Fundamental Issues in Bayesian Functional Data Analysis

Dennis D. Cox Rice University

Introduction

- Question: What are functional data?
- Answer: Data that are functions of a continuous variable.
- ... say we observe $Y_i(t), t \in [a, b]$ where
- $Y_1, Y_2, ..., Y_n$ are i.i.d. $N(\mu, V)$:

 $\mu(t) = E[Y(t)], \quad V(t,s) = \operatorname{Cov}[Y(t),Y(s)].$

- Question: Do we ever really observe functional data?
- Here's some examples of functional data:

Introduction (cont.)

- Question: But you don't really observe continuous functions, do you?
- **Answer:** Look closely at the data ...

Introduction (cont.)

- OK, so it is really a bunch of dots connected by line segments.
- That is, we really have the data $Y_i(t)$ for t on a grid: $t \in \{395, 396, \dots, 660\}.$
- But people doing functional data analysis like to pretend they are observing whole functions.
- Is it just a way of sounding erudite? "Functional Data Analysis, not for the heathen and unclean."
- Some books on the subject: Functional Data Analysis and Applied Functional Data Analysis by Ramsay and Silverman; Nonparametric Functional Data Analysis: Theory and Practice by Ferraty and Vieu.

Functional Data (cont.):

- Working with functional data requires some idealization
- E.g. the data are actually multivariate; they are stored as either of
 - (G) $(Y_i(t_1), \ldots, Y_i(t_m))$, vectors of values on a grid
 - (C) $(\eta_{i1}, \ldots, \eta_{im})$ where $Y_i(t) = \sum_{j=1}^m \eta_{ij} B_j(t)$ is a basis function expansion (e.g., B-splines).
- Note that the order of approximation m is rather arbitrary.
- Treating functional data as simply multivariate doesn't make use of the additional "structure" implied by being a smooth function.

Functional Data (cont.):

- Methods for Functional Data Analysis (FDA) should satisfy the Grid Refinement Invariance Principle (GRIP):
- As the order of approximation becomes more exact (i.e., m→∞), the method should approach the appropriate limiting analogue for true functional (infinite dimensional) observations.
- Thus the statistical procedure will not be strongly dependent on the finite dimensional approximation.
- Two general ways to mind the GRIP:
 - (i) **Direct:** Devise a method for true functional data, then find a finite dimensional approximation ("projection").
 - (ii) Indirect: Devise a method for the finite dimensional data, then see if it has a limit as $m \to \infty$.

See Lee & Cox, "Pointwise Testing with Functional Data Using the Westfall-Young Randomization Method," *Biometrika* (2008) for a frequentist nonparametric approach to some testing problems with functional data.

Bayesian Functional Data Analysis:

- Why Bayesian?
- After all, Bayesian methods have a high "information reqirement," i.e. a likelihood and a prior.
- In principle, statistical inference problems are not conceptually as difficult for Bayesians.
- Of course, there is the problem of computing the posterior, even approximately (will MCMC be the downfall of statistics?).
- And, priors have consequences.
- So there are lots of opportunities for investigation into these consequences.

- A Bayesian problem: develop priors for Bayesian functional data analysis.
- Again assume the data are realizations of a Gaussian process, say we observe $Y_i(t), t \in [a, b]$ where

•
$$Y_1, Y_2, ..., Y_n$$
 are i.i.d. $N(\mu, V)$:

 $\mu(t) = E[Y(t)], \quad V(t,s) = \operatorname{Cov}[Y(t), Y(s)].$

- Denote the discretized data by $\vec{Y}_i^{(m)} = \vec{Y}_i = (Y_i(t_1), \dots, Y_i(t_m))$ and the corresponding mean vectors and covariance matrix $\vec{\mu}$ and \vec{V} where $\vec{V}_{ij} = V(t_i, t_j)$.
- Prior distribution for μ : $\mu | V, k \sim N(0, kV)$.
- But $V \sim ?????$
- What priors can we construct for covariance functions?

Requisite properties of covariance functions:

• Symmetry:
$$V(s,t) = V(t,s)$$
.

- Positive definiteness: for any choice of k and distinct s_1, \ldots, s_k in the domain, the matrix given by $\vec{V}_{ij} = V(s_i, s_j)$ is positive definite.
- It is difficult to achieve this latter requirement.

Requirements on Covariance Priors:

- Our first requirement in constructing a prior for covariance functions is that we mind the GRIP
- One may wish to use the conjugate inverse Wishart prior: $\vec{V}^{-1} \sim Wishart(d_m, W_m)$ for some $m \times m$ matrix W_m .
- ... where, e.g., W_m is obtained by discretizing a standard covariance function.
- Under what conditions (if any) on m and d_m will this converge to a probability measure on the space of covariance operators?
- This would be an indirect approach to satisfying the GRIP. More on this later.

Requirements on Covariance Priors (cont.):

- An easier way to satisfy the GRIP requirement is to construct a prior on the space of covariance functions and then project it down to the finite dimensional approximation.
- For example, using grid values, $\vec{V}_{ij} = V(t_i, t_j)$.
- i.e., the direct approach.
- We (joint work with Hong Xiao Zhu of MDACC) did come up with something that works, sort of.

A proposed approach that does work (sort of):

- Suppose Z_1, Z_2, \ldots are i.i.d. realizations of a Gaussian random process (mean 0, covariance function B(s, t)).
- Consider

$$V(s,t) = \sum_{i} w_i Z_i(s) Z_i(t)$$

where w_1, w_2, \ldots are nonnegative constants satisfying

$$\sum_{i} w_i < \infty.$$

- One can show that this gives a random covariance function, and that its distribution "fills out" the space of covariance functions.
- Can we compute with it?

A proposed approach that sort of works (cont.):

- Thus, if we can compute with this proposed prior, we will have satisfied the three requirements: a valid prior on covariance functions that "fills out the space" of covariance functions, and is useful in practice.
- Assuming we use values on a grid for the finite dimensional representation, let $\vec{Z}_i = (Z(t_1), \ldots, Z(t_m))$. Then

$$\vec{V} = \sum_{i} w_i \vec{Z}_i \vec{Z}_i^T$$

• How to compute with this? One idea is to write out the characteristic function and use Fourier inversion. That works well for weighted sum of χ^2 distributions (fortran code available from Statlib)

A proposed approach that sort of works (cont.):

• Another approach: use the \vec{Z}_i directly. We will further approximate \vec{V} by truncating the series:

$$\vec{V}^{(m,j)} = \sum_{i=1}^{j} w_i \vec{Z}_i \vec{Z}_i^T$$

- We devised a Metropolis-Hastings algorithm to sample the Z_i .
- Can use rank-1 QR updating to do fairly efficient computing (update each \vec{Z}_i one at a time).

A proposed approach that sort of works (cont.):

- There are a couple of minor modifications:
 - 1. We include an additional scale parameter k in $V(s,t) = k \sum_{i} w_i Z_i(s) Z_i(t)$ where k has an independent inverse Γ prior.
 - 2. We integrate out μ and k. and use the marginal unnormalized posterior $f(\mathbf{Z}|\vec{Y}_1, \ldots, \vec{Y}_n)$ in a Metropolis-Hastings MCMC algorithm.
- The algorithm has been implemented in Matlab.

Some results with simulated data:

- Generated data from Brownian motion (easy to do!)
- n = 50 and various values of m and j

First, the True Covariance function for Brownian Motion.

The covariance function used to generate the Z_i is the Ornstein-Uhlenbeck correlation:

$$B(s,t) = \exp[-\alpha|s-t|]$$

with $\alpha = 1$. This process goes by a number of other names (the Gauss-Markov process, Continuous-Time Autoregression of order 1, etc.)

The Bayesian posterior mean estimate with m = 10, j = 20.

The sample covariance estimate with m = 10.

Now the Bayes posterior mean estimate with m = 30, j = 60.

The sample covariance estimate with m = 30.

Some results with simulated data:

• Mean squared error results (averaged over the grid points):

m	j	MSE Bayes	MSE Sample
10	20	0.017	0.026
30	60	0.065	0.054

Problems with the proposed approach that sort of works (cont.):

- The problem is way over-parameterized in terms of the \vec{Z}_j , $1 \leq j \leq J$, where $J \gg m$.
- Computations very time intensive, and MCMC seems to not mix well - seems to converge to different values depending on the start.
- Caused by complex non-identifiability in the model? Posterior "mode" is a complicated manifold in a very high dimensional space.

Another approach (work in progress):

- It would be very nice if we could construct a conjugate prior like the inverse Wishart in finite dimensions.
- This seems problematic. The main difficulty is that the inverse of a covariance operator (obtained from a covariance function) is not bounded.
- For example, let Y(t) be Brownian motion considered as taking values in $L_2[0,1]$. Then $v(s,t) = \text{Cov}(Y(t),Y(s)) = \min\{s,t\}$.
- The operator V is defined by

$$Vf(s) = \int_0^1 v(s,t)f(t)dt.$$

• Compute $V^{-1}g$ by solving (for f) the integral equation

$$g(s) = \int_0^1 v(s,t)f(t)dt$$

• With a little calculus

$$g(s) = \int_0^1 \min(s, t) f(t) dt$$
$$= \int_0^s t f(t) dt + s \int_s^1 f(t) dt$$

• We see g is absolutely continuous and g(0) = 0. Differentiating

$$g'(s) = sf(s) - sf(s) + \int_{s}^{1} f(t)dt$$
$$= \int_{s}^{1} f(t)dt$$

• We see g' is absolutely continuous and g'(1) = 0. Differentiating again

$$g''(s) = -f(s).$$

- Thus, in the Brownian motion case, V is invertible at g iff g' is absolutely continuous and satisfies the two boundary conditions. Thus, V is certainly not invertible on all of L²[0, 1].
- We can understand the problem in general by using the spectral representation:

$$V = \sum_{i} \lambda_i \phi_i \otimes \phi_i.$$

- Thus $Vx = \sum_i \lambda_i \langle x, \phi_i \rangle \phi_i$
- Then, if $V^{-1}x$ exists, it is given by

$$V^{-1}x = \sum_{i} \lambda_i^{-1} \langle x, \phi_i \rangle \phi_i$$

• This converges in H iff $\sum_i \lambda_i^{-2} \langle x, \phi_i \rangle^2 < \infty$, which is a pretty strict condition on x since $\sum_i \lambda_i < \infty$.

- So, even though it looks like it is going to be very difficult to make it work, is there some way to do so?
- Instead of trying to guess a prior for which an inverse Wishart will be a good finite dimensional approximant, let's try another approach.
- Let's see if we can choose d_m so that as $m \to \infty$, $InverseWishart(d_m, \vec{B}_m)$ converges (in some sense).
- It is very difficult working with the Inverse Wishart no m.g.f., the ch.f. is unknown.

• In order to obtain our results, we define "sampling" and interpolation operators:

$$\vec{f}_m = (f(t_1), \dots, f(t_m))$$

 $\mathcal{I}\vec{f}_m = \text{linear interpolant of } \vec{f}_m.$

- Here, (t_1, \ldots, t_m) is a regular grid. Note that $f \mapsto \vec{f_m}$ is an operator from continuous functions to *m*-dimensional space, and \mathcal{I} goes the other way.
- Define an analogous sampling operator for functions of two variables: \vec{B}_m is an $m \times m$ matrix with (i, j) entry equal to $B(t_i, t_j)$.

• Moment results: suppose $\vec{V}_m \sim InverseWishart(d_m, s_m \vec{B}_m)$ and \vec{f}_m is obtained by "sampling" a continuous function f.

• Then as long as
$$m/d_m \to a > 1$$
,

$$\frac{E[\mathcal{I}\vec{V_m}\vec{f_m}]}{d_m - m} \to Bf/(a - 1),$$

where

$$Bf(s) = \int B(s,t)f(t)dt.$$

• Second Moments results: suppose $\vec{V}_m \sim InverseWishart(d_m, s_m \vec{B}_m)$ and \vec{f}_m and \vec{g}_m are obtained by "sampling" continuous functions f and g,

• Again as long as
$$m/d_m \to a > 1$$
,

$$\frac{E[\mathcal{I}\vec{V_m}\vec{f_m}\vec{g}_m^T\vec{V_m}]}{(d_m-m)^2} \to Bf \otimes Bg/(a-1)^2.$$

• Thus, in some sense, we can get first and second moments to converge if we have d_m/m converging (e.g., take $d_m = 2m$).

The Bayesian posterior mean estimate under inverse-Wishart prior with m = 50, $d_m = 100$ obtained by Monte-Carlo.

Further research:

- Main interesting problem in the direct approach: find ways to approximate the prior using mixtures of inverse Wisharts.
- For the indirect approach: nearly complete proof for weak convergence in the space of S-operators but using a basis function expansion rather than grid evaluations.
- Must check the properties of this limiting measure.

The End