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Abstract

Gaussian Mixture Regression and Classification

by

Hsi Guang Sung

The sparsity of high dimensional data space renders standard nonparametric methods
ineffective for multivariate data. A new procedure, Gaussian Mixture Regression
(GMR), is developed for multivariate nonlinear regression modeling. GMR has the
tight structure of a parametric model, yet still retains the flexibility of a nonparametric
method.

The key idea of GMR is to construct a sequence of Gaussian mixture models for the
joint density of the data, and then derive conditional density and regression functions
from each model. Assuming the data are a random sample from the joint pdf fX,Y , we

fit a Gaussian kernel density model f̂X,Y and then implement a multivariate extension
of the Iterative Pairwise Replacement Algorithm (IPRA) to simplify the initial kernel
density. IPRA generates a sequence of Gaussian mixture density models indexed
by the number of mixture components K. The corresponding regression function of
each density model forms a sequence of regression models which covers a spectrum
of regression models of varying flexibility, ranging from approximately the classical
linear model (K = 1) to the nonparametric kernel regression estimator (K = n). We
use mean squared error and prediction error for selecting K.

For binary responses, we extend GMR to fit nonparametric logistic regression
models. Applying IPRA for each class density, we obtain two families of mixture
density models. The logistic function can then be estimated by the ratio between
pairs of members from each family. The result is a family of logistic models indexed
by the number of mixtures in each density model. We call this procedure Gaussian
Mixture Classification (GMC).

For a given GMR or GMC model, forward and backward projection algorithms are
implemented to locate the optimal subspaces that minimize information loss. They
serve as the model-based dimension reduction techniques for GMR and GMC.

In practice, GMR and GMC offer data analysts a systematic way to determine
the appropriate level of model flexibility by choosing the number of components for
modeling the underlying pdf. GMC can serve as an alternative or a complement to
Mixture Discriminant Analysis (MDA). The uses of GMR and GMC are demonstrated
in simulated and real data.
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Chapter 1

Introduction

The rapid progress of modern data collection techniques has provided scientists with
data ever increasing in size and dimension. While parametric models such as linear
regression remain the most popular techniques in data modeling, they are often too
rigid to model general nonlinear patterns hidden in a high-dimensional data space. In
practice, a more flexible model is usually required. This motivates the development
of nonparmatric regression procedures. Nonparametric regression methods achieve
their flexibility by assuming only the continuity of the unknown regression function.
However, nonparametric regression procedures face difficulty in extending themselves
to model multivariate data. A regression procedure that is flexible enough to model
nonlinear patterns for high dimensional data is in great demand.

In response to that demand, this research develops a procedure for multivariate
regression that is applicable to high dimensional data and retains the flexibility of
nonparametric methods. We achieve this goal by a new hybrid approach. Instead
of modeling the regression function directly, we model the joint density of the data
using a Gaussian mixture, which is a parametric density family flexible enough to
model an arbitrary density function. From the Gaussian mixture model, we derive
the regression function. We call this procedure Gaussian Mixture Regression (GMR).

In this chapter we review the problem of multivariate nonparametric regression
and introduce a new template for high dimensional data analysis that connects den-
sity estimation and regression analysis, which we adopt for developing the GMR
procedure. In Section 1.4 we briefly introduce the new IPRA/GMR and IPRA/GMC
procedures.

Chapter 2 reviews multivariate nonparametric regression techniques and the the-
ory and application of Gaussian mixture models. Chapter 3 extends the Iterative
Pairwise Replacement Algorithm (IPRA) to multivariate data. The core of this the-
sis is Chapter 4, in which we describe our implementation of the Gaussian Mixture
Regression (GMR) procedure and explore theoretical and practical aspects, includ-
ing model selection algorithms and quantification of model uncertainty. In Chapter
5 we extend GMR to binary responses. The result is a new nonparametric logistic
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regression procedure. We call this extension of GMR Gaussian Mixture Classification
(GMC). We developed backward and forward projection algorithms for the optimal
subspace of predictors, the details of which are in Chapter 6. Chapter 7 discusses
applications of GMR and GMC on both simulated and real data sets. In some mul-
tivariate examples, we fit GMR models and then apply those dimensional reduction
techniques we develop in Chapter 6. Chapter 8 concludes the dissertation with re-
marks on the key findings of the research and a discussion of our future research
agenda.

1.1 The Problems of Multivariate Nonparametric

Regression

In this thesis, we assume that the data (Xi, Yi)
n
i=1 are iid samples from an unknown

distribution FX,Y , where Xi ∈ R
p and Yi ∈ R. A general data modeling problem is

to identify the relationship between X and Y . Both standard parametric and non-
parametric regression approaches start with the model Y = m(X) + ε, ε ∼ N(0, σ2),
which is equivalent to the distributional assumption that Y |X ∼ N(m(X), σ2), where
the regression function m(x) is defined as the conditional expectation E(Y |X = x).
Notice that both parametric and nonparametric regression make no assumption of
the marginal distribution of X; therefore the only way to link all the data is through
the assumption of m(x). Parametric regression achieves this connection by a spe-
cific assumption of the form of m(x). The most common model is the linear form
m(x) = βTx.

Nonparametric regression is motivated by the demand for a flexible Exploratory
Data Analysis (EDA) tool for data analysts in order to identify general nonlinear
patterns in the data. Such flexibility is achieved by assuming only the continuity
of the regression function m(x). Some authors call nonparametric regression models
smoothers, because they generate a smooth estimate of the unknown continuous re-
gression function. The literature of nonparametric methods is abundant. Both Härdle
(1990) and Hastie and Tibshirani (1990) give excellent surveys of the field. In this
thesis, we will use the term “smoother” as a synonym for a nonparametric regression
model.

All nonparametric smoothers are local methods by nature because they are based
upon the continuity assumption of m(x), which is a local property of m(x). A straight-
forward approximation of m(x) at a given x uses only the observations (xi, yi)’s where
each xi is within some neighborhood of x, for example, B(x, δ) = {(xi, yi) : |xi−x| <
δ}. The continuity of m(x) implies that the each observed value yi within B(x, δ) is
close to the unknown value m(x) on average. Hence, a natural estimator is to take
the average of yi within B(x), that is,

m̂(x) =
∑

i:|xi−x|<δ

yi

|B(x)| ,
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where |B(x)| is the size of the set B(x). Rewriting this estimator in a more general
form, we have

m̂(x) =

∑n
i=1 yiI(|xi − x| < δ)∑n
i=1 I(|xi − x| < δ)

,

which is a special case of a general estimator called the Nadaraya-Watson kernel
smoother.

The Nadaraya-Watson kernel smoother was proposed independently by Nadaraya
(1964) and Watson (1964). It takes the general form

m̂(x) =

∑n
i=1 yi K(x, xi)∑n

i=1 K(x, xi)
, (1.1)

where K(x, xi) is called the kernel function. A kernel function measures the proximity
of an observation at xi to the given location x. In addition, K(x, xi) is usually a
continuous, monotone decreasing function with respect to the distance between x
and xi. There are many choices for K(x, xi). A common practice is to specify K as
a unimodal, symmetric density function, which centered at 0; that is,

K(x, xi) = K(xi, x) = K(x− xi),
∫

K(u)du = 1,

and ∫
uK(u)du = 0.

A general discussion of the kernel methods can be found in Härdle (1990). Here
we focus on the Nadaraya-Watson estimator using the Gaussian pdf as the kernel
function. This gives us a special case of (1.1):

m̂(x) =

∑n
j=1 yj φ(x; xj, h

2Ip)∑n
j=1 φ(x; xj , h2Ip)

, (1.2)

where φ is the multivariate Gaussian pdf for X ∈ R
p. The bandwidth, h, is a

calibration parameter that controls the range of the local support and the resulting
smoothness of the fitted curve. A smaller h implies tighter kernel coverage, which
leads to a smaller neighborhood and a less smooth curve. On the other hand, a larger
h implies broader kernel coverage, which leads to a wider neighborhood and a less
wiggly curve.

The estimator (1.2) is very successful for univariate data; That is, p = 1. However,
as the dimension p increases, the local sparsity begins to impede all neighborhood-
based smoothing algorithms. For example, assume n data points are uniformly dis-
tributed in a cube [0, d]p in R

p. The volume of the cube is dp. Consider a neighborhood
of a given x that contains a fraction, r, of the data. The volume of this neighbor-
hood is roughly r × dp, or (r1/p × d)p. Hence the edge of the neighborhood cube is
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approximately r1/p × d. Consider, for example, r = .01, p = 10; we have r1/p = .631.
This simple calculation shows that a neighborhood that includes 1% of the data in
R

10 will cover about 63.1% of the range in each dimension. It is hardly local at all.
This example also illustrates the curious phenomenon called local sparsity. It means
that when looking at a location in a high dimensional space, there are generally very
few points around or nearby. The direct consequence of the local sparsity in high
dimensions is that local-based nonparametric regression methods such as (1.2) are
inevitably over-smoothed. This phenomenon was first observed by Bellman (1961),
who coined the term Curse of Dimensionality. A more elaborate illustration of the
curse of dimensionality can be found in Hastie, Tibshirani, and Friedman (2001).

1.2 A New Template for Statistical Data Analysis

One way to overcome the curse of dimensionality is to have a global parametric model
that utilizes every data point available for the model fitting. Standard parametric
regression methods achieve this globalization by imposing a global form of m(x) for
all x. But parametric regression lacks flexibility to model novel features that do not
agree with the assumptions of m(x); in other words, parametric models are subject to
extreme bias. Nonparametric methods attain flexibility, but their extension to higher
dimensions is rather limited. As shown in the previous section, a local approximation
algorithm is already ineffective in a mild R

10 data space.
We propose a solution to this ineffectiveness by fitting a global, but more flexible,

model for the joint density. This idea is based on a fundamental principle: All the
statistical information of the data is stored in the joint density function.
Based upon this principle, density estimation is a more fundamental task of data
analysis than is regression analysis. Moreover, this principle indicates a new template
to develop regression and classification procedures by means of density modeling.

Here is a demonstration of how the principle works. Assume that the data are iid

samples from a distribution FX,Y . Given the density function fX,Y (x, y) = ∂2F (x,y)
∂x∂x

of
the data {(Xi, Yi)

n
i=1 : X ∈ R

p, Y ∈ R}, we can derive any statistical quantity from
fX,Y . For example, the regression function m(x) can be derived from fX,Y by the
standard definition, as shown in equation (1.3):

m(x) =

∫
y fY |X(y|x) dy, (1.3)

where

fY |X(y|x) =
fX,Y (x, y)∫
fX,Y (x, y) dy

.

Next we consider the classification problem. For binary responses Y ∈ {0, 1}, the
optimal Bayes classifier is based upon the posterior odds

r(x) =
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)
.
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Applying Bayes theorem we obtain

r(x) =
Pr(X = x|Y = 1)Pr(Y = 1)

Pr(X = x|Y = 0)Pr(Y = 0)
. (1.4)

Equation (1.3) suggests the strategy of regression modeling via density estimation.
(1.4), on the other hand, suggests a classifier built upon the ratio of two class densities.
They both demonstrate the fundamental principle we mentioned earlier. In this
dissertation we pursue this line of attack and show that the fundamental principle
does offer an effective template for high dimensional data analysis.

The most significant advantage of this template is that it is less susceptible to the
curse of dimensionality. In principle, the procedures we develop under this template,
GMR and GMC, are applicable to data of any dimension. That is, the procedure
requires no modification as the dimension increases. In practice, the limitation is from
the numerical computation software and hardware, not from the statistical procedure
itself.

1.3 The Foundation of Gaussian Mixture

Regression

To put this research in a broader context, the immediate motivation of GMR is
its direct application to multivariate nonparametric regression problems. A deeper
motivation, however, is to use GMR to demonstrate the use of a new template for high
dimensional data analysis. The central principle of this new approach, as mentioned
in previous section, is this: All statistical information of the data is stored in the
density function. This principle implies that statistical modeling should start with the
estimation of the density function. A parametric data model begins with a parametric
assumption of the density function. When this parametric assumption is in place,
the density function is expressed as a likelihood. Therefore our central principle is
equivalent to the likelihood principle, which states that the likelihood function is the
minimal sufficient statistic; see Casella and Berger (1990).

In addition to providing accurate prediction, a successful model must also offer an
efficient way to combine information from each data point. This feature of a model
is crucial when facing the sparsity in high dimensional data spaces. As Efron and
Tibshirani (1993, p. 358) pointed out

The likelihood plays a central role in model-based statistical inference
. . . the likelihood is a natural device for combining information across ex-
periments . . .

The likelihood function, which is the product of the density evaluated at each ob-
servation, provides a natural way to combine information of individual observations.
This fact suggests that a data modeling approach based on the likelihood function
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could offer a good mechanism to combine information and, therefore, a promising
way to model high dimensional data. Specifically, a likelihood function summarizes
the information from the data, an iid sample, D = {(xi, yi)

n
i=1} as

L(θ; D) =
n∏

i=1

fX,Y (xi, yi; θ) (1.5)

under the density model fX,Y (x, y, θ). In general, a parametric model specifies a global
likelihood function L(D; θ) that governs every data point (xi, yi), as shown in equation
(1.5). For example, a linear model specifies the conditional density fY |X(yi|xi) =
φ(yi; x

T
i β, σ2), where φ is the Gaussian pdf. Since fX,Y = fY |XfX , we derive the

likelihood for classical linear model as

L(β; D) =

n∏

i=1

φ(yi; x
T
i β, σ2)fX(xi) =

n∏

i=1

fX(xi)

n∏

i=1

φ(yi; x
T
i β, σ2). (1.6)

Although we do not fit the MLE for the classical linear model using equation (1.6), it
does provide us a broader perspective of how a global parametric model allows us to
estimate its model parameters using every available observation. When facing local
sparsity in high dimensional data space, we do need a global parametric model that
can utilize data efficiently. The trick is to find a global parametric model that offers
flexibility in modeling general nonlinear patterns of the data. Loader (1999) proposes
a method to increase flexibility of the parametric regression called local likelihood.
Instead of a global parameter β, local likelihood allows β = β(x0). Hastie et al. (2001,
p. 179) describe the local likelihood regression model as

l(β(x0)) =

n∑

i=1

K(x0, xi)l(yi, x
T
i β(x0)), (1.7)

where K(x0, xi) is a kernel that specifies the neighborhood of x0. Obviously this
model is a variation of kernel regression models. We do not pursue this line of attack
because in high dimensional space, we need a global model. However, (1.7) does
suggest that a mixture of local linear models can be very flexible. We know that a
Gaussian pdf fX,Y implies a linear regression function; therefore a Gaussian mixture
pdf should lead to a mixture of linear models. The finite Gaussian mixture is a global
parametric model and it does provide the flexible mixture of linear regression. It is
a perfect candidate for the procedure we need for the flexible regression modeling of
high dimensional data.

1.4 IPRA/GMR and IPRA/GMC in a Nutshell

As mentioned in Section 1.2, both GMR and GMC procedures are based on the model
of the underlying density. By modeling the underlying density as a Gaussian mix-
ture, they inherit the power and versatility of the Gaussian mixture family. Using the
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multivariate version of IPRA, we construct a sequence of Gaussian mixture models
indexed by the number of components K. The regression function corresponds to the
mixture densities formulate the family of GMR models: {GMR(K) : K = n, . . . , 1},
where GMR(K) denotes the regression function of the K-component Gaussian mix-
ture density. On the one end, GMR(n) is the Nadaraya-Watson kernel smoother; on
the other end, GMR(1) is approximately the classical linear model.

Two key parameters govern the IPRA/GMR procedure: the bandwidth h, which
controls the initial kernel density; and the number of components K, which controls
the smoothness of the GMR fit.

The model parameters of each GMR(K) are approximated by the method of
moments (MoM) in IPRA. It provides a simple alternative to the EM algorithm.
Although the GMR procedure does not fit the MLE, the simple MoM enables an
efficient computation of the profiles of MSE(K), PE(K), and cv(K). They provide
data analysts a glimpse of the entire GMR family and help them select reasonable K
for further investigation, including the MLE update of the model parameters.

The role of the bandwidth h is less crucial. The basic rationale of choosing h is
first to make sure it is sufficiently small, so that the initial model GMR(n) overfits
the data. Since GMR(1) usually underfits the data, an overfit GMR(n) implies that
the “right” model is covered by the GMR family. However, empirical evidence in
this research shows that all reasonable values of h yield almost identical patterns in
their MSE and PE profile curves, which implies the same conclusion in GMR model
selection. Nevertheless, we employ the following rule of thumb for the bandwidth
selection:

h∗ = max{hm, 1/20 hS},
where hS = n−1/(d+4)σ is the optimal bandwidth proposed by Scott (1992) for product
kernel estimator and hm = min

j,k
{|Xk,j − Xk,j−1|} the closest distance between two

consecutive observation. In our rule of thumb, hm serves as the lower bound of the
bandwidth selection to safeguard against a bandwidth that is too small.

For classification problems, we apply IPRA on each class density, fX|Y =0 and

fX|Y =1, to generate two sequences of Gaussian mixture models: {f̂0(x; K0) : K0 =

n0, . . . , 1} and {f̂1(x; K1) : K1 = n1, . . . , 1}, where K0 and K1 are the number of
components of each class density. These two sequences of Gaussian mixture allow us
to approximate the posterior odds

r(x) =
fX|Y =1(x) Pr(Y = 1)

fX|Y =0(x) Pr(Y = 0)

by the ratio between any two densities from each sequence. The result is an IPRA/GMC
family of models indexed by (K0, K1). In practice, the IPRA/GMC procedure is
an alternative implementation of Mixture Discriminant Analysis (MDA) (Hastie and
Tibshirani 1996). Because IPRA/GMC provides data analysts a simple way to choose
the appropriate (K0, K1), it can also serve as a complement to MDA.



Chapter 2

Preliminaries

In this chapter we review the strengths and weaknesses of some available nonparamet-
ric procedures for multivariate regression. Several articles exploit the idea of building
regression functions from a density model. This leads to our search for a parametric
density family as the building blocks of our new procedure. We review the general
kernel density estimation and its connection to the finite Gaussian mixture density
models and the algorithm to estimate and simplify the Gaussian mixtures.

2.1 Current Landscape of the Multivariate

Nonparametric Methods

Hastie and Tibshirani (1990, p. 85) review several approaches for multivariate non-
parametric regression. One natural approach is to apply a univariate smoother on
each variable independently and add them up. Hastie and Tibshirani pursued this
approach to develop Generalized Additive Models (GAM), which has the form

Y = α +

p∑

j=1

mj(Xj) + ε, (2.1)

where ε ∼ N(0, σ2).
Friedman and Stuetzle (1981) propose another approach called projection pursuit

regression (PPR), which combines the dimension reduction and regression as shown
in Equation (2.2):

Y =

K∑

k=1

hk(β
T
k X) + ε, (2.2)

where βk denotes a 1-D projection of X and ε ∼ N(0, σ2). The idea of PPR is to
assume that there are K variables that capture all the information of X regarding
Y . In practice, K could exceed the dimension of X, especially when m(x) has strong
nonlinear components.

8
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Both GAM and PPR are clever ways of applying univariate smoothers in the
multivariate setting. While they are very effective tools, their basic strategy is to
apply a series of univariate smoothers on each dimension of X. The GAM formulation
has difficulty picking up nonlinear pattern involving terms such as X(j)X(k).

Breiman et al. (1984) introduce one of the most versatile nonparametric methods
called Classification and Regression Trees (CART). A regression tree model essentially
approximates the regression surface using step functions. One problem with using
stepping functions is that the fitted regression surface is not smooth. The Multivariate
Adaptive Regression Splines (MARS) procedure, developed by Friedman (1991), is a
generalization of CART to obtain much smoother fits. The basic idea of MARS is to
build a set of basis functions of the form B = {(Xk− t)+, (t−Xk)+}, where Xk is the
k-th dimension of X and t is the knot, t ∈ {xki : i = 1, . . . , n}, where xki is the i-th
observation of the k-th dimension of the feature space. Instead of using step functions
as the basis, MARS uses the ramp functions (x− t)+. In essense, t is the location of
the cut. On one side of the cut, MARS fits the data with a linear hyperplane and a
constant for the other side of the cut. Therefore there is no discontinuity at t.

MARS also includes the product of any two elements in B to be in the basis. This
inclusion enables MARS to model first-order interactions Xj Xk. The MARS model
has the form

Y = β0 +

M∑

m=1

βmhm(X) + ε (2.3)

where hm is a basis function from B or a product of two elements in B. One significant
feature of MARS is that it approximates the regression function by a rich set of basis
functions B.

A vantage point shared by CART and MARS is that they both partition the
feature space into square blocks (hypercubes in dimensions higher than 2), whose
boundaries are determined by tree cuts in CART and knots in MARS. Within each
block, CART fit the data with a constant which leads to unpleasant bumpy fit. MARS
elimintes the bumps by fitting the data with a linear hyperplane. Although MARS
achieves better smoothness by connecting the neighboring hyperplanes, there are still
edges on the boundaries of the square blocks. Furthermore, because the knots are
located on the axes of the feature space, both CART and MARS are limited to blocks
of boundaries perpendicular to the axes. This is why MARS is coordinate sensitive.
As pointed out by O’Sullivan (1991) in the discussion of Friedman (1991), a rotation
of the coordinate axes can completely change the structure of the MARS model.

Both CART and MARS suggest a general method of nonparametric regression:
partition the feature space of X into blocks and fit a simple regression model within
each block. The key to acquire a smoother regression surface fit than MARS is to
have a smooth transition between two neighboring blocks. And the blocks should not
have to be hypercubes.

We take a different approach to the development of a procedure for multivariate
regression. Instead of modeling the regression function directly, we model the joint
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density fX,Y , and then derive the regression function from the density model. This
approach may be overkill in the univariate case, but there are several advantages of
this regression-via-density approach: the same procedure applies to X in any dimen-
sion without modification. The model is invariant under any coordinate system. That
is, rotating the coordinate axes of the feature space does not change the structure of
the model. This coordinate invariance property implies that it is simple to update the
model for any linear projection of X; Thus it allows us to implement straightforward
alogrithms for the dimension reduction projections of X into a lower subspace. The
details are in Chapter 6.

2.2 Density Estimation and Regression

In search of a straightforward way to build a regression procedure, we return to the
standard definition of the regression function m(x):

m(x) = E[Y |X = x] =

∫
yfY |X(y|x)dy =

∫
yfX,Y (x, y)dy∫
fX,Y (x, y)dy

. (2.4)

Although the density function fX,Y and the regression function m(x) are naturally
connected by their definitions, the research utilizing this natural connection is surpris-
ingly rare. An early article we found in pursuing this connection directly is Schmerling
and Peil (1985), cited by Härdle (1990). They propose using kernel density models
to approximate the bivariate joint density fX,Y , then derive the regression from the
density model. Schmerling and Peil (1986) improve kernel density estimation by lo-
cal polynomial approximation to reduce the bias of their empirical regression model.
There is no followup research along this line by those authors.

Scott (1992) points out that the Nadaraya-Watson kernel regression of the form

m̂(x) =

∑n
i=1 yi K(x, xi)∑n

i=1 K(x, xi)
(2.5)

can be derived from (2.4) where the joint pdf fX,Y is estimated by the bivariate
product kernel. That is

f̂X,Y (x, y) =
n∑

j=1

n−1Kh(x− xj)Kh(y − yj), (2.6)
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where Kh(x− xj) = h−1 K(
x−xj

h
). (2.6) implies that

∫
f̂X,Y (x, y)dy =

∫ n∑

j=1

n−1Kh(x− xj)Kh(y − yj)dy

=
n∑

j=1

n−1Kh(x− xj)

∫
Kh(y − yj)dy

=

n∑

j=1

n−1Kh(x− xj)

and

∫
yf̂X,Y (x, y)dy =

∫
y

n∑

j=1

n−1Kh(x− xj)Kh(y − yj)dy

=

n∑

j=1

n−1Kh(x− xj)

∫
yKh(y − yj)dy

=
n∑

j=1

n−1yjKh(x− xj).

Hence, the Nadaraya-Watson estimator of the regression function is

m̂(x) =

∫
yf̂X,Y (x, y)dy

∫
f̂X,Y (x, y)dy

=

∑n
j=1 n−1yjKh(x− xj)∑n
j=1 n−1Kh(x− xj)

=

∑n
j=1 yj K(x, xj)∑n

j=1 K(x, xj)
,

as shown in (2.5). This perspective of the famous Nadaraya-Watson estimator inspires
the notion that by modeling fX,Y in the form of a kernel density estimator, we can
derive a kernel smoother for m(x). A natural extension of this notion is to use
Gaussian pdf as the kernel K.

It is well-known that when fX,Y is Gaussian, the conditional pdf fY |X is Gaussian
and the regression function m(x) is linear. A natural extension of the single Gaussian
pdf for fX,Y is to model fX,Y as a K-component Gaussian mixture:

f̂X,Y (x, y) =

K∑

j=1

πjφ(x, y; µj, Σj). (2.7)

The resulting regression function m(x) of the pdf in (2.7) is a combination of linear
functions mj(x). That is, m(x) =

∑K
j=1 wj(x)mj(x). We will derive a procedure

called Gaussian Mixture Regression (GMR) based on this idea, which is the core of
this thesis. We defer the detailed discussion to Chapter 4.
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Recently, Figueiredo (2000) has formulated the regression function from a finite
Gaussian mixture density and uses the EM algorithm to fit the MLE of the mix-
ture, given a pre-determined number of mixtures, K. However, Figueiredo’s no-
tion of fitting the underlying mixture density follows the standard EM approach.
Figueiredo, Leitão, and Jain (1999) propose an algorithm using minimum description
length (MDL) to select the number of components. They incorporate this MDL step
into the standard EM algorithm. In general, we believe that the best mixture model
for the underlying density fX,Y and the best mixture model for the regression func-
tion m(X) = E[Y |X] do not necessarily coincide. For regression purposes, we should

pick the number K with respect to the goodness-of-fit on m̂(x), not on f̂X,Y . We will
resume detailed discussion of this important point in Chapter 4.

There are several reasons why the regression via density approach never gained
momentum. First of all, the empirical regression approach can be viewed as an al-
ternative way to derive the Nadaraya-Watson kernel smoother. In this regard, it is
absorbed into the huge literature of kernel regression. Vapnik (2000) observes that
density estimation is a hard computational problem because the density estimation
problem is ill-posed. On the other hand, a direct estimation of a smooth regres-
sion curve from the data is a well-studied problem with abundant software available.
Hence, to work out a univariate regression curve from the density function is prob-
ably overkill at best. And since the standard univariate nonparametric methods are
very successful, there is no reason to dip into this line of research for a univariate
smoother.

D. W. Scott (personal communication) argues that density estimation is more
straightforward than regression curve fitting because there are more quantities to
specify in the regression problem than in the density estimation problem. For ex-
ample, in regression, analysts must specify the form of the regression function and
the variance of the residuals. On the other hand, in histogram and kernel density
estimation, the only parameter is the bandwidth h. Conceptually, density estimation
is more intriguing than direct data fitting because more information of the data is
stored in the density function.

Whatever the case may be, the density model approach may be inevitable, es-
pecially in facing the curse of dimensionality. Because all the statistical information
of X and Y is stored in the density (likelihood) function, we argue that a density
modeling approach, such as GMR, is a convincing approach for high dimensional data
modeling. We believe this regression-via-density approach is a natural way to build
a nonparametric regression model for high dimensional data. We discuss the details
of GMR in Chapter 4.
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2.3 Kernel Density Estimators

In search of a flexible parametric model for the density function, we first turn to the
nonparametric density estimation, a well-established field. The standard reference,
Scott (1992, p. 125) is the main source of our brief review on the subject.

Given an iid sample {xi}ni=1 from an unknown density fX , the kernel density
estimator takes the form

f̂X(x) =
1

nh

n∑

i=1

K(
x− xi

h
).

The kernel function K is a symmetric density function. We consider the special case
of Gaussian kernel, K(u) = φ(u; 0, 1). The Gaussian kernel density estimator

f̂X(x) =
n∑

i=1

n−1φ(x; xi, h
2),

can easily be generalized to X ∈ R
p as

f̂X(x) =

n∑

i=1

n−1φ(x; xi, h
2Ip). (2.8)

The estimator (2.8) is a n-component Gaussian mixture density with equal mixing
weights n−1. Notice that h is the only parameter in this estimator. The parameter h
is called the bandwidth. Notice that if h → 0, f̂X(x) becomes a collections of Dirac

spikes, i.e., f̂X(x) → ∑n
i=1 n−1δ(x− xi), where δ(t) is the Dirac delta function with

the properties: δ(t) = 0 for all t 6= 0, δ(t) =∞ as t→ 0, and
∫

δ(t)dt = 1. This fact
implies that a density estimation problem is not well-defined and that the MLE does
not exist because the likelihood function is unbounded above. We shall revisit the
issue of bandwidth selection in Chapter 4.

For now, the most important point is that a kernel density estimator is a special
case of the finite Gaussian mixture models. Devroye and Györfi (1985) study the L1

consistency of the kernel density estimator. They prove that as n increases and h
decreases in a way that h+n−1h−p → 0, the kernel density estimator can approximate
any unknown density arbitrarily close in L1-norm. A direct implication is that the
consistency of the kernel density estimator ensures that the Gaussian mixture models
inherit this asymptotic property. We discuss the details and their implications in
Chapter 4.

2.4 A Review of Finite Gaussian Mixtures

The literature on mixture models, especially Gaussian mixture models, is abundant.
McLachlan and Peel (2000) provide a comprehensive review of the theory and ap-
plication of mixture models. Its bibliography is 45-page long. One of the reasons
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that Gaussian Mixture models are so popular is that they are parametric models of
elegant form, yet they are very flexible in estimating a general density. In the pre-
vious section, we showed that a n-component Gaussian mixture is equivalent to the
kernel density estimator. Inheriting the asymptotic consistency of the kernel density
estimator gives finite Gaussian mixtures the ability to estimate any general density
function in R

p. This is exactly why we use them to build our regression procedure.
One natural interpretation of the mixture model is to view each mixture com-

ponent as a cluster by introducing a latent cluster indicator variable G, where G ∈
{1, 2, . . . , K}. With this latent variable G, the Gaussian mixture model can be for-
mulated as a hierarchical model.

G ∈ {1, 2, . . . , K}
Pr(G = k) = πk

X|G = k ∼ N(µk, Σk).

Under this hierarchical model, the mixing probability πk can be viewed as the prior
probability of the latent cluster index variable G. We derive the marginal density fX

as

fX(x) =
K∑

j=1

Pr(G = j) fX|G(x|j) =
K∑

j=1

πj φ(x; µj, Σj).

Hence the pdf of a K-component Gaussian mixture is of the from

fX(x) =
K∑

j=1

πj φ(x; µj, Σj), (2.9)

where φ is the multivariate Gaussian pdf

φ(x; µ, Σ) = |2πΣ|−1/2 exp{−1/2(x− µ)T Σ−1(x− µ)}.

From (2.9), we can compute the posterior probability

Pr(G = k|X = x) =
Pr(G = k, X = x)

fX(x)
=

πk φ(x; µk, Σk)∑K
j=1 πj φ(x; µj, Σj)

. (2.10)

This expression of the posterior probability plays an important role in our develop-
ment and interpretation of Gaussian Mixture Regression procedure. We will revisit
(2.10) in Chapter 4.

Observe that the model parameters of (2.9) are {K, (πj, µj, Σj)
K
j=1}. For X ∈ R

p,
the total degrees of freedom of the parameter for a K-component Gaussian Mixture
model is K× (1+p+p× (p+1)/2)−1, with the −1 indicating the natural constraint∑

j πj = 1. In the next section, we discuss the problem of estimating these parameters.
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2.5 Fitting Gaussian Mixtures Models

The first important issue in using Gaussian Mixtures is to determine the number of
components K. Ideally, we would like to obtain information about K from the data.
This turns out to be a nontrivial problem.

The standard Bayesian solution of this problem is to assume that K is a random
variable, set up a hierarchical model with a hyperprior on K, and implement a MCMC
algorithm to obtain the posterior probability of K. This is the approach of Richardson
and Green (1997). Stephens (1997) takes a different approach. He sets up a birth-
death process on the components of Gaussian mixtures. Both Bayesian approaches
require intensive computation. Richardson and Green apply their method only on
the univariate case, Stephens to univariate and bivariate data. It is safe to say that
to extend either approach to arbitrary dimensions would require prohibitive amount
of computation. For our purpose of developing an EDA tool for regression of high
dimensional data, methods that require MCMC computation are not practical.

Frequentists often take a random or educated guess for K and the values of model
parameters, then apply the EM algorithm to obtain the MLE. In comparing models of
different degrees of freedom, a standard statistic called Bayesian Information Criterion
(BIC) is popular for its straightforward interpretation and simple computation. A
BIC is defined as

BIC = −2× log L(x; Θ∗) + d× log N,

where L(x; Θ∗) is the likelihood function evaluated at the MLE Θ∗; N is the sample
size and d the degrees of freedom of the given model. For a Gaussian mixture model,
d = K × (1 + p + p× (p + 1)/2)− 1 = O(Kp2) as shown in Section 2.4. The problem
with BIC is that it still requires the MLE computation for each value of K. The MLE
is usually computed using the EM algorithm, which requires good initial values of the
parameters. Moreover, the EM algorithm requires good initial values to increase the
chance for the convergence to a good maximum. And there is no known way to check
if a good maximum is attained other than to rerun the EM algorithm with different
initial values.

A more fundamental problem of the MLE computation is that the global maximum
of the mixture likelihood does not exist. This is because the likelihood function of
the Gaussian mixture models is not bounded. Let the variance of one component go
to 0 and the the value of the likelihood function goes to infinity.

The common practice in using Gaussian mixtures is to determine K by trial-
and-error. For each K, a user must also provide good initial parameter values to
initiate the EM algorithm. As the dimension of the data grows, it quickly becomes an
impossible task. Hastie and Tibshirani (1996) implement their Mixture Discriminant
Analysis (MDA) using Gaussian mixtures. Their solution is to use the k-means
procedure for a given K to generate initial values of model parameters for the EM
algorithm. But the selection of K remains to be in the trial-and-error mode.

A more practical approach is in great demand. In practice, we prefer using the
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data to help us identify K. A profile of models of every possible K will be a better
approach than repetitive trial-and-error. A promising solution to this problem comes
from an unexpected direction, which is the subject of the next section.

2.6 The Iterative Pairwise Replacement Algorithm

The iterative pairwise replacement algorithm (IPRA) was first proposed by Scott and
Szewczyk (2001). Their main goal was to find a parsimonious representation of a finite
Gaussian mixtures density. Their insight is that a Gaussian kernel density estimator
can be viewed as an n-component Gaussian mixture model and that the appropriate
K-component mixtures should be a parsimonious simplification of the initial kernel
density model. By iteratively merging the most similar pairs of components, they
reduce the initial model to a finite Gaussian mixture of K components (as K ranges
from n to 1). One key feature of IPRA is that it generates a sequence of mixture
models indexed by K, where K = 1, . . . , n. By defining a goodness-of-fit measure for
each mixture model, IPRA gives us a systematic way to determine the appropriate K.
Another important point is that Scott and Szewczyk (2001) propose using the method-
of-moments to update the model parameters. This leads to a simple alternative to
the cumbersome MLE. The key ingredients of IPRA are the initial kernel model, the
order of comparisons, the similarity measure, and the update algorithm of parameter
estimates. Scott and Szewczyk (2001) focus their attention on the univariate case.
For our purpose, we must extend their algorithm to the multivariate kernel density.
Essentially, this multivariate version of IPRA serves as the work horse for GMR. In
Chapter 3 we examine the details of IPRA and extend it to multivariate data.



Chapter 3

Multivariate IPRA

In this chapter, we implement a multivariate extension of the Iterative Pairwise Re-
placement Algorithm (IPRA). We first review the univariate IPRA and partition it
into three basic components: the similarity measure, the order of merging, and the
update parameter estimates after merging. We then design our multivariate IPRA
by necessary extensions for each component.

3.1 The Basic IPRA Components

IPRA was first proposed by Scott and Szewczyk (2001) for the task of simplifying a
kernel density model to a more parsimonious model. Their insight was to view the
kernel model as an n-component Gaussian mixture. By iteratively merging the most
similar pair of components, the IPRA reduces the initial model to a finite Gaussian
mixture of K components, K ranges from n to 1. Essentially IPRA generates a
sequence of mixture models indexed by K. We call this sequence the IPRA sequence.
This IPRA sequence of mixture models plays a key role in our GMR procedures.

The original IPRA starts with the kernel density estimator

f̂n(x) =

n∑

i=1

n−1φ(x; xi, h
2I), (3.1)

which is a saturated n-component mixture Gaussian model. The IPRA procedure
combines the most similar pair of components into one, thus reducing the number of
components by 1. Continuing this procedure to reduce the number of components,
eventually a sequence of K-component mixture models {f̂K : K = 1, . . . , n} emerges,
where

f̂K(x) =

K∑

i=1

πiφ(x; µi, Σi).

The original univariate IPRA consists of the following steps:

17
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Step 1. Construct the initial model

f̂(x) =

n∑

i=1

n−1φi(x),

where φi(x) = φ(x; xi, h
2).

Step 2. Combine the most similar pair of adjacent components (wiφi, wjφj) of pa-
rameters (wi, µi, σi) and (wj, µj, σj) into one component (w, µ, σ). Refit the
parameter using the method of moments (MoM) gives:

w = wi + wj,

µ = w̃i µi + w̃j µj ,

and
σ = w̃i σ

2
i + w̃j σ2

j + w̃i w̃j (µi − µj)
2.

where w̃i = wi/w, and w̃j = wj/w.

Step 3. Repeat Step 2 until there is only one component left.

The key ingredients of IPRA are the measure of similarity, the order of candidate
merging pairs, and the update of model parameters after merging.

In the multivariate situation, because there is no natural ordering among the
mixture components, and we must find a way to determine the order of comparing the
“consecutive” pairs of mixture components. To implement IPRA for the multivariate
Gaussian mixture models, in each step we will have to identify the closest pair for
combination. In high dimensions, we will follow the suggestion of Scott and Szewczyk
(2001) to define the order of “adjacent” components to be considered by the minimum
spanning tree (MST).

The MST consists of (n− 1) pairs of mixture components (φi, φj). We will then
sort the pairs by their Hellinger distances as defined in (3.2). The sorted pairs will
provide the order of IPRA trimming. In the beginning the MST will give the same
ordering as the Hellinger distance because each component has the same variance and
weight to start with. Following is a sketch of our multivariate IPRA:

Step 1. Define a weighted Hellinger metric on a pair of mixtures components:

H(wi, wj, φi, φj) =
√

wi wj

(
1−

∫ √
φi φj

)
. (3.2)

Step 2. Construct an MST that connect all n components with (n− 1) edges, where
the distance (similarity) between any two components is computed using
(3.2).
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Step 3. Rank (n− 1) edges by their similarity in ascending order.

Step 4. Merge the pair with the smallest similarity metric in the MST; update the
parameter of the new component using the method of moments (MoM). That
is,

w = wi + wj, (3.3)

µ =
wi

w
µi +

wj

w
µj, (3.4)

Σ =
wi

w
Σi +

wj

w
Σj +

wiwj

w2
(µi − µj)(µi − µj)

T . (3.5)

Step 5. Update the length of each remaining edge in the MST, re-rank the edges by
their updated lengths, and go to Step 5.

In Step 5, we use the MoM update for the parameters of the newly merged mixture
component. The detailed derivations of equations (3.3), (3.4), and (3.5) are given
in Appendix B. They are straightforward extensions of the algorithm introduced by
Scott and Szewczyk (2001). The detailed discussion of the weighted Hellinger metric
is given in the next section. Section 3.3 describes the details of building MST using
Prim’s algorithm.

3.2 Similarity Measure: Weighted Hellinger

Metric

The most important component of IPRA is the similarity metric, i.e., the distance
between two mixture components. There are various ways to define the distance be-
tween two general density functions. We choose Hellinger distance because it does
not depend upon the scale of the data. Although evaluating Hellinger distance be-
tween two general density functions is not an easy task, a simple closed form exists
when both density functions are Gaussian pdf’s. The Hellinger distance between two
density functions f(x) and g(x) is defined as

H(f, g) =

∫ (√
f(x)−

√
g(x)

)2

dx. (3.6)

As Scott and Szewczyk (2001) point out, to apply IPRA to Gaussian mixtures,
the definition of similarity metric should take the mixing weights into consideration.
A natural candidate is to apply (3.6) to the two Gaussian components directly. This
gives us

H(w1 φ1, w2 φ2) =

∫ (√
w1 φ1 −

√
w2 φ2

)2
dx (3.7)

= w1 + w2 − 2
√

w1 w2

∫ √
φ1 φ2 dx. (3.8)
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One consequence of the weighted Hellinger metric defined as (3.8) is that the two
components of similar weights have a smaller Hellinger distance than the two compo-
nents of distinctly different weights. For example, given the same pair of pdf’s (φ1, φ2)
of different mixing weights, say (.30, .20) and (.49, .01), we have H(.30 φ1, .20 φ2) <
H(.49 φ1, .01 φ2). It implies that the (.30, .20) pair is more similar than the (.49, .01)
pair, and therefore the IPRA procedure will merge the (.30, .20) pair first.

In practice, it is preferable to first merge a much smaller weighted component to
a larger one nearby. This preference motivates us to abandon (3.8) and choose the
weighted Hellinger metric in the form of (3.9):

H(w1, w2, φ1, φ2) =
√

w1 w2

(
1− 2

∫ √
φ1 φ2 dx

)
. (3.9)

Here the farther apart the w1 and w2 are, the smaller the value of
√

w1 w2, and hence
the smaller the value of (3.9). This implies a smaller distance, or higher similarity,
between two mixture components of very distinct weights (wj, wk) with all other
things being equal. Hence, we define the weighted Hellinger metric as (3.9) because
it renders two unevenly weighted mixtures components a smaller distance, or higher
similarity. The direct consequence is that (3.9) promotes the merging of two unevenly
weighted mixture components, which is a desired property for the IPRA procedure.

The integral in (3.9) has a closed form and its computation is straightforward:
∫ √

φ1φ2 = (2
√

2π)p|Σ1|1/4|Σ2|1/4φ(0; µ1 − µ2, 2Σ1 + 2Σ2).

The mathematical details are in Appendix A.

3.3 The Order of Merging: Minimum Spanning

Tree

In the most naive sense, given n mixtures components, we can compute the pairwise
distance between all possible pairs d(φj, φk) and then rank all possible n(n − 1)/2
pairs in ascending order. This ranked list will specify the order in which the IPRA
merges similar pairs sequentially. However, because this scheme requires O(n2) oper-
ations and storage. It is sufficient to construct an MST for the same purpose, which
requires only O(n log n) operations. MST is a well-studied subject in graph theory.
It is defined as the undirected graph that connects n points with the minimum cost.
For our application, cost is defined as the total length of the (n−1) edges. The main
reference for our discussion here is Sedgewick (2002). Sedgewick categorizes the prob-
lem of finding the shortest connection of n points as the Euclidean MST. Sedgewick
concludes that the worst-case cost of the standard Prim’s algorithm with priority-first
search is O(n · log n), which is a sizeable improvement in comparison to the direct
computation of a n×n distance matrix. Prim’s algorithm is a straightforward way to
grow the MST. At each step, the edge that connects the point that is closest to the
tree is added to it. The procedure continues until all points all included in the tree.
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First we define the distance between a point x to a set G as

d(x, G) = min
g∈G
‖ x− g ‖ .

Following is a sketch of Prim’s algorithm:

Step 1. Initiate G = {x1}, M = ∅.

Step 2. Find xj = argmin
x/∈G

{d(x, G)}. Denote E(xj , g) the edge of minimum length.

Step 3. Update the edge set M = M ∪ {E(xj, g)}, G = G ∪ {xj}.

Step 4. Continue Step 2 until G = {x1, . . . , xn}. The M consists of (n− 1) edges is
the MST.

We implement Prim’s algorithm in MATLAB. Figure 3.1 shows the initial MST gen-
erated by our MATLAB code on the Motorcycle Data.

After the initial MST defines the IPRA merging order, the merging operation will
alter the pairwise distances among the remaining mixture components. In principle,
we may need to recompute the MST must be updated accordingly. In our experience,
we found that recomputing MST in not necessary. In our implementation, after each
IPRA merging operation, which includes recomputing the pairwise distance between
each remaining pair of components in the MST using weighted Hellinger metric (3.9)
and re-rank the remaining pairs by the updated distances.
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Figure 3.1: Minimum spanning tree of the Motorcycle data

3.4 Method-of-Moments Updates versus MLE

The likelihood and MLE of mixture models are well-studied subjects in statistics.
Lindsay (1983) develops a general theory of the mixture likelihood and provides the
sufficient conditions for the uniqueness of MLE. However, in the context of this dis-
sertation, our focus is not on the MLE of the underlying Gaussian mixture density
models. Instead, we are interested in an efficient approximation of the model param-
eters that is good enough to provide reasonable grounds for model selection. That
is, we need good enough estimates of (wj, µj, Σj)

K
j=1 for any given K so that we can

compute goodness-of-fit measures that can help determine the appropriate value of
K.

The most important reason we want to avoid MLE in IPRA procedures is that the
MLE update of the model parameters after merging requires intensive computation.
Strictly speaking, an exact MLE update requires the MLE update of the whole (K −
1)-component mixtures after merging one pair of the K-component model.

Scott and Szewczyk (2001) propose a reasonable idea of local refitting, which
updates only the component after the merging operation and keeps the other com-
ponents fixed. They investigate the method of moments and L2E updates of the
parameters of the merged component.

We choose the MoM update because it requires simpler computation than the
L2E. For our purpose, the IPRA sequence of Gaussian Mixtures with method-of-
moments estimate of the parameters is sufficient. After all, the ultimate goal is to
determine the appropriate value of K for the modeling of m(x). And, in our setting,
K is not determined by the density estimation itself, but by the performance of the
GMR models derived from the IPRA family. Hence, the exact MLE of the model
parameters for each K is not necessary for our use of IPRA, which is to help discern
appropriate values of K for the GMR models. The task of determining K is deferred
to the GMR model selection algorithm. Once K is determined, we can always launch
the EM algorithm with the IPRA MoM estimates as the initial values and get the
MLE updates of the selected model.

In Chapter 4 we discuss the MoM versus MLE within the context of GMR.



Chapter 4

Gaussian Mixture Regression

This chapter is the core of the thesis. In Section 4.1 we describe the classical result of
the joint Gaussian density and its regression function. In Section 4.2 we extend the
fundamental result to derive the Gaussian Mixture Regression (GMR) models, which
resumes the form m(x) = E[Y |X = x] =

∑K
j=1 wj(x) mj(x), from the K-component

Gaussian mixture of the underlying joint density fX,Y . Applying IPRA procedure
described in Chapter 3 we generate a sequence of Gaussian mixture density models
index by K; Consequently, the IPRA/GMR procedure provide data analysts a family
of regression model indexed by K. Section 4.3 describes the estimation of the GMR
model parameters for any given K.

In Section 4.4 and Section 4.5 we discuss the key parameters that govern the
IPRA/GMR procedure: the bandwidth h that governs the IPRA procedure and the
number of components K that controls the smoothness of the GMR models.

The Bayesian perspective is described in Section 4.6 and finally in Section 4.7
we investigate its practical and theoretical properties of IPRA/GMR and compare
its performance to the standard Multivariate Adaptive Regression Splines (MARS)
procedure (Friedman 1991).

4.1 Regression from the Joint Gaussian Density

In this section we derive the exact form of GMR model from a K-component Gaus-
sian mixture joint density model. Our starting point is the simple joint Gaussian
density of (X, Y ). One classical result of the multivariate Gaussian density is that
when partitioning the joint density into fX,Y = fY |XfX , both fY |X and fX are also
multivariate Gaussian. Theorem 4.1.1 is a well established result from Mardia et al.
(1979, p.63).

Theorem 4.1.1. If
[
X1
X2

]
∼ Np+q(µ, Σ), where X1 ∈ R

p, X2 ∈ R
q, and Σ =

23
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[
Σ11 Σ12
Σ21 Σ22

]
, then

X2|X1 ∼ Nq(µ2 + Σ21Σ
−1
11 (X1 − µ1), Σ22.1), (4.1)

where Σ22.1 = Σ22 − Σ21Σ
−1
11 Σ12.

Theorem 4.1.1 states that when (X, Y ) is a joint Gaussian distribution, the con-
ditional density is also Gaussian and the regression function is a linear function (4.2)
whose slope is determined by ΣX , the variance of X, and ΣY X , the covariance of Y
and X:

m(x) = E[Y |X = x] = µY + ΣY XΣ−1
X (x− µX), (4.2)

σ2 = Var[Y |X = x] = ΣY − ΣY XΣ−1
X ΣXY , (4.3)

and the joint density can be partitioned as

φ(x, y; µ, Σ) = fY |X(y|x)fX(x) = φ(y; m(x), σ2) φ(x; µ
X
, Σ

X
). (4.4)

4.2 Regression Function of the Gaussian Mixtures

Extending the classic results of the joint Gaussian to a finite Gaussian mixtures, it
can be shown that the mixture Gaussian model for the joint density fXY inherits the
elegant results of (4.2), (4.3), and (4.4) from each Gaussian component of the mixture
model. Assume the data follow the the joint density

fX,Y (x, y) =

K∑

j=1

πjφ(x, y; µj, Σj), (4.5)

where

K∑

j=1

πj = 1, µj =
[
µjX

µjY

]
, Σj =

[
ΣjX

ΣjXY

ΣjY X
ΣjY Y

]
.

Here, φ(x, y; µ, Σ) is the pdf of the multivariate Gaussian Np+1(µ, Σ). The parameters
of model (4.5) include the number of the mixture components K, the prior weights, the
means , and the variances of each Gaussian component. That is, Θ = (θ1, θ2, . . . , θK),
where θj = (πj , µj, Σj), with the constraint

∑K
j=1 πj = 1.

Partitioning each Gaussian component φj according to equation (4.4), the joint
density can be written as

fX,Y (x, y) =

K∑

j=1

πj φ(y|x; mj(x), σ2
j ) φ(x; µjX

, ΣjX
), (4.6)
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where
mj(x) = µjY

+ ΣjY X
Σ−1

jX
(x− µjX

) (4.7)

and
σ2

j = ΣjY Y
− ΣjY X

Σ−1
jX

ΣjXY
. (4.8)

Note that fX and fY |X can be derived directly from (4.6), followed by the regression
function (4.12) and the conditional variance (4.13). The marginal density of X is

fX(x) =

∫
fX,Y (x, y) dy =

K∑

j=1

πj φ(x; µjX
, ΣjX

). (4.9)

The conditional pdf of Y |X is

fY |X(y|x) =

K∑

j=1

wj(x) φ(y; mj(x), σ2
j ), (4.10)

with the mixing weight

wj(x) =
πj φ(x; µjX

, ΣjX
)

∑K
j=1 πj φ(x; µjX

, ΣjX
)
, (4.11)

and the mj(x), σ2
j from (4.7), (4.8).

From (4.10), the regression function is of the form:

m(x) = E[Y |X = x] =
K∑

j=1

wj(x) mj(x). (4.12)

The conditional variance function is

v(x) = Var[Y |X = x] =
K∑

j=1

wj(x)
(
mj(x)2 + σ2

j

)
−

( K∑

j=1

wj(x)mj(x)
)2

. (4.13)

Equation (4.12) is the core of this thesis. We call the m(x) in (4.12) a Gaussian
Mixture Regression (GMR) model of index K, abbreviated as GMR(K) or m(x; K).
Notice that the regression function m(x) derived from the joint mixture Gaussian
density is of the form of a kernel estimator. However, there is a key difference:
the weight function wj(x) is not determined by local structure of the data but by
the components of a global Gaussian mixture model. Therefore GMR is a global
parametric model with nonparametric flexibility.

Obviously, the Nadaraya-Watson kernel smoother is a GMR model of index K = n,
GMR(n), with the prior mixing probability πj = 1/n, and the covariance ΣjY X

= 0.
At the other end of the spectrum, GMR(1) is approximately the classical linear model.
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Hence, the GMR sequence of models covers a spectrum of regression models of varying
flexibility, ranging from the nonparametric kernel regression (K = n) to the classical
linear model (K = 1).

Another feature of GMR is that the pointwise variance function v(x) = Var[Y |X =
x] is readily available. The function v(x) provides a second-order summary statistic of
the conditional distribution. Finally, unlike the local kernel estimators whose weights
are determined solely by local features of the data, the GMR estimator (4.12) offers
an elegant composition of the global and the local information of the data.

4.3 Estimating the GMR Model Parameters

The main computing task for fitting GMR is the estimation of the parameters of the
Gaussian mixture model for the joint density fX,Y . In this section, we explore some
theoretical aspects and develop algorithms to estimate the Gaussian mixture model
parameters.

The main difficulty in estimating Gaussian mixture models is picking the right
number of components. We avoid the issue of picking the right K by an obvious
observation: the best mixture for the density fX is somewhere between the saturated,
n-component mixture, fX(x) =

∑n
i=1 n−1φ(x; xi, Σ), and the one-component simple

Gaussian fX(x) = φ(x; x̄, S). And instead of picking K from the density estimation
perspective, we delegate the choice of K to the GMR model selection procedure.

The parameter estimation in the GMR model relies on the MoM estimates em-
ployed by IPRA. Although this is not MLE, its computation is fast and straightfor-
ward. Because we defer the choice of K to the later stage, it is not necessary to obtain
the MLE for every GMR(K). A more reasonable strategy is to use the method of
moments estimation for every GMR(K), then apply model selection for picking the
best K with respect to the mean squared error or prediction error. Once a good K
is determined, we could use the EM algorithm to obtain the MLE fit for the selected
GMR(K), using the starting values provided by the MoM fits of GMR(K). The
IPRA/MoM fit is a natural choice for an initial value for the EM algorithm. Lindsay
and Basak (1993) point out that there is no known simple, effective way to obtain
starting values for the MLE. The IPRA/MoM could be used as a procedure to select
good K and provide natural initial value with it so that it will be much easier to use
the Gaussian mixture models for data analysis.

In our empirical study, we compare the IPRA/method of moments fit of GMR
and their MLE update. The result of our study shows that the MLE update usually
sharpen the fit, that is, GMR/MoM fit is smoother than GMR/MLE fit. Whether
it is beneficial or not is data dependent. We will encounter an example where MLE
ameliorates the model fit in Section 4.7.3.2; and another example in Section 7.3.1.1,
where the MLE update increases the test error in classification problems. It is a good
strategy to always compute the MLE update of the best GMR(K) model selected.
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4.4 Initial Kernel Bandwidth Selection

The bandwidth selection is a central issue in both kernel regression and kernel density
estimation. We argue that for GMR, the optimal bandwidth with respect to the
kernel density estimation is an upper bound for our bandwidth selection problem in
(3.1). That is, a suboptimal bandwidth on the overfitting (i.e., under-smoothing) side
should serve our purpose well. Our reasoning is that because GMR(1) always underfit
(over-smooth) the data, we want to make sure that the initial model GMR(n) is an
overfit so that the “right” model is contained in the GMR model sequence.

Scott (1992, p.150) studies the bias and variance of product kernel estimator of
the form:

f̂n(x) =
1

nh1 . . . hd

n∑

i=1

d∏

j=1

K(
xi − xij

hj
). (4.14)

According to Scott’s analysis, when K in (4.14) is Gaussian, the bandwidth that
minimizes the Asymptotic Mean Integrated Squared Error (AMISE) is

h∗
j =

( 4

d + 2

)1/(d+4)
n−1/(d+4)σj . (4.15)

As dimension d varies, the constant in h∗
j ranges over the interval (.924, 1.059), which

is tightly around 1. Therefore Scott recommended the simple rule:

ĥj = σ̂j n−1/(d+4). (4.16)

In practice, Scott’s ĥj can be used as a guideline for GMR. Since we rescale the
data before applying GMR so that σ̂j = 1 for every dimension j, we can use the same
h for every dimension and Scott’s rule is simplified as

hS = n−1/(d+4). (4.17)

hS is optimal when the density is product of Gaussian, in other words, a multivariate
Gaussian with diagonal covariance matrix. Our target density is Gaussian mixture.
Therefore an adjustment is required. We apply a simple adjustment by multiplying
hS with a factor 1/20.

To ensure an overfitting GMR(n), we could pick a bandwidth smaller than Scott’s
recommendation so that the initial GMR(n) overfits the data. A sensitivity analysis
is conducted on the Motorcycle data to demonstrate this concept. The details are in
Section 7.2.3.1.

Precisely, an under-smoothed kernel estimate leads to regression prediction that
almost interpolates the data points, that is, ŷi = m̂(xi) ≈ yi. On the other hand, an
over-smoothed estimate gives predictions closer to the classical linear model (global
least-square) fit:

m̂(xi) ≈ Ȳ + xT
i (XT X)−1XT Y.
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A case study using the Motorcycle data (see Section 7.2.3) demonstrates that choosing
h less then the optimal hCV will lead to an almost identical final GMR model fit. This
suggests that when applying the GMR procedure, we can use a simple rule of thumb
to pick a sufficiently small h. One simple option is to use the minimum distance
between two consecutive observations in each dimension:

hm = min
j,k
{|Xk,j −Xk,j−1|}, (4.18)

with each dimension Xk standardized and xk,j 6= xk,j−1.
One cautious point in choosing h for GMR is that if h is too small, a singularity

may occur and make the GMR numerically unstable. To guard against an h too
small, we pick the maximum of (4.18) and Scott’s rule (4.17) with adjustment. Our
resulting rule of thumb of bandwidth selection is

h∗ = max{hm, 1/20 hS}. (4.19)

In practice, it is prudent to use several different values of h to initiate the IPRA/GMR
procedure. It allows us the compare the RMSE profile generated by different h.

4.5 GMR Model Selection

Once the bandwidth h is determined, the IPRA procedure will generate a sequence of
GMR models indexed by the number of components K. The next crucial task is the
selection of K. In this section we first discuss the difference between selecting K for
the underlying density and selecting K for the regression function. Usually the latter
is smaller. This is a direct consequence of a theorem we prove in the next section.

Bearing this difference in mind, we will focus on selecting K for the regression
function. The standard model selection criterion for this task is the mean squared
error (MSE). When there are test data available, we will fit GMR procedures on the
training data and then apply them on the test set to estimate the prediction error
(PE). In general, PE is a better criterion than MSE. When the sample size is small
and computationally feasible, we apply leave-one-out cross-validation technique to
estimate the prediction error. We define MSE and leave-one-out cv in Section 4.5.2.
We then discuss the meaning of residuals of GMR models. A word of caution is
that the usual justification of using MSE as a model selection criterion is that the
residuals are iid white noise. This is not true in GMR. We further discuss this topic
in Section 4.5.3.

4.5.1 Redundant Component Theorem

The central issue in GMR model selection is the parameter K. We argue that since
GMR is designed to be an EDA tool and not to produce the definitive final model,
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the goal of GMR model selection is not to pick the definitive K but to pick several
reasonable ones. An important point is that the K that is right for the regression
is not necessarily the right K for the underlying density, fX,Y . In general, the best
K for the underlying density estimation is larger than necessary for GMR fit. We
present Theorem 4.5.1 to demonstrate this point. Theorem 4.5.1 also suggests the
non-uniqueness of the best K. We call it the Redundant Component Theorem.

Theorem 4.5.1 (Redundant Components). Let (µj, Σj) and (µk, Σk) be two dis-
tinct components of a GMR model. If they satisfy the conditions that µjX = µkX and
ΣjX = ΣkX ; then merging the two components does not affect the overall m(x).

The proof is straightforward. Recall the weight function of the GMR in (4.11):

wj(x) =
πjφ(x; µjX, ΣjX)

∑K
j=1 πjφ(x; µjX , ΣjX)

.

One natural interpretation of wj(x) is that wj(x) = Pr(G = j|X = x), where G is
the latent mixture indicator variable. The assumption µjX = µkX and ΣjX = ΣkX

implies that for all X = x,

wj(x)

wk(x)
=

πj φ(x; µjX, ΣjX)

πk φ(x; µkX, ΣkX)
=

πj

πk
= constant.

It is straightforward to show that

wjk(x) mjk(x) = wj(x) mj(x) + wk(x) mk(x), (4.20)

where
wjk(x) = wj(x) + wk(x)

,

mj(x) = µjY + ΣjY X Σ−1
jX (x− µjX),

mk(x) = µkY + ΣkY X Σ−1
kX (x− µkX).

From the MoM equations (3.3), (3.4), and (3.5), we have the merged parameters:

wjk(x) = wj(x) + wk(x),

µjk =
wj(x)µj + wk(x)µk

wjk(x)
,

Σjk =
wjΣj + wkΣk

wjk(x)
+

wjwk

w2
jk

(µj − µk)(µj − µk)
T

=
wjΣj + wkΣk

wjk(x)
.
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Now we verify (4.20):

wjk(x)mjk(x) = wjk(x)µjkY + wjk(x)ΣjkY XΣ−1
jX(x− µjX)

= wj(x)µjY + wk(x)µkY + (wj(x)ΣjY X + wk(x)ΣkY X)Σ−1
jX(x− µjX)

= wj(x)mj(x) + wk(x)mk(x).

Finally,

m(x) =
K∑

i=1

wi(x)mi(x)

= wj(x)mj(x) + wk(x)mk(x) +
∑

i6=j,k

wi(x)mi(x)

= wjk(x)mjk(x) +
∑

i6=j,k

wi(x)mi(x).

Therefore, the MoM merging of mj(x), mk(x) within the overall GMR m(x) does not
change the value of m(x).

Theorem 4.5.1 states that if there is no difference between two mixture components
with respect to their marginal distribution in X, then merging the two components
will not change the overall regression function m(X). Figure 4.1 demonstrates this
fact using an example of a 5-component Gaussian mixture fX,Y . The two components
located at x = 6 have identical marginal density fX with µ = 6.0, σ2 = 5.0. The
line that connects the centers of the other 3 components and goes through the middle
of the two with identical fX is the GMR(5) fit. Merging the two components gives
the big component with the same fX and an inflated variance in Y . The inflated
σY indicates that the underlying 4-component Gaussian mixture has a terrible fit of
the true underlying density. However, the resulting GMR(4) model yields identical
regression curve to the one of GMR(5).
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Figure 4.1: An example of redundant components in GMR models

From the density model perspective, if the two components are far apart in Y ,
then merging the two components diminishes such information. Geometrically, in this
example, the conditional distribution Y |X = 6 is bimodal and the conditional mean is
not a good summary anyway. Merging the two modes does not change the conditional
mean. Based on Occam’s razor principle, we will favor the merging operation in this
situation.

Another direct implication of Theorem 4.5.1 is that GMR models of different K’s
may have very similar regression curves. A sensible solution is to pick the GMR
model with the smallest K among all models of similar MSE and predictive error.
We demonstrate applications of GMR in Chapter 7.

4.5.2 Model Selection Criteria

The most common regression model selection criterion is mean squared error (MSE).
MSE is defined as

MSE(m̂) = E[Y − m̂(X)]2.

In most of the figures and tables we record the root-mean squared error (RMSE),
which is the square root of MSE: RMSE(m̂) =

√
MSE(m̂). In practice, MSE is

computed as

MSE(m̂) = n−1

n∑

i=1

(
yi − m̂(xi)

)2
,

for a given model m̂.
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Obviously a model that reproduces the original data, m̂(xi) = yi, has MSE = 0.
This means that the MSE criterion favors models that overfit the data. A more
sensible criterion is to evaluate a model based on its performance in predicting future
observations. When the data are abundant, a simple practice is to split the data into
a training set and a test set, fit the model using the training set, and than evaluate
the mean squared error on the test set. A sensible idea known as leave-one-out cross-
validation is very popular, especially when the sample size is moderate. One good
thing about leave-one-out cv is that it uses n − 1 data points to “train the model;”
thus the leave-one-out cv evaluation of the predictive performance of the procedure
is closer to the one using all n data points.

For a data set of size n, the leave-one-out cv procedure fits a model without the
j-th observation (xj , yj); and then applies the model to evaluate the response yj.
Precisely,

cv(K) = n−1

n∑

j=1

(yj − m̂−j(xj ; K))2. (4.21)

In this thesis we use both test error and leave-one-out cross-validation to select the
best GMR and GMC models. Applications of GMR are reported in Chapter 7.

4.5.3 The Residuals of GMR

One important distinction between GMR and other nonparametric methods is that
GMR starts with the joint density model instead of the conditional density. A direct
consequence is that the residuals of GMR are not homoscedastic. Therefore the usual
residuals analysis for model diagnostics is not applicable in GMR. To be more specific,
standard nonparametric models assume

Yi = m(Xi) + εi, (4.22)

where
εi ∼ N(0, σ2). (4.23)

By nature, model (4.22) is unbiased and homoscedastic, and we can always use resid-
uals for model diagnosis by checking if (4.23), the exact residuals distribution given
the model (4.22), is correct.

The distribution of the residuals of GMR is far more complicated than (4.23),
so it is difficult to apply residuals for GMR model diagnosis. Precisely, a GMR(K)
model can be written as

(Y |X = xi, G = k) ∼ N(m(xi), σk).

Therefore, the distribution of the residuals of GMR, εi = yi −m(xi) is

(εi|G = k) ∼ N(0, σk).



33

An overall pdf of ε is a K-component Gaussian mixture

fε(u) =

K∑

k=1

wkφ(u; 0, σk),

with the mixing weights wk = Pr(G = k|X).
Because the mixing weights wk depend on X, the residuals of GMR are not suitable

for a global model diagnosis. In practice, we apply the bootstrap method to estimate
the bias and variance of the GMR model fits. Since the residuals of the GMR models
are not iid, it is not applicable to bootstrap from the residuals.

4.6 The Bayesian Perspectives of GMR

One advantage of a Bayesian approach to GMR is that it offers a way to quantify
the finite-sample behavior of the model. From the computational point of view, the
Bayesian approach is natural for mixture models because it allows the unobserved
cluster indicator Z to play a significant role in the inference, and hence simplifies the
MLE part of the model fitting. The literature on the Bayesian approach in mixture
models is abundant, especially since the rediscovery of the Markov-Chain Monte-Carlo
(MCMC) algorithms. Bayesians finally have a powerful tool to execute the intensive
Bayesian computations. Many recent articles are interested in mixture models with
an unknown number of components. Richardson and Green (1997) propose a re-
versible jump MCMC algorithm for finite mixture models with unknown number of
components. Under Brian Ripley’s supervision, Matthew Stephens used a Markov
birth-death process to study the same subject in his Ph.D. thesis:Stephens (1997).

The posterior probability Pr(K|X, Y ) is not the focus of this dissertation. We con-
tend that for the purpose of EDA, we do not need a precise estimate of Pr(K|X, Y ).
Because when the target is the regression function, different values of K can give
approximately the same regression function. As Theorem 4.5.1 implies that when
the marginal fX|G=j and fX|G=k are very similar, then merging the j-th and the k-th
components does not affect the overall m(X). Hence the value of K is not too crucial
for GMR.

4.7 Simulation Study of GMR

One main difficulty in the asymptotic analysis of GMR is that the underlying Gaussian
mixture density estimation is not well-defined. Because the likelihood function is
unbounded, the ordinary MLE does not exist. Therefore it requires regularization to
have a unique MLE fit. Since mean squared error (MSE) and predictive error (PE)
are the objective functions for GMR model selection, they provide the necessary
regularization because both MSE and PE are bounded.
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Another aspect of GMR is that different Gaussian mixtures models for the un-
derlying pdf fX,Y can yield very similar regression fits, a direct ramification of the
Redundant Component Theorem discussed in Section 4.5.1.This phenomenon implies
that the best model for GMR may not be unique, even if the sample size goes to
infinity. We observe this in our simulation study. In both theory and practice, the
non-uniqueness of the best models is hardly a bad thing. We will demonstrate the
non-uniqueness of GMR(K) in our simulation study.

Our intuition is, by forcing GMR(n) to overfit, the best model GMR(K) is in-
cluded in the GMR model sequence. Conceptually, for every given K, there exists
a best model for the data in terms of minimum MSE or PE. One approach to ap-
proximate this best model sequence is to fit the MLE of the K-component Gaussian
mixture for each K = 1, . . . , n by the EM algorithm. However, this computation
is too expensive and unnecessary. IPRA provides an alternative way to generate a
sensible path through the model space. The resulting GMR model sequence provides
a good representitive sample of the model space, and consequently, it gives us a sys-
tematic way to choose the best K for a given data set. As long as the initial kernel
model, GMR(n), overfits, we will have a good chance of finding the appropriate K.
We verify this intuition by a simulation study. Any more rigorous proof is a subject
of future research.

Following is a sketch of our simulation study of the consistency of GMR:

1. Simulate a training data set and a test set of the same size n from a K-
component mixture density fX,Y .

2. Fit GMR(k) on the training set, computing the MSE and PE of GMR(k) as
k = 1, . . . , n.

3. Repeat steps 1 and 2 m times, computing the summary statistics of MSE and
PE.

4. Run the same simulation for several different sample sizes, n.

We can draw several inferences out of the simulation study:

1. Evaluate the effect of sample size on MSE and PE.

2. Verify if GMR(k) can achieve the minimum PE of the true model.

3. Estimation of bias and variance of the GMR fits.

4.7.1 GMR on Null Data

The first example is designed to investigate how GMR perform on the independent
noise, that is, when the covariates X contain no information regarding the response
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Y , the true regression model should be y = ȳ. In this situation, a sensible regression
procedure should produce global constant fit, the sample mean.

We simulated 30 null data sets, X1, . . . , Xp, Y , and random error ε, each from
the standard Gaussian distribution. We repeated the simulation with p = 5, 20 and
n = 100. It is interesting to observe that for p = 5 scenario, as shown in Figure 4.2,
a typical RMSE curve of GMR models appears to have a corner around K = 11.
After that, it goes straight to K = 1. Similar pattern is apparent in p = 20 scenario
(Figure 4.3), but the first corner is around K = 7. Other than this anomaly, the
RMSE curves in both scenario indicate that the best is model GRM(1). We will see
in later analysis that this first corner or shoulder of the RMSE curve usually indicates
the overfit adjustment for the overfit caused by a bandwidth too small.

The p = 20, n = 100 case in Figure 4.3 is satisfactory, consider the relatively small
sample size in the 20-D feature space. It indicates that GMR will generally ignore
spurious features. When modeling null data, the GMR profile (RMSE vs K) will
indicate no sharp decrease of RMSE in a specific K; therefore suggest the simplest
GMR(1) fit. It is still not a constant, but we consider a global linear model is the
simplest fit GMR can achieve.
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Figure 4.2: RMSE of GMR models for null data (n = 100, p = 5)
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Figure 4.3: RMSE of GMR models for null data (n = 100, p = 20)

4.7.2 GMR on True GMR Data

The goal of this example is to investigate how well GMR picks up the correct number
of components K. Instead of simulating Y from a given function g(X), we simulate
the data from a Gaussian mixture pdf of five components, that is, (Xi, Yi)|G = k ∼
Np+1(µk, Σk), k = 1, . . . , 5.

We simulate 300 training sets, and 300 test sets with p = 5, n = 300. The
result in Figure 4.4 indicates that the best GMR model is around GMR(3), GMR(4),
and GRM(5). A empirical confirmation of the condition predicted by the redundant
component theorem.
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Figure 4.4: RMSE of GMR models of the simulated 5-component Gaussian mixture
data (n = 300, p = 5)

4.7.3 GMR vs MARS

Multivariate Adaptive Regression Splines (MARS) is one of the most versatile non-
parametric regression procedures for multivariate data. In this section we apply both
GMR and MARS procedures to several examples to compare the two procedures.

4.7.3.1 Tensor Products and Neural Network Data

Hastie, Tibshirani, and Friedman (2001, p.288) apply MARS on three simulated
examples. Each one has sample size n = 100. The first example is

Y = (X1 − 1)+ + (X1 − 1)+ (X2 − .8)+ + 0.12 · ε, (4.24)

where X1, X2, and ε are all simulated from the standard Gaussian distribution. The
second example is the same as example 1, with extra 18 independent standard Gaus-
sian noise. That makes it total p = 20 predictors. They call the first two examples
Tensor product p = 2 and p = 20. These two examples are especially designed in
favor of MARS. The third example has a more complicated, neural network style
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structure that will be harder for MARS to pick up:

l1 = X1 + X2 + X3 + X4 + X5,

l2 = X6 −X7 + X8 −X9 + X10,

σ(t) =
1

1 + e−t
,

Y = σ(l1) + σ(l2) + 0.12 · ε.

For each model fit of the simulated data, Hastie et al. (2001) compute the value of
MSE and R2, defined as the following:

MSE0 = n−1

n∑

i=1

(ȳi − µ(xi))
2,

MSE = n−1
n∑

i=1

(m̂(xi)− µ(xi))
2,

R2 =
MSE0 −MSE

MSE0

,

where µ(x) is the true mean of Y and m̂(x) the fitted value. MSE0 is the mean
squared error of the null model m̂(x) = ȳ.

We applied the same simulation procedure on MARS. Table 4.1 records the results
of 100 simulations of GMR and the corresponding values of MARS from Hastie et al.
(2001, p.289). As expected, in the first two examples, MARS perform almost perfectly.
With the neural network data, however, MARS is less efficient. Interestingly, GMR
performs very well in the neural network data. For the first two Tensor product
data sets, GMR is not as good as MARS, yet its performance is satisfactory. One
interesting aspect of GMR shown in Table 4.1 is that the extra noise dimensions
do hurt GMR. This is because GMR fits the global pdf model. MARS shows great
strength in filtering out noise dimensions. In the second scenario, 18 more noise
dimensions have no effect on MARS at all. This is because MARS fits the data one
dimension at a time.

Among all three examples, GMR shows good balance with comparable perfor-
mance to MARS in example 1. And an excellent result in the neural network example.
We conjecture that GMR can outperform MARS when the true regression function
contains smooth nonlinear interactions such as example 3. This conjecture is further
reaffirmed in the next example.

4.7.3.2 Interaction Spline Example

Friedman (1991) applies his MARS procedure to a simulated example first inves-
tigated by Gu et al. (1989). The original example consists of 300 points in the
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Table 4.1: The R2 values of MARS and GMR on 100 simulated examples

MARS GMR
Scenario Mean (S.E.) Mean (S.E.)

Tensor product (p = 2) 0.97 (.01) 0.93 (.04)
Tensor product (p = 20) 0.96 (.01) 0.83 (.07)

Neural Network 0.79 (.01) 0.94 (.01)

unit square [0, 1] × [0, 1]. That is, (x1i, x2i) are iid samples simulated from uniform
[0, 1]× [0, 1] distribution. The true regression function is (4.25) ∗

f(x1, x2) =
40 exp{8[(x1 − .5)2 + (x2 − .5)2]}

exp{8[(x1 − .2)2 + (x2 − .7)2]}+ exp{8[(x1 − .7)2 + (x2 − .2)2]} (4.25)

The simulated response y is

yi = f(x1i, x2i) + εi,

where εi, i = 1, . . . , 300 are simulated from the standard Gaussian N(0, 1). Fig-
ure 4.5 shows the true regression surface and the simulated data yi. The MARS fit
in Figure 4.6 is generated by the R function mars implemented by Trever Hastie and
Rob Tibshirani in their R-package mda, which is freely available in http://www.r-
project.org.

The GMR fit involves a little more work. We first applied GMR procedure with
bandwidths h = .1 and h = .001. We computed the RMSE of the GMR fits on both
the true function values f(x1i, x2i) and the observations yi. The RMSE of the GMR
fits are shown in Figure 4.9, which reveals several interesting points. First of all,
observe that the RMSE of the clearly overfit GMR path initiated by h = .001 merges
with the more mild h = .1 fits after about K = 10. The same pattern also shows in
the RMSE for the true function values. Since both MSE curves go flat after K = 5,
it indicates that the best GMR model fit is GMR(5). In this regard, the bandwidth
selection is almost irrelevant. We will revisit the bandwidth selection issue again in
our analysis of the Motorcycle data in Section 7.2.3.1 and Figure 7.8.

The second point in Figure 4.9 is that the RMSE with respect to f(x1, x2) initiated
by h = .001 is very close to the RMSE of h = .1 on y. And the RMSE by h = .001
is almost 0. Both indicate that h = .001 is too small. On the other hand, the
parallel pattern of the RMSE curves by h = .1 suggests that h = .1 is an appropriate
bandwidth for this simulated data.

Using GMR(5) with MoM parameter estimation, we applied the EM algorithm
to obtain the MLE updates. Figure 4.7 and Figure 4.8 are the GMR(5)/MoM and

∗We obtain (4.25) directly from Gu et al. (1989). It is worth noticing that the formula in
Friedman (1991, p. 50) is printed incorrectly. And the year of Gu et al. (1989) cited by Friedman
(1991) is 1990, which is incorrect, too.
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MARS Interaction Splines GMR(5)/MoM GMR(5)/MLE√
E[f − ŷ]2 .6958 .3298 .8230 .3698√
E[y − ŷ]2 1.1532 NA 1.2894 1.0364

Table 4.2: The RMSE of models for the interaction spline example

GMR(5)/MLE fits of the data. In comparison to the MARS fit in Figure 4.6, it
is obvious that both GMR(5) models give a smoother fit than the MARS and the
interaction spline model fit as shown in Figure 4 of Gu et al. (1989). The actual
RMSE of all the models in comparison is in Table 4.2. The numbers show that the
interaction spline model has the smallest RMSE on the true f(x1, x2), GMR(5)/MLE
is at a close second. The RMSE on y shows that the MARS and GMR(5)/MLE are
pretty close and GMR(5)/MoM is not far behind. Considering that the standard
error of the white noise is 1.0473, all three models provide good fits. Gu et al. (1989)
have not reported the RMSE or MSE on y of their interaction spline so it is not given.
However, comparing both GMR(5)/MoM and MLE in Figure 4.7 and Figure 4.8 to the
MARS fit in Figure 4.6, it is fair to conclude that both GMR models yield smoother
fits than MARS in this example. The same conclusion holds in comparing the original
MARS fit in Figure 11 of Friedman (1991) and the interaction spline fit in Figure 4
of Gu et al. (1989). Considering both the MSE and the 3-D plots, GMR(5)/MLE is
the best model for this 2-D simulated data.
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Figure 4.5: The simulated interaction spline example



41

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−5

0

5

10

15

20

x1x2

y

Figure 4.6: The MARS fit of the simulated interaction spline example
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Figure 4.7: The GMR(5)/MoM fit of the interaction spline example
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Figure 4.8: The GMR(5)/MLE fit of the interaction spline example
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4.7.4 Conclusion

We have applied the GMR procedure on simulated examples to explore its properties.
In Section 4.7.1 we applied GMR to the null data, that is, when the feature space X
contains no information on the response Y . We found that GMR does not pick up
any frivolous pattern.

In Section 4.7.2, GMR was put to test on data simulated from a 5-component
Gaussian mixture. We found that both the RMSE and PE of GMR suggest the
best model is around K = 3, 4, 5. This is not surprising because the Redundant
Component Theorem implies that a smaller K can provide similar regression fits.

Finally, in Section 4.7.3 we apply GMR and MARS on 4 examples. The finding
is very interesting. It appears that when the true regression function consists of a
smooth nonlinear term that includes more than two variables, GMR will do a very
good job in pick up the pattern. MARS, on the other hand, cannot properly fit such
function without either using higher interaction terms or additional summands. The
evidence is reflected in the 2-D neural network data and 2-D interaction spline data
in Section 4.7.3. On the other hand, MARS is very effective in fitting models with
clear patterns along the axes of the feature space. Because MARS fits the data one
dimension at a time, it can filter out a large number of noise dimensions. GMR fits
the data as a whole; therefore, a large amount of noise dimensions can hurt GMR.

One unique feature of GMR is that it is coordinate invariant. That is, the rotation
of coordinate axes of the feature space does not affect the structure of the GMR
model. On the other hand, both GAM and MARS are coordinate sensitive. The
main reason is because they both fit the data dimension by dimension. It does not
affect GMR because GMR is not based on the form of regression function but based
on the underlying pdf. In particular, the MSE will be rotated with the data. Hence
all IPRA/GMR models remain the “same” under any rotation of the coordinate axes
of the feature space. This feature will prove to be very useful in our development of
dimensional reduction projection of the data in Chapter 6.



Chapter 5

Gaussian Mixture Classification

5.1 Introduction

In this chapter we extend the GMR procedure to binary responses. That is, the data
we consider here are {(Xi, Yi)

n
i=1}, where Xi ∈ R

p, Yi ∈ {0, 1}. There are two major
approaches to solving classification problems. The first one is to model the class
boundary as a function of X. Examples of this approach include classification trees
and support vector machines. The second approach is to construct classifiers using the
class densities. The classical example is Fisher’s linear discriminant analysis (LDA).
The main theme of this research is to use density models to construct statistical
procedures. Thus we will develop our classifier using density models. In statistical
decision theory, the classifier using posterior probabilities Pr(Y |X) is called the Bayes
classifier. It is well-known that the Bayes classifier, which minimizes the expected
zero-one loss, is of the form:

Ŷ (x) = argmin
g∈{0,1}

{1− Pr(Y = g|X = x)}. (5.1)

The error rate of the Bayes classifier is called Bayes risk or Bayes rate. For binary Y ,
(5.1) can be expressed in terms of posterior odds

r(x) =
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)
. (5.2)

That is,
Ŷ (x) = I{r(x) > 1}. (5.3)

Because of the optimal property of Bayes classifier, the posterior odds r(x) is the tar-
get of most classification procedures. One classical example is the logistic regression
model

log r(x) = xT β + ε, (5.4)

which models r(x) as a function of x directly.

44
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In this chapter we focus on another approach to the estimation of r(x). Apply
Bayes Theorem to (5.2) we derive

r(x) =
Pr(Y = 1|X = x)fX(x)

Pr(Y = 0|X = x)fX(x)
=

fX|Y (x|1) Pr(Y = 1)

fX|Y (x|0) Pr(Y = 0)
. (5.5)

Equation (5.5) suggests a natural algorithm: obtain an estimate for the density of
each class, then take the ratio. That is,

r̂(x) =
f̂1(x)π1

f̂0(x)π0

,

where f̂g is the model for fX|Y =g and πg denotes the prior probability Pr(Y = g),
g = 0, 1.

Fisher’s linear discriminant analysis (LDA) is the classical procedure using the
recipe suggested by (5.5). LDA assumes each class a Gaussian distribution with
identical covariance matrix. That is, f0(x) = φ(x; µ0, Σ) and f1(x) = φ(x; µ1, Σ).

Hastie and Tibshirani (1996) propose mixture discriminant analysis (MDA). MDA
is a natural extension of LDA. It models each class density as a Gaussian mixture.
In their implementation, a user will specify the number of components for each den-
sity (K0, K1). MDA uses the EM algorithm to fit the MLE with the initial values
generated by the K-means procedure.

In practice, specifying (K0, K1) is not an easy task; hence we would like to find a
systematic way of selecting appropriate values of (K0, K1). This is the motivation of
the GMC procedure we develop in the next section.

5.2 The GMC Procedure

In this section we formally develop the classifier suggested by (5.5). The Gaussian
Mixture Classification (GMC) procedure consists of the following steps:

• Construct the initial kernel density estimator for each class g = 0 , 1:

f̂g(x; nd, h) =

ng∑

j=1

n−1
g φ(x; xgi, h

2I). (5.6)

• Apply IPRA on f̂g(x; ng) to generate a sequence of models for each class,

{f̂g(x, Kg) : Kg = ng, · · · , 1}, where

f̂g(x, Kg) =

Kg∑

j=1

πgjφ(x, µgj, Σgj). (5.7)
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• Construct the classifier Ŷ (x; K0, K1):

Ŷ (x; K0, K1) = I{r̂(x; K1, K0) > 1}, (5.8)

where

r̂(x; K1, K0) =
π1f̂1(x, K1)

π0f̂0(x, K0)
, (5.9)

and π0 = n0/(n0 + n1), π1 = n1/(n0 + n1).

We view GMC as an alternative implementation of Mixture Discriminant Analysis
(MDA) (Hastie and Tibshirani 1996). In practice, one of the most difficult problems
in using MDA is to provide as input the number of mixtures for each class. The
standard MDA package in R sets the default to be (K0, K1) = (3, 3). The second
problem is to provide the initial parameters values for the EM algorithm. GMC does
not force users to pick (K0, K1) nor initial guesses of the parameters. Instead, GMC
selects from all possible combinations of (K0, K1). We discuss the model selection
aspect of GMC in Section 5.3.

Another perspective is to view (5.9) as a nonparametric logistic regression proce-
dure. That is,

log r(x) = log
π1

π0
+ log f̂1(x, K1)− log f̂0(x, K0). (5.10)

The logistic regression model perspective indicates the connection between the two
main approaches to classification problems we mentioned earlier: model the class
boundary and model the class densities. Since the classification error depends on the
class boundary {x : log r(x) = 0}, it is sensible to merge mixture components which
are away from the boundary. This observation indicates that (K0, K1) that is good
for class densities estimation may be too large for classification.

5.3 GMC Model Selection

The GMC procedure on binary responses produces a family of models which are
indexed by two integer parameters (K0, K1). We know that K0 = 1, . . . , n0 represents
the number of mixture components for the Gaussian mixture density model of density
f0(x) and K1 = 1, . . . , n1 is the number of mixtures for density f1(x), where n0 and
n1 are the sample sizes of the subsets corresponding to Yi = 0 and Yi = 1.

The model selection criterion of the GMC is straightforward. We will select the
best models which yeild the minimum test error, or the misclassification rate on the
test set. The test error is defined as

Err(K0, K1) = n−1
t

nt∑

i=1

I{yi 6= Ŷ (xi; K0, K1)}, (5.11)
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where Ŷ (x; K0, K1) is defined as in (5.8) and applied to the test data set {(xi, yi)}nt

i=1.

Applying IPRA separately to the initial models f̂1(x; n1, h) and f̂0(x; n0, h) pro-

duces two sequences of density models: {f̂1(x; K1)} and {f̂0(x; K0)}. We compute
the misclassification error of each model on the test data set. The result is a 3-D
graph of (K0, K1) vs Err(K0, K1). In practice, there can be more than one model
that yields the minimum misclassification error. We will pick the model that gives
the minimum error with the fewest total number of components K0 + K1.

5.4 Parameters Estimation: MoM vs MLE

Recall that IPRA uses the method-of-moments estimates of the model parameters,
which are not MLE. In real applications, we may compute the MLE for the selected
model using the EM algorithm. In such situations, the IPRA fit of the model param-
eters provides natural initial values for the EM algorithm.

In Chapter 7 we compare the MoM and MLE GMR fits of Motorcycle data and
the MoM and MLE fits of GMC on the Zip Code data. The general conclusion is that
MoM/GMR and MoM/GMC are good enough to help select the appropriate value of
K in GMR and (K0, K1) in GMC. Once the K’s are determined, the MoM parameter
values are natural initial values for EM algorithm to obtain the MLE fit. Hastie and
Tibshirani (1996) propose using the K-means procedure to generate sensible initial
values for the EM algorithm. However, the users of their MDA procedure still have
to pick the number of components (K0, K1). Their default selection is (3, 3). We
propose running GMC to obtain several reasonable models GMC(K0, K1) and then
run MDA. We apply this strategy in several data sets for classification. The details
are in Chapter 7.



Chapter 6

Optimal Subspace Projection

In this chapter we describe the property of GMR of linearly projected data and two
basic algorithms for the construction of the optimal subspace projection. The objec-
tive of a subspace projection algorithm is to construct a projection matrix P ∈ R

p×q

such that it projects the data X, X ∈ R
p onto R

q, a subspace of lower dimension,
while still retains the information of Y of a given model GMR(K).

There is an obvious trade-off: as the subspace dimension q decreases, the perfor-
mance of the GMR model deteriorates. Bear this fact in mind, the optimal subspace
here means the best subspace of a given dimension q. In practice, the subspace pro-
jection can be viewed as a model-based dimension reduction technique that serves as
a companion to GMR.

In Section 6.1 we will show that the GMR is coordinate invariant. That means
the structure of the GMR models for the original data does not change after any
linear projection of X. This feature of GMR allows us to implement straightforward
algorithms to construct optimal subspace projection for the data.

We describe two algorithms for constructing the optimal subspace projection: the
forward algorithm in Section 6.2 and the backward algorithm in Section 6.3. Finally,
in Section 6.4 we describe similar two algorithms for the GMC models.

Every algorithm described in this chapter has the same structure. It is to construct
the subspace projection by solving a least squares problem iteratively. In other words,
all four algorithms are characterized by the least squares problems they solve.

6.1 GMR of the Projected Data

One key feature of GMR is that its underlying Gaussian mixture density model is
invariant under any linear projection of the data. In other words, the projection of
the data does not change the structure of the GMR models. Therefore, there is no
need to refit the GMR models of the projected data. In this section we derive the
exact formula of GMR of the projected data.

Let B be a linear projection matrix B : R
p 7→ R

r, B ∈ R
p×r, with r < p. Let Z
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be the projected covariate such that Z = BT X, we have Z ∈ R
q given X ∈ R

p. The
GMR model of Z can easily be derived from the GMR model of X based on a well-
known property of Gaussian random variable: a linear projected Gaussian random
variable is also a Gaussian random variable. Mardia et al. (1979, p. 62) state this
properties as the following theorem.

Theorem 6.1.1. If X ∼ N(µ
X
, Σ

X
), then

Z = BT X ∼ N(µ
Z
, Σ

Z
),

with parameters

µ
Z

= BT µ
X
, Σ

Z
= BT Σ

X
B. (6.1)

Theorem 6.1.1 is the foundation of the dimension reduction projection proposed by
this thesis.

Recall from Chapter 4 that the GMR model is

m(x) = E(Y |X = x) =

K∑

j=1

wj(x) mj(x), (6.2)

where mj(x) = E(Y |X = x, G = j) with G the latent class variable. The conditional
density is (X, Y |G = j) ∼ N(µj , Σj), where

µj =
[
µjX

µjY

]
, Σj =

[
ΣjX

ΣjXY

ΣjY X
ΣjY

]
.

The projected data can be written as

[
Z
Y

]
=

[
BT X

Y

]
=

[
B 0
0 1

]T [
X
Y

]
.

Using Theorem 6.1.1, we derive the joint density of (Z, Y |G = j) as N(µjZY
, ΣjZY

),
where

µjZY
=

[
B 0
0 1

]T [
µjX

µjY

]
=

[
BµjX

µjY

]

and

ΣjZY
=

[
B 0
0 1

]T [
ΣjX

ΣjXY

ΣjY X
ΣjY

] [
B 0
0 1

]
=

[
BT ΣjX

B BT ΣjY X

ΣjY X
B ΣjY

]
.

The matrix computation verifies that to obtain the GMR m̂(z) = E(Y |Z = z) from
the original m̂(x) = E(Y |X = x) is straightforward. First, the joint density of Z, Y
is

fZ,Y (z, y) =

K∑

j=1

πjφ(z, y; µjZY
, ΣjZY

), (6.3)
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where

µjZY
= B̃T µj, ΣjZY

= B̃T ΣjB̃,

with B̃ =
[
B 0
0 1

]
. Therefore, the GMR(K) model for the projected data, m̂(z) =

E[Y |Z = z] follows from (6.3), is

fY |Z(y, z) =

K∑

j=1

wzj(z) φ(z; mzj(z), σ2
zj), (6.4)

where

mzj(z) = E[Y |Z = z, G = j] = µjY
+ ΣjY Z

Σ−1
jZ

(z − µjZ
),

σ2
zj = V[Y |Z = z, G = j] = ΣjY

− ΣjY Z
Σ−1

jZ
ΣjZY

,

and

wzj(z) = Pr(G = j|Z = z) =
πjφ(z; µjZ

, ΣjZ
)

∑K
j=1 πjφ(x; µjZ

, ΣjZ
)
.

Thus GMR(K) of the projected data is

m(z) = E[Y |Z = z] =

K∑

j=1

wzj(z) mzj(z). (6.5)

Equation (6.5) implies that a GMR(K) model of the original data X will not
change for the projected data Z = BT X. That is, there is no need to refit the GMR
model for Z. This feature of GMR allows straightforward implementation of subspace
projection algorithms, which is the subject of the next two sections.

6.2 Forward Projection Algorithm

The idea of the forward projection algorithm is to construct the optimal subspace
projection by adding the best 1-D projection iteratively. Start with the original
feature space R

p, the forward algorithm searches for the best 1-D projection such that
the resulting GMR model m̂(z), z = βT x, z ∈ R has the minimum MSE. Once the
best 1-D projection from R

p to R is identified, we project the data onto the subspace
of R

p−1 that is orthogonal to β and search the best 1-D projection in R
p−1. Thus we

have a sequential algorithm. In each iteration, the forward projection algorithm finds
the best 1-D projection that contains the most information of X for Y . Thus, the
forward selection procedure consists of solving a sequence of least squares problems.

Specifically, the forward projection algorithm consists of the following steps:
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• Step 1: Set zi = xi, zi ∈ R
k, k = p.

• Step 2: Find the 1-D projection βk : R
k 7→ R such that

βk = argmin
β:Rk 7→R

n∑

i=1

(
yi − m̂(βTzi)

)2
. (6.6)

• Step 3: Project data onto {βk}⊥ ⊆ Rk−1

zi ← Γk−1 zi, Γk−1 = I − βkβ
T
k .

• Step 4: Compute SVD of Γk−1:

Γk−1 = Uk−1Dk−1U
T
k−1 =

k−1∑

j=1

djuju
T
j , uj ⊥ βk.

• Step 5: Let k ← (k − 1), go to Step 2 until k = 1.

The forward projection Pq : R
p 7→ R

q is

Pq = Γp−1 Γp−2 · · ·Γq. (6.7)

6.3 Backward Projection Algorithm

The idea of the backward projection algorithm is the opposite of the forward algo-
rithm. It takes a conservative approach by eliminating the 1-D direction that contains
the least information of Y . This is equivalent to search for the best subspace of one
less dimension. The implementation of the backward algorithm is almost identical
to the forward algorithm except the formulation of the least squares problem. The
backward algorithm consists of solving a sequence of least squares problems, each one
formulated as

βk = argmin
β:Rk 7→R

n∑

i=1

(
yi − m̂(Γk−1zi)

)2
, (6.8)

such that
Γk−1 = (I − βkβ

T
k ).

(6.8) identifies the 1-D projection that contains the least information. Another in-
terpretation is that (6.8) identifies the R

p−1 subspace that has the minimum loss of
information, measured by MSE. Similar to the forward algorithm, we project the
data onto a subspace of dimension p − 1 then solve another problem (6.8) in R

p−1.
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Naturally, (6.8) leads to a sequential algorithm for the linear dimension reduction
mapping, the optimum subspace in R

q is

Bq = Γp−1 Γp−2 · · ·Γq. (6.9)

Obviously backward algorithm is a conservative one which builds upon the no-
tion that it is safer to eliminate the least important direction than to pick the most
important direction.

6.4 Forward and Backward Algorithms for GMC

The structure of the forward and backward algorithms for a given GMC model is
the same as described in Section 6.2. Every algorithm developed in this chapter is
characterized by the least square problems it solves sequentially.

For a given GMC model GMC(K0, K1), the forward algorithm constructs the
subspace projection by solving the problem:

βk = argmin
β:Rk 7→R

nt∑

i=1

I{yi 6= Ŷ (βT zi; K0, K1)}. (6.10)

Similarly, the backward algorithm for the GMC model solves the problem:

βk = argmin
β:Rk 7→R

nt∑

i=1

I{yi 6= Ŷ (Γk−1zi; K0, K1)}, (6.11)

where Γk−1 = I − β βT .
The GMC model is build upon the ratio of two Gaussian mixture densities. We

know that the Gaussian mixture is invariant under linear projection, therefore, the
GMC of projected data can be evaluated by direct application of Theorem 6.1.1.

Computationally, each algorithm consists of a sequence of least squares problems
that can be solved by Newton’s method. As the dimension of the optimum subspace
Rq decreases, the MSE for GMR and test error for GMC increase.

In practice, we first apply GMR to the data, select the best GMR model, then
apply both the forward and backward algorithms to the given GMR model. Each
algorithm generates a profile of MSE for each subspace nested in Rp. This MSE
profile is the guideline for selecting the appropriate subspaces. Similar practice on the
GMC procedure, given the best GMC model, a forward and backward algorithms will
provide the profile of test error under subspace of various dimensions. We demonstrate
the application of the forward and backward algorithms in Chapter 7.



Chapter 7

Applications

In this Chapter we discuss some applications of the GMR and GMC procedures to
real and simulated data sets. The GMR and GMC procedures and the supporting
routines IPRA and MST are implemented in MATLAB.

7.1 A Note on Random and Fixed Designs

One important point in applying GMR is that GMR is derived under the assumption
that both the X and Y data are random samples. For fixed design data, the values
of X are pre-specified by the experimenters, and they cannot be used to estimate the
true underlying distribution of X. Therefore, it makes no sense to model the data
based on the joint density function fX,Y . However, we contend that although the true
joint density of fX,Y is not estimable from the fixed design data, it does make sense
to define the “designed distribution.” That is,

fX(x) =

n∑

i=1

n−1φ(x; xi, h
2Ip). (7.1)

The interpretation is that for fixed design data, with equal probability, 1/n, X can
take a value of the knot xi with a small fluctuation controlled by h.

Since the goal of regression analysis is to make inferences about the conditional
distribution Y |X, we use the marginal part of X in the fixed design as a vehicle to
connect every individual observation (Xi, Yi). In other words, in the case of fixed
design data, the marginal fX refers to the pattern of the design, characterized by fX

in (7.1), not to the true underlying distribution of X.
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7.2 Applications of GMR

7.2.1 Simulated 3-component Bivariate Gaussian Data

We first investigate a GMR application with an exploratory analysis of a simple
bivariate data set. The data set consists of 150 observations simulated from a 3-
component Gaussian mixture: {(xi, yi) : xi ∈ R, yi ∈ R, i = 1, 2, . . . , 150} where the
simulated sample sizes are (n1, n2, n3) = (78, 12, 60). The sample means and variances
are

µ̂1 = (−3.21, 3.44)T , µ̂2 = (7.43, 6.88)T , µ̂3 = (.02,−5.04)T

Σ̂1 =
[
3.53 0.07
0.07 8.79

]
, Σ̂2 =

[
2.16 2.50
2.50 5.65

]
, Σ̂3 =

[
8.58 −0.16
−0.16 2.83

]

Figure 7.1 displays the RMSE and PE profiles of the GMR models. Both curves
indicate the correct model GMR(3). Figure 7.2 shows the true GMR(3) regression
function (the red line), the global 5th-degree polynomial fit (the green line), and
GMR(3)/MoM fit (the blue line).

We observe that in Figure 7.2 the GMR(3)/MoM fit is very close to the true
regression curve. The 5th degree polynomial fit is able to capture the general pattern
but it somewhat underfits the valley around (3,−5) and overfits the peak around
(−5, 2). This example demonstrates that the GMR procedure is capable of capturing
the correct regression curve when the true underlying density is a Gaussian mixture
at least in low dimension and small K situation.
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Figure 7.1: RMSE and PE of the GMR of the simulated data from a 3-component
Gaussian mixture density (n = 150).
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Figure 7.2: True GMR model, GMR(5)MoM, and 5-th degree polynomial regression
of the simulated data from a 3-component Gaussian mixture density (n = 150).

7.2.2 Simulated GAM Data: Subspace Projections

In this study, we simulate data from a GAM model and throw in extra dimensions of
random noise in order to investigate how well GMR picks up meaningful dimensions
and to see if the forward and backward projections can identify the correct subspace
and direction.

We simulate several data sets: (Xi, Yi)
n
i=1, Xi ∈ R

p, Yi ∈ R; sample sizes n =
200, 300, 400; dimensions p = 5, 10; X(j) ∼ U(−4, 4); and Z1 = 1/3βT

1 X; Z2 =
1/5βT

2 X;

β1 = (1, 0, 2, 0, 0)T/
√

5 = (.4472, 0, .8944, 0, 0)T ,

β2 = (2, 0,−1, 2, 0)T/3 = (.6667, 0,−.3333, .6667, 0)T ,

Y = sin(5Z1/π) + 3 cos(5Z2/π) + ε,

where ε ∼ N(0, .32). We vary both the sample size and the dimension of X. The true
regression function is a function of variable 1, 3, and 4, the rest of the dimensions
are random noise. The goal of this simulation study is not to find the best K for the
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p = 5 p = 10
n K RMSE K RMSE True sd

200 22 .256 20 .272 .273
300 22 .256 32 .267 .277
400 28 .237 34 .286 .283

Table 7.1: The best GMR models of the simulated data

Best 3-D Best 2-D Best 1-D
-.0016 .9161 .3865 .1241 .7208 -.4625
.0493 .1215 -.0814 -.0545 .1424 -.0226
-.9537 .1174 -.2754 .8996 .2070 -.8852
-.2919 -.3509 .8749 .4115 -.6371 -.0450
-.0525 -.0954 .0512 .0542 -.1073 .0055

Table 7.2: The backward projection for (n, p) = (200, 5)

GMR fit but to see if the GMR model can capture the true regression function and
to see if our dimension reduction procedure can identify the correct subspace where
the true m(X) resides. Table 7.1 records the best GMR(K) fit for the simulated data
of varying sample sizes and dimensions. The values of K are relatively high. The
RMSE (square root of the mean squared error) are fairly close to the true standard
deviation of the simulated data.

The forward projection result for n = 200, p = 5 data is:

β̂F =




.4317 −.6640 −.4191 −.0780

.0416 .0185 .2954 .8555

.8992 .3598 .1493 −.0046

.0577 −.6552 .5220 .0954

.0064 .0068 .6651 −.5030




We first ran GMR on the simulated data and used the RMSE to selection the
proper K. The circled points in Figure 7.3 are GMR(9), GMR(18), and GMR(28)
for p = 5; GMR(9), GMR(25), and GMR(34) for p = 10. We applied forward and
backward projection algorithms on GMR(28) and GMR(34) for p = 5, 10.

For the simulated data set of size 400, X ∈ R
10, the overall IPRA/GMR procedure

takes about 60 minutes of CPU time. The forward projection takes 21 minutes and
the backward projection takes 32 minutes for GMR(9) on a Sun workstation SPARC
1000. As shown in Table 7.3, the run times of both forward and backward projections
are roughly linear in K.

Compared to the true subspace projection, the forward projection does a good
job picking up the true (β1, β2) in the first two columns. Backward projection, on
the other hand, does not identify the exact projection until the dimension is correct.
Nevertheless, both algorithms identify the right subspace, as shown in Figure 7.4. In
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p K 9 18 28
5 forward 4.0 5.8 10.4

backward 4.3 12.2 15.4
p K 9 25 34

10 forward 21.3 77.3 86.4
backward 32.2 96.1 129.4

Table 7.3: Run time (CPU minutes) for projection procedures on different GMR(K)
(n = 400)

this example, the optimal subspace is in R
3. The MSE and RMSE are computed as

MSE(B) = n−1
n∑

i=1

(
yi − m̂(BT xi)

)2
,

RMSE(B) =
√

MSE(B)

MSE is the standard goodness-of-fit measure. To make it comparable to the scale of
the data (X, Y ), we report root-mean squared error (RMSE) in all our figures and
tables.

We expect the first two dimensions to pick up most of the variation of the data.
Hence the big drop off indicates that all the informative dimensions are included. In
Figure 7.4 we observe that when p = 5, the backward projection picks up the correct
dimension more cleanly, while the forward projection seems to favor one dimension
higher. When there are more noise dimensions (p = 10), the forward projection has a
sharper drop at dimension 2. Also in this case, the forward projection is able to cap-
ture the correction projections one by one. Computationally, the forward projection
is more straightforward and much less expensive than the backward projection.

Figure 7.5 shows the RMSE of the original GMR family on R
5 and R

10 and the
RMSE on the projected subspaces identified by the forward projection. One interest-
ing feature in Figure 7.5 is that the GMR models on the subspace R

2 requires much
fewer mixture components to capture the regression curve. The direct consequence
is that the best GMR models on the subspace have much smaller K.
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Figure 7.3: RMSE of GMR models for simulated data (n = 400). The red line
is the RMSE curve of GMR models for the R

5 data. The blue line is for the R
10

data. The circles on the red line are GMR(9,18,28). The cricles on the blue line are
GMR(9,25,34).
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Figure 7.4: RMSE of GMR(28) and GMR(34) on projected subspaces (n = 400)
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Figure 7.5: RMSE of GMR models on projected space (n = 400)

There are several conclusions we draw from this simulation study:

• Different starting GMR(K) models result in very similar Forward subspace
projections. This is not as clear with backward projection. The reason is that
the backward procedure is focusing on eliminating frivolous dimensions; hence,
it usually results in a different basis for the same remaining subspace orthogonal
to the 1-D noise dimension. However, backward and forward projections should
be complementary. It is conceivable that when the true subspace dimension is
greater than the noise dimension, the backward projection should have some
advantage over the forward projection algorithm. The same may hold if the
feature space has many highly correlated variables.

• Computationally, it may be wise to run forward procedure on a simpler GMR
model, that is, GMR(K) with smaller K, to identify the subspace, then re-run
IPRA/GMR directly in the projected subspace. It is not clear if this will work
for backward procedure. We tested this idea and indeed the forward projection
is able to pick up the correct 2-D projections with a relatively smaller GMR(K)
model. We executed this strategy for n = 400. The results are summarized
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in Appendix D. As shown in Table 7.3, the saving in computing time is more
apparent, especially when most of the dimensions are noise (p = 10).

7.2.3 Motorcycle Data

The famous Motorcycle data was first compiled by Schmidt, Mattern, and Schüler
(1981). Silverman (1985) used this data set to demonstrate scatterplot smoothing
with splines. Since then, the Motorcycle data set has been one of the standard exam-
ples for any nonparametric smoother. It has 133 observations of X: milliseconds(ms)
and the impact Y measured as the acceleration of a human head X (ms) after the
impact in a simulated collision experiment. The first important feature of this data
set is that it is not a random design. That is, the covariate X is not a random vari-
able. The second feature is that there are 94 distinct values of X among the 133
observations.

We demonstrate the GMR analysis of the Motorcycle data and a detailed discus-
sion of two practical issues: bandwidth selection and GMR model selection.

7.2.3.1 Bandwidth and Model Selections

As discussed in Section 4.4, the practical selection of the bandwidth for GMR is
h ≈ minj |xj , xj−1|. The results in Figure 7.6 show that h affects GMR(n) the most.
The mse for GMR(n) increases as h increases. This implies a smoother GMR(n). As
the IPRA starts to merge similar components and reduce the number of mixtures,
the effect of h diminishes. We believe that since GMR(1) should be underfit, the
most important point concerning h is to have it sufficiently small so that GMR(n)
overfits. This will ensure that the GMR family contains the properly fit models in
between the two extreme members GMR(1) and GMR(n). We use h = .56 for the
Motorcycle data. As Scott’s rule give 1/20 n−1/6

√
σ̂x σ̂y = .56., while the minimum

distance between two distinct data points xj and xj−1 is 0.20.
Figure 7.7 shows how the bandwidth h affects the initial GMR fits. It is apparent

that both h = 1 and h = 2 yield over-smoothed initial GMR fits.
Figure 7.8 indicates two interesting features of the RMSE of GMR family. The

first feature is that the bandwidth effect is most prominent in the initial GMR fit.
As IPRA starts to merge mixture components, the bandwidth effect diminishes. As
expected, the RMSE of GMR(1) is identical for all values of h. The second feature
is that h does not alter the pattern of RMSE curves. All of them remain almost
constant before the RMSE shoots up after GMR(6). Notice that the three RMSE
curves corresponding to h = 0.1, 0.2, and 1.0 all merge together soon after a few
merges. Obviously we can say that any choice of h < 1.0 will have very similar
RMSE curves to that of h = 1.0. This suggests that h = 1.0 is an upper bound for
“good enough” bandwidth. Even for h = 2.0, which is clearly too large a bandwidth,
its RMSE curve still shows a similar pattern, hence, also suggests the same best
model GMR(6). The lesson here is that if the bandwidth is not too large, the GMR
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Bandwidth (h) RMSE (GMR(133)) RMSE (GMR(6))
0.10 13.70 22.34
0.20 16.38 22.39
0.50 19.62 22.31
1.00 21.37 23.02
1.50 22.96 25.13
2.00 24.56 25.78
2.20 25.22 26.15
2.50 26.19 26.91
3.00 27.78 28.27

Table 7.4: Bandwidth vs RMSE of GMR models on the Motorcycle data

procedure will provide approximately the same profile RMSE curve, and therefore,
will not adversely affect the model selection. In this example, all values of h lead to
GMR(6) as the best model. Both the RMSE and the leave-one-out cv in Figure 7.9
indicate that GMR(6) is the best model for the Motorcycle data.

The GMR family is indexed by K, as shown in Figure 7.10. K can be viewed as a
tuning parameter for the smoothness or flexibility of the GMR fits. The key point is
to choose a h smaller enough so that it allows K to take over the role of calibration.
Of course, it does not mean that we should pick h = 0. For data of finite sample
size, h = 0 leads to a Dirac spike and the singularity is bad news to both theory and
practice.
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Figure 7.6: Bandwidths vs RMSE of GMR models on the Motorcycle data
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7.2.3.2 Bootstrap Analysis of GMR

In this section we use the bootstrap method to approximate the variation of the
GMR procedure. We focus on the GMR(6) model with h = 0.2. Unlike the standard
regression model, the residuals of GMR model are not homoscedastic. Therefore it is
invalid to bootstrap from the raw residuals. A viable choice is to bootstrap the raw
data. We draw 200 bootstrap data sets of the same size as the original data (n = 133).
Starting with the initial kernel bandwidth h = .2, we obtained 200 GMR sequences.
We plot the 200 GMR curves in Figure 7.11. The solid red curve is the original
m̂(x; 6) fit. The solid blue curve is the pointwise bootstrap mean and the dashed blue
lines the pointwise standard error times 1.96. They indicate the bootstrap estimates
of the expected m(x) and the confidence band of the GMR estimator.

Figure 7.12 presents a contrast of two different types of variations of GMR. One
is that the GMR m̂(x) and

√
v̂(x) are the summary statistics of the density f̂Y |X=x.

This implies that
√

v̂(x) measures the predictive band of GMR fit. The bootstrap
distribution measures the variation of the GMR algorithm itself, that is, the mean and
variance of the bootstrap distribution approximate the expected value and confidence
band of the estimator m̂(x; 6). As expected, in Figure 7.12, we observe a tighter
confidence band than a prediction band. The difference between m̂(x; 6) and the
mean fit is the bootstrap estimate of the bias of GMR(6), which indicates that the
bias of GMR(6) is mild. And as K decreases, the variance goes down and the bias
goes up.
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Figure 7.11: The bootstrap sample curves of GMR(6)
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Figure 7.12: The confidence band of GMR(6)

7.2.3.3 Model parameters: MoM vs MLE

Another practical issue of GMR is the estimation of the model parameters. As de-
scribed in Chapter 3, the parameter values are estimated using the method of mo-
ments. We contend that for practical use of GMR for EDA purposes, it is not nec-
essary or desirable to obtain the MLE, especially for high dimensional data. Part of
the reason is that the likelihood function in high dimensional space is flat, so that
there are many local maximums, especially when K > K∗. For univariate data such
as the Motorcycle data, it is informative to compare the MoM values and the MLE.
For this purpose, the MoM fit serves as a natural choice for the initial values. We
applied the EM algorithm using the MoM fit as the initial guess and the results are
plotted in Figure 7.14. One interesting point in Figure 7.14 is that the MLE fit and
MoM fit of the cluster means µ̂k are almost identical, but the MLE cluster variance
is tighter than the MoM estimate. This gives the MLE fit sharper edges than the
MoM fit. In this case, we contend that the MLE fit is less smooth and consequently
overfits the corners around (15, 0) and (22,−130). The bump around (18,−90) is the
result of bumpy transition between two neighboring mixture components. Overall,
however, the MLE and MoM fits are very similar. It suggests that for EDA purpose,
the MoM estimate is usually sufficient.
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Figure 7.13: The GMR(6)/MoM and GMR(6)/MLE fits of the Motorcycle data
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Figure 7.14: The contour plots of the underlying pdf of GMR(6)/MoM and
GMR(6)/MLE
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7.3 Applications of GMC

7.3.1 Handwritten Zip Code Data

The handwritten Zip Code data were collected by the U.S. Postal Service by automatic
scanning from envelope. Each handwritten digit is stored as a 16× 16 8-bit grayscale
image. LeCun (1989) first analyzed the Zip code data using neural networks. The
256 pixel values were the inputs to the neural network classifier. A good introduction
of the neural network analysis on the Zip code data can be found in Hastie et al.
(2001, p. 362). We downloaded the standard version of the data from the National
Institute of Standards and Technology (NIST) website (http://www.nist.gov/srd/).

We apply the GMC procedure on three binary classification problems: digit 0
vs 3, digit 0 vs 6, and digit 1 vs 7. First, we fit GMC models on the training set,
picking the best model based on the test error. Then we apply forward and backward
projection to the best model to identify optimal subspaces for classification. Finally
we update the model parameters to MLE and compare the model performance of
MLE and MoM.

7.3.1.1 Digit 0 vs 3

In this section we apply GMC to classify digit 0 versus digit 3 (encoded as Y = 0
and Y = 1). The training set has size 1852 (1194 0’s and 658 3’s). The test set is of
size 525 with 359 0’s and 166 3’s. We first apply SVD on the training set to obtain
the principal components. We chose the span of the first 10 principal components as
the derived feature space for the GMC application. As derived in Chapter 5, GMC
classifier is

r̂10(z; K0, K1) =
f̂X|Y =1(x)π1

f̂X|Y =0(x)π0

,

where

f̂X|Y =1(x) =

K1∑

j=1

π1j φ1j(x),

f̂X|Y =0(x) =
K0∑

j=1

π0j φ0j(x).

From the training set, we use the simple priors for Y . That is, π0 = 1194/1852 = .645

and π1 = 658/1852 = .355. The class densities f̂X|Y =0 and f̂X|Y =1 are Gaussian
mixtures of components K0 and K1. (K0, K1) is the key model parameter for GMC
procedure. We use the misclassification rate as the first order criterion. Since the
misclassification rate is the ratio of two counts, most likely there will be ties among
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several models, so we use the log-likelihood as the tie-breaker:

log L(K0, K1; X, Y ) =

n∑

i=1

yi log f̂X|Y =1(xi) + (1− yi) log f̂X|Y =0(xi). (7.2)

Figure 7.15 gives us a general landscape of the GMC model space by plotting test error
of GMC(K0, K1) as a function of (K0, K1). The flat surface implies that there are
many GMC models perform equally well. Figure 7.16 shows the log likelihood surface
of the GMC models. One interesting feature of log-likelihood shown in Figure 7.16
is that the log-likelihood is not a good criterion for selecting the best model, but it
is good at eliminating bad models. Obviously log-likelihood suggests the best model
has small K0 and K1. But around the maximum area is so flat that it is not possible
to pick the best model using log-likelihood. Another issue is that the numerical values
of the log-likelihood function is around 10−35 range. It is not wise to read too much
into it.
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Figure 7.15: Test error of GMC for the Zip code data (0 vs 3)
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Model Misclassification Rate Log-likelihood
K0 K1 train test train test

1 5 .0032 .0152 -50.1808 -35.2938
1 9 .0032 .0152 -44.7897 -36.2305

13 17 .0027 .0114 -36.6950 -62.3365
21 21 .0022 .0114 -39.0221 -84.5934
21 31 .0016 .0114 -27.0304 -111.4212
50 1 .0011 .0114 -2.1292 -135.7826
50 3 .0005 .0114 -2.8124 -129.8174

Table 7.5: Top GMC classifiers for the Zip code data (digit 0 vs 3)
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Figure 7.16: Log-likelihood of GMC for the Zip code data (0 vs 3).

Table 7.5 records top candidates of the best GMC model. There are 3 models worth
further consideration (Table 7.5): GMC(1, 5) with the maximum log-likelihood value
on the test data; GMC(1, 9) with the maximum “total likelihood” (the sum of log-
likelihood values on training set and test set); and GMC(13, 17) with the smallest
degrees of freedom (K0 + K1) among the models of minimum test error (.0114).

We use the IPRA fitted values as the initial values for EM algorithm and fit the
MLE for these top three models. The results are in Table 7.6. Notice that the log-
likelihood values of MoM and MLE for GMC(1,5) and GMC(1,9) are very similar.
The highest discrepancy among the three models is in GMC(13,17). The reason is
that the MoM and MLE are identical for the single Gaussian density, which is the
case in K0 = 1 for GMC(1,5) and GMC(1,9). For model selection purpose, MoM
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Model Log-likelihood Misclassification Rate
Train Test Train Test

GMC(1, 5) MoM -50.1808 -35.2938 .0032 (6/1852) .0152 (8/525)
MLE -52.7466 -24.4877 .0038 (7/1852) .0152 (8/525)

MDA(1, 5) -73.6808 -50.0312 .0097 (18/1582) .0305 (16/525)
GMC(1, 9) MoM -44.7897 -36.2305 .0032 (6/1852) .0152 (8/525)

MLE -41.7348 -34.1453 .0027 (5/1852) .0190 (10/525)
MDA(1, 9) -71.5722 -53.6600 .0097 (5/1852) .0267 (14/525)
GMC(13, 17) MoM -36.6950 -62.3365 .0027 (5/1852) .0114 (6/525)

MLE -8.6762 -89.0349 .0005 (1/1852) .0210 (11/525)
MDA(13, 17) -61.4147 -45.7965 .0038 (7/1852) .0114 (6/525)

Table 7.6: Top GMC/MLE and MoM for the Zip code data (digit 0 vs 3)

favors GMC(13,17). MLE favors GMC(1,5). In this example, GMC(1,5) has a slight
edge over GMC(13,17) for it has a much smaller degrees of freedom.

Table 7.6 also records the corresponding results from MDA. (We use the R-
package mda implemented by Hastie and Tibshirani.) We find that GMC/MoM
and GMC/MLE both perform better than MDA except in GMC(13,17); where MDA
pulls a draw.

It is interesting to observe that GMC(50,1) and GMC(50,3) both have much better
training set log-likelihood values over all other models, yet their test set log-likelihood
values are the worst. This is a strong indication of overfitting that the misclassification
rate fails to capture.

7.3.1.2 Dimension Reduction for GMC

Finally we apply forward and backward projection algorithms on GMC(13,17) and
the results in Figure 7.17 show that the forward projection suggest a subspace of
dimension 5.

For the purpose of visualization, Figure 7.18 and Figure 7.20 show the best 2-D
feature spaces identified by forward and backward projections. Both forward and
backward 2-D feature spaces are good. The most interesting contrast is that the first
dimension in forward projected space already does a great job at classifying the two
digits (0 vs 3). The backward projected space works well as a whole, but is marginally
not as good as the first dimension of the forward-projected space. This is the direct
consequence of the greedy nature in our forward projection algorithm. The backward
projection, on the other hand, may has a better chance to grasp the best 2-D subspace
as a whole.

It is certainly an interesting topic for further research to develop a data-driven
strategy which combines the forward and backward algorithms.
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Figure 7.17: The error rates in subspaces of GMC(13, 17) for the Zip code data (digit
0 vs 3)

−8 −6 −4 −2 0 2 4 6 8

−10

−8

−6

−4

−2

0

2

4

6

8

10

Z
F
1

Z
F
2

Digit 3Digit 0

Figure 7.18: The contour plot of GMC(13, 17) on the forward 2-D space with training
data (zip code data (digit 0 vs 3)
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Figure 7.19: The contour plot of GMC(13, 17) on the forward 2-D space with test
data (zip code data (digit 0 vs 3))
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Figure 7.20: The contour plot of GMC(13, 17) on the backward 2-D space with
training data (zip code data with digit 0 vs 3)
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Figure 7.21: The contour plot of GMC(13, 17) on the backward 2-D space with test
data (zip code data with digit 0 vs 3)

7.3.1.3 Digit 0 vs 6

In this section we analyze Zip code data digit 0 vs 6. The training set consist of 1585
observations (1194 0’s, 664 6’s). The test set consists of 529 observations (359 0’s,
170 6’s).

Similar to the previous analysis on digit 0 vs 3, we use the first 10 principal
components of the data for the GMC application. Table 7.8 records top GMC models.
One unusual feature is that some top GMC models have smaller test error than
training error. The reason is the anomaly of the data. We will observe it later in
Figure 7.27 and Figure 7.27.

Among the top models in Table 7.8, a clear winner is GMC(3, 7), which has the
smallest degrees of freedom (K0 + K1) and the largest log-likelihood value. We will
base further analysis on GMC(3,7).

The comparison of forward and backward projections in this example is intriguing.
Figure 7.24 (Figure 7.25 for a closer look) tells an interesting story. Notice that the
1-D and 2-D subspaces identified by backward projection both give high test errors
relative to the 1-D and 2-D forward projected subspaces. However, from 3-D and
beyond, backward project projection excel over forward projection. The test errors
of backward projection in Figure 7.24 show that backward projection does identify
good 1-D projections, rather it identifies good subspace as a whole. Individual 1-D
projections from backward projection are usually not as good as the ones identified
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Log-likelihood Misclassification Rate
Model Train Test Train Test

GMC(3,7) MoM -45.6930 -32.1166 .0065 (12/1858) .0057 (3/529)
GMC(3,7) MLE -23.3606 -31.7216 .0038 (7/1858) .0095 (5/529)

MDA(3,7) -96.2153 -51.6038 .0151 (28/1858) .0208 (11/529)

Table 7.7: GMC(3,7) vs MDA(3,7) for the Zip code data (digit 0 vs 6)

Model Misclassification Rate Log-likelihood
K0 K1 Train Test Train Test

3 7 .0065 .0057 -45.6930 -32.1166
3 8 .0070 .0057 -46.9049 -32.1195
4 7 .0059 .0057 -41.5073 -32.1393
4 8 .0065 .0057 -42.7198 -32.1417
4 9 .0054 .0057 -38.0118 -32.6595
5 7 .0054 .0057 -38.5791 -32.5150
5 8 .0059 .0057 -39.7881 -32.5164
5 9 .0048 .0057 -34.6373 -32.8922
6 7 .0048 .0057 -39.1865 -32.6413
6 8 .0054 .0057 -40.3974 -32.6427
6 9 .0043 .0057 -34.7917 -33.2824

Table 7.8: Top GMC classifiers for the Zip code data (digit 0 vs 6)

by forward algorithm. In practice, forward and backward are complementary to each
other.

Finally, using the IPRA/MoM estimates of GMC(3,7) as the initial values for EM
algorithm, we obtain the MLE fit of GMC(3,7). Table 7.7 shows an interesting result:
the MLE GMC(3,7) has a better training performance over the MoM GMC(3,7). In
fact, the MLE training error is almost half the training error of MoM fit. However,
the MLE GMC’s test error is worse. The lesson to learn here is that the MLE do fit
the training data better because the individual covariance matrix is tighter. But the
consequence for this tighter fit on the training set is a worse test error.

The puzzling result in Table 7.7 is that the MDA(3,7) performs much poorer than
both GMC(3,7)/MLE and GMC(3,7)/MoM in both training and test errors. One
possible explanation, hinted by the much lower log-likelihood values, is that MDA
converge to a local maximum instead of the MLE.
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Figure 7.22: Test error of GMC for the Zip code data (digit 0 vs 6)
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Figure 7.23: Log-likelihood of GMC for the Zip code data (digits 0 vs 6)
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Figure 7.24: The error rates in subspaces of GMC(3, 7) for the Zip code data (digit
0 vs 6)
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Figure 7.25: The error rates in subspaces of GMC(3, 7) for the Zip code data (digit
0 vs 6): a closer look



77

−8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

Z
F
1

Z
F
2

Digit 6Digit 0

Figure 7.26: GMC(3, 7) contours on the forward 2-D space with training data (zip
code data, digit 0 vs 6)
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Figure 7.27: GMC(3, 7) contour on the forward 2-D space with test data (zip code
data, digit 0 vs 6)
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Figure 7.28: GMC(3, 7) contours on the backward 2-D space with training data (zip
code data, digit 0 vs 6)
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Figure 7.29: GMC(3, 7) contour on the backward 2-D space with test data (zip code
data, digit 0 vs 6)

7.3.1.4 Digit 1 vs 7

Compared to the previous examples, digit 1 and 7 are much more difficult to classify.
The size of the training sets are also smaller, with total of 1650 observations (1005
digit 1’s, 645 digit 7’s). The test set is of size 411 (264 digit 1’s, 147 digit 7’s).
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Model Misclassification Rate Log-likelihood

K1 K7 Train Test Train Test

1 26–34 0.0018 0.0122 -51.3263 -87.9604

1 35 0.0012 0.0122 -46.0794 -87.9604

1 36 0.0012 0.0122 -46.0794 -114.6557

8 47 0 0.0122 -0.0000 -248.8695

9 47 0 0.0122 -0.0000 -222.6896

10 47 0 0.0122 -0.0000 -222.6702

Table 7.9: Top GMC classifiers for the Zip code data (digit 1 vs 7)

We ran the same procedure as in previous examples. First, we standardize each
dimension of the original X ∈ R

256, then use SVD to get the principal components.
We fit GMC procedure on the space of the top 10 principal components. The top
GMC classifiers are in Table 7.9. The clear winner is GMC(1,26) with minimum
test error, .0122, and the smallest degrees of freedom K1 + K7. Apply forward and
backward projection algorithms on GMC(1,26), we obtain the optimal sub-feature
spaces. In Figure 7.30 we see that the forward projected 1-D subspace is as good as
7-D subspace. Backward projection shows interesting anomaly that the test errors on
4-D and 5-D subspaces are higher than the lower subspaces. This seems to suggest
that a subspace beyond 3-D, the added noise dimensions can be detrimental to the
classifier.

We plot the projected training set and GMC(1,26) of the 2-D forwarded subspace
in Figure 7.31 and the projected test set in Figure 7.32. The first 1-D forward pro-
jection can provide almost perfect separation and the 2nd dimension does not offer
much help. The counterparts of backward projection results are in Figure 7.33 and
Figure 7.34. It is a simple ration away from the 2-D forward projection subspace.

The lesson we learn here is the possible strategy to rerun GMC on projected data
to reduce K0 and K1. The MDA(1,26) in this example gives misclassification rate
.0012 on the training set and .0194 on the test set. In comparison to GMC(1,26)’s
.0018 and .0122, MDA is slightly overfit the training set and therefore gives a bit
higher test error. In practice GMC and MDA both do well in this case.
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Figure 7.30: The error rates in subspaces of GMC(1, 26) for the Zip code data (digit
1 vs 7)
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Figure 7.31: GMC(1, 26) contours on the forward 2-D space with training data (zip
code data, digit 1 vs 7)
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Figure 7.32: GMC(1, 26) contour on the forward 2-D space with test data (zip code
data, digit 1 vs 7)

−6 −4 −2 0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6

8

Z
B
1

Z
B
2

Digit 7

Digit 1

Figure 7.33: GMC(1, 26) contours on the backward 2-D space with training data
(zip code data, digit 1 vs 7)
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Figure 7.34: GMC(1, 26) contours on the backward 2-D space with test data (zip
code data, digit 1 vs 7)

7.3.2 Conclusions of GMC analysis on Zip Code Data

After applying the GMC procedure on the classification between three different pairs
of zip code digits, we are pleased to find that in all three examples, GMC is either
comparable or better performance than MDA. In practice, it is a good idea to use
the GMC procedure at least for the initial analysis. As shown in all three examples,
GMC can outperform MDA, and at the very least, help determine the appropriate of
the parameter (K0, K1).

The empirical results in Table 7.6 and Table 7.7 show that the MLE update does
increase the log-likelihood values and improve the training performance. But the
MLE models have larger test errors than their MoM counterparts. This phenomenon
indicates that the GMC/MLE is somewhat overfitting the training set, which leads to
higher test error. Hence we conclude that for classification problems, MLE is generally
unnecessary, sometimes even detrimental in the sense that GMC/MLE overfits the
training data.

The misclassification rate is the standard criterion for classifier selection. But it
is sometimes too crude to differentiate among the best models. We think the log-
likelihood is a good tie-breaker.

Both forward and backward projection algorithms are very useful for classification
problems. As Fisher pointed out in his LDA, for two-class problems if we assume each
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class pdf is Gaussian, then we need only a 1-D feature space for an effective classifier.
In our case we assume each class pdf is Gaussian mixtures, so we may need more
then 1-D, but certainly no need for a 10-dimension feature space. In our experience
of the Zip Code analysis, a 2-D space is the most we need. In practice, it may be
a good strategy to fit GMC on the original data, selection the best GMC based on
the test error. Then apply forward and backward projection algorithms to identify
optimal subspaces. Intuitively, the original GMC model will have larger (K0, K1)
then necessary for the projected data. Therefore it should be a good idea to rerun
GMC procedure on the projected data. A recursive GMC procedure can be very
interesting and beneficial.

7.3.3 Affymatrix ALL/AML Data

In this section we lay our hands on the famous ALL/AML microarray data set. Golub
et al. (1999) first published their analysis of this data set. Since then, the ALL/AML
data have been made publicly available and have become one of the benchmark data
sets for new microarray data analysis procedures.

The ALL/AML data consist of samples from two kinds of leukemia: acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML). The authors’s goal
was to use the gene expression profile to distinguish ALL from AML, which is critical
for selecting the effective treatment. The gene expression profile of each sample was
collected by Affymatrix chip record of the cDNA expression level of 6,817 genes, with
7,129 probes in each chip (some genes have multiple reads).

Golub’s initial data set consisted of 38 bone marrow samples, 27 ALL and 11
AML. They developed a 50-gene classifier based on the 38 samples. They applied
this predictor to another data set of 34 more samples. They predicted 29 out of 34
correctly. That is equivalent to a 14.7% prediction error. As is common for microarray
data, the training error is 0.

We obtained the data from the website (http://www.broad.mit.edu/cgi-bin/ can-
cer/publications/), there is one more sample in the test set, thus we have the same
training set of size n = 38 and a test set of size n = 35 such that (Xi, Yi), Xi ∈ R

7129,
Yi ∈ {0, 1}. Our goal is to construct a classifier using Gaussian Mixture Classification
(GMC) procedure and compare our results to Golub et al. (1999).

We first normalize the data by standardizing the gene expressions level across the
samples. It is a common practice in microarray analysis to calibrate the individual
array in order to eliminate the non-biological effect. Dudoit and Yang (2003) gives a
comprehensive introduction to the general issues in cDNA Microarray Data analysis.
After across-array normalization, the next step is to reduce the dimension of the data.
At this moment, our software cannot handle p = 7129 straight up, so we first reduce
the dimension to a manageable range.
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We compute and rank the genes by their two-sample t-score tj, j = 1, · · · , 7129:

tj =
Xj|1 −Xj|0√

S2
p(1/n0 + 1/n1)

,

where

S2
p =

(n0 − 1)S2[Xj|0] + (n1 − 1)S2[Xj|1]

n0 + n1 − 2
.

There are 151 genes having |tj| > 4. Our next step is to run the principal component
analysis on these 151 genes. The principal components give up a hierarchy of nested
feature spaces. We apply GMC procedure on the space spanned by the first p principal
components with p = 2, 3, 4, 5, 10 and the initial bandwidth h = .01. The run time
is less than 20 seconds (on Sun SPARC workstation). The results are summarized
in Table 7.10. GMC procedure performs well. It is interesting to note that the test
error starts high at 8.57%, then it goes down to 5.71% and finally goes up again at
p = 10. This trend suggests that the dimension of the feature space is less than 5. 10
is obviously too high. In this case, we only need a GMC(2,1) on the first 3 principal
components to give us a nice 5.71% test error. That is almost 1/3 the test error
reported in Golub et al. (1999). We do not report the training error because all the
models have perfect classification on the training set.

Table 7.11 records the test errors of the corresponding MDA models applied to
the same data sets. The results show that GMC is comparable to MDA. One obvious
advantage of GMC over MDA is that GMC does not require the guess work on
(K0, K1).

Figure 7.35 shows the GMC(2,2) classifier for the ALL/AML data on the space
of the first two principal components. One interesting feature of ALL/AML data is
that the ALL samples are much tightly distributed on this 2-D principal component
space. AML samples spread all over the place. This means biologically, ALL samples
are more homogeneous while the individual variation among AML samples is large.
Fortunately this AML variation does not overshadow the location differences between
the ALL and AML groups. From Figure 7.35 it is obvious that KALL = 1 is good
enough to classify the two groups. And KAML seems irrelevant for the classification.
This picture is consistent with the results in Table 7.10, where KAML varies among
models of the same minimum test error. This is an empirical evidence that the best
(K0, K1) for GMC model performance may not be the best for the underlying class
pdf’s.
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Dimension (p) Minimum Test Error GMC(KALL, KAML)

2 .0857 (2, 1)

3 .0571 (2, 1–3), (3, 1–3), (26–27, 4)

4 .0571 (1–3, 1)

5 .0571 (1, 1), (2, 1)

10 .0857 (1, 2–11)

Table 7.10: Top GMC Classifiers for the ALL/AML data

Dimension (p) (KALL, KAML) Test Error (MDA) Test Error (GMC)

2 (2, 1) .2000 .0857

3 (2, 1) .0571 .0571

4 (1, 1) .1429 .0571

4 (2, 1) .0571 .0571

5 (1, 1) .0285 .0571

5 (2, 1) .0571 .0571

10 (1, 1) .1143 .0857

10 (1, 2) .0857 .0857

Table 7.11: Top GMC and MDA classifiers for the ALL/AML data
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Figure 7.35: The contour plot of GMC(1, 2) for the ALL/AML Data

7.3.4 Wisconsin Breast Cancer Data

Wisconsin Breast Cancer Data were first analyzed by Street et al. (1993). Man-
gasarian et al. (1995) propose a linear programming approach for the problem. The
training data set consists of 10 covariates with 569 observations. The goal is to predict
whether the tumor is cancerour or benign using the 10 features of the cells:

1. radius (mean of distances from center to points on the perimeter)

2. texture (standard deviation of gray-scale values)

3. perimeter

4. area

5. smoothness (local variation in radius lengths)

6. compactness (perimeter2/(area− 1))

7. concavity (severity of concave portions of the contour)

8. concave points (number of concave portions of the contour)

9. symmetry

10. fractal dimension (“coastline approximation” - 1)

A test set of size 100 (60 negative; 40 positive) is used to estimate the predictive
error and misclassification rate. We first apply GMR to the data, pretending the
binary response Y as continuous. We then design the GMR classifier as

ŷ(x) = I(m̂(x) > cut). (7.3)

There are two options to pick the cut value. One is to 1/2, the other is ȳ. They
correspond to equal prior probability π1 = 1/2 and π1 = n1/(n0 + n1). We try both
classifiers and the results are very similar. Figure 7.36 shows that the difference
between the two choices are very small.

Figure 7.37 records the RMSE profile of GMR models on both training set and test
set. GMR(4) has the minimum predictive error on test set. In Figure 7.36, GMR(4)
and GMR(5) both have minimum misclassification rate of 5% on the test set using
cut = 0.5. The classifier using cut = ȳ = .37 gives test error rate 8% and 6% for
GMR(4) and GMR(5). Because y is actually a binary variable, the misclassification
rates on the test set should be the most reasonable criterion. The informative prior
cut cut = .37 is closer to the bayes classifier; therefore, we pick GMR(5) as the best
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Fitted Y 0 (Benign) 1 (Cancerous)

Train True Y 0 286 (.610) 11 (.024) 297

1 8 (.017) 164 (.350) 172

Test True Y 0 55 (.55) 5 (.05) 60

1 1 (.01) 39 (.39) 40

Table 7.12: The GMR(5) fit of the Wisconsin breast cancer data

model for the data set. Table 7.12 records the details of “GMR(5) classifier” using
the informative prior cut.

The overall training error of the GMR fit is .041 with test error .06. The results
of GMR analysis are in Table 7.12.
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Figure 7.36: Misclassification rates of GMR of the Wisconsin Data
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model misclassification rate log-likelihood

K0 K1 train test train test

4 2 .0320 .0800 -50.2449 -30.3972

5 2 .0341 .0800 -48.5124 -30.8421

6 2 .0299 .0800 -44.0597 -29.5315

7 2 .0299 .0800 -43.9520 -29.5296

8 2 .0299 .0800 -42.1869 -27.4682

Table 7.13: Top GMC classifiers for the Wisconsin data
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Figure 7.37: RMSE and PE of GMR of the Wisconsin Data

We apply GMC for the same data set. Table 7.13 displays the top GMC models
in terms of minimum test error. An obvious choice is GMC(4,2). Table 7.14 lists four
models: GMR(5) chosen from the GMR procedure, GMC(4,2) with MoM parameters,
GMC(4,2) with MLE parameters, and MDA(4,2). Interestingly, GMR(5) gives the
minimum test error of 6%. The MLE update of GMC(4,2) improves the training error
but has no effect on the test error. Once again, it indicates that the MLE update
tightens the model fit of the training data but it does not improve the test error.
Finally, the best GMR and GMC models all give smaller test errors than does MDA.
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misclassification rate log-likelihood

model train test train test

GMR(5) MoM .0420 .0600

GMC(4,2) MoM .0320 .0800 -50.2449 -30.3972

GMC(4,2) MLE .0235 .0800 -36.0696 -49.8813

MDA(4,2) .0405 .1000 -52.4627 -23.2221

Table 7.14: The GMR(5), GMC(4,2) and MDA for the Wisconsin data



Chapter 8

Conclusions

This chapter summarizes the key findings and discusses several problems for future
research that can further enhance the GMR and GMC procedures.

8.1 Key Findings

The immediate goal of this research is to construct new statistical procedures that can
overcome the curse of dimensionality. We have accomplished this goal by showing that
both GMR and GMC offer different modeling techniques that give results comparable
to the popular MARS and MDA procedures for multivariate data. The objective here
is not to replace MARS and MDA but to offer worthy alternatives. As Breiman (1991,
p.87) pointed out:

...for creative data analysis, the desideratum is to get as many different
views as possible of what may be going on.

GMR and GMC do offer different views from the standard procedures such as MARS
and MDA, and therefore, worthy additions to a data analyst’s tool box.

GMR and GMC overcome the curse of dimensionality by employing a global para-
metric model of the underlying joint density. By using the Gaussian mixture density
for this task, GMR and GMC inherit the versatility of the Gaussian mixture density
to capture nonlinear patterns in the data.

One unique contribution of this research is a new way to harness the power of the
Gaussian mixture. The key component of GMR and GMC is the IPRA procedure.
The beauty of IPRA is its simplicity in generating a sequence of Gaussian mixture
densities that goes through the complex model space of the Gaussian mixture with
one representative for each number of components, K. IPRA achieves simplicity by
applying method of moments for the estimation of model parameters, thereby avoiding
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the heavy computation required by MLE. We treat IPRA as a simple “sampling
technique” that enables the construction of the GMR model family indexed by K and
of the GMC family, indexed by (K0, K1). The corresponding profiles of goodness-of-fit
thus provide systematic ways to select the appropriate number of components.

Finally, a unique feature of GMR and GMC, inherited from the Gaussian mixture
density, is their invariance under linear transformation. This feature allows us to
implement straightforward model-based dimensional reduction algorithms for GMR
and GMC.

8.2 Future Research

IPRA/GMR and IPRA/GMC are new procedures based on the fundamental princi-
ple that all statistical information is contained in the joint density function. They
demonstrate a new template for building global models for high dimensional data via
density estimation. We believe this is fertile ground for intriguing research. To name
a few possibilities:

Computation Efficiency: We have demonstrated that in theory GMR/GMC is
applicable to data of any dimension. In our case study in Chapter 7, we did not apply
GMR/GMC to feature space of dimension higher than 25 because it is unnecessary to
go beyond that for our examples. Another reason is that as the dimension grows, the
computing time increases exponentially, thereby making GMR/GMC not practical
for extra high dimensional data. One promising approach to improve the computing
efficiency is to take advantage of the parallel nature of the IPRA merging operations.
Future implementation of GMR should explore the new specialized linear algebra
tools in MATLAB to speed up the computation.

Early Dimension Reduction: A weakness of GMR is its susceptibility to a
large number of noisy dimensions because GMR fits the data as a whole instead of
approximating the regression function one dimension at a time. The key to ameliorate
the GMR performance under noisy data is to have an effective dimensional reduction
technique. In Chapter 6 we developed the model-based forward and backward al-
gorithm for GMR and GMC. One promising solution to improve GMR performance
under noisy data is to incorporate these dimension reduction techniques early in the
IPRA/GMR procedure to eliminate noisy dimensions.

Mixture of Generalized Linear Models: In practice, it is often to have both
categorical and continuous features in one data set. So far, GMR is limited to contin-
uous features only. To extend GMR procedure to categorical features and responses,
we may explore a mixture of Gaussian and non-Gaussian components for the joint
density. This line of research should lead to a full-blown extension of GMR to gener-
alized linear models such as Poisson regression.

Gaussian Mixture Quantile Regression: GMR can be viewed as a summary
statistic of a Gaussian mixture density. It is natural to derive other summary statis-
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tics, such as the conditional median and the conditional mode. In the most general
form, a Gaussian mixture quantile regression will be a useful EDA tool.

Bayesian GMR: Gaussian mixture is a popular object for Bayesian inference.
Under a Bayesian framework, the model interpretation is straightforward and the
model uncertainty can be evaluated using MCMC technology. Following is a road
map of a Bayesian analysis for GMR:

• Set up conjugate prior distributions for Θ: the Dirichlet prior for the mixing
probabilities Π = (π1, · · · , πK), multivariate Gaussian prior for the mean µj ∼
N(0, Ip), and inverse-Gamma prior for the variance Σj ∼ IG.

• Set up the full likelihood for the hierarchical model described in Chapter 2:
The inclusion of the latent cluster indicator variable in the full likelihood will
simplify the mixture model fit, and therefore simplify the GMR derivation.

• Under the full model, write down the explicit form of the posterior mode of
each parameter.

• Set up a MCMC framework for simulation. For any given value of Θ, it is not
difficult to evaluate the full likelihood L(X, Y ; Θ), hence it is not hard to eval-
uate the acceptance probability required by the Metropolis-Hasting algorithm.

• Apply the Metropolis-Hasting algorithm to generate samples from the appro-
priate stationary distribution Θ|Data. We can then obtain samples of GMR
estimator m(x; Θ)|Data. The summary statistics of these sample regression
curves will provide the uncertain measure of the finite-sample GMR curve.



Appendix A

Hellinger Metric

The inner product of two Gaussian density functions has an elegent form (A.1). They
are very useful in our exploration of the theoretical properties of finite Gaussian
mixtures (Wand and Jones 1995).

〈φµ1,Σ1
, φµ2,Σ2

〉 = φ(0; µ1 − µ2, Σ1 + Σ2) (A.1)

where 〈f, g〉 =
∫

f g and φ is the Gaussian pdf for x ∈ R
p:

φ(x; µ, Σ) = |2πΣ|−1/2 exp{−1/2(x− µ)TΣ−1(x− µ)}
That is, ∫

φ(x; µ1, Σ1) φ(x; µ2, Σ2)dx = φ(0; µ1 − µ2, Σ1 + Σ2) (A.2)

To simplify the notations, we define the integral

I(µ1, µ2, Σ1, Σ2) =

∫
exp{−1

2
(x− µ1)

T Σ−1
1 (x− µ1)} exp{−1

2
(x− µ2)

T Σ−1
2 (x− µ2)}.

Since we have ∫
φ1 φ2 = |2πΣ1|−1/2|2πΣ2|−1/2I(µ1, µ2, Σ1, Σ2),

(A.2) implies that

I(µ1, µ2, Σ1, Σ2) = |2πΣ1|1/2|2πΣ2|1/2φ(0; µ1 − µ2, Σ1 + Σ2). (A.3)

Let φj = φ(x; µj, Σj) and observe that

√
φj =

(
|2πΣj|−1/2 exp{−1/2(x− µj)

T Σ−1
j (x− µj)}

)1/2

= |2πΣj |−1/4 exp{−1/4(x− µj)
T Σ−1

j (x− µj)}
= |2πΣj |−1/4 exp{−1/2(x− µj)

T (2Σj)
−1(x− µj)},
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we obtain the closed form for another integral

∫ √
φ1φ2 = |2πΣ1|−1/4|2πΣ2|−1/4I(µ1, µ2, 2Σ1, 2Σ2)

= |2πΣ1|−1/4|2πΣ2|−1/4|2π2Σ1|1/2|2π2Σ2|1/2φ(0; µ1 − µ2, 2Σ1 + 2Σ2)

= (2
√

2π)p|Σ1|1/4|Σ2|1/4φ(0; µ1 − µ2, 2Σ1 + 2Σ2).

Applying this result to obtain the closed form of the Hellinger metric

H(φ1, φ2) =

∫
(
√

φ1 −
√

φ2)
2

=

∫
φ1 + φ2 − 2

√
φ1φ2

= 2− 2

∫ √
φ1φ2

= 2− 2(2
√

2π)p|Σ1|1/4|Σ2|1/4φ(0; µ1 − µ2, 2Σ1 + 2Σ2).

Hence, the direct Hellinger metric between two mixture components is

H(w1φ1, w2φ2) =

∫
(
√

w1φ1 −
√

w2φ2)
2

=

∫
w1φ1 + w2φ2 − 2

√
w1w2

√
φ1φ2

= w1 + w2 − 2
√

w1w2

∫ √
φ1φ2.



Appendix B

Method of Moments Estimation

In this section we derive the method of moments estimations of a 2-component Gaus-
sian mixture models employed in multivariate IPRA (Section 3.1). Following is the
problem setting: Given the pdf of X

fX(x) = w φ(x; µ1, Σ1) + w̃ φ(x; µ2, Σ2),

where w̃ = 1− w, compute the mean and variance of X.
First, derive EX and E[XXT ]:

EX =

∫
x fX(x) dx

=

∫
xw φ(x; µ1, Σ1) + x w̃ φ(x; µ2, Σ2) dx

= w

∫
xφ(x; µ1, Σ1) dx + w̃

∫
xφ(x; µ2, Σ2) dx

= w µ1 + w̃ µ2

E[XXT ] =

∫
xxT fX(x)dx

=

∫
xxT wφ(x; µ1, Σ1) + xxT w̃φ(x; µ2, Σ2)dx

= w

∫
xxT φ(x; µ1, Σ1)dx + w̃

∫
xxT φ(x; µ2, Σ2)dx

= w(Σ1 + µ1µ
T
1 ) + w̃(Σ2 + µ2µ

T
2 )
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Var(X) = E{(X − EX)(X − EX)T}
= E[XXT ]− EXEXT

= w (Σ1 + µ1µ
T
1 ) + w̃ (Σ2 + µ2µ

T
2 )− (wµ1 + w̃µ2)(wµ1 + w̃µ2)

T

= w Σ1 + w̃ Σ2 + w w̃ (µ1µ
T
1 + µ2µ

T
2 − µ1µ

T
2 − µ2µ

T
1 )

= w Σ1 + w̃ Σ2 + w w̃ (µ1 − µ2)(µ1 − µ2)
T



Appendix C

EM Algorithm for Gaussian

Mixture Models

The landmark article that introduces the EM algorithm is Dempster, Laird, and
Rubin (1977). EM algorithm is an iterative method for finding the local maximum of
the likelihood function. There are several reasons for its popularity. It is conceptually
elegant and in many cases the implementation is straightforward. In addition, the EM
algorithm always converges monotonically. On the other hand, EM algorithm also
suffers some disadvantages. The most severe one is that the EM algorithm results
depend on the initial value. Also, the convergence rate can be very slow. Hence, the
key for the success of EM algorithm is a good initial guess.

EM algorithm is the standard algorithm for computing the MLE of the Gaussian
mixture models. Given the number of component K, the EM algorithm for Gaussian
Mixtures is straightforward.

The natural way to formulate a K-component mixture model is to introduce a
latent variable G, the indicator of the mixture components. The mixture model can
then be formulated as a hierarchical model:

Gi ∈ {1, 2, · · · , K}, (C.1)

Pr(Gi = k) = πk, (C.2)

and
Xi|Gi = k ∼ N(µk, Σk). (C.3)

The parameter of the model is Θ = (θ1, θ2, · · · , θK), where θk = (πk, µk, Σk). For
data X ∈ Rp, the dimension of Θ is K(p + p(p + 1)/2 + 1)− 1. As K and p increase,
the dimension of Θ grows quickly. However, in principle, the EM algorithm for the
mixture models is straightforward. The key fact is that given the value of the latent
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variable G, the mixture model reduces to a simple Gaussian. The MLE for a single
Gaussian is just the sample mean and sample variance. Therefore, the EM algorithm
for the Gaussian Mixture Models is straightforward:

1. Take the initial value Θ(0) = (π(0), µ(0), Σ(0))

2. E-step: compute the mixture weights for each Xi, which is

wik = Pr(Gi = k|Xi, Θ
(0)) =

π
(0)
k φ(Xi; µ

(0)
k , Σ

(0)
k )

∑K
k=1 π

(0)
k φ(Xi; µ

(0)
k , Σ

(0)
k )

. (C.4)

3. M-step: compute the weighted mean, variance, and the new mixing weight:

µ
(1)
k =

∑n
i=1 wikXi∑n

i=1 wik

, (C.5)

Σ
(1)
k =

∑n
i=1 wik(Xi − µ

(1)
k )(Xi − µ

(1)
k )T

∑n
i=1 wik

, (C.6)

and

π
(1)
k =

n∑

i=1

wik/n. (C.7)

4. Iterate step 2 and 3 until convergence.

One of the most critical issues in using the EM algorithm is the choice of the initial
value Θ(0). The EM algorithm is guaranteed to converge to a local maximum, so the
initial value will determine if EM algorithm converges to a good local maximum. Since
the likelihood of the Gaussian mixture is unbounded above, the global MLE does not
exist. We apply IPRA to the starting kernel model to obtain good approximation
of the K-component mixture model. Obviously this IPRA approximation is not the
MLE. But it should be a good initial value for the EM algorithm.

An alternative for the MLE is to maximize the log-likelihood function directly.

log L(Θ; X) =

n∑

i=1

log

K∑

k=1

πk φ(Xi; θk) (C.8)

The IPRA approximation of the mixture models provides good initial values for a
general numerical maximization package as well.



Appendix D

Some Results in the Simulation

Study

There are some detailed numerical results in the simulation study of GMR in Sec-
tion 7.2.2.
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Table D.1: Root mean squared errors of projected GMR models

dim forward dim backward

n 200 300 400 200 300 400

K 9 18 28 9 18 28

0 1.1921 1.1168 1.1033 5 0.1938 0.2609 0.2658

1 0.8519 0.8269 0.8382 4 0.2382 0.2766 0.2866

2 0.2998 0.3280 0.7592 3 0.2715 0.3016 0.3057

3 0.2634 0.3139 0.3274 2 0.7541 0.3099 0.3185

4 0.2352 0.2952 0.2886 1 0.8530 0.7678 0.7834

5 0.1938 0.2609 0.2658 0 1.1921 1.1168 1.1033

K 9 25 34 9 25 34

0 1.1921 1.1168 1.1033 10 0.1407 0.0882 0.1969

1 0.8465 0.8224 0.8435 9 0.1423 0.0902 0.2013

2 0.3369 0.5190 0.4248 8 0.1463 0.1178 0.2234

3 0.2958 0.3740 0.3966 7 0.1623 0.1643 0.2706

4 0.2666 0.3333 0.3680 6 0.2188 0.2595 0.3215

5 0.2542 0.2835 0.3419 5 0.2694 0.3505 0.3747

6 0.2131 0.2167 0.3077 4 0.2925 0.4381 0.4107

7 0.1941 0.1617 0.2631 3 0.3605 0.4917 0.4360

8 0.1717 0.1193 0.2459 2 0.8503 0.5292 0.8439

9 0.1541 0.1006 0.2096 1 0.8820 0.8662 0.8478

10 0.1407 0.0882 0.1969 0 1.1921 1.1168 1.1033
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Table D.2: Forward projections (n = 400, p = 5)

1st-D 2nd-D 3rd-D 4th-D

GMR(9) 0.4165 0.6572 -0.6161 -0.0805

0.0568 0.0735 -0.0749 0.8183

0.9016 -0.3245 0.2696 0.0479

0.0223 0.6763 0.7362 0.0090

0.0994 -0.0040 0.0139 -0.5670

GMR(18) 0.4554 -0.6035 0.6508 0.0561

0.0811 -0.0024 0.0362 -0.4563

0.8818 0.2782 -0.3683 0.0961

0.0383 0.7471 0.6629 0.0242

0.0841 0.0136 0.0007 -0.8825

GMR(28) 0.4596 -0.5744 0.6658 0.1124

0.0869 -0.0540 0.0434 -0.4707

0.8770 0.2789 -0.3804 0.0918

0.0357 0.7670 0.6404 -0.0183

0.1042 -0.0317 0.0089 -0.8701
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Table D.3: Backward projections (n = 400, p = 5)

best 3-D best 2-D best 1-D

GMR(9) 0.3820 0.0706 -0.9038 -0.4290 -0.6058 0.3962

0.1999 -0.0653 -0.0891 0.0238 -0.2232 -0.0357

-0.2125 0.9674 -0.0401 -0.9015 0.3095 0.9167

-0.8591 -0.2310 -0.4163 0.0435 0.6753 -0.0076

-0.1757 0.0383 0.0178 -0.0279 0.1770 0.0373

GMR(18) 0.0000 0.7930 -0.0000 -0.0218 0.7773 0.2738

-0.0870 0.1766 -0.7787 -0.0245 0.0189 0.0293

-0.9092 0.2139 0.2233 0.9249 0.2539 -0.7918

0.4006 0.5373 0.2412 -0.3787 0.5744 0.5452

-0.0722 0.0746 -0.5343 -0.0031 -0.0327 -0.0077

GMR(28) 0.6969 0.0219 0.4535 -0.7765 0.1202 0.5966

-0.1021 0.1513 0.4420 -0.0038 -0.0063 0.0065

0.0973 -0.9461 0.1920 -0.0701 0.9589 -0.4456

0.6861 0.1834 -0.2649 -0.6261 -0.2567 0.6674

0.1538 -0.2188 -0.7014 0.0125 -0.0103 -0.0052
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Table D.4: Forward projections (n = 400, p = 10)

1st-D 2nd-D 3rd-D 4th-D 5th-D

GMR(9) 0.3688 0.6576 0.4807 0.0167 -0.3921

0.0597 0.0979 -0.2246 -0.2293 -0.3789

0.9204 -0.2549 -0.1619 0.0536 0.1992

-0.0252 0.6980 -0.4706 0.0753 0.5017

0.1019 0.0295 -0.4136 -0.0716 -0.1797

-0.0313 -0.0118 -0.0768 0.3271 0.1192

-0.0052 -0.0269 0.2736 0.5158 0.1727

0.0157 0.0132 0.0565 -0.6878 0.1588

-0.0252 0.0322 -0.2766 0.2651 -0.4321

0.0175 0.0533 0.3732 -0.1310 0.3508

GMR(25) 0.4575 0.6344 -0.4151 -0.0860 -0.1332

0.0652 0.0039 -0.1122 -0.6905 0.0279

0.8785 -0.3531 0.2431 0.0482 0.1120

0.0341 0.6840 0.4801 0.1086 0.1775

0.0948 -0.0305 -0.2876 0.1382 0.0582

-0.0269 -0.0360 -0.2010 -0.1750 0.6269

-0.0495 0.0268 -0.2036 -0.0728 0.6330

0.0328 -0.0179 -0.5927 0.2123 -0.2237

-0.0159 -0.0119 0.0933 -0.6264 -0.2941

-0.0005 0.0392 0.0308 -0.0964 0.0610

GMR(34) 0.4589 0.6127 0.1317 -0.0810 -0.1253

0.0759 0.0048 0.0901 0.3199 0.3781

0.8730 -0.3570 0.0303 0.0234 0.0648

0.0453 0.7043 -0.1095 0.0703 0.1506

0.1121 -0.0111 -0.3011 0.3382 -0.3226

-0.0348 -0.0103 0.2529 0.1609 0.7524

-0.0735 0.0052 0.6449 0.4460 -0.3660

0.0163 -0.0273 0.0704 -0.3417 0.0400

0.0006 -0.0079 -0.6195 0.2980 0.0932

-0.0083 0.0053 -0.0496 0.5839 -0.0103
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Table D.5: Backward projections (n = 400, p = 10)

best 3-D best 2-D best 1-D

GMR(9) -0.2900 -0.4647 0.5402 0.7103 0.2881 -0.3738

-0.2902 -0.0041 -0.0232 0.1237 0.0107 -0.0899

-0.2840 0.5666 0.6842 0.5667 -0.7407 -0.9055

-0.1739 -0.6663 0.1233 0.3565 0.6019 0.0985

-0.1914 -0.0062 0.0705 0.1541 -0.0145 -0.1293

0.1385 0.0055 0.0384 -0.0372 -0.0164 0.0187

0.6174 -0.1070 0.4025 0.0606 -0.0144 -0.0563

-0.4194 0.0695 -0.1712 0.0449 -0.0169 -0.0456

0.3140 -0.0082 0.1588 -0.0192 -0.0383 -0.0090

-0.0960 -0.0513 -0.0378 0.0284 0.0601 0.0154

GMR(25) 0.8618 0.2452 0.1190 -0.2486 -0.7150 -0.3077

-0.0376 0.0032 0.0221 -0.0190 0.0280 0.0331

-0.1789 0.4351 0.8294 -0.9152 0.0679 0.7141

0.2955 -0.6799 0.4418 0.0978 -0.6314 -0.5032

0.1094 0.4399 -0.0810 -0.2203 0.0811 0.2162

-0.0176 0.1906 -0.0839 -0.0580 0.1073 0.1157

0.1915 -0.0764 0.0280 0.0276 -0.2053 -0.1605

-0.1332 -0.2205 0.1010 0.0642 0.0112 -0.0391

-0.0951 0.0410 -0.0029 -0.0241 0.0998 0.0858

0.2465 0.0485 -0.2787 0.1825 -0.1201 -0.2153

GMR(34) -0.8366 -0.2914 -0.0948 0.7124 0.1181 -0.6458

-0.3698 0.2405 -0.0350 0.0821 -0.1833 0.0413

0.0648 0.4175 -0.7384 0.0976 -0.8321 0.4100

0.0667 -0.7220 -0.4800 0.6656 0.1067 -0.6012

0.0491 -0.1083 -0.1003 0.0925 -0.0054 -0.0716

0.2868 -0.1426 -0.0913 -0.0277 0.0237 0.0085

0.1496 -0.1822 0.0346 0.0086 0.1451 -0.0922

-0.0549 0.0483 0.1989 -0.1045 0.1193 0.0144

-0.1817 0.1613 0.0938 -0.0457 -0.0341 0.0570

-0.1085 0.2609 -0.3824 0.1045 -0.4600 0.1858
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Table D.6: Forward projections (n = 200, p = 10)

1st-D 2nd-D 3rd-D 4th-D 5th-D 6th-D 7th-D

0.3786 -0.6856 -0.3964 0.1145 -0.1074 -0.0751 -0.1810

0.0098 0.0380 0.4299 0.3209 0.2361 0.2050 0.3201

0.9100 0.3215 0.0690 -0.0166 0.0441 0.1415 0.0997

0.0372 -0.6470 0.4429 -0.1148 0.1345 0.1839 0.2974

-0.0491 0.0083 0.1113 -0.5005 -0.4522 0.6541 -0.1046

-0.0476 0.0177 -0.0442 -0.3323 0.6322 -0.0232 0.0148

0.0081 -0.0511 0.2454 0.4499 0.1787 0.2666 -0.5015

-0.1359 0.0421 -0.5286 0.3258 0.2165 0.6257 0.0959

0.0484 -0.0420 -0.2450 -0.4093 0.4246 0.0854 0.0670

0.0386 0.0030 0.2078 -0.1830 0.2224 0.0162 -0.7001

Table D.7: Backward projections (n = 200, p = 10)

best 3-D best 2-D best 1-D

0.1622 0.7231 0.2710 0.0343 0.4431 -0.4438

-0.1803 0.2054 -0.4481 -0.4896 0.1660 -0.1543

-0.8601 0.3064 0.2138 0.1086 0.8542 -0.8565

0.4231 0.5077 0.0359 -0.1228 0.0622 -0.0593

-0.0748 0.1926 -0.6442 -0.6722 0.0403 -0.0243

0.0466 -0.1909 0.4125 0.4513 -0.0712 0.0604

0.0345 0.0037 -0.1427 -0.1368 -0.0532 0.0564

-0.0054 -0.0484 0.0959 0.1061 -0.0081 0.0056

0.0351 -0.0642 -0.2375 -0.2060 -0.1212 0.1260

-0.1106 0.0574 0.0874 0.0654 0.1355 -0.1370
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