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Ezxample: Social Networks

Figure: Karate Club (Newman, PNAS 2006)



FExample: Social Networks

Figure: Facebook Network for Caltech with 769 nodes and average

degree 43.
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A Mathematical Formulation

G = (V, E): undirected graph

{1,---,n}: Arbitrarily labeled vertices
A : adjacency matrix
Ajj = 1 if edge between i and j (relationship)

Ajj = 0 otherwise

Di =377_, Aj = Degree of vertex i.



Descriptive Statistics

(Newman, Networks, 2010)
o Degree of vertex, Average degree of graph, D; = ZJ- Aij, D
e # and size of connected components

Geodesic distance

# of A's
# of A's + # of vis”

Homophily :=

e etc



Implications of Mathematical Description

e Undirected: Relations to or from not distinguished.

e Arbitrary labels: individual, geographical information not

used. But will touch on covariates.



Stochastic Models

The Erd6s-Rényi Model
e Probability distributions on graphs of n vertices.
e P on {Symmetric n x n matrices of 0's and 1's}.
e E-R (modified): place edges independently with probability
A/n ((5) Bernoulli trials ).
A =~ E(ave degree)



Nonparametric Asymptotic Model for Unlabeled Graphs

Given: P on oo graphs

Aldous/Hoover (1983)
LA i, j>1} = L(Amm :irj> 1),
for all permutations 7 <—
3 g:[0,1]* — {0,1} such that A; = g(a,&, &, i),

where
a,&,my, all i, j >, iid. U(0,1), gla, u,v,w) = g(a, v, u, w),

Nij = Nji-



Block Models (Holland, Laskey and Leinhardt 1983)

Probability model:

o Community label: ¢ = (¢cp,- -, ¢p) i.i.d. multinomial
(m1, -+ ,mKk) = K “communities”.
e Relation:

P(A,‘j = 1|C,' = a, Cj = b) = Pab-
e Aj;; conditionally independent

]P)(A,J:O) = 1— Z 7T37TbPab.
1<a,b<K

e K =1: E-R model.



Ergodic Models
L is an ergodic probability iff for g with g(u, v, w) = g(v, u, w)
Y(u, v, w),
Afj = g(&'véj?”ﬁ)'
L is determined by
h(u,v) =P(Aj = 1§ = u,& = v), h(u,v) = h(v, u).
Notes:
1. K-block models and many other special cases

2. Model (also referred to as threshhold models) also suggested

by Diaconis, Janson (2008)

3. More general models (Bollobas, Riordan & Janson (2007))



“Parametrization” of NP Model

e his not uniquely defined.

o h(¢(u),p(v)), where ¢ is measure-preserving, gives same
model.
But, hoan = that h(-,-) in equivalence class such that
PlA; =1l¢ =z] = fol hcan(z, v)dv = 7(z) with 7(+)
monotone increasing characterizes uniquely.

e £; could be replaced by any continuous variables or vectors -

but there is no natural unique representation.



Ezxamples of models

i) Block models: on block of sizes m,, 7

hcan(u,v) = Fap
ii) Power law: w(u,v) = a(u)a(v)

a(u) ~ (1—u)y ®asull
iii) Dynamically defined model (preferential attachment):
w(u, v) = a(u)l(u < v) + a(v)l(u > v)

New vertex attaches to random old vertex and neighbors (not Hilbert-Schmidt)

acan(u) = (1 — u)_1 + 7(u), acan(u) = (1 — u)_1 — log(u(1 — u))



Questions

i) Community identification and block models

i1) Checking “nonparametrically” with p "moments” whether 2
graphs are same (permutation tests used in social science
literature for “block models”, e.g., Wasserman and Faust, 1994).

i17) Link prediction: predicting relations to unobserved vertices on the
basis of an observed graph.

iv) Model selection for hierarchies (block models).

v) Error bars on descriptive statistics.

vi) Linking graph features with covariates.



Asymptotic Approximation

hn(u, v) = pawp(u, v)

pn = P[Edge]

w(u, v)dudv = P[¢1 € [u, u+ du],& € [v, v + dv]|Edge]
s v) = min {w(u,v), 5}

Average Degree = % =\ =pn(n—1).



Nonparametric Theory: The Operator

Corresponding to woan € L(0, 1) there is operator:

fo W( v)dv

T- Hermitian

Note: 7(-) = T(1)(-).



Nonparametric Theory

Let F and F be the distribution and empirical distribution of
7(§) = T(1)(§) where £ has a U(0, 1) distribution. Let p = A/n.

Theorem 1

If A — oo, then
LS E(@/D-T)E) = op)
i=1

This implies, F= Fin probability.



Identifiability of NP Model

Theorem 2

The joint distribution (T(1)(€), T2(1)(€), ..., T™(1)(€), ...) where
¢ ~ U(0,1) determines P

Idea of proof: identify the eigen-structure of T.



If T corresponds to a K-block model, then, the marginal

distributions,

{T"(l)({) k=1,.., K}

determine (m, W) uniquely provided that the vectors 7, W, ...,

WHK=17 are linearly independent.



Methods of Estimation — Method of “Moments”

(k, £)-wheel
i) A "hub” vertex
ii) | spokes from hub
ii1) Each spoke has k connected vertices.
Total # of vertices (order): k¢ + 1. Total # of edges (size): kY.
Eg: a (2,3)-wheel



"Moments”

For R C {(i,j) : 1<i<j<n}, identify R as a graph with vertex
set V(R)={i : (i,j)or (j,i) € R for some j} and E(R) = R.
Let Gn(R) be the subgraph induced by R in graph G,.

Define,

Q(R) = P(A;=1, all(i,j)eR)

=
2
I

P(E(Gn(R)) = R)

We can estimate P(R) and Q(R) in a graph G, by

P(R) m S [UG~R: GG, P(R) = EP(R)]
p.

N(R) = {GC G,: G~ R}

Q(R) = > {P(S):S> R}, Q(R)=EQ(R)



Estimates of P and Q

Suppose |R| = p fixed, p, — 0. Let P(h,(&1,&) > p) = o(n71).
Then, define,

o P(R)=pn?P(R) = Q(R) + O(An/n).

* Q(R) = pa"Q(R) — E [[T1jper wnl&i- &)
(R)=(2) " P(R).

(R)=(B) " a(R).



Moment Convergence Theorem (A — oo and A = O(1))

| Theoremd |

a) Suppose R is acyclic, and A — oo.
VA(P(R) = B(R)) = N(0,0%(R, P))

and multivariate normality holds for Ry, - - - , Rk acyclic.

b) If A = O(1), a) continues to hold except that o depends on

A as well as R.

c¢) Even if R is not acyclic, the same conclusions apply to P and

Q if A\ > nt=2/P,



Connection With Wheels

Let G be a random graph generated according to P,
|V(G)| = k¢l + 1. Then if R is a (k,¢)-wheel,

Q(R) = E[T1)(&))
(kI +1)!

17
P(R) = Q(R)+ O(\/n)

N(R) =




Difficulties

Even for sparse models
(i) Empirical moments of trees are hard to compute.

(i) Empirical moments of small size converge reasonably even in
sparse case, but block model parameters expressed as

nonlinear function of moments not so well.



FExtensions: Generalized Wheels

A (k,1)-wheel, where k = (k1,...,ke), | = (h,..., ) are vectors and
the kj's, I;'s are distinct integers, is the union Ry U --- U R;, where R;
is a (kj, l;)-wheel, sharing a common hub but all their spokes are
disjoint.

e Trees are examples of (k,I)-wheels.

e Their limits yield cross-moments of (T (&), T2(¢),...).

e So, in principle, we can estimate parameters of block model,

using the (k, I)-wheels.
e Using (k,I)-wheels, we can estimate the parameters of models

approximating NP model.



Method of fitting: Pseudo likelihood

(Combining ideas of Besag (1974) and Newman & Leicht (2007))
Partition n into K communities of equal size
51:{]_’... ,m},

So={m+1,---,2m},

m=n/K.



For each i: by, = Z{AIJ j € Sk}

a) Given c,

biy ~ Z €k

1€S,
€l independent Bernoulli (Fe,c,)

bix = independent Poiss(Ac, k),

K 1
where Ak = 13 o fksFas and rs = 3 jes, 1(6i = s).

b) Given d,' = Zszl b,'k,
{bik k=1, ,K} ~ M(d"7{ecivk})

where 6. = Ao/ S8 Aot k=1, K.



Pseudo likelihood (cont)

Unconditionally on c:
a) bi={by: k=1, K}~ K, m;Poiss(A)
b) {biw: k=1, K}~ Zszl 7TJ"/\/l(div {ij})
Pretend b; independent to get pseudo Loglikelihood:
a) iy ti(m, A, bi)

a) D1 Li(m, 0, bj)
Can be solved by simple EM, 7, /A\ 0.



Under appropriate identifiability conditions,

n’p
log n

b) A, are \/n consistent if np = O(1).

a) A, 8 are consistent if

— OQ,



Example: the Karate Club data (K = 2) (Zachary, 1977)
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Figure: Left: conditional PL (correct classification), Right: unconditional

PL (central nodes)



Advantages and Disadvantages of PL

1) PL a) is best for block models
2) PL has little theoretical justification.

3) PL also scales badly.



Can One Fit Nonparametric Model?

e Even parametric models are difficult to fit. We have seen that
even for simple parametric models such as block models, the

efficient estimation of the parameters is not easy.

e But still many of the parametric models are not good enough
representation of the naturally occurring graphs. The
empirical and theoretical vulnerability of Exponential Random
Graph Models have been pointed out by Chatterjee and
Diaconis (2010) and Bhamidi et. al. (2008).

e However, K block models seem to be attractive alternatives

for modeling.



An Approach For Dense Models (A — oo)

By Theorem 1(a), as A — oo

(o-g)o()- o

/ / ZA,J (& < s, < t)dsdt
0
where & = IA—_(%) and F is the empirical df of {% :1<i<n}. Let

u v 1
/0 /0 E%Aﬁl(ags,@g t)dsdt.



Theorem 6
Suppose that the conditions of Theorem 1 hold.

a) If w(-,-) is bounded, and F, the df of 7(&1), is Lipschitz and

strictly increasing, then uniformly in (u, v),

A log \)3/2
|Wi(u, v) — Wy(u, v)| = Op <(i1/)2> .



Theorem 6 (cont)

b) If p— 0 and 7(&;1) takes on only a finite number of values

ti,- -, tk, then uniformly in (u, v),
|Wa(u,v) = Wa(u,v)] = Op(AH?)].

Moreover, if W(u,v) = fol fol w(s, t)(u—s)i(v — t),dsdt,

then uniformly in (u, v),

(Wa(u,v) — W(u,v)] = 0p(A"Y?)].

Note:



An approach

a) Find smoothed empirical distribution function of Q

_21(_ <X>

b) Divide [0,1] into intervals Iy, ..., Iy, such that, [; = [{F M , M)

X 1 &
w(u,v) = 5 > —1(ue L)I(v e )

n . ) . D:
X I{A,-j : F(Q')E/a, F<_J>6/b}
A D D

where, n* = |L||lp], if, a# b and n* = (|L|(|l:] — 1))/2,if, a=b



Ezxample: 2 Block Model
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Figure: The LHS figre is the actual 2 block h function and RHS is the

estimate of the hcan function.



Ezxample: Facebook Caltech Network

Figure: The LHS is estimate of hcan function for network of students of
year 2008 and RHS is network of students of year 2008 residing in only 2
dorms. The proportions of classes in 2 distant modes are (0.3, 0.7) and

(0.84, 0.16).



Why is the Result for Whole Network Uninstructive?

e £ € U(0,1), wean determine the probability uniquely but there are
equivalent representation, which give very different results.

o ¢ — degree suggest 'affinity’, which is like 'linear’ or first-order
relation.

e We can now introduce higher-order relations, by making & a vector,
that is, (€) = (¢M, £?), where, €M, ¢?) ~ U(0,1), & L &.

e One way of forming €1 £ is: let the binary representation of ¢ is
€ = (£1,62,63,64,...). Now define, £(1) = (£1,&3,...) and
€2 = (&.&...).

o We know that, if £ ~ U(0,1), then, (¢, £(3)) ~ U(0,1)2. Also,
¢ — (€M, @) is 1-1 onto.



Ezxample: 3 block Model

03

Figure: The top LHS figre is the actual 2 block h function and RHS is the estimate of
the hcan function. The bottom LHS figure is the projection ECAN(O.QS, ,0.95,) with
two latent variables and bottom RHS figure is the sum of projections ;1cAN(i, ,i,) with

two latent variables.



Ezxample: Facebook Caltech Network

Figure: The LHS is estimate of hcan function for network of students of year 2008
residing in 3 dorms and RHS is sum of projections ECAN(/', ,i,) with two latent
variables. The proportions of classes in 4 modes are (0.5, 0.13, 0.37), (0.67, 0.11,
0.22), (0.26, 0.66, 0.08), (0.32, 0.18, 0.5)

a5
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THANK YOU!
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Examples of Social Networks

Network " [ £
Film actors 449913 11343 348
Company directors 7673 1444 460
Math coauthorship 253339 392 757
Physics coauthorship 52909 927 619
E  Biology coauthorship 1520251 1553 492
£ Telephone eall graph 47000000 3.16
Email messages 59812 144 495
Email address books 16881 338 522
Student dating 573 166 1601
Sexual contacts 2810 . )
WWW nd.edu 269504 555 1127
WWW AltaVista 203549046
Citation network 783339
Roget’s Thesaurus 1022
460902
w0697
®  Power grid 4941
B Train rou 587
Software packages 1439
Software classes 1376
Electronic circuil 24097
Peer-to-peer network 880
Moetabolic network 765
Prote eractions 2115
Marine food web 134

Freshwater food web
Neural network

Basic statistics: total number of rartices [n], mean degree (c],
mean geodesic distance between connected vertex pairs (1]

Newman (2010) Networks: an introduction, Oxford



