Lecture 3 Outline:

Textbook Reading: ESL Chapter 3, Sections 3.2 and 3.4.1 and/or ISL Chapter 3 and Chapter 6.2.1.

1. Review: Least squares when \(p >> n \).

2. Ridge regression (Tikhonov regularization).
 - \(\ell_2 \)-norm constrained least squares.
 - Lagrangian form.
 - Closed form solution.
 - In practice: Intercepts, Scaling covariates.
 - Add a little bias to (hopefully) greatly decrease the variance.
 - Calculate Bias and Variance. Show Variance always less than that of least squares estimator.
 - Better at prediction than least squares - MSE Existence Theorem.
 - Degrees of Freedom.
 - Real data example.

3. Review SVD / PCA.
 - Properties of the SVD.
 - Find orthogonal linear projections that maximize the sample variance.
 - Real data example.

 - Ridge solution as a function of the SVD.
 - Interpretations.
 - Ridge regression for correlated predictors.

5. Least Squares on Derived Inputs.
 - Principal Components Regression. Least squares on PCs.
 - Partial Least Squares Regression.
 - PCA on cross-covariance between \(\mathbf{X} \) and \(\mathbf{Y} \) (orthogonalized with respect to \(\mathbf{X} \)).
 - Least squares constrained to the Krylov subspace.