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Estimation in Dirichlet Process Random Effects Models: Introduction [1]

Introduction

◮ The Beginning Prior distributions in the social sciences

◮ Transition After the data analysis: model properties

◮ Dirichlet Process
Random Effects

Likelihood, subclusters, precision parameter

◮ MCMC Parameter expansion, convergence, optimality

◮ Example Scottish election, normal random effects

◮ Some Theory Why are the intervals shorter?

◮ Classical
Mixed Models

OLS, BLUE

◮ Conclusions And other remarks



Estimation in Dirichlet Process Random Effects Models: Introduction [2]

———But First———
Here is the Big Picture

◮ Usual Random Effects Model

Y|ψ ∼ N(Xβ + ψ, σ2I), ψi ∼ N(0, τ 2)

⊲ Subject-specific random effect

◮ Dirichlet Process Random Effects Model

Y|ψ ∼ N(Xβ + ψ, σ2I), ψi ∼ DP(m,N(0, τ 2))

◮ Results in

⊲ Fewer Assumptions

⊲ Better Estimates

⊲ Shorter Credible Intervals

⊲ Straightforward Classical Estimation
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How This All Started
The Use of Prior Distributions in the Social Sciences

Can more flexible
priors help us
recover latent
hierarchical
information?

◮ When do priors matter in social science research?

◮ How to specify known prior information?

◮ Bayesian social scientists like uninformed priors

◮ Reviewers often skeptical about informed priors

◮ Survey of Political Executives (Gill and Casella 2008 JASA)

⊲ Outcome Variable: stress

⊲ surrogate for self-perceived effectiveness and job-satisfaction

⊲ five-point scale from “not stressful at all” to “very stressful.”

⊲ Ordered probit model
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Survey of Political Executives
Some Coefficient Estimates

Posterior Mean 95% HD Interval

Government Experience 0.120 [ –0.086 : 0.141]
Republican 0.076 [ -0.031 : 0.087]
Committee Relationship -0.181 [ -0.302 : -0.168]
Confirmation Preparation -0.316 [ -0.598 : -0.286]
Hours/Week 0.447 [ 0.351 : 0.457]
President Orientation -0.338 [ -0.621 : -0.309]

Cutpoints: (None) (Little) -1.488 [ -1.958 : -1.598 ]
(Little) (Some) -0.959 [ -1.410 : -1.078 ]

(Some) (Significant) -0.325 [ -0.786 : 0.454 ]
(Significant) (Extreme) 0.844 [ 0.411 : 0.730 ]◮ Intervals are very tight

◮ Most do not overlap zero

◮ Seems typical of Dirichlet Process random effects model (later)

◮ Reasonable Subject Matter Interpretations
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Transition
What Did We Learn?

Analyzing
Social Science Data

Understanding
the Methodology

◮ Dirichlet Process Random Effects Models

⊲ Accepted by Social Scientists

⊲ Computationally Feasible

⊲ Provides good estimates

◮ “Off the shelf ” MCMC ⊲ can we do better?

◮ Precision parameter m ⊲ arbitrarily fixed

◮ Answers insensitive to m???

◮ Next: Better understanding of MCMC and estimation of m.

◮ Performance evaluations and wider applications
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A Dirichlet Process Random Effects Model
Estimating the Dirichlet Process Parameters

◮ A general random effects Dirichlet Process model can be written

(Y1, . . . , Yn) ∼ f(y1, . . . , yn | θ, ψ1, . . . , ψn) =
∏

i

f(yi|θ, ψi)

⊲ ψ1, . . . , ψn iid from G ∼ DP

⊲ DP is the Dirichlet Process

⊲ Base measure φ0 and precision parameter m

⊲ The vector θ contains all model parameters

◮ Blackwell and MacQueen (1973) proved

ψi|ψ1, . . . , ψi−1 ∼
m

i− 1 +m
φ0(ψi) +

1

i− 1 +m

i−1∑

l=1

δ(ψl = ψi)

⊲ Where δ denotes the Dirac delta function.
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Some Distributional Structure

◮ Freedman (1963), Ferguson (1973, 1974) and Antoniak (1974)

⊲ Dirichlet process prior for nonparametric G

⊲ Random probability measure on the space of all measures.

◮ Notation

⊲ G0, a base distribution (finite non-null measure)

⊲ m > 0, a precision parameter (finite and non-negative scalar)

⊲ Gives spread of distributions around G0,

⊲ Prior specification G ∼ DP(m,G0) ∈ P .

◮ For any finite partition of the parameter space, {B1, . . . , BK},

(G(B1), . . . , G(BK)) ∼ D (mG0(B1), . . . , mG0(BK)) ,
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A Mixed Dirichlet Process Random Effects Model
Likelihood Function

◮ The likelihood function is integrated over the random effects

L(θ | y) =

∫
f(y1, . . . , yn | θ, ψ1, . . . , ψn)π(ψ1, . . . , ψn) dψ1 · · · dψn

◮ From Lo (1984 Annals) Lemma 2 and Liu (1996 Annals)

L(θ | y) =
Γ(m)

Γ(m + n)

n∑

k=1

mk




∑

C:|C|=k

k∏

j=1

Γ(nj)

∫
f(y(j) |θ, ψj)φ0(ψj) dψj


 ,

⊲ The partition C defines the subclusters

⊲ y(j) is the vector of yis in subcluster j

⊲ ψj is the common parameter for that subcluster
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A Mixed Dirichlet Process Random Effects Model
Matrix Representation of Partitions

◮ Start with the model

Y|ψ ∼ N(Xβ + ψ, σ2I), where ψi ∼ DP(m,N(0, τ 2)), i = 1, . . . , n

◮ With Likelihood Function

L(θ | y) =
Γ(m)

Γ(m + n)

n∑

k=1

mk




∑

C:|C|=k

k∏

j=1

Γ(nj)

∫
f(y(j) |θ, ψj)φ0(ψj) dψj


 ,

◮ Associate a binary matrix An×k with a partition C

C = {S1, S2, S3} = {{3, 4, 6}, {1, 2}, {5}} ↔ A =




0 1 0
0 1 0
1 0 0
1 0 0
0 0 1
1 0 0



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A Mixed Dirichlet Process Random Effects Model
Matrix Representation of Partitions

◮ ψ = Aη, η ∼ Nk(0, σ
2I)

Y|A, η ∼ N(Xβ + Aη, σ2I), η ∼ Nk(0, τ
2I),

⊲ Rows: ai is a 1 × k vector of all zeros except for a 1 in its subcluster

⊲ Columns: The column sums of A are the number of observations in the
groups

⊲ Variables: ψi ∈ Sj ⇒ ψi = ηj (constant in subclusters)

⊲ Monte Carlo: Only need to generate k normal random variables
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MCMC Sampling Scheme
Posterior Distribution

◮ The joint posterior distribution

π(θ,A | y) =
mkf(y|θ,A)π(θ)∫

Θ

∑
Am

kf(y|θ,A)π(θ) dθ
.

Model Random effects

Model parameters θ

→ sampling is straightforward

Dirichlet Process parameters

A : the subclusters
m : the precision parameter
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MCMC Sampling Scheme
Model Parameters and Dirichlet Process Parameters

◮ For t = 1, . . . T , at iteration t

Model Parameters
◮ Starting from (θ(t), A(t)),

θ(t+1) ∼ π(θ | A(t),y),

Dirichlet Process Parameters

◮ Given θ(t+1),A(t+1)

q(t+1) ∼ Dirichlet(n
(t)
1 + 1, . . . , n

(t)
k + 1, 1, . . . , 1︸ ︷︷ ︸

length n

)

A(t+1) ∝ mkf(y|θ(t+1), A)

(
n

n1 · · · nn

) n∏

j=1

[q
(t+1)
j ]nj

◮ where nj ≥ 0, n1 + · · · + nn = n.
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MCMC Sampling Scheme
Convergence of Dirichlet Process

◮ Neal (2000) describes 8 algorithms: All use “stick-breaking” conditionals

Our chain Stick-breaking chain

P (aj = 1|A−j) ∝





( nj

n−1+m

) (
qj

nj+1

)
j = 1, . . . , k

m
n−1+m

qk+1 j = k + 1, . . . , n

P (aj = 1|A−j) ∝

{ nj

n−1+m
j = 1, . . . , k

m
n−1+m

j = k + 1

◮ Ours is a Parameter Expansion

◮ Parameter expansion dominates

◮ Var h(Y ) is smaller for any square-integrable function h.

(Liu/Wu 1999; vanDyk/Meng 2001; Hobert/Marchev 2008; Mira/ Geyer 1999; Mira, 2001)
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Scottish Election Data - History

1997: Scottish voters overwhelmingly
(74.3%) approved the creation of
the first Scottish parliament

Our Interest:

◮ Who subsequently voted
conservative in Scotland?

The voters gave strong support,
(63.5%), to granting this parliament
taxation powers

The Data:

◮ British General Election
Study of 880 Scottish na-
tionals

◮ Outcome: party choice
(conservative or not) in UK
general election

◮ Independent variables: po-
litical and social measures

◮ Probit model
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Scottish Election Data - Dirichlet Process Credible Intervals

−3 −2 −1 0 1

Politics

ReadPap

PtyThink

IDString

TaxLess

DeathPen

Lords

ScengBen

ScoPref1

RSex

Rage

RSocCla2

Tenure1

PresB

IndPar

90% Intervals for Coefficients
Probability of Voting

Conservative ↑ with:

⊲ Interest in politics
(Politics)

⊲ Read newspapers
(ReadPap)

⊲ Supports fewer taxes
(TaxLess)

⊲ Return death penalty
(DeathPen)

◮ Some Other Surprising
Results .....
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Scottish Election Data - Credible Interval Comparison

−4 −3 −2 −1 0 1 2

Politics

ReadPap

PtyThink

IDString

TaxLess

DeathPen

Lords

ScengBen

ScoPref1

RSex

Rage

RSocCla2

Tenure1

PresB

IndPar

90% Intervals for Coefficients

Dirichlet= Black, Normal = Blue

Dirichlet Process
vs.
Normal
Random
Effects

Dirichlet Process
Intervals
Uniformly
Shorter
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Investigating the Intervals
Why are they shorter?

Kyung, et al. (2009)
Stat. and Prob. Letters

◮ Simpler Model

◮ Posterior Variance Domination

◮ Linear Mixed Model

Yij = µ + ψi + εij,

◮ Where ψ = Aη,

Y|µ,η, σ2,A ∼ N
(
µ1 + Aη, σ2I

)
η|σ2 ∼ Nk

(
0, cσ2Ik

)

µ|σ2 ∼ N
(
0, vσ2

)
σ2 ∼ IG (a, b) ,

⊲ and the hyperparameters are assumed known.
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Investigating the Intervals
Why are they shorter?

◮ Marginal posterior variance distribution π
(
σ2|Y,A

)

◮ We can show that

The mean from the
Dirichlet Process model

is
smaller
than

The mean from the
normal model

⊲ For all y not containing a within-subcluster contrast

◮ Implications

⊲ The set of y containing a within-subcluster contrast has measure zero

⊲ So the dominance occurs almost surely.
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And Now for Something Completely Different
Gauss-Markov Theorem

◮ Start with the Classic Linear Mixed Model

Y = Xβ + Zψ + ε

⊲ ψ ∼ DP(m,N(0, τ 2)) ⊲ ε ∼ N(0, σ2I)

◮ Conditional on A, ψ = Aη, η ∼ N(0, τ 2I), and

Y = Xβ + ZAη + ε

◮ With Mean EY = E[E(Y |A)] = Xβ

◮ And Variance

V = Var(Y ) = E[Var(Y |A)] + Var[E(Y |A)] = E[Var(Y |A)]
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Gauss-Markov Theorem
First Application

◮ Straightforward Application of theorem

⊲ Zyskind and Martin (1969); Harville (1976)

◮ BLUE
β̃ = (X′V−1X)−1X′V−1Y

◮ BLUP
ψ̃ = CV−1(Y − Xβ̃),

⊲ C = Cov(Y,ψ)

⊲ V = Var(Y )

◮ Neat Theory

⊲ What is C?

⊲ What is V?
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Using the Gauss-Markov Theorem
Calculating the Variance

◮ V = Var(Y ) = E[Var(Y |A)], where

V = σ2In + E[τ 2ZAA′Z ′] = σ2In + τ 2
∑

A

P (A)ZAA′Z ′.

⊲ with

P (A) = π(r1, r2, ..., rk) =
Γ(m)

Γ(m + r)
mk

k∏

j=1

Γ(rj).

⊲ r1, r2, ..., rk are the column sums

◮ The sum is over all possible A matrices

⊲ Lots of terms in the sum

⊲ But we can do it (almost - in a special case)



Estimation in Dirichlet Process Random Effects Models: Covariance Matrix [22]

Calculating the Variance
A Special Case

◮ We can handle the model

Yij = x′
iβ + ψi + εij, 1 ≤ i ≤ r, 1 ≤ j ≤ t,

⊲ which is the previous model with Z = B where

B =



1t 0 · · · 0
0 1t · · · 0

. . .
0 0 · · · 1t



n×r

,

◮ Resulting in

d = Cor(Yi,j, Yi′,j′) = τ 2
∑

A

P (A)a′iaj
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Covariance Matrix
A Special Case

◮ For the model
Y = Xβ +Bψ + ε

◮ The covariance matrix is

V =



σ2I + τ 2J dJ dJ · · · dJ

dJ σ2I + τ 2J dJ · · · dJ
... ... ... ... ...
dJ dJ · · · dJ σ2I + τ 2J


 ,

where I is the t× t identity matrix, J is a t× t matrix of ones,

◮ And

d = Cor(Yi,j, Yi′,j′) = τ 2
r−1∑

i=1

im
Γ(m + r − 1 − i)Γ(i)

Γ(m + r)
.
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Examining the Covariance
Dirichlet Precision Parameter

Corr.

m

◮ Precision parameter m
related to correlation in the
observations

◮ Relationship not previously known

◮ m ↓ yields more clusters

⊲ Decreased correlation

◮ m ↑ yields fewer clusters

⊲ Increased correlation
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Alternatively
OLS - Least Squares

◮ For the model
Y = Xβ +Bψ + ε

◮ The OLS Estimator of β is

β̂ = (X ′X)−1X ′Y

◮ When is OLS=BLUE?

⊲ This is “Fun with Matrix Algebra”

⊲ Relationship between X , B, and V

⊲ Zyskind (1967); Puntanen and Styan (1989)

HV = VH where H = X(X′X)−X′.

⊲ Alternative eigenvector/eigenvalue conditions
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OLS=BLUE
Some Conditions

◮ For the model
Y = Xβ +Bψ + ε

◮ OLS=BLUE for

⊲ Balanced anova models

⊲ Some slight extensions

◮ In particular, for the oneway random effects model

Y = 1µ + Bψ + ε,

we have

β̂ = (X′X)−1X′Y = (X′V−1X)−1X′V−1Y = Y.
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Distribution of the BLUE Y

Oneway Model

◮ Here we look at
Y = 1µ + Bψ + ε,

⊲ Some results generalize (in paper)

◮ The BLUE Y has density

fm(ȳ) =
∑

A

f(ȳ|A)P (A)

⊲ f(ȳ|A) = N(1µ, σ2I + τ2

σ2BAA′B′)

⊲ P (A) = π(r1, r2, ..., rk) = Γ(m)
Γ(m+r)

mk
∏k

j=1 Γ(rj).

⊲ m is the precision parameter



Estimation in Dirichlet Process Random Effects Models: Distribution of Ȳ [28]

Properties of fm(y)
Oneway Model

◮ Unimodal

◮ m→ 0, Y ∼ N(µ, 1
n
σ2 + τ 2))

⊲ One Cluster

◮ m→ ∞, Y ∼ N(µ, 1
n
(σ2 + τ 2t))

⊲ n Clusters

⊲ Classical oneway model

◮ F0(ȳ)︸ ︷︷ ︸
Fattest Tails

< Fm(ȳ) < F∞(ȳ)︸ ︷︷ ︸
Thinnest Tails
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Distribution of the BLUE Y

Example Cutoff Points

◮ 95% Confidence Bounds

◮ Yij = µ + ψi + εij, 1 ≤ i ≤ 6, 1 ≤ j ≤ 6, , σ2 = τ 2 = 1

m

0 .1 .5 1 2 5 20 ∞

1.987 1.917 1.706 1.566 1.355 1.145 0.952 0.864

◮ Conservative Confidence Bounds

◮ Can also estimate σ2 and τ 2
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Conclusions
Modelling the Random Effects

Why is the
Dirichlet Process
a better model
for random effects?

◮ “Noninformative”

◮ Richer model for random effects

⊲ Normality is unverifiable

⊲ Dirichlet captures extra variation

◮ Shorter Credible Intervals

⊲ More precise inference for fixed effects
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Conclusions
Estimation and MCMC

Improvements to the
estimation procedure
and the MCMC

◮ Matrix representation

⊲ Allows simplification

◮ Better precision parameter estimation

◮ Improved Gibbs sampler

⊲ Exploits properties of multinomial

⊲ Better mixing

⊲ Better Monte Carlo variances

Beyond the
Linear Model

◮ Logistic, Loglinear

⊲ Can use Dirichlet error model

⊲ Retains estimation properties
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Conclusions
Classical Approach

Point Estimation

◮ Covariance Matrix

⊲ Calculable

⊲ Interpretation of precision parameter

◮ Estimates

⊲ OLS and BLUE reasonable

Confidence Intervals

◮ Next

⊲ Variance Comparisons?

⊲ Coverage of Bayes Intervals?
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Thank You for Your Attention

casella@ufl.edu
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Findings So Far

◮ Gill and Casella(2009). “Nonparametric Priors For Ordinal Bayesian Social Science

Models: Specification and Estimation.” JASA, 104, 453-464

DPP on RE can uncover latent clustering.

◮ Kyung et al. (2009) “Characterizing the Variance Improvement in Linear Dirichlet Ran-

dom Effects Models.” Stat. Prob. Letters, 79, 2343-2350

DPP on RE can produce lower SE for regression parameters on average.

◮ Kyung, Gill and Casella(2010) “Estimation in Dirichlet Random Effects Models.”

Annals of Statistics, 38, 979-1009

Estimation of the precision parameter; improved Gibbs sampler.

◮ Kyung et al. (2011) “Sampling Schemes for Generalized Linear Dirichlet Process Ran-

dom Effects Models.” Stat. Methods & Applications, to appear.

Slice sampling worse than KS mixture representation or MH algorithm.

◮ Kyung et al. (2011) “New Findings from Terrorism Data: Dirichlet Process Random

Effects Models for Latent Groups.” JRSSC, to appear.

Logistic model, uncovering latent information with difficult data.

◮ Li, Chen (2011). “Classical Estimation in Linear Mixed Models with Dirichlet Process

Random Effects”. PhD Thesis, University of Florida

OLS, BLUE, and comparisons with Bayes estimates


