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Background

e Covariance matrix estimation is important in multivariatealysis and many
statistical applications.

e SUppPOS&y, ..., X, are i.i.d.p-dimensional random vectors N(0,%). Let
S= z{‘zlxix;/n be the sample covariance matrix. The negative log-liketho
function is proportional to

Ln(Z) = —log|Z 7Y+ tr[=19. (1)

e Recent interests gfis large orp =~ n. Sis not a stable estimate.
— The largest eigenvalues 8foverly estimate the true eigenvalues.

— Whenp > n, Sis singular and the smallest eigenvalue is zero. How to
estimate> 1?2



Recent Estimation Methods on> or ¥ 1

e Reduce number of nonzeros estimateZ of ¥ 1.
— 2. Bickel and Levina (2008), using thresholding.

— =71 Yuan and Lin (2007)l; penalty onz 1.
Friedman et al., (2008), Graphical Lasso.
Meinshausen and Buhlmann (2006), Reformulated as regressi

e Shrinkage estimates of the covariance matrix.
— Ledoit and Wolf (2006)pZ + (1 —p)ul.

— Won et al. (2009), control the condition number (largest
eigenvalue/smallest eigenvalue).



Motivation

e Estimate of= or Z~! needs to be positive definite.

— The mathematical restriction makes the covariance mastirnation
problem challenging.

e Any positive definitex can be expressed as a matrix exponential of a real

symmetric matrixA.
A?
> =explA) = +A+§+--

— Expressing the likelihood function in terms A= log(Z) releases the
mathematical restriction.

e Consider the spectral decompositiortof T DT’ with D = diag(dy, .. .,dp).
ThenA=TMT with M = diag(log(dy), . ..,log(dp)).



|dea of the Proposed Method

Leonard and Hsu (1992) used this log-transformation meth@dtimate: by
approximating the likelihood using Volterra integral etijoa.

— Their approximation based on @being nonsingulas- not applicable
whenp > n.

We extend the likelihood approximation to the case of siagal
Regularize the largest and smallest eigenvaluessamultaneously
An efficient iterative quadratic programming algorithm stimateA (log ).

Call the resulting estimate “Log-ME”, Logarithm-trangfoed Matrix
Estimate.



A Simple Example

e Experiment: simulate’s from N(O,1),i =1,...,nwheren = 50.

e For eachp varying from 5 to 100, consider the the largest and smallest
eigenvalues of the covariance matrix estimate.

e For eachp, repeat the experiment 100 times and compute the average of t
largest eigenvalues and the average of the smallest eigesvar
— The sample covariance matrix.

— The Log-ME covariance matrix estimate
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The averages of the largest and smallest eigenvalues afi@oga matrix estimates
over the dimensiomp.The true eigenvalues are all equal to 1.
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The Transformed Log-Likelihood

In terms of the covariance matrix logarithdthe negative log-likelihood
function in (1) becomes

Ln(A) =tr(A) +trlexp(—A)S. (2)
The problem of estimating a positive definite maffixow becomes a
problem of estimating a real symmetric matAx

Because of the matrix exponential term éx\)S, estimatingA by directly
minimizing Ln(A) is nontrivial.

Our approach: Approximate exp—A)Susing the Volterra integral equation
(valid even forSsingular case).



The Volterra Integral Equation

e The \olterra integral equation (Bellman, 1970, page 175) is
exp(At) = exp(Aot) + /0 t exp(Ao(t —S))(A— Ag) exp(As)ds (3)
e Repeatedly applying (3) leads to
explAt) = exp(Act) + /O " expi Aot — 8))(A— Ao) expl Ags)ds

+ /Ot /Osexp(AO(t —59))(A—Ag) exp(Ao(s—U))(A— Ag) exp(Agu)duds
+ cubic and higher order terms (4)

whereAg = log(2p) andXg is an initial estimate oE.

e The expression of eXp-A) can be obtained by letting= 1 in (4) and
replacingA, Ag in (4) with —A, —Ap.
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Approximation to the Log-Likelihood
e The term tfexp(—A)S can be written as
triexp(—A)S =tr(S, 1) / tr[(A—Ag)Z, 53 Yds

. U-S/pn —Ugss—1
+ /O /O tr[(A— Ao) Z4~S(A— Ag)Z5USES | duds

+ cubic and higher order terms (5)

e By leaving out the higher order terms in (5), we approximafed) by using
Ih(A):

In(A) =tr(SSg 1) — [ /O 1tr[(A—Ao)255323—1]ds— tr(A)

1 s u—s —Ugss—1
+/O /Otr[(A—Ao)Zo (A— Aoz s duds (6)
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Explicit Form of 1,(A)

e The integrations i,(A) can be analytically solved through the spectral
decomposition oy = ToDgTy,.

e Some Notation:
— HereDg = diag(df)), e dE,O)) with di(O> 's as the eigenvalues ap.
— To=(t; (0) tfoo)) with t-(o) as the corresponding eigenvectortﬁhS?).
— LetB= T’ 0(A—A0)To = (bij) pxp, aNAS=T{STo = (§ ) pxp.

e Thely(A) can be written as a function of;:

P

p
gibf + S &bt +2 ;Tijbiibij - gk Nkij Dik D
le : IZJ i;j | kZli<j,i ) #K

p
- [Z\ Biibi +27 Bijbij (7)

i<]

up to some constant. Gettiidy— GettingA.
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e For the linear term,

Some Detalls

. ~ (0 0 0) 4(0
s o §i(d”-dY)/d%d”)
BII - W T BIJ - (O) (o)
i (logd; ™ —logd;™)
e For the quadratic term,
i %,
: _§/dY-8/d”  (@®/d? - 15/d° +dP/d° -1,/
! Iogdfo)—logdi(o) (Iogd})—logdi()) ’
I I Rt T d® |
" | (1ogd® ~logd®)2 " logd® — logd® |
[ l/di(O) B l/dj(o) . l/d(o) 1/d(0) Z/dl<<0) _ 1/di(0) _ l/dfo)
Nkij =
log(d” /) log(d[ /) tog(dh” /¢ og(d® /d”)  log(d” /o) log(cl” /%)
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The Log-ME Method

e Propose aregularized method to estintatey using the approximate
log-likelihood functionl,(A).

e Consider the penalty functigp||2 = tr(A%) = S, (log(di))?, whered; is the
eigenvalue of the covariance matbix

— If di goes to zero or diverges to infinity, the value of (dg goes to infinity
In both cases.

— Such a penalty function casimultaneouslyegularize the largest and
smallest eigenvalues of the covariance matrix estimate.

e EstimateX, or equivalentlyA, by minimizing
In,)\(B) = In,)\ (A) — |n(A) —I—)\'[I‘(AZ), (8)

whereA Is a tuning parameter.
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An lterative Algorithm

e Thel,,(B) depends on an initial estimalg, or equivalentlyAo.

o Propose to iteratively udg (B) to obtain its minimizeB:
Algorithm:
Step 1 Set an initial covariance matrix estimag, a positive definite matrix.
Step 2 Use the spectral decompositiag = ToDgTy, and sefg = log(Zo).
Step 3 ComputeB by minimizingl, in (10). Then obtaih = ToBT, + Ao,
and update the estimate by

5> = exp(A) = exp(ToBT,+ Ao).

Step 4 Check if || — >o||2 is less than a pre-specified positive tolerance
value. Otherwise, s&t, = 5 and go back t&tep 2

e Set an initialXg in Step 1to beS+¢l.
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Simulation Study

e Six different covariance models @&f= (0jj ) pxp are used for comparison,
— Model 1: Homogeneous model with= 1.
— Model 2: MA(1) model withoj = 1,0jj—1 = 0j_1; = 0.45.
— Model 3: Circle model withojj = 1,0jj-1 = 0j_1j = 0.3,
O1p=0p1=0.3.
e Compare four estimation methods: the banding estimat&é@Band Levina,

2008), the LW estimate (Ledoit and Wolf, 2006), the Glassoede (Yuan
and Lin, 2007), and the CN estimate (Won et al., 2009).

e Consider two loss functions to evaluate the performancadch enethod,
KL= —log|S | +tr(E %) — (—log|= |+ p),
A = |dy/dp — dy/dp|.

whered; andd, are the largest and smallest eigenvalué.oDenotech and
dp to be their estimates.
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Simulation Results

Averages and standard errors from 100 runs in the case=-d$0, p = 50.

Log-ME Banding LW Glasso CN
Model KL AV KL JAY] KL AY] KL AY] KL JAV]

1 0.08 0.22 1.31 1.74 0.10 0.18 2.11 1.19 0.22 0.0¢
(0.00) (0.00) (0.04) (0.52)] (0.01) (0.0R) (0.02) (0.02) 0. (0.01)

2 12.75 15.19 912.02* 343.60 13.11 15,73 14.67 1%.67 13.68 .6216
(0.02) (0.05) (882.90) (152.82) (0.02) (0.04) (0.03) (0.03%0.02) (0.02)

3 4.85 1.56 3.72 5.62 4.70 2.10 7.27 1.82 4.88 2.7:
(0.01) (0.01) (0.13) (0.39) (0.01) (0.08) (0.02) (0.02) 0. (0.02)

Note: The value marked withmeans it is affected by the matrix singularity.
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Portfolio Optimization of Stock Data

e Apply the Log-ME method in an application of portfolio opimation.

e In mean-variance optimization, the risk of a portfoo= (wy, ..., wy) is
measured by the standard deviatidw™ > 1w, wherew; > 0 andyPw; = 1.

e The estimated minimum variance portfolio optimizationigem is

minw' S 'w (9)
W

P

wheres is an estimate of the true covariance mamix

e An accurate covariance matrix estimatean lead to a better portfolio
strategy.
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The Setting-up

e Consider the weekly returns pf= 30 components of the Dow Jones
Industrial Index from January 8th, 2007 to June 28th, 2010.

e Use the firsh = 50 observations as the training set, the next 50 obsergtion
as the validation set, artde remaining83 observations for the test set.

o Let Xisbe the test set anfls be the sample covariance matrixXg. The
performance of a portfoliav is measured by theealized return

R(W) = w' X,
XeAts

and therealized risk
o(w) = /W' Sqw.

e The optimal portfolion’is computed witl> estimated by the Log-ME method,
the CN method (Won et al., 2009) and tReseparately.
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The Comparison Results

Table 1. The comparison of the realized return and the realized risk.

Log-ME CN S
Realized returiR(Ww) 0.218 0.123| 0.059
Realized risko(W) 0.029 0.024| 0.035

e The Log-ME method produced a portfolio with a larger realizeturn but
smaller realized risk.
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Comparison in Different Periods
Consider the portfolio strategy using the Log-ME methodvanous
covariance matrix estimation methods.

Given a stating week, use the first 50 observations as thergeset, the next
50 observations as a validation set, dmel third 50 observationas a test set.

Shift the starting week one ahead every time, and evaluatpdhfolio
strategy of 33 different consecutive test periods.

The optimal portfolionis computed witt® estimated by the Log-ME method,
the CN method and the sample covariance matrix method, aebar
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The Realized Returns
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The proposed Log-ME covariance matrix estimate can leathtwen returns.
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The Realized Risks

Realized Risk
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The log-ME method has relatively higher risks than the CNhaoéf but it provides
much larger realized returns than the CN method.
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Summary
Estimate the covariance matrix through its matrix logamithased on a
penalized likelihood function.

The Log-ME method regularizes the largest and smalleshealees
simultaneously by imposing a convex penalty.

Other penalty functions can be considered to improve theagbn In
different perspectives.

Extend to Bayesian covariance matrix estimation for thgdgrsmalln
problem.
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Thank you!
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The Log-ME Method (Con't)

e Note that t(A?) = tr((ToBT,+ Ao)?) is equivalent to {fB?) + 2tr(Bl) up to
some constant, whefe= (Vi) pxp = ToAoTo.

e Interms ofB, the functionl,, (A) becomes

P 1
I\ (B) = Z&ibt + EIJ -+ 2 Tjj bii by ‘|‘ Nkij ik O
" |ZZ : IZJ le k= 1|<J|7;,j7ék
< BubiiJrZZBijbij) (10)
i<]
) P 5 P
Al = b.._|_ bs + y--b--+2 y--b-- .

o Thel,,(B) is still a quadratic function oB = (bjj ).
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The CN Method
e The CN method is to estimadewith a constraint on its condition number
(Won et al., 2009).

e They consideZ = Tdiag(; ', ..., Gy 1) T’, whereT is from the spectral
decomposition o6= Tdiag(l1,...,lp)T".

e Thely,...,Up are obtained by solving the constraint optimization

p
min liu; — logui
U,ug,...,Up IZ( a J ')
st. u<u <Kmad, i=1,...,p,
wherekmnax IS a tuning parameter.

e The tuning parameter is computed through an independedatian set.

27



