Lecture 16 Outline:
Textbook Reading: ESL 14.3 - 14.9 and ISL Chapter 10.

1. Review NMF.

2. Independent Components Analysis.
 (a) Decompose a matrix into a set of independent source signals and a mixing matrix.
 (b) Interpretations & Applications - blind source separation, denoising.
 (c) Algorithms - Entropy vs. Negentropy.
 (d) Properties.

3. Multi-Dimensional Scaling.
 (a) Represent distances between points in a lower dimensional space.
 (b) Stress functions.
 (c) Properties.

4. Real data example: Digits.

5. Comparative Strengths & Weaknesses: PCA, SPCA, ICA, NMF, MDS.

6. Clustering (data segmentation; finding groups).
 • Minimize the within-cluster dissimilarity.
 • Dissimilarity measures.
 • Hard vs. Soft clustering.
 • Clustering variables vs. cluster observations vs. clustering both (bi-clustering).

 • Minimizes the within cluster dissimilarity based on Euclidean distance.
 • K-means algorithm.
 • Properties.
 • Simulated examples.

8. Choosing the number of clusters for K-means:
 • Heuristic methods - look for the “kink” in the loss function.
 • Gap statistic.
 • Silhouette Statistic.
 • Prediction Strength.
 • Cluster Stability.