There are several ways to call C code from R, as well as a couple of ways to fake it.  Make sure whoever teaches knows what they're doing...

Even though you didn't ask for my opinion....

Open help.start(), then go to "Writing R extensions" (upper right of help screen), then click on the 5th item in the list, "system and foreign function interface".

It's a whole bag of worms, and in my opinion best done in unix/linux.

http://www.biostat.jhsph.edu/~bcaffo/statcomp/files/dotCall.pdf
http://www.stat.umn.edu/~charlie/rc/
You want to compile a shared library (DLL in windows, .so file in

unix/linux) using R CMD SHLIB blah.c

There are several ways to structure your c code depending if you want to call R from C or not, by using R's header files.

The main point is that when you call C (your DLL) from R, you have to make sure that the arguments you pass are the ones that C expects and that the right things are returned at the end of the day.

It's a compiler issue.  Every unix/linux/osx machine has gcc, which makes life easy.  But in windows, it's not there by default and you have to install programs, path, etc to make sure that R can find the C compiler, and that the C compiler works well with R.

DLL or .so files are just compiled C code.  To load them it's always dyn.load("file.so/dll").  Then you can test it with is.loaded (I think that's it).  Look at the R help for .Call

Try the examples in this attachment:

first gunzip it, then tar -xvf filename.tar it.

(the .tar file is in the same directory as this help file)

