Statistical Inference for Networks

4th Lehmann Symposium, Rice University, May 2011

Peter Bickel

Statistics Dept. UC Berkeley
(Joint work with Aiyou Chen, Google, E. Levina, U. Mich, S.

Bhattacharyya, UC Berkeley)

Outline

1 Networks: Examples
2 Descriptive statistics
3 Statistical issues and selected models
4 A nonparametric model for infinite networks and asymptotic theory
5 Statistical fitting approaches
a) 'Moments'
b) Pseudo likelihood
c) Estimation of w

Example: Social Networks

Figure: Karate Club (Newman, PNAS 2006)

Example: Social Networks

8

Figure: Facebook Network for Caltech with 769 nodes and average degree 43.

References

1. M.E.J. Newman (2010) Networks: An introduction. Oxford
2. Fan Chung, Linyuan Lu (2004) Complex graphs and networks. CBMS \# 107 AMS
3. Eric D. Kolaczyk (2009) Statistical Analysis of Network Data
4. Bela Bollobas, Svante Janson, Oliver Riordan (2007) The Phase Transition in Random Graphs. Random Structures and Algorithms, 31 (1) 3-122
5. B. and A. Chen (2009) A nonparametric view of network models and Newman-Girvan and other modularities, PNAS
6. David Easley and Jon Kleinberg (2010) Networks, crowds and markets: Reasoning about a highly connected world. Cambridge University Press

A Mathematical Formulation

- $G=(V, E)$: undirected graph
- $\{1, \cdots, n\}$: Arbitrarily labeled vertices
- A : adjacency matrix
- $A_{i j}=1$ if edge between i and j (relationship)
- $A_{i j}=0$ otherwise
- $D_{i}=\sum_{j=1}^{n} A_{i j}=$ Degree of vertex i.

Descriptive Statistics

(Newman, Networks, 2010)

- Degree of vertex, Average degree of graph, $D_{i}=\sum_{j} A_{i j}, \bar{D}$
- \# and size of connected components
- Geodesic distance
- Homophily $:=\frac{\# \text { of } \Delta^{\prime} s}{\# \text { of } \Delta^{\prime} s+\# \text { of } V^{\prime} s}$.
- etc

Implications of Mathematical Description

- Undirected: Relations to or from not distinguished.
- Arbitrary labels: individual, geographical information not used. But will touch on covariates.

Stochastic Models

The Erdős-Rényi Model

- Probability distributions on graphs of n vertices.
- P on $\{$ Symmetric $n \times n$ matrices of 0 's and 1's\}.
- E-R (modified): place edges independently with probability $\lambda / n\left(\binom{n}{2}\right.$ Bernoulli trials $)$.
$\lambda \approx E$ (ave degree)

Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on ∞ graphs
Aldous/Hoover (1983)

$$
\mathcal{L}\left(A_{i j}: i, j \geq 1\right\} \quad=\quad \mathcal{L}\left(A_{\pi_{i}, \pi_{j}}: i, j \geq 1\right)
$$

for all permutations $\pi \Longleftrightarrow$

$$
\exists g:[0,1]^{4} \rightarrow\{0,1\} \text { such that } A_{i j}=g\left(\alpha, \xi_{i}, \xi_{j}, \eta_{i j}\right),
$$

where
$\alpha, \xi_{i}, \eta_{i j}$, all $i, j \geq i$, i.i.d. $\mathcal{U}(0,1), g(\alpha, u, v, w)=g(\alpha, v, u, w)$,
$\eta_{i j}=\eta_{j i}$.

Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

- Community label: $\mathbf{c}=\left(c_{1}, \cdots, c_{n}\right)$ i.i.d. multinomial $\left(\pi_{1}, \cdots, \pi_{K}\right) \equiv K$ "communities".
- Relation:

$$
\mathbb{P}\left(A_{i j}=1 \mid c_{i}=a, c_{j}=b\right)=P_{a b} .
$$

- $A_{i j}$ conditionally independent

$$
\mathbb{P}\left(A_{i j}=0\right)=1-\sum_{1 \leq a, b \leq K} \pi_{a} \pi_{b} P_{a b} .
$$

- $K=1$: E-R model.

Ergodic Models

\mathcal{L} is an ergodic probability iff for g with $g(u, v, w)=g(v, u, w)$ $\forall(u, v, w)$,

$$
A_{i j}=g\left(\xi_{i}, \xi_{j}, \eta_{i j}\right)
$$

\mathcal{L} is determined by

$$
h(u, v) \equiv \mathbb{P}\left(A_{i j}=1 \mid \xi_{i}=u, \xi_{j}=v\right), h(u, v)=h(v, u)
$$

Notes:

1. K-block models and many other special cases
2. Model (also referred to as threshhold models) also suggested by Diaconis, Janson (2008)
3. More general models (Bollobás, Riordan \& Janson (2007))

"Parametrization" of NP Model

- h is not uniquely defined.
- $h(\varphi(u), \varphi(v))$, where φ is measure-preserving, gives same model.

But, $h_{\text {CAN }}=$ that $h(\cdot, \cdot)$ in equivalence class such that
$P\left[A_{i j}=1 \mid \xi_{i}=z\right]=\int_{0}^{1} h_{\mathrm{CAN}}(z, v) d v \equiv \tau(z)$ with $\tau(\cdot)$ monotone increasing characterizes uniquely.

- ξ_{i} could be replaced by any continuous variables or vectors but there is no natural unique representation.

Examples of models

i) Block models: on block of sizes π_{a}, π_{b}

$$
h_{C A N}(u, v)=F_{a b}
$$

ii) Power law:

$$
\begin{gathered}
w(u, v)=a(u) a(v) \\
a(u) \sim(1-u)^{-\alpha} \text { as } u \uparrow 1
\end{gathered}
$$

iii) Dynamically defined model (preferential attachment):

$$
w(u, v)=a(u) 1(u \leq v)+a(v) 1(u>v)
$$

New vertex attaches to random old vertex and neighbors (not Hilbert-Schmidt)
$\operatorname{aCAN}^{\operatorname{CAN}}(u)=(1-u)^{-1}+\tau(u), \operatorname{aCAN}(u)=(1-u)^{-1}-\log (u(1-u))$

Questions

i) Community identification and block models
ii) Checking "nonparametrically" with p "moments" whether 2 graphs are same (permutation tests used in social science literature for "block models", e.g., Wasserman and Faust, 1994).
iii) Link prediction: predicting relations to unobserved vertices on the basis of an observed graph.
iv) Model selection for hierarchies (block models).
v) Error bars on descriptive statistics.
vi) Linking graph features with covariates.

Asymptotic Approximation

- $h_{n}(u, v)=\rho_{n} w_{n}(u, v)$
- $\rho_{n}=\mathbb{P}[$ Edge $]$
- $w(u, v) d u d v=\mathbb{P}\left[\xi_{1} \in[u, u+d u], \xi_{2} \in[v, v+d v] \mid\right.$ Edge $]$
- $w_{n}(u, v)=\min \left\{w(u, v), \rho_{n}^{-1}\right\}$
- Average Degree $=\frac{E\left(D_{+}\right)}{n} \equiv \lambda_{n} \equiv \rho_{n}(n-1)$.

Nonparametric Theory: The Operator

Corresponding to $w_{\text {CAN }} \in L_{2}(0,1)$ there is operator:
$T: L_{2}(0,1) \rightarrow L_{2}(0,1)$
$T f(\cdot)=\int_{0}^{1} f(v) w(\cdot, v) d v$
T - Hermitian
Note: $\tau(\cdot)=T(\mathbf{1})(\cdot)$.

Nonparametric Theory

Let F and \hat{F} be the distribution and empirical distribution of $\tau(\xi) \equiv T(\mathbf{1})(\xi)$ where ξ has a $U(0,1)$ distribution. Let $\rho=\lambda / n$.

Theorem 1

If $\lambda \rightarrow \infty$, then

$$
\frac{1}{n} \sum_{i=1}^{n} E\left(D_{i} / \bar{D}-T(1)\left(\xi_{i}\right)\right)^{2}=O\left(\lambda^{-1}\right)
$$

This implies, $\hat{F} \Rightarrow F$ in probability.

Identifiability of NP Model

Theorem 2

The joint distribution $\left(T(1)(\xi), T^{2}(1)(\xi), \ldots, T^{m}(1)(\xi), \ldots\right)$ where $\xi \sim U(0,1)$ determines P

Idea of proof: identify the eigen-structure of T.

Theorem 3

If T corresponds to a K-block model, then, the marginal distributions,

$$
\left\{T^{k}(1)(\xi): k=1, \ldots, K\right\}
$$

determine (π, W) uniquely provided that the vectors $\pi, W \pi, \ldots$, $W^{K-1} \pi$ are linearly independent.

Methods of Estimation - Method of "Moments"

(k, ℓ)-wheel
i) A "hub" vertex
ii) I spokes from hub
iii) Each spoke has k connected vertices.

Total \# of vertices (order): $k \ell+1$. Total \# of edges (size): $k \ell$.
Eg: a (2,3)-wheel

"Moments"

- For $R \subset\{(i, j): 1 \leq i<j \leq n\}$, identify R as a graph with vertex set $V(R)=\{i:(i, j)$ or $(j, i) \in R$ for some $j\}$ and $E(R)=R$.
- Let $G_{n}(R)$ be the subgraph induced by R in graph G_{n}.
- Define,

$$
\begin{aligned}
Q(R) & =P\left(A_{i j}=1, \text { all }(i, j) \in R\right) \\
P(R) & =P\left(E\left(G_{n}(R)\right)=R\right)
\end{aligned}
$$

- We can estimate $P(R)$ and $Q(R)$ in a graph G_{n} by

$$
\begin{aligned}
& \hat{P}(R) \equiv \frac{1}{\binom{n}{p} N(R)} \sum\left[\mathbf{1}\left(G \sim R: G \subset G_{n}\right), P(R)=E \hat{P}(R)\right] \\
& N(R) \equiv\left|\left\{G \subset G_{n}: G \sim R\right\}\right| \\
& \hat{Q}(R) \equiv \sum\{\hat{P}(S): S \supset R\}, Q(R)=E \hat{Q}(R)
\end{aligned}
$$

Estimates of P and Q

Suppose $|R|=p$ fixed, $\rho_{n} \rightarrow 0$. Let $\mathbb{P}\left(h_{n}\left(\xi_{1}, \xi_{2}\right)>\rho\right)=o\left(n^{-1}\right)$.
Then, define,

- $\tilde{P}(R)=\rho_{n}^{-p} P(R)=\tilde{Q}(R)+O\left(\lambda_{n} / n\right)$.
- $\tilde{Q}(R)=\rho_{n}^{-p} Q(R) \rightarrow E\left[\prod_{(i, j) \in R} w_{n}\left(\xi_{i}, \xi_{j}\right)\right]$.
- $\hat{\tilde{P}}(R)=\left(\frac{\bar{D}}{n}\right)^{-p} \hat{P}(R)$.
- $\hat{\tilde{Q}}(R)=\left(\frac{\bar{D}}{n}\right)^{-p} \hat{Q}(R)$.

Moment Convergence Theorem $(\lambda \rightarrow \infty$ and $\lambda=O(1))$

Theorem 4

a) Suppose R is acyclic, and $\lambda \rightarrow \infty$.

$$
\sqrt{n}(\hat{\tilde{P}}(R)-\tilde{P}(R)) \Rightarrow \mathcal{N}\left(0, \sigma^{2}(R, P)\right)
$$

and multivariate normality holds for R_{1}, \cdots, R_{k} acyclic.
b) If $\lambda=O(1)$, a) continues to hold except that σ^{2} depends on λ as well as R.
c) Even if R is not acyclic, the same conclusions apply to $\hat{\tilde{P}}$ and $\hat{\tilde{Q}}$ if $\lambda \geq n^{1-2 / p}$.

Connection With Wheels

Lemma 1

Let G be a random graph generated according to P,
$|V(G)|=k \ell+1$. Then if R is a (k, ℓ)-wheel,

$$
\begin{aligned}
Q(R) & =E\left[T^{k}(1)\left(\xi_{1}\right)\right]^{\ell} \\
N(R) & =\frac{(k I+1)!}{\ell!} \\
P(R) & =Q(R)+O(\lambda / n)
\end{aligned}
$$

Difficulties

Even for sparse models
(i) Empirical moments of trees are hard to compute.
(ii) Empirical moments of small size converge reasonably even in sparse case, but block model parameters expressed as nonlinear function of moments not so well.

Extensions: Generalized Wheels

A (\mathbf{k}, \mathbf{I})-wheel, where $\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right), \mathbf{I}=\left(I_{1}, \ldots, I_{t}\right)$ are vectors and the k_{j} 's, l_{j} 's are distinct integers, is the union $R_{1} \cup \cdots \cup R_{t}$, where R_{j} is a $\left(k_{j}, l_{j}\right)$-wheel, sharing a common hub but all their spokes are disjoint.

- Trees are examples of (\mathbf{k}, \mathbf{I})-wheels.
- Their limits yield cross-moments of $\left(T(\xi), T^{2}(\xi), \ldots\right)$.
- So, in principle, we can estimate parameters of block model, using the (\mathbf{k}, \mathbf{l})-wheels.
- Using (\mathbf{k}, \mathbf{l})-wheels, we can estimate the parameters of models approximating NP model.

Method of fitting: Pseudo likelihood

(Combining ideas of Besag (1974) and Newman \& Leicht (2007))

Partition n into K communities of equal size

$$
\begin{aligned}
& S_{1}=\{1, \cdots, m\}, \\
& S_{2}=\{m+1, \cdots, 2 m\}, \\
& \cdots \\
& m=n / K .
\end{aligned}
$$

For each $i: b_{i k}=\sum\left\{A_{i j}: j \in S_{k}\right\}$.
a) Given c,

$$
b_{i k} \sim \sum_{l \in S_{k}} \epsilon_{l k}
$$

$\epsilon_{l k}$ independent Bernoulli $\left(F_{c_{i} c_{l}}\right)$

$$
b_{i k} \approx \text { independent } \operatorname{Poiss}\left(\lambda_{c_{i}, k}\right)
$$

where $\lambda_{c_{i}, k}=n \sum_{s=1}^{K} r_{k s} F_{c_{i} s}$ and $r_{k s}=\frac{1}{n} \sum_{i \in S_{k}} 1\left(c_{i}=s\right)$.
b) Given $d_{i}=\sum_{k=1}^{K} b_{i k}$,

$$
\left\{b_{i k}: k=1, \cdots, K\right\} \sim \mathcal{M}\left(d_{i},\left\{\theta_{c_{i}, k}\right\}\right)
$$

where $\theta_{a k}=\lambda_{a k} / \sum_{l=1}^{K} \lambda_{a l}, k=1, \cdots, K$.

Pseudo likelihood (cont)

Unconditionally on c :

$$
\begin{aligned}
& \text { a) } b_{i} \equiv\left\{b_{i k}: k=1, \cdots, K\right\} \approx \sum_{j=1}^{K} \pi_{j} \operatorname{Poiss}\left(\lambda_{j k}\right) \\
& \text { b) }\left\{b_{i k}: k=1, \cdots, K\right\} \sim \sum_{j=1}^{K} \pi_{j} \mathcal{M}\left(d_{i},\left\{\theta_{j k}\right\}\right)
\end{aligned}
$$

Pretend b_{i} independent to get pseudo LogLikelihood:

$$
\begin{aligned}
& \text { a) } \sum_{i=1}^{n} \ell_{i}\left(\pi, \Lambda, b_{i}\right) \\
& \text { а) } \sum_{i=1}^{n} \ell_{i}\left(\pi, \theta, b_{i}\right)
\end{aligned}
$$

Can be solved by simple EM, $\hat{\pi}, \hat{\Lambda}, \hat{\theta}$.

Theorem 5

Under appropriate identifiability conditions,
a) $\hat{\Lambda}, \hat{\theta}$ are consistent if $\frac{n^{2} \rho}{\log n} \rightarrow \infty$;
b) $\hat{\Lambda}, \hat{\theta}$ are \sqrt{n} consistent if $n \rho=O(1)$.

Example: the Karate Club data $(K=2)$ (Zachary, 1977)

Figure: Left: conditional PL (correct classification), Right: unconditional PL (central nodes)

Advantages and Disadvantages of $P L$

1) PL a) is best for block models
2) PL has little theoretical justification.
3) PL also scales badly.

Can One Fit Nonparametric Model?

- Even parametric models are difficult to fit. We have seen that even for simple parametric models such as block models, the efficient estimation of the parameters is not easy.
- But still many of the parametric models are not good enough representation of the naturally occurring graphs. The empirical and theoretical vulnerability of Exponential Random Graph Models have been pointed out by Chatterjee and Diaconis (2010) and Bhamidi et. al. (2008).
- However, K block models seem to be attractive alternatives for modeling.

An Approach For Dense Models $(\lambda \rightarrow \infty)$

By Theorem 1(a), as $\lambda \rightarrow \infty$

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(\tau\left(z_{i}\right)-\frac{D_{i}}{\bar{D}}\right)^{2}=O\left(\frac{1}{\lambda}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

here, $\tau(z)=T(1)(z)$.
Let

$$
\hat{W}_{n}(u, v)=\int_{0}^{u} \int_{0}^{v} \frac{1}{n \bar{D}} \sum_{i, j} A_{i j} \mathbf{1}\left(\hat{\xi}_{i} \leq s, \hat{\xi}_{j} \leq t\right) d s d t
$$

where $\hat{\xi}_{i} \equiv \hat{F}\left(\frac{D_{i}}{D}\right)$ and \hat{F} is the empirical df of $\left\{\frac{D_{i}}{D}: 1 \leq i \leq n\right\}$. Let

$$
W_{n}(u, v)=\int_{0}^{u} \int_{0}^{v} \frac{1}{n \bar{D}} \sum_{i, j} A_{i j} 1\left(\xi_{i} \leq s, \xi_{j} \leq t\right) d s d t
$$

Theorem 6

Suppose that the conditions of Theorem 1 hold.
a) If $w(\cdot, \cdot)$ is bounded, and F, the df of $\tau\left(\xi_{1}\right)$, is Lipschitz and strictly increasing, then uniformly in (u, v),

$$
\left|\hat{W}_{n}(u, v)-W_{n}(u, v)\right|=O_{P}\left(\frac{(\log \lambda)^{3 / 2}}{\lambda^{1 / 2}}\right)
$$

Theorem 6 (cont)

b) If $\rho \rightarrow 0$ and $\tau\left(\xi_{1}\right)$ takes on only a finite number of values t_{1}, \cdots, t_{K}, then uniformly in (u, v),

$$
\left|\hat{W}_{n}(u, v)-W_{n}(u, v)\right|=O_{P}\left(\lambda^{-1 / 2}\right) \mid .
$$

Moreover, if $W(u, v)=\int_{0}^{1} \int_{0}^{1} w(s, t)(u-s)_{+}(v-t)_{+} d s d t$, then uniformly in (u, v),

$$
\left|W_{n}(u, v)-W(u, v)\right|=O_{P}\left(\lambda^{-1 / 2}\right) \mid
$$

Note:

$$
\begin{equation*}
\frac{\partial^{4} W(u, v)}{(\partial u)^{2}(\partial v)^{2}}=w(u, v) \tag{2}
\end{equation*}
$$

An approach

a) Find smoothed empirical distribution function of $\frac{D_{i}}{D}$,

$$
\hat{F}(x) \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(\frac{D_{i}}{\bar{D}} \leq x\right)
$$

b) Divide $[0,1]$ into intervals I_{1}, \ldots, I_{M}, such that, $I_{j}=\left[\frac{j-1}{M}, \frac{j}{M}\right)$,

$$
\begin{aligned}
\hat{w}(u, v) \equiv & \frac{1}{\bar{D}} \sum_{a, b=1}^{M} \frac{1}{n^{*}} \mathbf{1}\left(u \in I_{a}\right) \mathbf{1}\left(v \in I_{b}\right) \\
& \times\left[\sum_{i, j=1}^{n} \mathbf{1}\left\{A_{i j}: \hat{F}\left(\frac{D_{i}}{\bar{D}}\right) \in I_{a}, \hat{F}\left(\frac{D_{j}}{\bar{D}}\right) \in I_{b}\right\}\right]
\end{aligned}
$$

where, $n^{*}=\left|I_{a}\right|\left|I_{b}\right|$, if, $a \neq b$ and $n^{*}=\left(\left|I_{a}\right|\left(\left|I_{a}\right|-1\right)\right) / 2$, if, $a=b$.

Example: 2 Block Model

Figure: The LHS figre is the actual 2 block h function and RHS is the estimate of the $h_{\text {CAN }}$ function.

Example: Facebook Caltech Network

Figure: The LHS is estimate of $h_{\text {CAN }}$ function for network of students of year 2008 and RHS is network of students of year 2008 residing in only 2 dorms. The proportions of classes in 2 distant modes are ($0.3,0.7$) and (0.84, 0.16).

Why is the Result for Whole Network Uninstructive?

- $\xi \in U(0,1), w_{C A N}$ determine the probability uniquely but there are equivalent representation, which give very different results.
- $\xi \rightarrow$ degree suggest 'affinity', which is like 'linear' or first-order relation.
- We can now introduce higher-order relations, by making ξ a vector, that is, $(\xi)=\left(\xi^{(1)}, \xi^{(2)}\right)$, where, $\xi^{(1)}, \xi^{(2)} \sim U(0,1), \xi_{1} \perp \xi_{2}$.
- One way of forming $\xi^{(1)}, \xi^{(2)}$ is: let the binary representation of ξ is $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \ldots\right)$. Now define, $\xi^{(1)}=\left(\xi_{1}, \xi_{3}, \ldots\right)$ and $\xi^{(2)}=\left(\xi_{2}, \xi_{4}, \ldots\right)$.
- We know that, if $\xi \sim U(0,1)$, then, $\left(\xi^{(1)}, \xi^{(2)}\right) \sim U(0,1)^{2}$. Also, $\xi \rightarrow\left(\xi^{(1)}, \xi^{(2)}\right)$ is 1-1 onto.

Example: 3 block Model

Figure: The top LHS figre is the actual 2 block h function and RHS is the estimate of the $h_{\text {CAN }}$ function. The bottom LHS figure is the projection $\hat{h}_{\text {CAN }}(0.95,0.95$,$) with$ two latent variables and bottom RHS figure is the sum of projections $\hat{h}_{\text {CAN }}(i, i$,$) with$ two latent variables.

Example: Facebook Caltech Network

Figure: The LHS is estimate of $h_{\text {CAN }}$ function for network of students of year 2008 residing in 3 dorms and RHS is sum of projections $\hat{h}_{\text {CAN }}(i, i$,$) with two latent$ variables. The proportions of classes in 4 modes are ($0.5,0.13,0.37$), $(0.67,0.11$, $0.22),(0.26,0.66,0.08),(0.32,0.18,0.5)$

THANK YOU!

Examples of Social Networks

	Network	n	c	ℓ
$\begin{aligned} & \frac{\pi}{8} \\ & \infty \end{aligned}$	Film actors	449913	113.43	3.48
	Company directors	7673	14.44	4.60
	Math coauthorship	253339	3.92	7.57
	Physics coauthorship	52909	9.27	6.19
	Biology coauthorship	1520251	15.53	4.92
	Telephone call graph	47000000	3.16	
	Email messages	59812	1.44	4.95
	Email address books	16881	3.38	5.22
	Student dating	573	1.66	16.01
	Sexual contacts	2810		
$\begin{aligned} & \text { ㄷ } \\ & \text { 若 } \\ & \text { 首 } \\ & \text {. } \end{aligned}$	WWW nd. edu	269504	5.55	11.27
	WWW AltaVista	203549046	7.20	16.18
	Citation network	783339	8.57	
	Roget's Thesaurus	1022	4.99	4.87
	Word co-occurrence	460902	66.96	
	Internet	10697	5.98	3.31
	Power grid	4941	2.67	18.99
	Train routes	587	66.79	2.16
	Software packages	1439	1.20	2.42
	Software classes	1376	1.61	5.40
	Electronic circuits	24097	4.34	11.05
	Peer-to-peer network	880	1.47	4.28
$\begin{aligned} & \text { U } \\ & \text { B0 } \\ & \frac{0}{0} \\ & \text { in } \end{aligned}$	Metabolic network	765	9.64	2.56
	Protein interactions	2115	2.12	6.80
	Marine food web	134	4.46	2.05
	Freshwater food web	92	10.84	1.90
	Neural network	307	7.68	3.97

Basic statistics: total number of vertices (n), mean degree (c), mean geodesic distance between connected vertex pairs (l)

Newman (2010) Networks: an introduction, Oxford

