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Example 1: Phosphate Data

Raw phosphate concentrations (in mg P/100 g of soil)

collected over 16 by 16 regular lattice during several

years in archaeological region of Greece
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Example 2: Crime Data

Homicide rates per 100,000 habitants for 1980 in the

south of US, with n = 1412 counties
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Models for Spatial Lattice Data

• Conditional Autoregressive (CAR) Models:

Mostly studied and applied in Statistical literature

• Simultaneously Autoregressive (SAR) Models:

Mostly studied and applied in Econometric/geography

literature

All of these require specifying a neighborhood system



Neighborhood Systems

Sites {1, . . . , n} are endowed with neighborhood system,

{Ni : i = 1, . . . , n}, where Ni = neighbors of site i.

Examples:

Ni = {j : site j shares a boundary with site i}

Ni = {j : 0 < dij < r}

with r > 0 and dij the distance between sites i and j



First and second order neighborhood systems

X

X



Goal

Model selection for spatial lattice data using a default

Bayesian approach, where the competing models:

• Have the same mean structure

• Have different covariance structures



CAR MODELS

Conditional Specification: For i = 1, . . . , n

(Yi | Y(i)) ∼ N(x′iβ +
n
∑

j=1

cij(Yj − x′jβ), τ
2
i )

• Y(i) = {Yj, j 6= i}

• x′j = (xj1, . . . , xjp)

• β ∈ R
p, τi > 0

• cij ≥ 0 and cij > 0 iff i ∼ j



Let M = diag(τ21 , . . . , τ
2
n) and C = (cij) satisfy

• M−1C is symmetric, so cijτ
2
j = cjiτ

2
i

• M−1(In − C) positive definite

Joint Specification:

Y ∼ Nn(Xβ, (In − C)−1M)

where X = (x1, . . . ,xn)
′



Parameterization

• M = σ2G, with σ2 > 0 unknown and G diagonal

(known)

• C = φW , with φ ‘spatial parameter’ and W = (wij)

nonnegative “weight” known matrix (not necessarily

symmetric), and wij > 0 iff i ∼ j

Let A = (aij) [neighborhood matrix]:

aij = 1 if i ∼ j, and aij = 0 otherwise



Classes of CAR Models

• Homogeneous CAR (HCAR):

G = In , W = A

• Weighted CAR (WCAR) (Besag et al. 1991):

G = diag(|N1|−1, . . . , |Nn|−1) , W = GA

with |Ni| =
∑n

j=1 aij

• Autocorrelation CAR (ACAR) (Cressie & Chang, 1989):

G = diag(|N1|−1, . . . , |Nn|−1) , W = G1/2AG−1/2



Facts Assume the above conditions hold and

G−1M is symmetric. Then:

(a) G−1/2WG1/2 is symmetric

(b) G−1/2WG1/2 and W have the same nonzero

eigenvalues, and all are real

(c) M and C determine a CAR model iff σ2 > 0 and

φ ∈ (λ−1
n , λ−1

1 ), with λ1 ≥ . . . ≥ λn ordered eigenvalues

of G−1/2WG1/2

Parameter space: Ω = R
p × (0,∞)× (λ−1

n , λ−1
1 )



SAR MODELS

Conditional Specification: For i = 1, . . . , n

Yi = x′iβ +
n
∑

j=1

bij(Yj − x′jβ) + ǫi

• ǫi ∼ N(0, ξ2i ), independent

• β ∈ R
p, ξi > 0

• bij ≥ 0 and bij > 0 iff i ∼ j

Let M = diag(ξ21, . . . , ξ
2
n) and B = (bij) satisfy that

In −B is nonsingular. Then

Joint Specification:

Y ∼ Nn(Xβ, (In −B)−1M(In −B′)−1)



Particular Model:

• M = σ2In

• B = φA

so

Y ∼ Nn(Xβ, σ2((In − φA)2)−1

Parameter space: Ω = R
p × (0,∞) × (λ−1

n , λ−1
1 ), with

λ1 ≥ . . . ≥ λn the ordered eigenvalues of A



MODEL SELECTION

Let M1,M2, . . . ,Mk be the candidate models (k ≥ 2)

Mj is either HCAR, WCAR, ACAR or SAR

parameterized by ηj = (β, σ2j , φj) ∈ Ωj

with covariance depending on Gj and Aj

φj ∈ (1/λ
(j)
n ,1/λ

(j)
1 ) with

λ
(j)
1 ≥ λ

(j)
2 ≥ . . . ≥ λ

(j)
n eigenvalues of:

• Aj in case of HCAR, ACAR and SAR

• G
1/2
j AjG

1/2
j in case of WCAR

The approach proposed here assumes all models have

the same mean structure



Likelihood for Mj

Lj(ηj;y) =

(2πσ2j )
−n

2 |Σ−1
φj

|
1
2 exp { − 1

2σ2j
(y −Xβ)′Σ−1

φj
(y −Xβ)}

where

Σ−1
φj

=



























In − φjAj for HCAR models

G−1
j − φjAj for WCAR models

G−1
j − φjG

−1/2
j AjG

−1/2
j for ACAR models

(In − φjAj)
2 for SAR models



Prior for Mj

π(ηj | Mj) ∝ π(φj | Mj)

σ2j
1Ωj

(ηj)

Two options for π(φj | Mj):

• Uniform:

πU(φj | Mj) = 1
(1/λ

(j)
n ,1/λ

(j)
1 )

(φj)

• Independence Jeffreys:

πJ1(φj | Mj) =

{

n
∑

i=1

(
λ(j)
i

1− φjλ
(j)
i

)2 − 1

n
[

n
∑

i=1

λ(j)
i

1− φjλ
(j)
i

]2

}1

2

1(1/λ(j)
n ,1/λ(j)

1 )(φj)

(De Oliveira & Song, 2008; De Oliveira, 2011)
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Bayes Factors & Posterior Model Probabilities

π(Mi | y)
π(Mj | y) =

m(y | Mi)π(Mi)

m(y | Mj)π(Mj)

= Bij × prior oddsij

where

m(y | Mj) =
∫

Ωj

Lj(ηj | y)π(ηj | Mj)dηj,

and

Bij =
m(y | Mi)

m(y | Mj)

Hence

π(Mj | y) =





k
∑

l=1

π(Ml)

π(Mj)
Blj





−1

, j = 1, . . . , k

=
m(y | Mj)

∑k
l=1m(y | Ml)

, when π(Mj) =
1

k



Remarks

• Bayes factors and posterior model probabilities are, in

general, undetermined when improper priors are used

• Important exception occurs when competing models

have same invariance structure, up to individual model

parameters that have proper priors (Berger et al., 1998)

• CAR and SAR models fit this exception when all the

competing models have the same mean structure and

π(φj | Mj) is proper



Fact As φj → 1/λ
(j)
i ; i = 1 or n

πJ1(φj | Mj) = O((1− φjλ
(j)
i )−1)

so πJ1(φj | Mj) is not integrable

(De Oliveira & Song, 2008).

Instead we use (πJ1(φj | Mj))
r, with r < 1, which is

proper and has the same “shape”.



For j = 1, . . . , k:

m(y | Mj) = Kcj

∫ 1/λ
(j)
1

1/λ
(j)
n

h(φj,Mj,y)dφj

where

h(φj,Mj,y) =

|Σ−1
φj

|1/2|X ′Σ−1
φj

X|−1/2(S2
φj
)−(n−p)/2π(φj | Mj)

S2
φj

= (y −Xβ̂φj
)′Σ−1

φj
(y −Xβ̂φj

)

β̂φj
= (X ′Σ−1

φj
X)−1X ′Σ−1

φj
y

K =
Γ(

n−p
2 )

π
n−p
2

, cj =





∫ 1/λ
(j)
1

1/λ
(j)
n

π(φj | Mj)dφj





−1



Note

• For posterior model probabilities to be well defined

and calibrated, the proportionality constants in the like-

lihoods and priors of all competing models should be

retained

• Computation of m(y | Mj) involves one-dimensional

integration over a bounded interval



Computation

• Computation of ĉj straightforward:

numerical quadrature or Monte Carlo

ĉj =

(

(
1

λ(j)
1

− 1

λ(j)
n

)
1

m

m
∑

l=1

(πJ1(φ(l)
j | Mj))

1/2

)−1

with φ
(1)
j , . . . , φ

(m)
j

iid∼ unif(1/λ
(j)
n ,1/λ

(j)
1 )

• Computation of m(y | Mj) requires more care:

h(φj,Mj,y) is highly peaked and concentrated near the

right boundary for moderate or large sample sizes. Hence

almost constant and very close to zero over most of the

integration region, and common numerical quadrature

or Monte Carlo estimates are often zero.
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A Solution (Importance Sampling)

Let φ̃j value that maximizes h(φj,Mj,y), t ∈ [3,4] and

ωj = (1/λ
(j)
1 − φ̃j)/t.

Then

m̂(y | Mj) =

(

Φ(t)−Φ

(

t
1/λ(j)

n − φ̃j)

1/λ(j)
1 − φ̃j)

))√
2πKcjωj

m

m
∑

l=1

(

h(φ(l)
j ,Mj,y)

exp{−(φ(l)
j − φ̃j)2/2ω2

j }

)

where φ
(1)
j , . . . , φ

(m)
j

iid∼ N(φ̃j, ω
2
j ) truncated to (1/λ

(j)
n ,1/λ

(j)
1 )



Example 1: Phosphate Data

• Data were transformed to become closer to Gaussian

• HCAR, WCAR, ACAR and SAR models as competing

models

• First and second order neighborhood systems were

entertained

• E{Ỹi} is β1 (p = 1) or β1 + β2si1 + β3si2 (p = 3)

• All models equally likely a priori

• Both default priors were considered



Results

models HCAR-1 HCAR-2 WCAR-1 WCAR-2 ACAR-1 ACAR-2 SAR-1 SAR-2

modified independence Jeffreys prior
p = 1 0.099 2.2× 10−8 0.321 4.0× 10−8 0.443 5.1× 10−8 0.136 1.3× 10−5

p = 3 0.130 7.6× 10−8 0.249 9.2× 10−8 0.488 1.2× 10−7 0.132 1.9× 10−5

uniform prior
p = 1 0.085 4.3× 10−7 0.295 6.6× 10−7 0.416 6.6× 10−7 0.203 1.5× 10−5

p = 3 0.148 6.3× 10−7 0.221 1.6× 10−9 0.443 8.7× 10−7 0.186 2.1× 10−5



Example 2: Crime Data

• Significant explanatory variables:

an index of resource deprivation, an index of population

structure, median age, divorce rate and unemployment

rate

• HCAR, WCAR, ACAR and SAR models as competing

models

• Consider the adjacency neighborhood system (AC),

and two distance-based neighborhood systems with

r = 70 miles (D70) and r = 100 miles (D100)

• All models equally likely a priori

• Both default priors were considered



Results

models HCAR WCAR ACAR SAR

modified independence Jeffreys prior

AC 4.2× 10−6 0 0 0
D70 0.857 0 0 0.065

D100 3.0× 10−3 0 0 0.074

uniform prior

AC 3.6× 10−6 0 0 0
D70 0.822 0 0 0.074

D100 3.4× 10−3 0 0 0.100



Conclusions

⊕ Method does not require nested competing models

⊕ Method provides interpretable measures of how strongly

the data support each competing model

⊕ Method does not require assessing subjective priors

for model parameters

⊖ Method requires all competing models to have the

same mean structure


