Log Covariance Matrix Estimation

Xinwei Deng

Department of Statistics University of Wisconsin-Madison

Joint work with Kam-Wah Tsui (Univ. of Wisconsin-Madsion)

Outline

- Background and Motivation
- The Proposed Log-ME Method
- Simulation and Real Example
- Summary and Discussion

Background

- Covariance matrix estimation is important in multivariate analysis and many statistical applications.
- Suppose x_1, \ldots, x_n are i.i.d. *p*-dimensional random vectors $\sim N(0, \Sigma)$. Let $S = \sum_{i=1}^{n} x_i x'_i / n$ be the sample covariance matrix. The negative log-likelihood function is proportional to

$$L_n(\Sigma) = -\log |\Sigma^{-1}| + tr[\Sigma^{-1}S].$$
 (1)

- Recent interests of p is large or $p \approx n$. S is not a stable estimate.
 - The largest eigenvalues of S overly estimate the true eigenvalues.
 - When p > n, *S* is singular and the smallest eigenvalue is zero. How to estimate Σ^{-1} ?

Recent Estimation Methods on Σ or Σ^{-1}

- Reduce number of nonzeros estimates of Σ or Σ^{-1} .
 - Σ : Bickel and Levina (2008), using thresholding.
 - Σ⁻¹: Yuan and Lin (2007), l₁ penalty on Σ⁻¹.
 Friedman et al., (2008), Graphical Lasso.
 Meinshausen and Buhlmann (2006), Reformulated as regression.
- Shrinkage estimates of the covariance matrix.
 - Ledoit and Wolf (2006), $\rho\Sigma + (1 \rho)\mu I$.
 - Won et al. (2009), control the condition number (largest eigenvalue/smallest eigenvalue).

Motivation

- Estimate of Σ or Σ^{-1} needs to be positive definite.
 - The mathematical restriction makes the covariance matrix estimation problem challenging.
- Any positive definite Σ can be expressed as a matrix exponential of a real symmetric matrix *A*.

$$\Sigma = \exp(A) = I + A + \frac{A^2}{2!} + \cdots$$

- Expressing the likelihood function in terms of $A \equiv log(\Sigma)$ releases the mathematical restriction.
- Consider the spectral decomposition of $\Sigma = TDT'$ with $D = diag(d_1, \dots, d_p)$. Then A = TMT' with $M = diag(\log(d_1), \dots, \log(d_p))$.

Idea of the Proposed Method

- Leonard and Hsu (1992) used this log-transformation method to estimate Σ by approximating the likelihood using Volterra integral equation.
 - Their approximation based on on *S* being nonsingular \Rightarrow not applicable when $p \ge n$.
- We extend the likelihood approximation to the case of singular *S*.
- Regularize the largest and smallest eigenvalues of Σ *simultaneously*.
- An efficient iterative quadratic programming algorithm to estimate A (log Σ).
- Call the resulting estimate "Log-ME", Logarithm-transformed Matrix Estimate.

A Simple Example

- Experiment: simulate x_i 's from N(0, I), i = 1, ..., n where n = 50.
- For each *p* varying from 5 to 100, consider the largest and smallest eigenvalues of the covariance matrix estimate.
- For each *p*, repeat the experiment 100 times and compute the average of the largest eigenvalues and the average of the smallest eigenvalues for
 - The sample covariance matrix.
 - The Log-ME covariance matrix estimate

The averages of the largest and smallest eigenvalues of covariance matrix estimates over the dimension p. The true eigenvalues are all equal to 1.

The Transformed Log-Likelihood

• In terms of the covariance matrix logarithm *A*, the negative log-likelihood function in (1) becomes

$$L_n(A) = \operatorname{tr}(A) + \operatorname{tr}[\exp(-A)S].$$
(2)

- The problem of estimating a positive definite matrix Σ now becomes a problem of estimating a real symmetric matrix *A*.
- Because of the matrix exponential term $\exp(-A)S$, estimating *A* by directly minimizing $L_n(A)$ is nontrivial.
- Our approach: Approximate exp(-A)S using the Volterra integral equation (valid even for S singular case).

The Volterra Integral Equation

• The Volterra integral equation (Bellman, 1970, page 175) is

$$\exp(At) = \exp(A_0t) + \int_0^t \exp(A_0(t-s))(A-A_0)\exp(As)ds.$$
(3)

• Repeatedly applying (3) leads to

$$\exp(At) = \exp(A_0t) + \int_0^t \exp(A_0(t-s))(A - A_0) \exp(A_0s) ds + \int_0^t \int_0^s \exp(A_0(t-s))(A - A_0) \exp(A_0(s-u))(A - A_0) \exp(A_0u) du ds + \text{ cubic and higher order terms},$$
(4)

where $A_0 = \log(\Sigma_0)$ and Σ_0 is an initial estimate of Σ .

• The expression of exp(-A) can be obtained by letting t = 1 in (4) and replacing A, A_0 in (4) with $-A, -A_0$.

Approximation to the Log-Likelihood

• The term tr[exp(-A)S] can be written as

$$tr[exp(-A)S] = tr(S\Sigma_0^{-1}) - \int_0^1 tr[(A - A_0)\Sigma_0^{-s}S\Sigma_0^{s-1}]ds + \int_0^1 \int_0^s tr[(A - A_0)\Sigma_0^{u-s}(A - A_0)\Sigma_0^{-u}S\Sigma_0^{s-1}]duds + cubic and higher order terms.$$
(5)

• By leaving out the higher order terms in (5), we approximate $L_n(A)$ by using $l_n(A)$:

$$l_{n}(A) = \operatorname{tr}(S\Sigma_{0}^{-1}) - \left[\int_{0}^{1} \operatorname{tr}[(A - A_{0})\Sigma_{0}^{-s}S\Sigma_{0}^{s-1}]ds - \operatorname{tr}(A)\right] + \int_{0}^{1} \int_{0}^{s} \operatorname{tr}[(A - A_{0})\Sigma_{0}^{u-s}(A - A_{0})\Sigma_{0}^{-u}S\Sigma_{0}^{s-1}]duds.$$
(6)

Explicit Form of $l_n(A)$

- The integrations in $l_n(A)$ can be analytically solved through the spectral decomposition of $\Sigma_0 = T_0 D_0 T'_0$.
- Some Notation:
 - Here $D_0 = diag(d_1^{(0)}, \dots, d_p^{(0)})$ with $d_i^{(0)}$'s as the eigenvalues of Σ_0 . - $T_0 = (t_1^{(0)}, \dots, t_p^{(0)})$ with $t_i^{(0)}$ as the corresponding eigenvector for $d_i^{(0)}$. - Let $B = T'_0(A - A_0)T_0 = (b_{ij})_{p \times p}$, and $\tilde{S} = T'_0ST_0 = (\tilde{s}_{ij})_{p \times p}$.
- The $l_n(A)$ can be written as a function of b_{ij} :

$$l_{n}(A) = \sum_{i=1}^{p} \frac{1}{2} \xi_{ii} b_{ii}^{2} + \sum_{i < j} \xi_{ij} b_{ij}^{2} + 2 \sum_{i=1}^{p} \sum_{j \neq i} \tau_{ij} b_{ii} b_{ij} + \sum_{k=1}^{p} \sum_{i < j, i \neq k, j \neq k} \eta_{kij} b_{ik} b_{kj} - \left[\sum_{i=1}^{p} \beta_{ii} b_{ii} + 2 \sum_{i < j} \beta_{ij} b_{ij} \right],$$
(7)

up to some constant. Getting $B \leftrightarrow$ Getting A.

Some Details

• For the linear term,

$$\beta_{ii} = \frac{\tilde{s}_{ii}}{d_i^{(0)}} - 1, \ \beta_{ij} = \frac{\tilde{s}_{ij}(d_i^{(0)} - d_j^{(0)})/(d_i^{(0)}d_j^{(0)})}{(\log d_i^{(0)} - \log d_j^{(0)})}.$$

• For the quadratic term,

$$\begin{split} \xi_{ii} &= \frac{\tilde{s}_{ii}}{d_i^{(0)}}, \\ \xi_{ij} &= \frac{\tilde{s}_{ii}/d_i^{(0)} - \tilde{s}_{jj}/d_j^{(0)}}{\log d_j^{(0)} - \log d_i^{(0)}} + \frac{(d_i^{(0)}/d_j^{(0)} - 1)\tilde{s}_{ii}/d_i^{(0)} + (d_j^{(0)}/d_i^{(0)} - 1)\tilde{s}_{jj}/d_j^{(0)}}{(\log d_j^{(0)} - \log d_i^{(0)})^2}, \\ \tau_{ij} &= \left[\frac{1/d_j^{(0)} - 1/d_i^{(0)}}{(\log d_j^{(0)} - \log d_i^{(0)})^2} + \frac{1/d_i^{(0)}}{\log d_j^{(0)} - \log d_i^{(0)}}\right]\tilde{s}_{ij}, \\ \eta_{kij} &= \left[\frac{1/d_i^{(0)} - 1/d_j^{(0)}}{\log (d_k^{(0)}/d_j^{(0)})\log (d_j^{(0)}/d_i^{(0)})} + \frac{1/d_j^{(0)} - 1/d_i^{(0)}}{\log (d_k^{(0)}/d_i^{(0)})\log (d_i^{(0)}/d_j^{(0)})} + \frac{2/d_k^{(0)} - 1/d_i^{(0)} - 1/d_j^{(0)}}{\log (d_k^{(0)}/d_i^{(0)})\log (d_j^{(0)}/d_i^{(0)})}\right]\tilde{s}_{ij}. \end{split}$$

The Log-ME Method

- Propose a regularized method to estimate Σ by using the approximate log-likelihood function *l_n(A)*.
- Consider the penalty function $||A||_F^2 = \operatorname{tr}(A^2) = \sum_{i=1}^p (\log(d_i))^2$, where d_i is the eigenvalue of the covariance matrix Σ .
 - If d_i goes to zero or diverges to infinity, the value of $log(d_i)$ goes to infinity in both cases.
 - Such a penalty function can *simultaneously* regularize the largest and smallest eigenvalues of the covariance matrix estimate.
- Estimate Σ , or equivalently *A*, by minimizing

$$l_{n,\lambda}(B) \equiv l_{n,\lambda}(A) = l_n(A) + \lambda \operatorname{tr}(A^2), \tag{8}$$

where λ is a tuning parameter.

An Iterative Algorithm

- The $l_{n,\lambda}(B)$ depends on an initial estimate Σ_0 , or equivalently, A_0 .
- Propose to iteratively use *l_{n,λ}(B)* to obtain its minimizer *B*̂:
 Algorithm:

Step 1: Set an initial covariance matrix estimate Σ_0 , a positive definite matrix.

Step 2: Use the spectral decomposition $\Sigma_0 = T_0 D_0 T'_0$, and set $A_0 = \log(\Sigma_0)$. **Step 3**: Compute \hat{B} by minimizing $l_{n,\lambda}$ in (10). Then obtain $\hat{A} = T_0 \hat{B} T'_0 + A_0$, and update the estimate of Σ by

$$\hat{\Sigma} = \exp(\hat{A}) = \exp(T_0\hat{B}T'_0 + A_0).$$

Step 4: Check if $\|\hat{\Sigma} - \Sigma_0\|_F^2$ is less than a pre-specified positive tolerance value. Otherwise, set $\Sigma_0 = \hat{\Sigma}$ and go back to **Step 2**.

• Set an initial Σ_0 in **Step 1** to be $S + \varepsilon I$.

Simulation Study

- Six different covariance models of $\Sigma = (\sigma_{ij})_{p \times p}$ are used for comparison,
 - Model 1: Homogeneous model with $\Sigma = I$.
 - Model 2: MA(1) model with $\sigma_{ii} = 1, \sigma_{i,i-1} = \sigma_{i-1,i} = 0.45$.
 - Model 3: Circle model with $\sigma_{ii} = 1, \sigma_{i,i-1} = \sigma_{i-1,i} = 0.3$, $\sigma_{1,p} = \sigma_{p,1} = 0.3$.
- Compare four estimation methods: the banding estimate (Bickel and Levina, 2008), the LW estimate (Ledoit and Wolf, 2006), the Glasso estimate (Yuan and Lin, 2007), and the CN estimate (Won et al., 2009).
- Consider two loss functions to evaluate the performance of each method,

$$KL = -\log|\hat{\Sigma}^{-1}| + \operatorname{tr}(\hat{\Sigma}^{-1}\Sigma) - (-\log|\Sigma^{-1}| + p),$$

$$\Delta_1 = |\hat{d}_1/\hat{d}_p - d_1/d_p|,$$

where d_1 and d_p are the largest and smallest eigenvalue of Σ . Denote \hat{d}_1 and \hat{d}_p to be their estimates.

Simulation Results

Averages and standard errors from 100 runs in the case of n = 50, p = 50.

	Log-ME		Banding		LW		Glasso		CN	
Model	KL	Δ_1	KL	Δ_1	KL	Δ_1	KL	Δ_1	KL	Δ_1
1	0.08	0.22	1.31	1.74	0.10	0.18	2.11	1.19	0.22	0.09
	(0.00)	(0.00)	(0.04)	(0.52)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)
2	12.75	15.19	912.02*	343.60	13.11	15.73	14.67	15.67	13.68	16.62
	(0.02)	(0.05)	(882.90)	(152.82)	(0.02)	(0.04)	(0.03)	(0.03)	(0.02)	(0.02)
3	4.85	1.56	3.72	5.62	4.70	2.10	7.27	1.82	4.88	2.71
	(0.01)	(0.01)	(0.13)	(0.39)	(0.01)	(0.03)	(0.02)	(0.02)	(0.01)	(0.02)

Note: The value marked with * means it is affected by the matrix singularity.

Portfolio Optimization of Stock Data

- Apply the Log-ME method in an application of portfolio optimization.
- In mean-variance optimization, the risk of a portfolio $w = (w_1, \dots, w_p)$ is measured by the standard deviation $\sqrt{w^T \Sigma^{-1} w}$, where $w_i \ge 0$ and $\sum_i^p w_i = 1$.
- The estimated minimum variance portfolio optimization problem is

$$\min_{W} w^{T} \hat{\Sigma}^{-1} w$$
(9)
s.t.
$$\sum_{i}^{p} w_{i} = 1,$$

where $\hat{\Sigma}$ is an estimate of the true covariance matrix Σ .

• An accurate covariance matrix estimate $\hat{\Sigma}$ can lead to a better portfolio strategy.

The Setting-up

- Consider the weekly returns of p = 30 components of the Dow Jones Industrial Index from January 8th, 2007 to June 28th, 2010.
- Use the first n = 50 observations as the training set, the next 50 observations as the validation set, and *the remaining* 83 observations for the test set.
- Let X_{ts} be the test set and S_{ts} be the sample covariance matrix of X_{ts} . The performance of a portfolio *w* is measured by the *realized return*

$$R(w) = \sum_{X \in X_{ts}} w^T x,$$

and the *realized risk*

$$\sigma(w) = \sqrt{w^T S_{ts} w}.$$

 The optimal portfolio w̃ is computed with Σ̂ estimated by the Log-ME method, the CN method (Won et al., 2009) and the *S*, separately.

The Comparison Results

Table 1. The comparison of the realized return and the realized risk.

	Log-ME	CN	S
Realized return $R(\tilde{w})$	0.218	0.123	0.059
Realized risk $\sigma(\tilde{w})$	0.029	0.024	0.035

• The Log-ME method produced a portfolio with a larger realized return but smaller realized risk.

Comparison in Different Periods

- Consider the portfolio strategy using the Log-ME method for various covariance matrix estimation methods.
- Given a stating week, use the first 50 observations as the training set, the next 50 observations as a validation set, and *the third* 50 *observations* as a test set.
- Shift the starting week one ahead every time, and evaluate the portfolio strategy of 33 different consecutive test periods.
- The optimal portfolio \tilde{w} is computed with $\hat{\Sigma}$ estimated by the Log-ME method, the CN method and the sample covariance matrix method, separately.

The Realized Returns

The proposed Log-ME covariance matrix estimate can lead to higher returns.

The Realized Risks

The log-ME method has relatively higher risks than the CN method, but it provides much larger realized returns than the CN method.

Summary

- Estimate the covariance matrix through its matrix logarithm based on a penalized likelihood function.
- The Log-ME method regularizes the largest and smallest eigenvalues simultaneously by imposing a convex penalty.
- Other penalty functions can be considered to improve the estimation in different perspectives.
- Extend to Bayesian covariance matrix estimation for the large-*p*-small-*n* problem.

Thank you!

The Log-ME Method (Con't)

- Note that $\operatorname{tr}(A^2) = \operatorname{tr}((T_0BT'_0 + A_0)^2)$ is equivalent to $\operatorname{tr}(B^2) + 2\operatorname{tr}(B\Gamma)$ up to some constant, where $\Gamma = (\gamma_{ij})_{p \times p} = T'_0A_0T_0$.
- In terms of *B*, the function $l_{n,\lambda}(A)$ becomes

$$l_{n,\lambda}(B) = \sum_{i=1}^{p} \frac{1}{2} \xi_{ii} b_{ii}^{2} + \sum_{i < j} \xi_{ij} b_{ij}^{2} + 2 \sum_{i=1}^{p} \sum_{j \neq i} \tau_{ij} b_{ii} b_{ij} + \sum_{k=1}^{p} \sum_{i < j, i \neq k, j \neq k} \eta_{kij} b_{ik} b_{kj}$$

$$- \left(\sum_{i=1}^{p} \beta_{ii} b_{ii} + 2 \sum_{i < j} \beta_{ij} b_{ij} \right)$$

$$+ \lambda \left[\frac{1}{2} \sum_{i=1}^{p} b_{ii}^{2} + \sum_{i < j}^{p} b_{ij}^{2} + \sum_{i=1}^{p} \gamma_{ii} b_{ii} + 2 \sum_{i < j} \gamma_{ij} b_{ij} \right].$$
(10)

• The $l_{n,\lambda}(B)$ is still a quadratic function of $B = (b_{ij})$.

The CN Method

- The CN method is to estimate Σ with a constraint on its condition number (Won et al., 2009).
- They consider $\hat{\Sigma} = T \operatorname{diag}(\hat{u}_1^{-1}, \dots, \hat{u}_p^{-1})T'$, where *T* is from the spectral decomposition of $S = T \operatorname{diag}(l_1, \dots, l_p)T'$.
- The $\hat{u}_1, \ldots, \hat{u}_p$ are obtained by solving the constraint optimization

$$\min_{\substack{u,u_1,\ldots,u_p\\ s.t.}} \sum_{i}^{p} (l_i u_i - \log u_i)$$
$$s.t. \quad u \le u_i \le \kappa_{max} u, \ i = 1, \ldots, p,$$

where κ_{max} is a tuning parameter.

• The tuning parameter is computed through an independent validation set.