processes. Lévy processes are widespread
in finance because of their time-continuity and their ability to model jumps.

Based on these properties one can classify the applications of the GH distributions into the fields
empirical modelling, risk and dependence modelling, derivative pricing, and portfolio selection.

In the following, we try to assign papers to each of the classes of applications mentioned above.
Rather than giving abstracts for each paper, we simply cite them and refer the interested reader
to the bibliography and to the articles. Note that some articles deal with special cases of the GH
distribution only.

Empirical modelling [Eberlein & Keller| (1995), |[Barndorff-Nielsen & Prause (2001)), Fergusson
& Platen| (2006)

Risk and dependence modelling [Eberlein et al.|(1998), Breymann et al.| (2003)), [McNeil et al.
(200508), |Chen et al. (2005), Kassberger & Kiesel (2006))

Lévy processes Barndorfl-Nielsen| (1997db), Bibby & Sorensen! (1997)), Dilip B. Madan et al.
(1998)), Raible (2000)), Cont & Tankov| (2003)

*The extension to multivariate distributions is natural because of the mixing structure (see eq. )
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Portfolio selection Kassberger| (2007)

11.2 Stable distribution

A detailed and complete review of stable distributions can be found in Nolan, (2009).

11.2.1 Characterization

Stable distributions are characterized by the following equation
> L
aX +bX =cX +d,

where X and X are independent copies of a random variable X and some positive constants a, b, c

and d. This equation means stable distributions are distributions closed for linear combinations.
For the terminology, we say X is strictly stable if d = 0 and symmetric stable if in addition we have

X £ —X. From Nolan (2009), we learn we use the word stable since the shape of the distribution
is preserved under linear combinations.

Another way to define stable distribution is to use characteristic functions. X has a stable
distribution if and only if its characteristic function is

eI (—iBtan()sign() i o £ 1

%)
P(t) =€ x { o~ I171(1+i62 log |tlsign (1)) f ool

where «a €]0,2], 8 €] — 1,1[, v > 0 and b € R are the parameters. In the following, we denote
S(a, B8,7,9), where § is a location parameter, v a scale parameter, « an index of stability and 3 a
skewness parameter. This corresponds to the parametrization 1 of |Nolan (2009).

We know that stable distributions S(«, 3,7, d) are continuous distributions whose support is
9, 00| if a<1 and =1

| — o0, 9] if a<1l and f=-1
| — 00, +00[  otherwise

11.2.2 Properties

If we work with standard stable distributions S(«, 3,0, 1), we have the reflection property. That is
to say if X ~ S(a,3,0,1), then —X ~ S(a,—3,0,1). This implies the following constraint on the
density and the distribution function:

fx(x)=f-x(—z) and Fx(z)=1- F_x(x).
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From the definition, we have the obvious property on the sum. If X follows a stable distribution
S(a, 8,7,9), then aX + b follows a stable distribution of parameters

S(aysign(a)s, |aly, ad + b) if a#1
S(1,sign(a)B, aly,ad +b— 2Byaloglal)  if a=1

Furthermore if X; and Xo follow a stable distribution S(«, 3;,7:,9;) for i = 1,2, then the
sum X; + Xj follows a stable distribution S(a, 8,7,0) with § = 2LF2IE o = (3¢ 4+ 4¢)7 and
1 2
0= 51 —+ 52.

11.2.3 Special cases

The following distributions are special cases of stable distributions:

| _emw?
e 5(2,0,0/v/2, ) is a Normal distribution defined by the density f(x) = Torsz® 202,
e 5(1,0,7,0) is a Cauchy distribution defined by the density f(z) = %m,
e 5(1/2,1,,6) is a Lévy distribution defined by the density f(x) = %( 15)3 e T,
xr— 2

11.2.4 Estimation

NEED REFERENCE

11.2.5 Random generation

Simulation of stable distributions are carried out by the following algorithm from [Chambers et al.
(1976). Let © be an independent random uniform variable U (—n/2,7/2) and W be an exponential
variable with mean 1 independent from ©. For 0 < a < 2, we have

e in the symmetric case,

sin(aO) <cos((a - 1)@)) =
cos(@)é w
follows a stable distribution S(«,0,1,0) with the limiting case tan(©) when a — 1.

Z:

e in the nonsymetric case,

sin(a(©+0)) (cos(a9+(a—1)9)) 1?7(1
w

Z={ (cos(at)cos(@) £W cos(©)
% ((g + 30) tan(0) — [log (234270;@))

follows a stable distribution S(a, 3,1,0) where § = arctan(( tan(mwa/2))/cv.
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Then we get a “full” stable distribution with vZ + 4.

11.2.6 Applications

NEED REFERENCE

11.3 Phase-type distribution

11.3.1 Characterization

A phase-type distribution PH (w,T,m) (7 a row vector of R™ T a m x m matrix) is defined as
the distribution of the time to absorption in the state 0 of a Markov jump process, on the set
{0,1,...,m}, with initial probability (0,7) and intensity matrix*

0o
A= (Nj)ig = T )
0

where the vector tg is —7'1,, and 1,,, stands for the column vector of 1 in R™. This means that if
we note (My); the associated Markov process of a phase-type distribution, then we have

. N )\ijh—i—o(h) ifi#£j
P(Mt+h—J/Mt_Z)_{1+Aiih+o(h) if i =j

The matrix T is called the sub-intensity matrix and ¢y the exit rate vector.

The cumulative distribution function of a phase-type distribution is given by
F(z)=1-nel®1,,,

and its density by
f(z) = meTty,

+o0o
where e7® denote the matrix exponential defined as the matrix serie >
n=0

Tz
n!

The computation of matrix exponential is studied in details in appendix but let us notice
that when T is a diagonal matrix, the matrix exponential is the exponential of its diagonal terms.
Let us note that there also exists discrete phase-type distribution, cf. [Bobbio et al.| (2003)).

11.3.2 Properties

The moments of a phase-type distribution are given by (—1)"n!7T~"1. Since phase-type distribu-
tions are platikurtic or light-tailed distributions, the Laplace transform exists

F(s) = m(—sLy, — T) o,

*matrix such that its row sums are equal to 0 and have positive elements except on its diagonal.
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where I, stands for the m x m identity matrix.

One property among many is the set of phase-type distributions is dense with the set of positive
random variable distributions. Hence, the distribution of any positive random variable can be
written as a limit of phase-type distributions. However, a distribution can be represented (exactly)
as a phase-type distribution if and only if the three following conditions are verified

e the distribution has a rational Laplace transform,;
e the pole of the Laplace transform with maximal real part is unique;

e it has a density which is positive on R .

11.3.3 Special cases

Here are some examples of distributions, which can be represented by a phase-type distribution

e exponential distribution E(A) : 7 =1, T = —X and m = 1.

e generalized Erlang distribution G (n, (Ai)i<i<n) :

T =(1,0,...,0),
VD VR 0
0 X o 0
T=| 0 0 - 0 ;
0 0 o Anet
0 0 0 0 =X\

and m = n.

e a mixture of exponential distribution of parameter (p;, Ai)1<i<n :

™= (plv"' 7pn)7

~A 0 0 0

0 —Xx O 0
T= 0 0 —Xs 0o |-

0 0 L0

0 0 0 0 -—A\

and m = n.

e a mixture of 2 (or k) Erlang distribution G(n;, A;)i=1,2 with parameter p; :

7= (p1,0,...,0,p2,0,...,0),

ni n2
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“AM A 0 0 0 0

0 . A O 0 0

0 0 -A O 0 0 0
T=| 0 o0 “X2 A 0 0 |,

0O 0 0 0 0

0 0 0 0 0 " X

0 0 0 0 0 0 —X

and m = nq + no.

11.3.4 Estimation

The estimation based on moments can be a starting point for parameters, but according to |[Feld-
mann & Whitt| (1996) the fit is very poor. |[Feldmann & Whitt| (1996) proposes a recursive algo-
rithm matching theoretical quantiles and empirical quantiles. They illustrates their method with
the Weibull and the Pareto distribution by a mixture of exponential distributions.

First Asmussen et al.| (1996)) and then Lee & Lin (2008)) fit phase-type distribution with the EM
algorithm. Lee & Lin| (2008) also investigates goodness of fit and graphical comparison of the fit.
Lee & Lin| (2008)) focuses on mixture of Erlang distributions while |Asmussen et al.| (1996|) provides
an algorithm for general phase-type distributions. [Lee & Lin| (2008) illustrates their algorithm with
an uniform, a Weibull, a Pareto and log-normal distributions.

11.3.5 Random generation

From Neuts (1981), we have the following algorithm to generate phase-type distributed random
variate. Let s be the state of the underlying Markov chain.

e S initialized from the discrete distribution characterized by m
e X initialized to 0
e while S # 0 do
— generate U from an uniform distribution,
- X =X - L log(U),
)\ij

— generate S from a discrete distribution characterized by the row A

where A is the transition matrix defined by
if i=j=1
if i=1 and j#1
if i>1 and j=1
2 if ¢>1 and j#1i

>
>/OO}—A
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11.3.6 Applications

NEED REFERENCE

11.4 Exponential family

11.4.1 Characterization

Clark & Thayer| (2004) defines the exponential family by the following density or mass probability
function
flz) = UO)e(x)+g(0)+h(x)

where d, e, g and h are known functions and 6 the vector of paremeters. Let us note that the support
of the distribution can be R or R} or N. This form for the exponential family is called the natural
form.

When we deal with generalized linear models, we use the natural form of the exponential family,
which is

flz) = ) reled)

9

where a, b, ¢ are known functions and 6, ¢* denote the parameters. This form is derived from the
previous by setting d(0) = 0, e(x) = x and adding a dispersion parameter ¢.

Let 1 be the mean of the variable of an exponential family distribution. We have p = 7(0) since
¢ is only a dispersion parameter. The mean value form of the exponential family is

—1 —1
Y EST k) PP

flry=e @ .

11.4.2 Properties

For the exponential family, we have E(X) = p = (6) and Var(X) = a(¢)V (u) = a(¢)b”(0) where

V' is the unit variance function. The skewness is given by v3(X) = %(,u) 3((‘7;)) = b‘f;%f)(f;);,

. 2| 4 ) (0)a(d)3
the kurtosis is v4(X) = 3 + [‘zg(u)V(u) + (%(M)) ] V(((Z)) =3+ %.

while

The property of uniqueness is the fact that the variance function V uniquely identifies the
distribution.

11.4.3 Special cases

The exponential family of distributions in fact contains the most frequently used distributions.
Here are the corresponding parameters, listed in a table:

*the canonic and the dispersion parameters.
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Law Distribution 0 ¢  Expectation  Variance
2 | e 2

Normal N (i, c?) e 202 ,u o pu=4~0 1

2wo

apo—1
Gamma G(«, 3) ﬁlfga) e P 7% = i é = 7% ©?

N M) 1 1 -1 3
Inverse Normal Z(u, \) R v 5 m=(=20)"2 pu
. _ 6

Bernoulli B(u) Pl =)t log(vy) 1 p=15m p(l — p)
Poisson P(u) Eremt log(p) 1 p=é 1
Overdispersed Poisson P(¢, 1) ’;—ae*“ log(u) 6 ¢’ o

1

11.4.4 Estimation
The log likelihood equations are
n
1 X; _ b()
n L)~ alo)
n n Y
1 0Xia'(¢) 1 d _ '(¢)
n l; a;(l(b) T n l; BTZ(XM ¢) = b(@) ZQ(¢)

for a sample (X;);.

11.4.5 Random generation

NEED REFERENCE

11.4.6 Applications

GLM, credibility theory, lehman scheffe theorem

11.5 Elliptical distribution

11.5.1 Characterization

TODO
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11.5.2

TODO

11.5.3

11.5.4

TODO

11.5.5

TODO

11.5.6

CHAPTER 11.

Properties

Special cases

Estimation

Random generation

Applications

GENERALIZATION OF COMMON DISTRIBUTIONS



Chapter 12

Multivariate distributions

12.1 Multinomial

12.2 Multivariate normal
12.3 Multivariate elliptical
12.4 Multivariate uniform
12.5 Multivariate student
12.6 Kent distribution

12.7 Dirichlet distribution

12.7.1 Characterization

TODO

12.7.2 Properties

TODO
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12.7.3 Estimation

TODO

12.7.4 Random generation

TODO

12.7.5 Applications

TODO

12.8 Von Mises Fisher

12.9 Evens

MULTIVARIATE DISTRIBUTIONS



Chapter 13

Misc

13.1 MBBEFD distribution

The MBBEFD distribution comes from the actuarial science due to |[Bernegger| (1997). MBBEFD
stands for Maxwell-Boltzmann, Bore-Einstein and Fermi-Dirac distribution.

13.1.1 Characterization

The MBBEFD distribution is characterized by the following distribution function.

1 .
P(z) = a(a‘fbm—1> if 0<z<1 7
1 if x>1

for x € Ry. The MBBEFD distribution is a mixed distribution of a continuous distribution on
z €]0, 1] and a discrete distribution in # = 1. We have a mass probability for x = 1

(a+1)b
=1-F(1) = .
P (L) a+b
The parameters (a,b) are defined on a wide set of intervals, which are not trivial: ] —1,0[x]1, 4o00|

and | —oo, —1[U]0, +00[x]0, 1[. The shape of the distribution function F has the following properties

o for (a,b) € I =] — 1,0[x]1, +oo[, F is concave,
o for (a,b) € Iy =] — 00, —1[x]0, 1[, F' is concave,
e for (a,b) € I3 =]0,b[x]0, 1], F is concave,

for (a,b) € Iy = [b,1[x]0, 1[, F is convex then concave,

o for (a,b) € Iy = [1,4+00[x]0, 1], F is convex.

135
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There is no usual density but if we use the Dirac function §, we can define a function f such

that
—a(a + 1)b* In(b)

(a+b%)?

which is a mix between a mass probability and a density functions.

f(x) = Ljo,1((z) + 1.

13.1.2 Special cases

TODO

13.1.3 Properties

TODO

13.1.4 Estimation

TODO

13.1.5 Random generation

TODO

13.1.6 Applications

13.2 Cantor distribution

TODO

13.3 Tweedie distribution

TODO



Bibliography

Arnold, B. C. (1983), ‘Pareto distributions’, International Co-operative Publishing House 5.

93} B3} PY

Asmussen, S., Nerman, O. & Olsson, M. (1996), ‘Fitting phase-type distributions via the em algo-
rithm’, Scandinavian Journal of Statistics 23(4), 419-441.

Barndorff-Nielsen, O. E. (1977), ‘Exponentially decreasing distributions for the logarithm of particle
size’, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
353(1674), 401-419.

Barndorff-Nielsen, O. E. (1997a), ‘Normal inverse Gaussian distributions and stochastic volatility
modelling’, Scandinavian Journal of Statistics 24(1), 1-13.

Barndorff-Nielsen, O. E. (1997b), ‘Processes of normal inverse gaussian type’, Finance and Stochas-

tics 2(1), 41-68.

Barndorff-Nielsen, O. E. & Halgreen, O. (1977), ‘Infinite divisibility of the hyperbolic and gen-
eralized inverse gaussian distribution’, Zeitschrift fir Wahrscheinlichkeitstheorie und verwandte
Gebiete 38(4), 309-311.

Barndorff-Nielsen, O. E. & Prause, K. (2001), ‘Apparent scaling’, Finance and Stochastics
5(1), 103-113.

Bernegger, S. (1997), ‘The swiss re exposure curves and the mbbefd distribution class’, Astin Bull.
27(1), 99-111. [135]

Bibby, B. M. & Sorensen, M. (1997), ‘A hyperbolic diffusion model for stock prices’, Finance &
Stochastics 2 pp. 25-41. [124]

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal of Political
Economy 81(3).

Bobbio, A., Horvath, A., Scarpa, M. & Telek, M. (2003), ‘Acyclic discrete phase type distributions:
properties and a parameter estimation algorithm’, performance evaluation 54, 1-32.

Breymann, W., Dias, A. & Embrechts, P. (2003), ‘Dependence Structures for Multivariate High—
Frequency Data in Finance’, Quantitative Finance 3(1), 1-14.

Breymann, W. & Liithi, D. (2008), ghyp: A package on generalized hyperbolic distributions, Institute
of Data Analysis and Process Design.

Brigo, D., Mercurio, F., Rapisarda, F. & Scotti, R. (2002), ‘Approximated moment-matching dy-
namics for basket-options simulation’, Product and Business Development Group,Banca IMI,

SanPaolo IMI Group .

137



138 BIBLIOGRAPHY

Cacoullos, T. & Charalambides, C. (1975), ‘On minimum variance unbiased estimation for truncated
binomial and negative binomial distributions’, Annals of the Institute of Statistical Mathematics

27(1).
Carrasco, J. M. F., Ortega, E. M. M. & Cordeiro, G. M. (2008), ‘A generalized modified weibull
distribution for lifetime modeling’, Computational Statistics and Data Analysis 53, 450—462.

Chambers, J. M., Mallows, C. L. & Stuck, B. W. (1976), ‘A method for simulating stable random
variables’, Journal of the American Statistical Association, . [126

Chen, Y., Hirdle, W. & Jeong, S.-O. (2005), Nonparametric Risk Management with Generalized
Hyperbolic Distributions, Vol. 1063 of Preprint / Weierstraffi—Institut fiir Angewandte Analysis
und Stochastik, WIAS, Berlin.

Clark, D. R. & Thayer, C. A. (2004), ‘A primer on the exponential family of distributions’, 2004
call paper program on generalized linear models .

Cont, R. & Tankov, P. (2003), Financial Modelling with Jump Processes, Chapman & Hall CRC
Financial Mathematics Series. [124]

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from incomplete data
via the Em algorithm’, Journal of the Royal Statistical Society 39(1), 1-38.

Dilip B. Madan, Peter Carr & Eric C. Chang (1998), ‘The variance gamma process and option
pricing’, European Finance Review 2, 79-105.

Dutang, C. (2008), randtoolboz: Generating and Testing Random Numbers.

Eberlein, E. & Keller, U. (1995), ‘Hyperbolic distributions in finance.’, Bernoulli 1 pp. 281-299.
24

Eberlein, E., Keller, U. & Prause, K. (1998), ‘New insights into smile, mispricing and value at risk
measures.’, Journal of Business 71, 371-405.

Embrechts, P., Kliippelberg, C. & Mikosch, T. (1997), Modelling extremal events, Springer.
[100} [10T], 114} [1T5]

Feldmann, A. & Whitt, W. (1996), ‘Fitting mixtures of exponentials to long tail distributions to
analyze network performance models’, AT&T Laboratory Research .

Fergusson, K. & Platen, E. (2006), ‘On the distributional characterization of log-returns of a world
stock index’, Applied Mathematical Finance 13(1), 19-38.

Froot, K. A. & O’Connell, P. G. J. (2008), ‘On the pricing of intermediated risks: Theory and
application to catastrophe reinsurance’, Journal of banking & finance 32, 69-85.

Gomes, O., Combes, C. & Dussauchoy, A. (2008), ‘Parameter estimation of the generalized gamma
distribution’, Mathematics and Computers in Simulation 79, 955-963.

Haahtela, T. (2005), Extended binomial tree valuation when the underlying asset distribution is
shifted lognormal with higher moments. Helsinki University of Technology.

Haddow, J. E., Palomaki, G. E., Knight, G. J., Cunningham, G. C., Lustig, L. S. & Boyd, P. A.
(1994), ‘Reducing the need for amniocentesis in women 35 years of age or older with serum
markers for screening’, New England Journal of Medicine 330(16), 1114-1118.



BIBLIOGRAPHY 139

Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994), Continuous univariate distributions, John
Wiley.

Jones, M. C. (2009), ‘Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages’, Statistical Methodology 6, 70. [45] [46]

Kassberger, S. (2007), ‘Efficient Portfolio Optimization in the Multivariate Generalized Hyperbolic
Framework’, SSRN eLibrary .

Kassberger, S. & Kiesel, R. (2006), ‘A fully parametric approach to return modelling and risk
management of hedge funds’, Financial markets and portfolio management 20(4), 472-491.

Klugman, S. A., Panjer, H. H. & Willmot, G. (2004), Loss Models: From Data to Decisions, 2 edn,
Wiley, New York.

Knuth, D. E. (2002), The Art of Computer Programming: seminumerical algorithms, Vol. 2, 3rd
edition edn, Massachusetts: Addison-Wesley.

Lee, S. C. & Lin, X. S. (2008), ‘Modeling and evaluating insurance losses via mixtures of erlang’,
North American Actuarial Journal . 129

Li, Q. & Yu, K. (2008), ‘Inference of non-centrality parameter of a truncated non-central chi-squared
distribution’, Journal of Statistical Planning and Inference . [T9]

Limpert, E., Stahel, W. A. & Abbt, M. (2001), ‘Log-normal distributions across the sciences: Keys
and clues’, Bioscience 51(5).

Matsumoto, M. & Nishimura, T. (1998), ‘Mersenne twister: A 623-dimensionnally equidistributed
uniform pseudorandom number generator’, ACM Trans. on Modelling and Computer Simulation

8(1), 3-30.

Macutek, J. (2008), ‘A generalization of the geometric distribution and its application in quantita-
tive linguistics’, Romanian Reports in Physics 60(3), 501-509.

McNeil, A. J., Frey, R. & Embrechts, P. (2005a), Quantitative risk management: Concepts, tech-
niques and tools, Princeton University Press, Princeton. {123

McNeil, A. J., Frey, R. & Embrechts, P. (2005b), Quantitative risk management: Concepts, tech-
niques and tools, Princeton University Press, Princeton. 124

Meng, X.-L. & Rubin, D.-B. (1993), ‘Maximum likelihood estimation via the ECM algorithm: A
general framework’, Biometrika 80(2), 267-278.

Moler, C. & Van Loan, C. (2003), ‘Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later’, SIAM review 45(1), 300.

Nadarajah, S. & Kotz, S. (2003), ‘A generalized beta distribution ii’, Statistics on the internet .

A2} (43

Neuts, M. F. (1981), Generating random variates from a distribution of phase-type, in ‘Winter
Simulation Conference’. [129

Nolan, J. P. (2009), Stable Distributions - Models for Heavy Tailed Data, Birkh&user, Boston. In
progress, Chapter 1 online at academic2.american.edu/~jpnolan. m



140 BIBLIOGRAPHY

Paolella, M. (2007), Intermediate probability: A computational approach, Wiley, Chichester. m

Patard, P.-A. (2007), ‘Outils numeriques pour la simulation monte carlo des produits derives com-
plexes’, Bulletin francais d’actuariat 7(14), 74-117.

Pickands, J. (1975), ‘Statistical inference using extreme order statistics’, Annals of Statistics 3, 119—
131.

Prause, K. (1999), The Generalized Hyperbolic Model: Estimation Financial Derivatives and Risk
Measures, PhD thesis, Universitdat Freiburg i. Br., Freiburg i. Br.

Raible, S. (2000), Lévy processes in finance: Theory, numerics, and empirical facts, PhD thesis,
Universitét Freiburg i. Br.

Rytgaard, M. (1990), ‘Estimation in the pareto distribution’, Astin Bull. 20(2), 201-216.
Saporta, G. (1990), Probabilités analyse des données et statistique, Technip.

Saxena, K. M. L. & Alam, K. (1982), ‘Estimation of the non-centrality parameter of a chi-squared
distribution’, The Annals of Statistics 10(3), 1012-1016.

Simon, L. J. (1962), An introduction to the negative binomial distribution and its applications, in
‘Casualty Actuarial Society’, Vol. XLIX.

Singh, A. K., Singh, A. & Engelhardt, M. (1997), ‘The lognormal distribution in environmental
applications’, EPA Technology Support Center Issue .

Stein, W. E. & Keblis, M. F. (2008), ‘A new method to simulate the triangular distribution’,
Mathematical and computer modelling .

Tate, R. F. & Goen, R. L. (1958), ‘Minimum variance unbiased estimation for the truncated poisson
distribution’, The Annals of Mathematical Statistics 29(3), 755-765.

Thomas, D. G. & Gart, J. J. (1971), ‘Small sample performance of some estimators of the truncated
binomial distribution’, Journal of the American Statistical Association 66(333).

Venter, G. (1983), Transformed beta and gamma distributions and aggregate losses, in ‘Casualty
Actuarial Society’.

Wimmer, G. & Altmann, G. (1999), Thesaurus of univariate discrete probability distributions,
STAMM Verlag GmbH Essen.

Yu, Y. (2009), ‘Complete monotonicity of the entropy in the central limit theorem for gamma and
inverse gaussian distributions’; Statistics and probability letters 79, 270-274.



Appendix A

Mathematical tools

A.1 Basics of probability theory

TODO

A.1.1 Characterising functions

For a discrete distribution, one may use the probability generating function to characterize the
distribution, if it exists or equivalently the moment generating function. For a continuous distri-
bution, we generally use only the moment generating function. The moment generating function is
linked to the Laplace transform of a distribution. When dealing with continuous distribution, we
also use the characteristic function, which is related to the Fourrier transform of a distribution, see
table below for details.

Probability generating | Moment generating Laplace Characteristic Fourrier
function Gx(z) function Mx (t) <=> Transform Lx(s) | function ¢x(t) <=> transform
E [zX] E [etX} <=> E [e_sx] E [eitX] <=> E [e‘itX]

We have the following results

e Vk € N, X discrete random variable , P(X = k) = %dki’,i(t) lt=0; E(X ... (X—k)) = dki},ﬁ(t) le=1

_dFMx(t
- dtk

e VX continuous random variable E(X%) )\t:()
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A.2 Common mathematical functions

In this section, we recall the common mathematical quantities used in all this guide. By definition,
we have

A.2.1 Integral functions

e gamma function: Va > 0, I'(a f+°° a=le=2dy

e incomplete gamma function: lower Va,z > 0, v(a,x) = fox y*“le ¥dy and upper I'(a,z) =
f+00 yaflefydy.
x )

e results for gamma function Vn € N*, I'(n) = (n — 1)}, ['(0) = 1, I'(3) = /7, Va > 1, I'(a) =
(a—1)I'(a—1)

e beta function: Va,b > 0, ((a,b) = fol 211 — x)ldx,
e incomplete beta function V1 > u > 0, 5(a, b, u) fu a=l(1 —2) b L

e results for beta function Va,b > 0, 5(a,b) = 1}(8}25}[;)

e digamma function: Vo > 0,¢(z) = )

e trigamma function: Va > 0,1 (z) = FI:/(SC))

e ecrror function : erf(x f .

A.2.2 Factorial functions

o factorial : Vn e Nynl=nx(n—-1)...2x1

e rising factorial : Vn,m € N2, m(™ =m x (m + D.o..im+n—=2)x(m+n-1)= F(ICL(J?;T)

e falling factorial: Vn,m € N2, (m), =mx (m—1)...(m —n+2)x (m—n+1) = F{rsﬁ)n)

e combination number : Vn,p € N2, CF = p!(%ip)!

n!
(n—p)!

e arrangement number Ah =

e Stirling number of the first kind : coefficients 1S¥ of the expansion of (z), = > 7_, 15%z* or
defined by the recurrence 1S¥ = (n —1) x 1Sk 1+ 152:% with 150 = 6,0 and 15 = 0.

e Stirling number of the second kind : coefficients 2S¥ of the expansion Z o 25F () = 2" or
defined by the recurrence gSk = gSk % + k x QSn | with 251 = 25) =
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A.2.3 Serie functions

+o0o
e Riemann’s zeta function : Vs > 1,((s) = L
n=1
+oo
e Jonquiere’s function : Vs > 1,Vz > 0, Lis(z) = =
n=1

+OO n n
e hypergeometric function : Va,b,c € N\Vz € R,1Fi(a,b,z) = > %, oF(a,b,c,z) =
n=0 ’

c(n)  nl d(m)e(n)  nl*

“+00

(n)p(n) n (n) p(n) o(n)
> a b 2 and sFi(a,b,c,d,e,z) = Za b e 2
n=0

e Bessel’s functions verify the following ODE: z2y” + 2y + (22 — a?)y = 0. We define the Bessel
o0 n
function of the 15 kind by J,(x) = > nlr((i (%)Zm_a and of the 2" kind Y, (z) =

n+a+1)
Ja(z)cos(am)—J_o(z)
sin(ar) :

e Hankel’s function: Hél)(x) = Jo(z) + Yo (2)
(2/2)2+

+o0
e Bessel’s modified function I,(z) = i~“J,(iz) = Wrathen and Kq(x) = %z’aHHS)(a:) =
k=0

1L (o0, a—1, 2(zﬂrz,f‘l)agy

2Jo Y
e Laguerre’s polynomials: L, (z) = %dngfn) = Z?ZO(—l)iCﬁ_i‘f.—;
e generalized Laguerre’s polynomials: L () = nf; % =30 (=1iCen ‘f,

A.2.4 Miscellanous

e Dirac function: Vz > 0,0,,(z) = { oo sl w=a0
0 sinon
0 six < xg
e heavyside function : Hy (z) =4 3 si z =g
1 sinon
x si n=
1 . 1
. F,_1(3x) sin#0 e 0>x>x
. _ 2- "N - - 3
e Cantor function : Vz € [0,1], F),(z) = 1 Sint0 et 1>o>2
1+ 3F 1Bz —2) sin#£0et 2>z>1

A.3 Matrix exponential

Now let us consider the problem of computing e?*. We recall that

“+o00
eQU _ Qnun

n=0

n!



144 APPENDIX A. MATHEMATICAL TOOLS

There are various methods to compute the matrix exponential, Moler & Van Loan! (2003) makes a
deep analysis of the efficiency of different methods. In our case, we choose a decomposition method.
We diagonalize the n x n matrix ) and use the identity

eQu = pePup—1,
where D is a diagonal matrix with eigenvalues on its diagonal and P the eigenvectors. We compute
m
e = "N PM P!
=1 o
1

where \; stands for the eigenvalues of @, P the eigenvectors and M; = (0410;;)i; (95 is the symbol
Kronecker, i.e. equals to zero except when i = 7). As the matrix M; is a sparse matrix with just
a 1 on the I*" term of its diagonal. The constant C; can be simplified. Indeed, if we denote by X
the I*" column of the matrix P (i.e. the eigenvector associated to the eigenvalue );) and Y; the I*?
row of the matrix P~!, then we have

C,EPMP =X 0V

Despite @ is not obligatorily diagonalizable, this procedure will often work, since () may have
a complex eigenvalue (say ;). In this case, C; is complex but as e is real, we are ensured there
is j € [1,...,m], such that \; is the conjugate of \;. Thus, we get

AUy 4 MO = 2c08(S(\)u) e UR(X; @ Y;) — 2sin(S(M)u) e US(X; @ V) € R,

where R and < stands resp. for the real and the imaginary part.

A.4 Kronecker product and sum

The Kronecker product A ® B is defined as the mn x mn matrix
A®B = (Ah,jl Biz,jz)ilh,jljz?

when A is a m x m matrix of general term (4;, j, )i, j; and B a n x n matrix of general term
(Biy js )is,j»- Note that the Kronecker can also be defined for non-square matrixes.

The Kronecker sum A @ B is given by the mn x mn matrix
ARB=AR 1, + B®I,,

where I,,, and I,, are the identity matrixes of size m and n. This definition is right only for square
matrixes A and B.
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