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Example: Social Networks

Figure: Karate Club (Newman, PNAS 2006)



Example: Social Networks

Figure: Facebook Network for Caltech with 769 nodes and average

degree 43.
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A Mathematical Formulation

• G = (V ,E ): undirected graph

• {1, · · · , n}: Arbitrarily labeled vertices

• A : adjacency matrix

• Aij = 1 if edge between i and j (relationship)

• Aij = 0 otherwise

• Di =
∑n

j=1 Aij = Degree of vertex i .



Descriptive Statistics

(Newman, Networks, 2010)

• Degree of vertex, Average degree of graph, Di =
∑

j Aij , D

• # and size of connected components

• Geodesic distance

• Homophily := # of ∆’s
# of ∆’s + # of V ′s

.

• etc



Implications of Mathematical Description

• Undirected: Relations to or from not distinguished.

• Arbitrary labels: individual, geographical information not

used. But will touch on covariates.



Stochastic Models

The Erdős-Rényi Model

• Probability distributions on graphs of n vertices.

• P on {Symmetric n × n matrices of 0’s and 1’s}.

• E-R (modified): place edges independently with probability

λ/n (
(n

2

)
Bernoulli trials ).

λ ≈ E (ave degree)



Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on ∞ graphs

Aldous/Hoover (1983)

L(Aij : i , j ≥ 1} = L(Aπi ,πj : i , j ≥ 1),

for all permutations π ⇐⇒

∃ g : [0, 1]4 → {0, 1} such that Aij = g(α, ξi , ξj , ηij),

where

α, ξi , ηij , all i , j ≥ i , i.i.d. U(0, 1), g(α, u, v ,w) = g(α, v , u,w),

ηij = ηji .



Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

• Community label: c = (c1, · · · , cn) i.i.d. multinomial

(π1, · · · , πK ) ≡ K “communities”.

• Relation:

P(Aij = 1|ci = a, cj = b) = Pab.

• Aij conditionally independent

P(Aij = 0) = 1−
∑

1≤a,b≤K

πaπbPab.

• K = 1: E-R model.



Ergodic Models

L is an ergodic probability iff for g with g(u, v ,w) = g(v , u,w)

∀(u, v ,w),

Aij = g(ξi , ξj , ηij).

L is determined by

h(u, v) ≡ P(Aij = 1|ξi = u, ξj = v), h(u, v) = h(v , u).

Notes:

1. K -block models and many other special cases

2. Model (also referred to as threshhold models) also suggested

by Diaconis, Janson (2008)

3. More general models (Bollobás, Riordan & Janson (2007))



“Parametrization” of NP Model

• h is not uniquely defined.

• h
(
ϕ(u), ϕ(v)

)
, where ϕ is measure-preserving, gives same

model.

But, hcan = that h(·, ·) in equivalence class such that

P [Aij = 1|ξi = z ] =
∫ 1

0 hcan(z , v)dv ≡ τ(z) with τ(·)

monotone increasing characterizes uniquely.

• ξi could be replaced by any continuous variables or vectors -

but there is no natural unique representation.



Examples of models

i) Block models: on block of sizes πa, πb

hCAN(u, v) = Fab

ii) Power law: w(u, v) = a(u)a(v)

a(u) ∼ (1− u)−α as u ↑ 1

iii) Dynamically defined model (preferential attachment):

w(u, v) = a(u)1(u ≤ v) + a(v)1(u > v)

New vertex attaches to random old vertex and neighbors (not Hilbert-Schmidt)

aCAN(u) = (1− u)−1 + τ(u), aCAN(u) = (1− u)−1 − log(u(1− u))



Questions

i) Community identification and block models

ii) Checking “nonparametrically” with p ”moments” whether 2

graphs are same (permutation tests used in social science

literature for “block models”, e.g., Wasserman and Faust, 1994).

iii) Link prediction: predicting relations to unobserved vertices on the

basis of an observed graph.

iv) Model selection for hierarchies (block models).

v) Error bars on descriptive statistics.

vi) Linking graph features with covariates.



Asymptotic Approximation

• hn(u, v) = ρnwn(u, v)

• ρn = P[Edge]

• w(u, v)dudv = P [ξ1 ∈ [u, u + du], ξ2 ∈ [v , v + dv ]|Edge]

• wn(u, v) = min
{
w(u, v), ρ−1

n

}
• Average Degree = E(D+)

n ≡ λn ≡ ρn(n − 1).



Nonparametric Theory: The Operator

Corresponding to wcan ∈ L2(0, 1) there is operator:

T : L2(0, 1)→ L2(0, 1)

Tf (·) =
∫ 1

0 f (v)w(·, v)dv

T - Hermitian

Note: τ(·) = T (1)(·).



Nonparametric Theory

Let F and F̂ be the distribution and empirical distribution of

τ(ξ) ≡ T (1)(ξ) where ξ has a U(0, 1) distribution. Let ρ = λ/n.

Theorem 1

If λ→∞, then

1

n

n∑
i=1

E
(
Di/D − T (1)(ξi )

)2
= O(λ−1)

This implies, F̂ ⇒ F in probability.



Identifiability of NP Model

Theorem 2

The joint distribution (T (1)(ξ),T 2(1)(ξ), ...,Tm(1)(ξ), ...) where

ξ ∼ U(0, 1) determines P

Idea of proof: identify the eigen-structure of T .



Theorem 3

If T corresponds to a K -block model, then, the marginal

distributions, {
T k(1)(ξ) : k = 1, ...,K

}
determine (π,W ) uniquely provided that the vectors π, Wπ, ...,

W K−1π are linearly independent.



Methods of Estimation – Method of “Moments”

(k , `)-wheel

i) A “hub” vertex

ii) l spokes from hub

iii) Each spoke has k connected vertices.

Total # of vertices (order): k`+ 1. Total # of edges (size): k`.

Eg: a (2,3)-wheel



”Moments”

• For R ⊂ {(i , j) : 1 ≤ i < j ≤ n}, identify R as a graph with vertex

set V (R) = {i : (i , j) or (j , i) ∈ R for some j} and E (R) = R.

• Let Gn(R) be the subgraph induced by R in graph Gn.

• Define,

Q(R) = P(Aij = 1, all (i , j) ∈ R)

P(R) = P(E (Gn(R)) = R)

• We can estimate P(R) and Q(R) in a graph Gn by

P̂(R) ≡ 1(n
p

)
N(R)

∑[
1(G ∼ R : G ⊂ Gn), P(R) = EP̂(R)

]
N(R) ≡ |{G ⊂ Gn : G ∼ R}|

Q̂(R) ≡
∑
{P̂(S) : S ⊃ R}, Q(R) = EQ̂(R)



Estimates of P and Q

Suppose |R| = p fixed, ρn → 0. Let P(hn(ξ1, ξ2) > ρ) = o(n−1).

Then, define,

• P̃(R) = ρ−p
n P(R) = Q̃(R) + O(λn/n).

• Q̃(R) = ρ−p
n Q(R)→ E

[∏
(i ,j)∈R wn(ξi , ξj)

]
.

• ˆ̃P(R) =
(

D
n

)−p
P̂(R).

• ˆ̃Q(R) =
(

D
n

)−p
Q̂(R).



Moment Convergence Theorem (λ→∞ and λ = O(1))

Theorem 4

a) Suppose R is acyclic, and λ→∞.
√

n( ˆ̃P(R)− P̃(R))⇒ N (0, σ2(R,P))

and multivariate normality holds for R1, · · · ,Rk acyclic.

b) If λ = O(1), a) continues to hold except that σ2 depends on

λ as well as R.

c) Even if R is not acyclic, the same conclusions apply to ˆ̃P and

ˆ̃Q if λ ≥ n1−2/p.



Connection With Wheels

Lemma 1

Let G be a random graph generated according to P,

|V (G )| = k`+ 1. Then if R is a (k , `)-wheel,

Q(R) = E [T k(1)(ξ1)]`

N(R) =
(kl + 1)!

`!

P(R) = Q(R) + O(λ/n)



Difficulties

Even for sparse models

(i) Empirical moments of trees are hard to compute.

(ii) Empirical moments of small size converge reasonably even in

sparse case, but block model parameters expressed as

nonlinear function of moments not so well.



Extensions: Generalized Wheels

A (k, l)-wheel, where k = (k1, . . . , kt), l = (l1, . . . , lt) are vectors and

the kj ’s, lj ’s are distinct integers, is the union R1 ∪ · · · ∪ Rt , where Rj

is a (kj , lj)-wheel, sharing a common hub but all their spokes are

disjoint.

• Trees are examples of (k, l)-wheels.

• Their limits yield cross-moments of
(
T (ξ),T 2(ξ), . . .

)
.

• So, in principle, we can estimate parameters of block model,

using the (k, l)-wheels.

• Using (k, l)-wheels, we can estimate the parameters of models

approximating NP model.



Method of fitting: Pseudo likelihood

(Combining ideas of Besag (1974) and Newman & Leicht (2007))

Partition n into K communities of equal size

S1 = {1, · · · ,m},

S2 = {m + 1, · · · , 2m},

· · ·

m = n/K .



For each i : bik =
∑
{Aij : j ∈ Sk}.

a) Given c ,

bik ∼
∑
l∈Sk

εlk

εlk independent Bernoulli (Fcicl
)

bik ≈ independent Poiss(λci ,k),

where λci ,k = n
∑K

s=1 rksFci s and rks = 1
n

∑
i∈Sk

1(ci = s).

b) Given di =
∑K

k=1 bik ,

{bik : k = 1, · · · ,K} ∼ M(di , {θci ,k})

where θak = λak/
∑K

l=1 λal , k = 1, · · · ,K .



Pseudo likelihood (cont)

Unconditionally on c:

a) bi ≡ {bik : k = 1, · · · ,K} ≈
∑K

j=1 πjPoiss(λjk)

b) {bik : k = 1, · · · ,K} ∼
∑K

j=1 πjM(di , {θjk})

Pretend bi independent to get pseudo LogLikelihood:

a)
∑n

i=1 `i (π,Λ, bi )

a)
∑n

i=1 `i (π, θ, bi )

Can be solved by simple EM, π̂, Λ̂, θ̂.



Theorem 5

Under appropriate identifiability conditions,

a) Λ̂, θ̂ are consistent if n2ρ
log n →∞;

b) Λ̂, θ̂ are
√

n consistent if nρ = O(1).



Example: the Karate Club data (K = 2) (Zachary, 1977)

Figure: Left: conditional PL (correct classification), Right: unconditional

PL (central nodes)



Advantages and Disadvantages of PL

1) PL a) is best for block models

2) PL has little theoretical justification.

3) PL also scales badly.



Can One Fit Nonparametric Model?

• Even parametric models are difficult to fit. We have seen that

even for simple parametric models such as block models, the

efficient estimation of the parameters is not easy.

• But still many of the parametric models are not good enough

representation of the naturally occurring graphs. The

empirical and theoretical vulnerability of Exponential Random

Graph Models have been pointed out by Chatterjee and

Diaconis (2010) and Bhamidi et. al. (2008).

• However, K block models seem to be attractive alternatives

for modeling.



An Approach For Dense Models (λ→∞)

By Theorem 1(a), as λ→∞

1

n

n∑
i=1

(
τ(zi )−

Di

D̄

)2

= O

(
1

λ

)
→ 0 (1)

here, τ(z) = T (1)(z).

Let

Ŵn(u, v) =

∫ u

0

∫ v

0

1

nD

∑
i ,j

Aij1(ξ̂i ≤ s, ξ̂j ≤ t)dsdt

where ξ̂i ≡ F̂ (Di

D
) and F̂ is the empirical df of {Di

D
: 1 ≤ i ≤ n}. Let

Wn(u, v) =

∫ u

0

∫ v

0

1

nD

∑
i ,j

Aij1(ξi ≤ s, ξj ≤ t)dsdt.



Theorem 6

Suppose that the conditions of Theorem 1 hold.

a) If w(·, ·) is bounded, and F , the df of τ(ξ1), is Lipschitz and

strictly increasing, then uniformly in (u, v),

|Ŵn(u, v)−Wn(u, v)| = OP

(
(log λ)3/2

λ1/2

)
.



Theorem 6 (cont)

b) If ρ→ 0 and τ(ξ1) takes on only a finite number of values

t1, · · · , tK , then uniformly in (u, v),

|Ŵn(u, v)−Wn(u, v)| = OP(λ−1/2)|.

Moreover, if W (u, v) =
∫ 1

0

∫ 1
0 w(s, t)(u − s)+(v − t)+dsdt,

then uniformly in (u, v),

|Wn(u, v)−W (u, v)| = OP(λ−1/2)|.

Note:

∂4W (u, v)

(∂u)2(∂v)2
= w(u, v). (2)



An approach

a) Find smoothed empirical distribution function of Di

D̄
,

F̂ (x) ≡ 1

n

n∑
i=1

1

(
Di

D̄
≤ x

)

b) Divide [0, 1] into intervals I1, . . . , IM , such that, Ij = [ j−1
M , j

M ),

ŵ(u, v) ≡ 1

D

M∑
a,b=1

1

n∗
1(u ∈ Ia)1(v ∈ Ib)

×

 n∑
i ,j=1

1

{
Aij : F̂

(
Di

D̄

)
∈ Ia, F̂

(
Dj

D̄

)
∈ Ib

}
where, n∗ = |Ia||Ib|, if, a 6= b and n∗ = (|Ia|(|Ia| − 1))/2, if, a = b.



Example: 2 Block Model

Figure: The LHS figre is the actual 2 block h function and RHS is the

estimate of the hCAN function.



Example: Facebook Caltech Network

Figure: The LHS is estimate of hCAN function for network of students of

year 2008 and RHS is network of students of year 2008 residing in only 2

dorms. The proportions of classes in 2 distant modes are (0.3, 0.7) and

(0.84, 0.16).



Why is the Result for Whole Network Uninstructive?

• ξ ∈ U(0, 1), wCAN determine the probability uniquely but there are

equivalent representation, which give very different results.

• ξ → degree suggest ’affinity’, which is like ’linear’ or first-order

relation.

• We can now introduce higher-order relations, by making ξ a vector,

that is, (ξ) = (ξ(1), ξ(2)), where, ξ(1), ξ(2) ∼ U(0, 1), ξ1 ⊥ ξ2.

• One way of forming ξ(1), ξ(2) is: let the binary representation of ξ is

ξ = (ξ1, ξ2, ξ3, ξ4, . . .). Now define, ξ(1) = (ξ1, ξ3, . . .) and

ξ(2) = (ξ2, ξ4, . . .).

• We know that, if ξ ∼ U(0, 1), then, (ξ(1), ξ(2)) ∼ U(0, 1)2. Also,

ξ → (ξ(1), ξ(2)) is 1-1 onto.



Example: 3 block Model

Figure: The top LHS figre is the actual 2 block h function and RHS is the estimate of

the hCAN function. The bottom LHS figure is the projection ĥCAN(0.95, , 0.95, ) with

two latent variables and bottom RHS figure is the sum of projections ĥCAN(i , , i , ) with

two latent variables.



Example: Facebook Caltech Network

Figure: The LHS is estimate of hCAN function for network of students of year 2008

residing in 3 dorms and RHS is sum of projections ĥCAN(i , , i , ) with two latent

variables. The proportions of classes in 4 modes are (0.5, 0.13, 0.37), (0.67, 0.11,

0.22), (0.26, 0.66, 0.08), (0.32, 0.18, 0.5)



THANK YOU!



Examples of Social Networks

Newman (2010) Networks: an introduction, Oxford


