Lecture 16 Outline:

1. From Supervised to Unsupervised Analysis.

2. Principal Components Analysis.
 - Interpretations & Uses.
 - Data Visualization.
 - Pattern Recognition.
 - Dimension Reduction.
 - Models & Optimization Problems.
 - Matrix Factorization: Frobenius norm loss.
 - Covariance: Eigendecomposition of empirical covariances.
 - Solution via the SVD.
 - Properties of the SVD.
 - SVD & PCs / PC Loadings or Directions.
 - Identifiability & Uniqueness.
 - Center the data first? Scaling?
 - Amount of Variance Explained.
 - Proportion of variance explained.
 - How to choose number of components?

3. Nuclear Norm Penalty.
 - Solution via singular value thresholding.

4. Real Example: NCI microarray Data.

5. PCA in high-dimensions.
 - RMT: PCA inconsistent when $p \gg n$.

6. Sparse PCA.
 - Optimization problems.
 - Semi-definite programming approach.
 - Alternating penalized least squares approach.
 - Solutions.
 - Deflation approach.
 - Properties.
 - Proportion of variance explained.
 - Real data example: NCI microarray data.

7. Kernel PCA.
 - Simulated examples.