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Introduction

• Question: What are functional data?

• Answer: Data that are functions of a continuous variable.

• ... say we observe Yi(t), t ∈ [a, b] where

• Y1, Y2, . . .Yn are i.i.d. N(μ, V ):

μ(t) = E[Y (t)], V (t, s) = Cov[Y (t), Y (s)].

• Question: Do we ever really observe functional data?

• Here’s some examples of functional data:
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Introduction (cont.)

• Question: But you don’t really observe continuous functions,
do you?

• Answer: Look closely at the data ...
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Introduction (cont.)

• OK, so it is really a bunch of dots connected by line segments.

• That is, we really have the data Yi(t) for t on a grid:
t ∈ {395, 396, . . . , 660}.

• But people doing functional data analysis like to pretend they
are observing whole functions.

• Is it just a way of sounding erudite? “Functional Data
Analysis, not for the heathen and unclean.”

• Some books on the subject: Functional Data Analysis and
Applied Functional Data Analysis by Ramsay and Silverman;
Nonparametric Functional Data Analysis: Theory and Practice
by Ferraty and Vieu.
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Functional Data (cont.):

• Working with functional data requires some idealization

• E.g. the data are actually multivariate; they are stored as
either of

(G) (Yi(t1), . . . , Yi(tm)), vectors of values on a grid

(C) (ηi1, . . . , ηim) where Yi(t) =
∑m

j=1 ηijBj(t) is a basis
function expansion (e.g., B-splines).

• Note that the order of approximation m is rather arbitrary.

• Treating functional data as simply multivariate doesn’t make
use of the additional “structure” implied by being a smooth
function.
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Functional Data (cont.):

• Methods for Functional Data Analysis (FDA) should satisfy
the Grid Refinement Invariance Principle (GRIP):

• As the order of approximation becomes more exact (i.e.,
m → ∞), the method should approach the appropriate limiting
analogue for true functional (infinite dimensional) observations.

• Thus the statistical procedure will not be strongly dependent
on the finite dimensional approximation.

• Two general ways to mind the GRIP:

(i) Direct: Devise a method for true functional data, then
find a finite dimensional approximation (“projection”).

(ii) Indirect: Devise a method for the finite dimensional
data, then see if it has a limit as m → ∞.

8



See Lee & Cox, “Pointwise Testing with Functional Data Using the
Westfall-Young Randomization Method,” Biometrika (2008) for a
frequentist nonparametric approach to some testing problems with
functional data.
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Bayesian Functional Data Analysis:

• Why Bayesian?

• After all, Bayesian methods have a high “information
reqirement,” i.e. a likelihood and a prior.

• In principle, statistical inference problems are not conceptually
as difficult for Bayesians.

• Of course, there is the problem of computing the posterior,
even approximately (will MCMC be the downfall of statistics?).

• And, priors have consequences.

• So there are lots of opportunities for investigation into these
consequences.
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• A Bayesian problem: develop priors for Bayesian functional
data analysis.

• Again assume the data are realizations of a Gaussian process,
say we observe Yi(t), t ∈ [a, b] where

• Y1, Y2, . . .Yn are i.i.d. N(μ, V ):

μ(t) = E[Y (t)], V (t, s) = Cov[Y (t), Y (s)].

• Denote the discretized data by �Y
(m)
i = �Yi =

(Yi(t1), . . . , Yi(tm)) and the corresponding mean vectors and
covariance matrix �μ and �V where �Vij = V (ti, tj).

• Prior distribution for μ: μ|V, k ∼ N(0, kV ).

• But V ∼ ?????

• What priors can we construct for covariance functions?
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Requisite properties of covariance functions:

• Symmetry: V (s, t) = V (t, s).

• Positive definiteness: for any choice of k and distinct s1, . . ., sk

in the domain, the matrix given by �Vij = V (si, sj) is positive
definite.

• It is difficult to achieve this latter requirement.
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Requirements on Covariance Priors:

• Our first requirement in constructing a prior for covariance
functions is that we mind the GRIP

• One may wish to use the conjugate inverse Wishart prior:
�V −1 ∼ Wishart(dm, Wm) for some m × m matrix Wm.

• ... where, e.g., Wm is obtained by discretizing a standard
covariance function.

• Under what conditions (if any) on m and dm will this converge
to a probability measure on the space of covariance operators?

• This would be an indirect approach to satisfying the GRIP.
More on this later.
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Requirements on Covariance Priors (cont.):

• An easier way to satisfy the GRIP requirement is to construct
a prior on the space of covariance functions and then project it
down to the finite dimensional approximation.

• For example, using grid values, �Vij = V (ti, tj).

• i.e., the direct approach.

• We (joint work with Hong Xiao Zhu of MDACC) did come up
with something that works, sort of.
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A proposed approach that does work (sort of):

• Suppose Z1, Z2, . . . are i.i.d. realizations of a Gaussian random
process (mean 0, covariance function B(s, t)).

• Consider
V (s, t) =

∑
i

wiZi(s)Zi(t)

where w1, w2, . . . are nonnegative constants satisfying
∑

i

wi < ∞.

• One can show that this gives a random covariance function,
and that its distribution “fills out” the space of covariance
functions.

• Can we compute with it?
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A proposed approach that sort of works (cont.):

• Thus, if we can compute with this proposed prior, we will have
satisfied the three requirements: a valid prior on covariance
functions that “fills out the space” of covariance functions, and
is useful in practice.

• Assuming we use values on a grid for the finite dimensional
representation, let �Zi = (Z(t1), . . . , Z(tm)). Then

�V =
∑

i

wi
�Zi

�ZT
i

• How to compute with this? One idea is to write out the
characteristic function and use Fourier inversion. That works
well for weighted sum of χ2 distributions (fortran code
available from Statlib)
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A proposed approach that sort of works (cont.):

• Another approach: use the �Zi directly. We will further
approximate �V by truncating the series:

�V (m,j) =
j∑

i=1

wi
�Zi

�ZT
i

• We devised a Metropolis-Hastings algorithm to sample the Zi.

• Can use rank-1 QR updating to do fairly efficient computing
(update each �Zi one at a time).
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A proposed approach that sort of works (cont.):

• There are a couple of minor modifications:

1. We include an additional scale parameter k in
V (s, t) = k

∑
i wiZi(s)Zi(t) where k has an independent

inverse Γ prior.

2. We integrate out μ and k. and use the marginal
unnormalized posterior f(Z|�Y1, . . . �Yn) in a
Metropolis-Hastings MCMC algorithm.

• The algorithm has been implemented in Matlab.
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Some results with simulated data:

• Generated data from Brownian motion (easy to do!)

• n = 50 and various values of m and j
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First, the True Covariance function for Brownian Motion.
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The covariance function used to generate the Zi is the
Ornstein-Uhlenbeck correlation:

B(s, t) = exp[−α|s − t|]

with α = 1. This process goes by a number of other names (the
Gauss-Markov process, Continuous-Time Autoregression of order 1,
etc.)
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The Bayesian posterior mean estimate with m = 10, j = 20.
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The sample covariance estimate with m = 10.
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Now the Bayes posterior mean estimate with m = 30, j = 60.
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The sample covariance estimate with m = 30.
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Some results with simulated data:

• Mean squared error results (averaged over the grid points):

m j MSE Bayes MSE Sample

10 20 0.017 0.026

30 60 0.065 0.054
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Problems with the proposed approach that sort of
works (cont.):

• The problem is way over-parameterized in terms of the �Zj ,
1 ≤ j ≤ J , where J � m.

• Computations very time intensive, and MCMC seems to not
mix well - seems to converge to different values depending on
the start.

• Caused by complex non-identifiability in the model? Posterior
“mode” is a complicated manifold in a very high dimensional
space.
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Another approach (work in progress):

• It would be very nice if we could construct a conjugate prior
like the inverse Wishart in finite dimensions.

• This seems problematic. The main difficulty is that the inverse
of a covariance operator (obtained from a covariance function)
is not bounded.

• For example, let Y (t) be Brownian motion considered as taking
values in L2[0, 1]. Then v(s, t) = Cov(Y (t), Y (s)) = min{s, t}.

• The operator V is defined by

V f(s) =
∫ 1

0

v(s, t)f(t)dt.

• Compute V −1g by solving (for f) the integral equation

g(s) =
∫ 1

0

v(s, t)f(t)dt
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Inverse Wishart (cont.):

• With a little calculus

g(s) =
∫ 1

0

min(s, t)f(t)dt

=
∫ s

0

tf(t)dt + s

∫ 1

s

f(t)dt.

• We see g is absolutely continuous and g(0) = 0. Differentiating

g′(s) = sf(s) − sf(s) +
∫ 1

s

f(t)dt

=
∫ 1

s

f(t)dt

• We see g′ is absolutely continuous and g′(1) = 0.
Differentiating again

g′′(s) = −f(s).
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Inverse Wishart (cont.):

• Thus, in the Brownian motion case, V is invertible at g iff g′ is
absolutely continuous and satisfies the two boundary
conditions. Thus, V is certainly not invertible on all of L2[0, 1].

• We can understand the problem in general by using the
spectral representation:

V =
∑

i

λiφi ⊗ φi.

• Thus V x =
∑

i λi〈x, φi〉φi

• Then, if V −1x exists, it is given by

V −1x =
∑

i

λ−1
i 〈x, φi〉φi

• This converges in H iff
∑

i λ−2
i 〈x, φi〉2 < ∞, which is a pretty

strict condition on x since
∑

i λi < ∞.
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Inverse Wishart (cont.):

• So, even though it looks like it is going to be very difficult to
make it work, is there some way to do so?

• Instead of trying to guess a prior for which an inverse Wishart
will be a good finite dimensional approximant, let’s try another
approach.

• Let’s see if we can choose dm so that as m → ∞,
InverseWishart(dm, �Bm) converges (in some sense).

• It is very difficult working with the Inverse Wishart - no m.g.f.,
the ch.f. is unknown.
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Inverse Wishart (cont.):

• In order to obtain our results, we define “sampling” and
interpolation operators:

�fm = (f(t1), . . . , f(tm))

I �fm = linear interpolant of �fm.

• Here, (t1, . . . , tm) is a regular grid. Note that f �→ �fm is an
operator from continuous functions to m-dimensional space,
and I goes the other way.

• Define an analogous sampling operator for functions of two
variables: �Bm is an m × m matrix with (i, j) entry equal to
B(ti, tj).
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Inverse Wishart (cont.):

• Moment results: suppose �Vm ∼ InverseWishart(dm, sm
�Bm)

and �fm is obtained by “sampling” a continuous function f .

• Then as long as m/dm → a > 1,

E[I �Vm
�fm]

dm − m
→ Bf/(a − 1),

where

Bf(s) =
∫

B(s, t)f(t)dt.
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Inverse Wishart (cont.):

• Second Moments results: suppose
�Vm ∼ InverseWishart(dm, sm

�Bm) and �fm and �gm are
obtained by “sampling” continuous functions f and g,

• Again as long as m/dm → a > 1,

E[I �Vm
�fm�gT

m
�Vm]

(dm − m)2
→ Bf ⊗ Bg/(a − 1)2.

• Thus, in some sense, we can get first and second moments to
converge if we have dm/m converging (e.g., take dm = 2m).
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The Bayesian posterior mean estimate under inverse-Wishart prior
with m = 50, dm = 100 obtained by Monte-Carlo.
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Further research:

• Main interesting problem in the direct approach: find ways to
approximate the prior using mixtures of inverse Wisharts.

• For the indirect approach: nearly complete proof for weak
convergence in the space of S-operators but using a basis
function expansion rather than grid evaluations.

• Must check the properties of this limiting measure.
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The End
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