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Question

Suppose we observe X ∼ N(µ, 1). What is the best way to estimate |µ|?
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Question

Suppose we observe Xi

ind.
∼ N(θi, 1), i = 1, ..., n.

How to optimally estimate

T(θ) =
1

n

n∑

i=1

|θi| ?
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Introduction & Motivation
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Introduction

Estimation of functionals occupies an important position in the theory of

nonparametric function estimation.

• Gaussian Sequence Model:

yi = θi + σzi, zi
iid∼ N(0, 1), i = 1, 2, . . .

• Nonparametric regression:

yi = f(ti) + σzi, zi
iid∼ N(0, 1), i = 1, · · · , n.

• Density Estimation:

X1, X2, · · · , Xn
i.i.d.∼ f.

Estimate: L(θ) =
∑

ciθi, L(f) = f(t0), Q(θ) =
∑

ciθ
2
i
, Q(f) =

∫
f2,

etc.
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Linear Functionals

• Minimax estimation over convex parameter spaces: Ibragimov and

Hasminskii (1984), Donoho and Liu (1991) and Donoho (1994). The

minimax rate of convergence is determined by a modulus of continuity.

• Minimax estimation over nonconvex parameter spaces:

C. & L. (2004).

• Adaptive estimation over convex parameter spaces:

C. & L. (2005). The key quantity is a between-class modulus of continuity,

ω(ǫ,Θ1,Θ2) = sup{|L(θ1)− L(θ2)| : ‖θ1 − θ2‖2 ≤ ǫ, θ1 ∈ Θ1, θ2 ∈ Θ2}.

Confidence intervals, adaptive confidence intervals/bands, ...

⇓

Estimation of linear functionals is now well understood.
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Quadratic Functionals

• Minimax estimation over orthosymmetric quadratically convex

parameter spaces: Bickel and Ritov (1988), Donoho and Nussbaum

(1990), Fan (1991), and Donoho (1994). Elbow phenomenon.

• Minimax estimation over parameter spaces which are not

quadratically convex: C. & L. (2005).

• Adaptive estimation over Lp and Besov spaces: C. & L. (2006).

Estimating quadratic functionals is closely related to signal detection

(nonparametric hypothesis testing):

H0 : f = f0 vs. H1 : ‖f − f0‖2 ≥ ǫ,

risk/loss estimation, adaptive confidence balls, ...

⇓

Estimation of quadratic functionals is also well understood.
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Smooth Functionals

Linear and quadratic functionals are the most important examples in the class

of smooth functionals.

In these problems, minimax lower bounds can be obtained by testing

hypotheses which have relatively simple structures. (More later.)

Construction of rate-optimal estimators is also relatively well

understood.
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Nonsmooth Functionals

Recently some non-smooth functionals have been considered. A particularly

interesting paper is Lepski, Nemirovski and Spokoiny (1999) which studied the

problem of estimating the Lr norm:

T (f) = (

∫
|f(x)|rdx)1/r

• The behavior of the problem depends strongly on whether or

not r is an even integer.

• For the lower bounds, one needs to consider testing between two

composite hypotheses where the sets of values of the functional on

these two hypotheses are interwoven. These are called fuzzy

hypotheses in the language of Tsybakov (2009).
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Nonsmooth Functionals

• Rényi entropy:

T (f) =
1

1− α
log

∫
fα(t)dt.

• Excess mass:

T (f) =

∫
(f(t)− λ)+dt.
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Excess Mass

Estimating the excess mass is closely related to a wide range of applications:

• testing multimodality (dip test, Hartigan and Hartigan (1985), Cheng

and Hall (1999), Fisher and Marron (2001))

• estimating density level sets (Polonik (1995), Mammen and Tsybakov

(1995), Tsybakov (1997), Gayraud and Rousseau (2005), ...)

• estimating regression contour clusters (Polonik and Wang (2005))
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Estimating the L1 Norm

Note that (x)+ = 1
2
(|x|+ x), so

T (f) =

∫
(f(t)− λ)+dt =

1

2

∫
|f(t)− λ|dt+1

2

∫
f(t)dt− 1

2
λ.

Hence estimating the excess mass is equivalent to estimating the L1 norm.

A key step in understanding the functional problem is the understanding of a

seemingly simpler normal means problem: estimating

T(θ) =
1

n

n∑

i=1

|θi|

based on the sample Yi

ind.
∼ N(θi, 1), i = 1, ..., n.

This nonsmooth functional estimation problem exhibits some

features that are significantly different from those in estimating

smooth functionals.
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Minimax Risk

Define

Θn(M) = {θ ∈ Rn : |θi| ≤ M}.

Theorem 1 The minimax risk for estimating T (θ) = 1
n

∑n
i=1 |θi| over Θn(M)

satisfies

inf
T̂

sup
θ∈Θn(M)

E(T̂ − T (θ))2 = β2
∗M

2

(
log log n

log n

)2

(1 + o(1)) (1)

where β∗ ≈ 0.28017 is the Bernstein constant.

The minimax risk converges to zero at a slow logarithmic rate which shows

that the nonsmooth functional T (θ) is difficult to estimate.
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Comparisons

In contrast the rates for estimating linear and quadratic functionals are most

often algebraic. Let

L(θ) =
1

n

n∑

i=1

θi and Q(θ) =
1

n

n∑

i=1

θ2i .

• It is easy to check that the usual parametric rate n−1 for estimating L(θ)

can be easily attained by ȳ.

• For estimating Q(θ), the parametric rate n−1 can be achieved over Θn(M)

by using the unbiased estimator Q̂ = 1

n

∑
n

i=1
(y2

i
− 1).
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Why Is the Problem Hard?

The fundamental difficulty of estimating T (θ) can be traced back to the

nondifferentiability of the absolute value function at the origin.

This is reflected both in the construction of the optimal estimators and the

derivation of the lower bounds.

x

|x|

-1.0 -0.5 0.0 0.5 1.0

0.0
0.2

0.4
0.6

0.8
1.0

o

16



Basic Strategy

The construction of the optimal estimator is involved. This is partly due to

the nonexistence of an unbiased estimator for |θi|.

Our strategy:

1. “smooth” the singularity at 0 by the best polynomial approximation;

2. construct an unbiased estimator for each term in the expansion by using

the Hermite polynomials.
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Approximation Theory
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Optimal Polynomial Approximation

Optimal polynomial approximation has been well studied in approximation

theory. See Bernstein (1913), Varga and Carpenter (1987), and Rivlin (1990).

Let Pm denote the class of all real polynomials of degree at most m.

For any continuous function f on [−1, 1], let

δm(f) = inf
G∈Pm

max
x∈[−1,1]

|f(x)−G(x)|.

A polynomial G∗ is said to be a best polynomial approximation of f if

δm(f) = max
x∈[−1,1]

|f(x)−G∗(x)|.
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Chebyshev Alternation Theorem (1854)

A polynomial G∗ ∈ Pm is the (unique) best polynomial approximation to a

continuous function f if and only if the difference f(x) − G∗(x) takes

consecutively its maximal value with alternating signs at least m+ 2

times. That is, there exist m+ 2 points −1 ≤ x0 < · · · < xm+1 ≤ 1 such that

[f(xj)−G∗(xj)] = ±(−1)j max
x∈[−1,1]

|f(x)−G∗(x)|, j = 0, . . . , m+ 1.

(More on the set of alternation points later.)
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Absolute Value Function & Bernstein Constant

Because |x| is an even function, so is its best polynomial approximation.

For any positive integer K, denote by G∗
K the best polynomial approximation

of degree 2K to |x| and write

G∗

K(x) =
K∑

k=0

g∗2kx
2k. (2)

For the absolute value function f(x) = |x|, Bernstein (1913) proved that

lim
K→∞

2Kδ2K(f) = β∗

where β∗ is now known as the Bernstein constant. Bernstein (1913) showed

0.278 < β∗ < 0.286.
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Bernstein Conjecture

Note that the average of the two bounds equals 0.282. Bernstein (1913) noted

as a “curious coincidence” that the constant

1

2
√
π
= 0.2820947917 · · ·

and made a conjecture known as the Bernstein Conjecture:

β∗ =
1

2
√
π
.

It remained as an open conjecture for 74 years!

In 1987, Varga and Karpenter proved that the Bernstein Conjecture was in

fact wrong. They computed β∗ to the 95th decimal places,

β∗ = 0.28016 94990 23869 13303 64364 91230 67200 00424 82139 81236 · · ·
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Alternative Approximation

The best polynomial approximation G∗
K is not convenient to construct. An

explicit and nearly optimal polynomial approximation GK can be easily

obtained by using the Chebyshev polynomials.

The Chebyshev polynomial of degree k is defined by cos(kθ) = Tk(cos θ) or

Tk(x) =

[k/2]∑

j=0

(−1)j
k

k − j

(
k − j

j

)
2k−2j−1xk−2j .

Let

GK(x) =
2

π
T0(x) +

4

π

K∑

k=1

(−1)k+1 T2k(x)

4k2 − 1
. (3)

We can also write GK(x) as

GK(x) =

K∑

k=0

g2kx
2k. (4)
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Polynomial Approximation

k = 5
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Approximation Error

Lemma 1 Let G∗
K(x) =

∑K
k=0 g

∗
2kx

2k be the best polynomial approximation of

degree 2K to |x| and let GK be defined in (3). Then

max
x∈[−1,1]

|G∗

K(x)− |x|| ≤ β∗

2K
(1 + o(1)) (5)

max
x∈[−1,1]

|GK(x)− |x|| ≤ 2

π(2K + 1)
. (6)

The coefficients g∗2k and g2k satisfy for all 0 ≤ k ≤ K,

|g∗2k| ≤ 23K and |g2k| ≤ 23K . (7)
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Construction of the Optimal Procedure
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Construction of the Optimal Estimator

We shall focus on the special case of M = 1. The case of a general M involves

an additional rescaling step.

When M = 1, it follows from Lemma 1 that each |θi| can be well

approximated by G∗
K(θi) =

∑K
k=0 g

∗
2kθ

2k
i on the interval [−1, 1] and hence the

functional T (θ) = 1
n

∑n
i=1 |θi| can be approximated by

T̃ (θ) =
1

n

n∑

i=1

G∗

K(θi) =
K∑

k=0

g∗2kb2k(θ)

where b2k(θ) ≡ 1
n

∑n
i=1 θ

2k
i .

Note that T̃ (θ) is a smooth functional and we shall estimate b2k(θ) separately

for each k by using the Hermite polynomials.
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Hermite Polynomials

Let φ be the density function of a standard normal variable. For positive

integers k, Hermite polynomial Hk is defined by

dk

dyk
φ(y) = (−1)kHk(y)φ(y). (8)

The following result is well known.

Lemma 2 Let X ∼ N(µ, 1). Hk(X) is an unbiased estimate of µk for any

positive integer k, i.e.,

EµHk(X) = µk.

Also, ∫
H2

k(y)φ(y)dy = k! and

∫
Hk(y)Hj(y)φ(y)dy = 0 (9)

when k 6= j.
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Optimal Estimator

Since Hk(yi) is an unbiased estimate of θki for each i, we can estimate

bk(θ) ≡ 1
n

∑n
i=1 θ

k
i by B̄k = 1

n

∑n
i=1Hk(yi) and define the estimator of T (θ) by

T̂K(θ) =
K∑

k=0

g∗2kB̄2k. (10)

The performance of the estimator T̂K(θ) clearly depends on the choice of the

cutoff K. We shall specifically choose

K = K∗ ≡
log n

2 log log n
(11)

and define the final estimator of T (θ) by

T̂∗(θ) ≡ T̂K∗
(θ) =

K∗∑

k=0

g∗2kB̄2k. (12)
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Optimality of the Estimator

Theorem 2 Let yi ∼ N(θi, 1) be independent normal random variables with

|θi| ≤ M , i = 1, ...n. Let T (θ) = n−1
∑n

i=1 |θi|. The estimator T̂∗(θ) given in

(12) satisfies

sup
θ∈Θn(M)

E(T̂∗(θ)− T (θ))2 ≤ β2
∗
M2

(
log log n

log n

)2

(1 + o(1)). (13)

Remark: If GK(x), instead of G∗
K(x), is used in the construction of the

estimator T̂∗(θ), the resulting estimator T̂ (θ) satisfies

sup
θ∈Θn(M)

E(T̂ (θ)− T (θ))2 ≤ 4π−2M2

(
log log n

log n

)2

(1 + o(1)). (14)

The ratio of this upper bound to the minimax risk is 4π−2/β2
∗
≈ 5.16.
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Minimax Lower Bound via Testing Fuzzy Hypotheses
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Minimax Lower Bound

The upper bound β2
∗M

2
(

log logn
logn

)2

is in fact asymptotically sharp.

The standard lower bound arguments fail to yield the desired rate of

convergence. New technical tools are needed.
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Standard Lower Bound Argument

Deriving minimax lower bounds is a key step in developing a minimax theory.

• Testing a pair of simple hypotheses H0 : θ = θ0 vs. H1 : θ = θ1.

For estimation of linear functionals, it is often sufficient to derive the

optimal rate of convergence based on testing a pair of simple hypotheses.

Le Cam’s method is a well known approach based on this idea. See, for

example, Le Cam (1973), and Donoho and Liu (1991).

• Testing a composite hypothesis against a simple null

H0 : θ = θ0 vs. H1 : θ ∈ Θ1. For estimation of quadratic functionals,

rate optimal lower bounds can often be provided by testing a simple null

versus a composite alternative where the value of the functional is

constant on the composite alternative. See, e.g., C. & L. (2005).

• Other techniques: Assouad’s Lemma, Fano’s Lemma, ...
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General Lower Bound Argument

• Observe X ∼ Pθ where θ ∈ Θ = Θ0 ∪Θ1, and wish to estimate a function

T (θ) based on X .

• Let µ0 and µ1 be two priors supported on Θ0 and Θ1 respectively. Let

mi =

∫
T (θ)µi(dθ) and v2i =

∫
(T (θ)−mi)

2µi(dθ).

• Write fi for the marginal density of X when the prior is µi and define the

chi-square distance between f0 and f1 by

I =

{
Ef0

(
f1(X)

f0(X)
− 1

)2
} 1

2

Remark: The chi-square distance I can be hard to compute when f0 is a

mixture distribution.
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General Minimax Lower Bound

Theorem 3 If |m1 −m0| > v0I, then

sup
θ∈Θ

E(T̂ (X)− T (θ))2 ≥ (|m1 −m0| − v0I)
2

(I + 2)2
. (15)

Remark: This general minimax lower bound is obtained through testing the

hypotheses:

H0 : θ ∼ µ0 vs. H1 : θ ∼ µ1.

More general results on the bias and the Bayes risks can be derived.
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Minimax Lower Bound

Theorem 4 Let yi
ind.∼ N(θi, 1), i = 1, ..., n, and let T (θ) = 1

n

∑n
i=1 |θi|. Then,

the minimax risk for estimating T (θ) over Θn(M) satisfies

inf
T̂

sup
θ∈Θn(M)

E(T̂ − T (θ))2 ≥ β2
∗M

2

(
log log n

log n

)2

(1 + o(1)) (16)

where β∗ is the Bernstein constant.

Three major components in the derivation of the lower bounds:

• The general lower bound argument;

• A careful construction of least favorable priors µ0 and µ1;

• Bounding the chi-square distance between the marginal

distributions. (Moment matching & Hermite polynomials)
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Alternation Points & Least Favorable Priors

The best polynomial approximation G∗
K(x) has at least 2K + 2 alternation

points. The set of these alternation points is important in the construction of

the fuzzy hypotheses.

Divide the set of the alternation points of G∗
K(x) into two subsets and denote

A0 = {x ∈ [−1, 1] : |x| −G∗

K(x) = −δ2K(|x|)},
A1 = {x ∈ [−1, 1] : |x| −G∗

K(x) = δ2K(|x|)}.

The priors µ0 and µ1 used in the construction of the fuzzy hypotheses in the

proof of Theorem 4 are supported on A0 and A1 respectively.

Intuitively, this makes the priors µ0 and µ1 maximally apart and yet

not “testable”.

It also connects the construction of the optimal estimator with the minimax

lower bound.
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Other Parameter Spaces

Theorem 5 Let Y ∼ N(θ, In) and let T (θ) = 1
n

∑n
i=1 |θi|. The minimax risk

for estimating the functional T (θ) over Rn satisfies

inf
T̂

sup
θ∈Rn

E(T̂ − T (θ))2 ≍ 1

log n
. (17)

The lower bound can be derived in a similar way, the construction of the

optimal estimator is much more involved.
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The Sparse Case

Suppose we observe yi
ind∼ N(θi, 1), i = 1, 2, ..., n where the mean vector θ is

sparse : only a small fraction of components are nonzero, and the locations of

the nonzero components are unknown.

Denote the ℓ0 quasi-norm by ‖θ‖0 = Card({i : θi 6= 0}). Fix kn, the collection

of vectors with exactly kn nonzero entries is

Θkn = ℓ0(kn) = {θ ∈ Rn : ‖θ‖0 = kn}.

Suppose we wish to estimate the average of the absolute value of the nonzero

means,

T (θ) = average{|θi| : θi 6= 0} =
1

‖θ‖0

n∑

i=1

|θi|. (18)
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The Sparse Case

We calibrate the sparsity parameter kn by kn = nβ for 0 < β ≤ 1.

When 0 < β ≤ 1
2
, it is not possible to estimate the functional T (θ) consistently.

Theorem 6 Let kn = nβ. Then for all 0 < β ≤ 1
2
, the minimax risk satisfies

inf
T̂ (θ)

sup
θ∈Θkn

E(T̂ (θ)− T (θ))2 ≥ C (19)

for some constant C > 0.
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The Sparse Case

Theorem 7 Let kn = nβ for some 1
2
< β < 1. Then the minimax risk for

estimating the functional T (θ) over Θkn satisfies

inf
T̂ (θ)

sup
θ∈Θkn

E(T̂ (θ)− T (θ))2 ≍ C

log n
. (20)
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Discussions
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Discussions

Lepski, Nemirovski and Spokoiny (1999) used a Fourier series

approximation of |x| and the estimate is based on unbiased estimates of

individual terms in the approximation.

• The maximum error of the best K-term Fourier series approximation is of

order K−1.

• The variance bound of the estimator based on the K-term Fourier series

approximation is of order eCK2

, whereas the variance of our estimator

based on the polynomial approximation of degree K grows at the rate of

KK = eK logK .

• So the variance of the polynomial-based estimator is much smaller than

that of the corresponding estimator using Fourier series.

• This allows for more terms to be used in the polynomial approximation

thus reducing the bias of the estimate.
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Discussions

• In the bounded case, the best rate of convergence for estimators using

Fourier series approximation can be shown to be (logn)−1, which is

sub-optimal relative to the minimax rate ( log logn

logn
)2.

• Another drawback of the Fourier series method is that it cannot be used

for the unbounded case.
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Concluding Remarks

• Nonsmooth functional estimation problems exhibit some features that are

significantly different from those in estimating smooth functionals.

• We showed that the asymptotic risk for estimating T (θ) = 1
n

∑ |θi| is

β2
∗M

2

(
log log n

log n

)2

.

• The general techniques and results developed here can be used to solve

other related problems.

– When the approach taken in this paper is used for estimating the L1

norm of a regression function, both the upper and lower bounds given

in Lepski, Nemirovski and Spokoiny (1999) are improved.

– The techniques can also be used for estimating other nonsmooth

functionals such as excess mass. See C. & L. (2011).
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