Log Covariance Matrix Estimation

Xinwei Deng
Department of Statistics
University of Wisconsin-Madison
Joint work with Kam-Wah Tsui (Univ. of Wisconsin-Madsion)

Outline

- Background and Motivation
- The Proposed Log-ME Method
- Simulation and Real Example
- Summary and Discussion

Background

- Covariance matrix estimation is important in multivariate analysis and many statistical applications.
- Suppose x_{1}, \ldots, x_{n} are i.i.d. p-dimensional random vectors $\sim N(0, \Sigma)$. Let $S=\sum_{i=1}^{n} x_{i} x_{i}^{\prime} / n$ be the sample covariance matrix. The negative log-likelihood function is proportional to

$$
\begin{equation*}
L_{n}(\Sigma)=-\log \left|\Sigma^{-1}\right|+\operatorname{tr}\left[\Sigma^{-1} S\right] \tag{1}
\end{equation*}
$$

- Recent interests of p is large or $p \approx n . S$ is not a stable estimate.
- The largest eigenvalues of S overly estimate the true eigenvalues.
- When $p>n, S$ is singular and the smallest eigenvalue is zero. How to estimate Σ^{-1} ?

Recent Estimation Methods on Σ or Σ^{-1}

- Reduce number of nonzeros estimates of Σ or Σ^{-1}.
- Σ : Bickel and Levina (2008), using thresholding.
- Σ^{-1} : Yuan and Lin (2007), l_{1} penalty on Σ^{-1}.

Friedman et al., (2008), Graphical Lasso.
Meinshausen and Buhlmann (2006), Reformulated as regression.

- Shrinkage estimates of the covariance matrix.
- Ledoit and Wolf (2006), $\rho \Sigma+(1-\rho) \mu I$.
- Won et al. (2009), control the condition number (largest eigenvalue/smallest eigenvalue).

Motivation

- Estimate of Σ or Σ^{-1} needs to be positive definite.
- The mathematical restriction makes the covariance matrix estimation problem challenging.
- Any positive definite Σ can be expressed as a matrix exponential of a real symmetric matrix A.

$$
\Sigma=\exp (A)=I+A+\frac{A^{2}}{2!}+\cdots
$$

- Expressing the likelihood function in terms of $A \equiv \log (\Sigma)$ releases the mathematical restriction.
- Consider the spectral decomposition of $\Sigma=T D T^{\prime}$ with $D=\operatorname{diag}\left(d_{1}, \ldots, d_{p}\right)$. Then $A=T M T^{\prime}$ with $M=\operatorname{diag}\left(\log \left(d_{1}\right), \ldots, \log \left(d_{p}\right)\right)$.

Idea of the Proposed Method

- Leonard and Hsu (1992) used this log-transformation method to estimate Σ by approximating the likelihood using Volterra integral equation.
- Their approximation based on on S being nonsingular \Rightarrow not applicable when $p \geq n$.
- We extend the likelihood approximation to the case of singular S.
- Regularize the largest and smallest eigenvalues of Σ simultaneously.
- An efficient iterative quadratic programming algorithm to estimate $A(\log \Sigma)$.
- Call the resulting estimate "Log-ME", Logarithm-transformed Matrix Estimate.

A Simple Example

- Experiment: simulate x_{i} 's from $N(0, I), i=1, \ldots, n$ where $n=50$.
- For each p varying from 5 to 100 , consider the the largest and smallest eigenvalues of the covariance matrix estimate.
- For each p, repeat the experiment 100 times and compute the average of the largest eigenvalues and the average of the smallest eigenvalues for
- The sample covariance matrix.
- The Log-ME covariance matrix estimate

The averages of the largest and smallest eigenvalues of covariance matrix estimates over the dimension p. The true eigenvalues are all equal to 1 .

The Transformed Log-Likelihood

- In terms of the covariance matrix logarithm A, the negative log-likelihood function in (1) becomes

$$
\begin{equation*}
L_{n}(A)=\operatorname{tr}(A)+\operatorname{tr}[\exp (-A) S] \tag{2}
\end{equation*}
$$

- The problem of estimating a positive definite matrix Σ now becomes a problem of estimating a real symmetric matrix A.
- Because of the matrix exponential term $\exp (-A) S$, estimating A by directly minimizing $L_{n}(A)$ is nontrivial.
- Our approach: Approximate $\exp (-A) S$ using the Volterra integral equation (valid even for S singular case).

The Volterra Integral Equation

- The Volterra integral equation (Bellman, 1970, page 175) is

$$
\begin{equation*}
\exp (A t)=\exp \left(A_{0} t\right)+\int_{0}^{t} \exp \left(A_{0}(t-s)\right)\left(A-A_{0}\right) \exp (A s) d s \tag{3}
\end{equation*}
$$

- Repeatedly applying (3) leads to

$$
\begin{align*}
\exp (A t) & =\exp \left(A_{0} t\right)+\int_{0}^{t} \exp \left(A_{0}(t-s)\right)\left(A-A_{0}\right) \exp \left(A_{0} s\right) d s \\
& +\int_{0}^{t} \int_{0}^{s} \exp \left(A_{0}(t-s)\right)\left(A-A_{0}\right) \exp \left(A_{0}(s-u)\right)\left(A-A_{0}\right) \exp \left(A_{0} u\right) d u d s \\
& + \text { cubic and higher order terms } \tag{4}
\end{align*}
$$

where $A_{0}=\log \left(\Sigma_{0}\right)$ and Σ_{0} is an initial estimate of Σ.

- The expression of $\exp (-A)$ can be obtained by letting $t=1$ in (4) and replacing A, A_{0} in (4) with $-A,-A_{0}$.

Approximation to the Log-Likelihood

- The term $\operatorname{tr}[\exp (-A) S]$ can be written as

$$
\begin{align*}
\operatorname{tr}[\exp (-A) S]= & \operatorname{tr}\left(S \Sigma_{0}^{-1}\right)-\int_{0}^{1} \operatorname{tr}\left[\left(A-A_{0}\right) \Sigma_{0}^{-s} S \Sigma_{0}^{s-1}\right] d s \\
& +\int_{0}^{1} \int_{0}^{s} \operatorname{tr}\left[\left(A-A_{0}\right) \Sigma_{0}^{u-s}\left(A-A_{0}\right) \Sigma_{0}^{-u} S \Sigma_{0}^{s-1}\right] d u d s \\
& + \text { cubic and higher order terms. } \tag{5}
\end{align*}
$$

- By leaving out the higher order terms in (5), we approximate $L_{n}(A)$ by using $l_{n}(A)$:

$$
\begin{align*}
l_{n}(A)= & \operatorname{tr}\left(S \Sigma_{0}^{-1}\right)-\left[\int_{0}^{1} \operatorname{tr}\left[\left(A-A_{0}\right) \Sigma_{0}^{-s} S \Sigma_{0}^{s-1}\right] d s-\operatorname{tr}(A)\right] \\
& +\int_{0}^{1} \int_{0}^{s} \operatorname{tr}\left[\left(A-A_{0}\right) \Sigma_{0}^{u-s}\left(A-A_{0}\right) \Sigma_{0}^{-u} S \Sigma_{0}^{s-1}\right] d u d s \tag{6}
\end{align*}
$$

Explicit Form of $l_{n}(A)$

- The integrations in $l_{n}(A)$ can be analytically solved through the spectral decomposition of $\Sigma_{0}=T_{0} D_{0} T_{0}^{\prime}$.
- Some Notation:
- Here $D_{0}=\operatorname{diag}\left(d_{1}^{(0)}, \ldots, d_{p}^{(0)}\right)$ with $d_{i}^{(0)}$, s as the eigenvalues of Σ_{0}.
- $T_{0}=\left(t_{1}^{(0)}, \ldots, t_{p}^{(0)}\right)$ with $t_{i}^{(0)}$ as the corresponding eigenvector for $d_{i}^{(0)}$.
- Let $B=T_{0}^{\prime}\left(A-A_{0}\right) T_{0}=\left(b_{i j}\right)_{p \times p}$, and $\tilde{S}=T_{0}^{\prime} S T_{0}=\left(\tilde{s}_{i j}\right)_{p \times p}$.
- The $l_{n}(A)$ can be written as a function of $b_{i j}$:

$$
\begin{align*}
l_{n}(A)= & \sum_{i=1}^{p} \frac{1}{2} \xi_{i i} b_{i i}^{2}+\sum_{i<j} \xi_{i j} b_{i j}^{2}+2 \sum_{i=1}^{p} \sum_{j \neq i} \tau_{i j} b_{i i} b_{i j}+\sum_{k=1}^{p} \sum_{i<j, i \neq k, j \neq k} \eta_{k i j} b_{i k} b_{k j} \\
& -\left[\sum_{i=1}^{p} \beta_{i i} b_{i i}+2 \sum_{i<j} \beta_{i j} b_{i j}\right] \tag{7}
\end{align*}
$$

up to some constant. Getting $B \leftrightarrow \operatorname{Getting} A$.

Some Details

- For the linear term,

$$
\beta_{i i}=\frac{\tilde{s}_{i i}}{d_{i}^{(0)}}-1, \beta_{i j}=\frac{\tilde{s}_{i j}\left(d_{i}^{(0)}-d_{j}^{(0)}\right) /\left(d_{i}^{(0)} d_{j}^{(0)}\right)}{\left(\log d_{i}^{(0)}-\log d_{j}^{(0)}\right)}
$$

- For the quadratic term,

$$
\begin{aligned}
\xi_{i i} & =\frac{\tilde{s}_{i i}}{d_{i}^{(0)}} \\
\xi_{i j} & =\frac{\tilde{s}_{i i} / d_{i}^{(0)}-\tilde{s}_{j j} / d_{j}^{(0)}}{\log d_{j}^{(0)}-\log d_{i}^{(0)}}+\frac{\left(d_{i}^{(0)} / d_{j}^{(0)}-1\right) \tilde{s i i}_{i i} / d_{i}^{(0)}+\left(d_{j}^{(0)} / d_{i}^{(0)}-1\right) \tilde{s}_{j j} / d_{j}^{(0)}}{\left(\log d_{j}^{(0)}-\log d_{i}^{(0)}\right)^{2}}, \\
\tau_{i j} & =\left[\frac{1 / d_{j}^{(0)}-1 / d_{i}^{(0)}}{\left(\log d_{j}^{(0)}-\log d_{i}^{(0)}\right)^{2}}+\frac{1 / d_{i}^{(0)}}{\log d_{j}^{(0)}-\log d_{i}^{(0)}}\right] \tilde{s}_{i j}, \\
\eta_{k i j} & =\left[\frac{1 / d_{i}^{(0)}-1 / d_{j}^{(0)}}{\log \left(d_{k}^{(0)} / d_{j}^{(0)}\right) \log \left(d_{j}^{(0)} / d_{i}^{(0)}\right)}+\frac{1 / d_{j}^{(0)}-1 / d_{i}^{(0)}}{\log \left(d_{k}^{(0)} / d_{i}^{(0)}\right) \log \left(d_{i}^{(0)} / d_{j}^{(0)}\right)}+\frac{2 / d_{k}^{(0)}-1 / d_{i}^{(0)}-1 / d_{j}^{(0)}}{\log \left(d_{k}^{(0)} / d_{i}^{(0)}\right) \log \left(d_{k}^{(0)} / d_{j}^{(0)}\right)}\right] \tilde{s}
\end{aligned}
$$

The Log-ME Method

- Propose a regularized method to estimate Σ by using the approximate log-likelihood function $l_{n}(A)$.
- Consider the penalty function $\|A\|_{F}^{2}=\operatorname{tr}\left(A^{2}\right)=\sum_{i=1}^{p}\left(\log \left(d_{i}\right)\right)^{2}$, where d_{i} is the eigenvalue of the covariance matrix Σ.
- If d_{i} goes to zero or diverges to infinity, the value of $\log \left(d_{i}\right)$ goes to infinity in both cases.
- Such a penalty function can simultaneously regularize the largest and smallest eigenvalues of the covariance matrix estimate.
- Estimate Σ, or equivalently A, by minimizing

$$
\begin{equation*}
l_{n, \lambda}(B) \equiv l_{n, \lambda}(A)=l_{n}(A)+\lambda \operatorname{tr}\left(A^{2}\right) \tag{8}
\end{equation*}
$$

where λ is a tuning parameter.

An Iterative Algorithm

- The $l_{n, \lambda}(B)$ depends on an initial estimate Σ_{0}, or equivalently, A_{0}.
- Propose to iteratively use $l_{n, \lambda}(B)$ to obtain its minimizer \hat{B} :

Algorithm:
Step 1: Set an initial covariance matrix estimate Σ_{0}, a positive definite matrix.
Step 2: Use the spectral decomposition $\Sigma_{0}=T_{0} D_{0} T_{0}^{\prime}$, and set $A_{0}=\log \left(\Sigma_{0}\right)$.
Step 3: Compute \hat{B} by minimizing $l_{n, \lambda}$ in (10). Then obtain $\hat{A}=T_{0} \hat{B} T_{0}^{\prime}+A_{0}$, and update the estimate of Σ by

$$
\hat{\Sigma}=\exp (\hat{A})=\exp \left(T_{0} \hat{B} T_{0}^{\prime}+A_{0}\right)
$$

Step 4: Check if $\left\|\hat{\Sigma}-\Sigma_{0}\right\|_{F}^{2}$ is less than a pre-specified positive tolerance value. Otherwise, set $\Sigma_{0}=\hat{\Sigma}$ and go back to Step 2.

- Set an initial Σ_{0} in Step 1 to be $S+\varepsilon I$.

Simulation Study

- Six different covariance models of $\Sigma=\left(\sigma_{i j}\right)_{p \times p}$ are used for comparison,
- Model 1: Homogeneous model with $\Sigma=I$.
- Model 2: MA(1) model with $\sigma_{i i}=1, \sigma_{i, i-1}=\sigma_{i-1, i}=0.45$.
- Model 3: Circle model with $\sigma_{i i}=1, \sigma_{i, i-1}=\sigma_{i-1, i}=0.3$,

$$
\sigma_{1, p}=\sigma_{p, 1}=0.3
$$

- Compare four estimation methods: the banding estimate (Bickel and Levina, 2008), the LW estimate (Ledoit and Wolf, 2006), the Glasso estimate (Yuan and Lin, 2007), and the CN estimate (Won et al., 2009).
- Consider two loss functions to evaluate the performance of each method,

$$
\begin{aligned}
K L & =-\log \left|\hat{\Sigma}^{-1}\right|+\operatorname{tr}\left(\hat{\Sigma}^{-1} \Sigma\right)-\left(-\log \left|\Sigma^{-1}\right|+p\right) \\
\Delta_{1} & =\left|\hat{d}_{1} / \hat{d}_{p}-d_{1} / d_{p}\right|
\end{aligned}
$$

where d_{1} and d_{p} are the largest and smallest eigenvalue of Σ. Denote \hat{d}_{1} and \hat{d}_{p} to be their estimates.

Simulation Results

Averages and standard errors from 100 runs in the case of $n=50, p=50$.

| | Log-ME | | Banding | | LW | | Glasso | | CN | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $K L$ | Δ_{1} |
| 1 | 0.08 | 0.22 | 1.31 | 1.74 | 0.10 | 0.18 | 2.11 | 1.19 | 0.22 | 0.09 |
| | (0.00) | (0.00) | (0.04) | (0.52) | (0.01) | (0.02) | (0.02) | (0.02) | (0.02) | (0.01) |
| 2 | 12.75 | 15.19 | 912.02^{*} | 343.60 | 13.11 | 15.73 | 14.67 | 15.67 | 13.68 | 16.62 |
| | (0.02) | (0.05) | (882.90) | (152.82) | (0.02) | (0.04) | (0.03) | (0.03) | (0.02) | (0.02) |
| 3 | 4.85 | 1.56 | 3.72 | 5.62 | 4.70 | 2.10 | 7.27 | 1.82 | 4.88 | 2.71 |
| | (0.01) | (0.01) | (0.13) | (0.39) | (0.01) | (0.03) | (0.02) | (0.02) | (0.01) | (0.02) |

Note: The value marked with $*$ means it is affected by the matrix singularity.

Portfolio Optimization of Stock Data

- Apply the Log-ME method in an application of portfolio optimization.
- In mean-variance optimization, the risk of a portfolio $w=\left(w_{1}, \ldots, w_{p}\right)$ is measured by the standard deviation $\sqrt{w^{T} \Sigma^{-1} w}$, where $w_{i} \geq 0$ and $\sum_{i}^{p} w_{i}=1$.
- The estimated minimum variance portfolio optimization problem is

$$
\begin{align*}
& \min _{\mathcal{W}} w^{T} \hat{\Sigma}^{-1} w \tag{9}\\
& \text { s.t. } \sum_{i}^{p} w_{i}=1,
\end{align*}
$$

where $\hat{\Sigma}$ is an estimate of the true covariance matrix Σ.

- An accurate covariance matrix estimate $\hat{\Sigma}$ can lead to a better portfolio strategy.

The Setting-up

- Consider the weekly returns of $p=30$ components of the Dow Jones Industrial Index from January 8th, 2007 to June 28th, 2010.
- Use the first $n=50$ observations as the training set, the next 50 observations as the validation set, and the remaining 83 observations for the test set.
- Let $X_{t s}$ be the test set and $S_{t s}$ be the sample covariance matrix of $X_{t s}$. The performance of a portfolio w is measured by the realized return

$$
R(w)=\sum_{x \in X_{t s}} w^{T} x
$$

and the realized risk

$$
\sigma(w)=\sqrt{w^{T} S_{t s} w}
$$

- The optimal portfolio \tilde{w} is computed with $\hat{\Sigma}$ estimated by the Log-ME method, the CN method (Won et al., 2009) and the S, separately.

The Comparison Results

Table 1. The comparison of the realized return and the realized risk.

	Log-ME	CN	S
Realized return $R(\tilde{w})$	0.218	0.123	0.059
Realized risk $\sigma(\tilde{w})$	0.029	0.024	0.035

- The Log-ME method produced a portfolio with a larger realized return but smaller realized risk.

Comparison in Different Periods

- Consider the portfolio strategy using the Log-ME method for various covariance matrix estimation methods.
- Given a stating week, use the first 50 observations as the training set, the next 50 observations as a validation set, and the third 50 observations as a test set.
- Shift the starting week one ahead every time, and evaluate the portfolio strategy of 33 different consecutive test periods.
- The optimal portfolio \tilde{w} is computed with $\hat{\Sigma}$ estimated by the Log-ME method, the CN method and the sample covariance matrix method, separately.

The Realized Returns

The proposed Log-ME covariance matrix estimate can lead to higher returns.

The Realized Risks

The log-ME method has relatively higher risks than the CN method, but it provides much larger realized returns than the CN method.

Summary

- Estimate the covariance matrix through its matrix logarithm based on a penalized likelihood function.
- The Log-ME method regularizes the largest and smallest eigenvalues simultaneously by imposing a convex penalty.
- Other penalty functions can be considered to improve the estimation in different perspectives.
- Extend to Bayesian covariance matrix estimation for the large-p-small-n problem.

Thank you!

The Log-ME Method (Con't)

- Note that $\operatorname{tr}\left(A^{2}\right)=\operatorname{tr}\left(\left(T_{0} B T_{0}^{\prime}+A_{0}\right)^{2}\right)$ is equivalent to $\operatorname{tr}\left(B^{2}\right)+2 \operatorname{tr}(B \Gamma)$ up to some constant, where $\Gamma=\left(\gamma_{i j}\right)_{p \times p}=T_{0}^{\prime} A_{0} T_{0}$.
- In terms of B, the function $l_{n, \lambda}(A)$ becomes

$$
\begin{align*}
l_{n, \lambda}(B)= & \sum_{i=1}^{p} \frac{1}{2} \xi_{i i} b_{i i}^{2}+\sum_{i<j} \xi_{i j} b_{i j}^{2}+2 \sum_{i=1}^{p} \sum_{j \neq i} \tau_{i j} b_{i i} b_{i j}+\sum_{k=1}^{p} \sum_{i<j, i \neq k, j \neq k} \eta_{k i j} b_{i k} b_{k j} \\
& -\left(\sum_{i=1}^{p} \beta_{i i} b_{i i}+2 \sum_{i<j} \beta_{i j} b_{i j}\right) \tag{10}\\
& +\lambda\left[\frac{1}{2} \sum_{i=1}^{p} b_{i i}^{2}+\sum_{i<j}^{p} b_{i j}^{2}+\sum_{i=1}^{p} \gamma_{i i} b_{i i}+2 \sum_{i<j} \gamma_{i j} b_{i j}\right]
\end{align*}
$$

- The $l_{n, \lambda}(B)$ is still a quadratic function of $B=\left(b_{i j}\right)$.

The CN Method

- The CN method is to estimate Σ with a constraint on its condition number (Won et al., 2009).
- They consider $\hat{\Sigma}=T \operatorname{diag}\left(\hat{u}_{1}^{-1}, \ldots, \hat{u}_{p}^{-1}\right) T^{\prime}$, where T is from the spectral decomposition of $S=T \operatorname{diag}\left(l_{1}, \ldots, l_{p}\right) T^{\prime}$.
- The $\hat{u}_{1}, \ldots, \hat{u}_{p}$ are obtained by solving the constraint optimization

$$
\begin{aligned}
\min _{u, u_{1}, \ldots, u_{p}} & \sum_{i}^{p}\left(l_{i} u_{i}-\log u_{i}\right) \\
\text { s.t. } & u \leq u_{i} \leq \kappa_{\max } u, i=1, \ldots, p
\end{aligned}
$$

where $\kappa_{\max }$ is a tuning parameter.

- The tuning parameter is computed through an independent validation set.

