HODGES-LEHMANN INVERSE LIKELIHOOD ESTIMATES (HLE'S)

KJELL DOKSUM

DEPT. OF STATISTICS
UNIVERSITY OF WISCONSIN-MADISON
COLUMBIA UNIVERSITY
4TH LEHMANN SYMPOSIUM
RICE UNIV.

MAY 11, 2011

Figure: Javier Rojo

ACKNOWLEDGEMENTS

AKI OZEKI UNIV. OF WISCONSIN

OUTLINE

- SOME LIKELIHOODS
- ASYMPTOTIC DISTRIBUTIONS OF HLE's
- MINIMAX RESULTS
- ONE STEP ESTIMATORS

WHY HL-ESTIMATORS?

- IN LINEAR REGRESSION MODELS WITH ERROR~ F, THE HL NORMAL SCORES ESTIMATE IS ASYMPTOTICALLY MORE EFFICIENT THAN THE LEAST SQUARES ESTIMATE, UNIFORMLY IN F.
- SCHOLZ'S THEOREM. FOR EACH ONE SAMPLE ESTIMATE THAT CAN BE WRITTEN AS A LINEAR COMBINATION OF ORDER STATISTICS, THERE IS A HL-ESTIMATE THAT IS ASYMPTOTICALLY MORE FEFICIENT.

SOME LIKELIHOODS

$$X = DATA = (Y, Z), Y \in R, Z \in R^{p}.$$
 $\theta = (\beta \in R^{p}, \Lambda \in \mathcal{F}) = PARAMETER$
 $LIKELIHOOD = \prod_{i} p(x_{i}; \theta)$
 $COX LIK = \prod_{i} \frac{\lambda(y_{i}; \beta|z_{i})}{\sum_{j \geq i} \lambda(y_{i}; \beta|z_{j})}$
 $EMPIRICAL LIK = \prod_{i} p(x_{i}; \theta), \sum_{j \in R} p(x_{j}; \theta) = 1.$

SOME LIKELIHOODS

PROFILE EMPIRICAL (PE) LIKELIHOOD

$$L_{PE}(\beta) = \sup\{\prod p(x_i; \theta); \Lambda\}$$
 (1)

$$\hat{\beta}_{PE} = \arg\max L_{PE}(\beta)$$

THIS ESTIMATE $\hat{\beta}_{PE}$ IS A FUNCTION OF THE RANK R_1, \dots, R_n OF Y_1, \dots, Y_n

SOME LIKELIHOODS

HOEFFDING LIK
$$\equiv L_H(r(y); \beta) = P(R = r) = \frac{1}{n!} E_0 \left[\prod_i \frac{p(V^{(r_i)}; \theta|z_i)}{p(V^{(r_i)}; \theta_0|z_i)} \right],$$

WHERE $r_i \equiv r(y_i) \equiv RANK(y_i)$. $V^{(1)} < \cdots < V^{(n)}$ ARE $p(v; \theta_0|z)$ ORDER STATISTICS.

RANK LIKELIHOOD ESTIMATOR

EXAMPLE:
$$Y_i = z_i^T \beta + \epsilon_i$$
, $\epsilon_i \sim F$, IID.

FORWARD RANK MLE = ARG MAX $L_H(r(y); \beta)$ = KP MLE

KP = KALBFLEISCH-PRENTICE (1973)

$$\hat{eta}_{\mathit{KP}}$$
 SOLVES $abla_{eta} L_{\mathit{H}}(r(y);eta) = 0$

RANK LIKELIHOOD ESTIMATOR

BECAUSE $RANK(\Lambda(y_i)) = RANK(y_i)$. FOR $\Lambda \nearrow$, $\hat{\beta}_{KP}$ APPLIES TO SEMIPARA. TRANS. MODEL. $\hat{\beta}_{KP}$ IS A FUNCTION OF THE RANKS OF Y_i , AS IS THE COX ESTIMATE.

HODGES-LEHMANN INVERSE MLE (1963)

DEFINITION:

IN THE LINEAR MODEL, $\hat{\beta}_{HL}$ SOLVES

$$\nabla_{\beta} L_H(r(y-z^T\beta^*);\beta)|_{\beta=0}=0$$

1ST COMPUTE $\nabla_{\beta}L_{H}(r(y;\beta))|_{\beta=0}$, THEN CONSTRUCT AN ESTIMATING EQUATION IN β^{*} BY REPLACING y WITH $y-z^{T}\beta^{*}$. HERE $y-z^{T}\beta$ IS THE "INVERSE" OF $y=z^{t}\beta+\epsilon$.

HODGES-LEHMANN INVERSE MLE (1963)

HL INVERSE LIK. EST: ALIGN RANK OF RESIDUALS WITH THE "BASELINE" RANKS USING HOEFFDING LIKELIHOOD.

EXAMPLE: TWO SAMPLE CASE, LOGISTIC SHIFT MODEL, $F_2(x) = F_1(x - \Delta)$, $\nabla_{\Delta} L_H|_{\Delta=0} = \text{WILCOXON STAT}$ $\hat{\Delta}_{HL} = med(X_{2j} - X_{1i})$,

MODEL:
$$Y = h(\epsilon, z, \beta)$$
,
LET $g(y; z, \beta)$ BE THE SOLUTION (INVERSE)
FOR ϵ OF $h(\epsilon, z, \beta) = y$.
 $\hat{\beta}_{HL}$ SOLVES

$$\nabla_{\beta} L_{H}[g(y;z,\beta^{*});\beta]|_{\beta=0}=0$$

IN THE EXAMPLE $Y_i = z_i^T \beta + \epsilon$,

$$\nabla_{\beta} L_H[r(y-z^T\beta^*);\beta]|_{\beta=0}$$

ARE p LINEAR RANK STATISTICS

$$T_{nj}(\beta^*) = \sum_{i=1}^n (z_{ij} - \bar{z}_j) a_n(r_i(\beta^*)), \quad j = 1, \cdots, p$$

WHERE
$$r_i(\beta^*) = RANK(y_i - z_i^T \beta^*)$$
, AND $a_n(r) = a(\frac{r}{n+1})$, $a(u) = -\frac{f'}{f}(F^{-1}(u))$

SCALE MODEL:

$$Y = \epsilon \exp[z^T \beta], \ \epsilon \sim F$$

$$\epsilon = Y/\exp[z^T \beta],$$

$$a_n(RANK(y_i/\exp[z_i^T \beta])),$$

$$a_n(r) = a_1\left(\frac{r}{n+1}\right),$$

$$a_1(u) = -F^{-1}(u)\frac{f'}{f}(F^{-1}(u)) - 1$$
HERE $\hat{\beta}_{HL}$ SOLVES
$$\nabla_{\beta} L_H[r(y_i/\exp[z_i^T \beta^*]); \beta]|_{\beta=0} = 0$$

WHICH IS EQUIVALENT TO

$$\sum_{i=1}^n (z_{ij} - \bar{z}_j) a_n(r_i(\beta^*)) = 0, \quad j = 1, \cdots, p$$

LINEAR MODELS:

EX1:
$$\epsilon \sim \text{LOGISTIC} \Longrightarrow a_n(r) = \frac{r}{n+1}$$

EX2: $\epsilon \sim \text{NORMAL} \Longrightarrow a_n(r) = \Phi^{-1}\left(\frac{r}{n+1}\right)$, NORMAL SCORES

SCALE MODEL:

EX3:
$$\epsilon \sim EXP \Longrightarrow a_n(r) = -\log\left(1 - \frac{r}{n+1}\right)$$
, $\hat{\beta}_{HL}$ IS THE LOGISTIC SCORES ESTIMATOR

ASYMPTOTICS

THEOREM (JAECKEL 1972):

IN THE $Y_i = z_i^T \beta + \epsilon$ MODEL,

• THE HL ESTIMATE $\hat{\beta}_{HL}$ IS A MAXIMIZER OF

$$S(\beta) = \prod_{i=1}^{n} \exp[-(y_i - z_i^T \beta) \cdot a_n(RANK(y_i - z_i^T \beta))]$$

• HERE $log[S(\beta)]$ is NONNEGATIVE, CONTINUOUS AND CONCAVE.

ASYMPTOTICS

IN THE LINEAR MODEL, LET $\varphi(u, f_0) = -\frac{f_0'}{f_0}(F_0^{-1}(u))$. THEN,

$$\sqrt{n}(\hat{\beta}_{HL} - \beta) \rightarrow N(0, \left[\frac{\int_0^1 [\varphi(u, f_0) - \bar{\phi}]^2 du}{\int_0^1 \varphi(u, f_0) \varphi(u, f) du}\right]^2 \Sigma^{-1})$$

WHERE $\bar{\phi} = \int_0^1 \varphi(u, f_0) du$, $\Sigma = LIM_{n \to \infty} n^{-1} Z^T Z$, Z = CENTERED DESIGN MATRIX, $\epsilon_i \sim F$, f = F'

HERE $f_0(\cdot)$ GENERATES $L_H(\cdot)$ AND $\hat{\beta}_{HL}$. $f(\cdot)$ IS THE TRUE DENSITY of ϵ .

ASYMPTOTIC

LINEAR MODEL EXAMPLES:

• F_0 ()=LOGISTIC

$$\sqrt{n}(\hat{eta}_{HL}-eta)
ightarrow N(0,\left[rac{1}{12(\int_0^1f^2(u)du)^2}
ight]\Sigma^{-1})$$

 $P_0()=NORMAL(0,\sigma^2)$

$$\sqrt{n}(\hat{eta}_{HL}-eta)
ightarrow N(0,\left\lfloor rac{\Sigma^{-1}}{(\int_0^1\Phi^{-1}(u)\phi(u,f)du)^2}
ight
floor)$$

ASYMPTOTIC INEQUALITY

HODGES-LEHMANN (56) CONJECTURE. CHERNOFF-SAVAGE (58) THEOREM.

IF $\hat{\beta}_{HL}$ IS BASED ON SCORES DERIVED BY TAKING $f_0 = N(0,1)$, AND IF $\hat{\beta}_{MLE}$ IS THE MLE FOR THE MODEL WITH $\epsilon \sim N(0,\sigma^2)$, THEN

ASYMPTOTIC $VARIANCE_F(\hat{\beta}_{HL}) \leq$ ASYMPTOTIC $VARIANCE_F(\hat{\beta}_{MLE})$

WHERE $F = \text{TRUE DIST. OF } \epsilon$. EQUALITY ONLY WHEN $F = N(0, \sigma^2)$.

IN THE AFT MODEL WITH $\epsilon \sim F$, THE HL EXPONENTIAL SCORES STATISTIC SATISFIES

$$\sqrt{n}(\hat{\beta}_{HL}-\beta) \rightarrow N(0, \left[\frac{1}{\int_0^1 t \lambda(t) dF(t)}\right]^2 \Sigma^{-1})$$

WHERE $\lambda(t) = f(t)/[1 - F(t)]$.

RESULT: THE COX ESTIMATE IS ASYMPTOTICALLY MINIMAX FOR THE PROPORTIONAL HAZARD (PH) MODEL:

$$\lambda(y;z) = \lambda_0(y)e^{z^T\beta}$$

PROOF:

STEP A: THE COX ESTIMATE IS OPTIMAL FOR THE EXPONENTIAL MODEL,

$$INF_{\hat{\beta}}R_{E}(\beta,\hat{\beta}) = R_{E}(\beta,\hat{\beta}_{C})$$
 (2)

STEP B: THE PH MODEL CAN BE WRITTEN AS $\Lambda_0(Y) \sim \text{EXP-DISTR}(z^T \beta)$ WHERE $\Lambda_0 \nearrow \text{IS}$ THE BASELINE HAZARD FUNCTION.

THE COX ESTIMATE $\hat{\beta}_C$ IS INVARIANT, $\hat{\beta}_C(y) = \hat{\beta}_C(\Lambda_0(y))$, SO IT HAS CONSTANT RISK,

$$\sup_{F} R_{F}(\beta, \hat{\beta}_{C}) = R_{E}(\beta, \hat{\beta}_{C}), \tag{3}$$

 $F(y|z) \in PH$

STEP C: SINCE THE EXP MODEL IS PH,

$$\sup_{F} R_{F}(\beta, \hat{\beta}) \ge R_{E}(\beta, \hat{\beta}), \tag{4}$$

 $F(y|z) \in PH$

STEP D: $(2),(3),(4) \Rightarrow$

$$\sup_{F} R_{F}(\beta, \hat{\beta}_{C}) = \inf_{\hat{\beta}} \sup_{F} R_{F}(\beta, \hat{\beta}). \quad QED.$$

NON-NAIVE PROOF: PAGE 332 of BICKEL, KLAASSEN, RITOV, WELLNER.

RESULT: THE HL EXP SCORES EST IS A MINIMAX FOR THE IHR ACCELERATED FAILURE TIME MODEL (IHRAFT)

$$Y = Y_0 \exp(z^T \beta), \qquad Y_0 \sim F,$$

WITH $F \in IHR = INCR$. HAZARD RATE

PROOF:

STEP A: THE HL EXP. SC. ESTIMATE IS OPTIMAL FOR THE EXPONENTIAL MODEL,

$$INF_{\hat{\beta}}R_{E}(\beta,\hat{\beta}) = R_{E}(\beta,\hat{\beta}_{HL})$$
 (5)

STEP B: THE EXP MODEL IS LEAST FAVORABLE FOR $\hat{\beta}_{HL}$

$$\sup_{F} R_{F}(\beta, \hat{\beta}_{HL}) = R_{E}(\beta, \hat{\beta}_{HL}), \tag{6}$$

$$F(y|z) \in IHRAFT$$

STEP C: SINCE THE EXP MODEL IS IHRAFT,

$$\sup_{F} R_{F}(\beta, \hat{\beta}) \ge R_{E}(\beta, \hat{\beta}), \tag{7}$$

 $F(y|z) \in IHRAFT$ **STEP D**: (5),(6),(7) \Rightarrow

$$\sup_{F} R_{F}(\beta, \hat{\beta}_{HL}) = \inf_{\hat{\beta}} \sup_{F} R_{F}(\beta, \hat{\beta}). \quad QED$$

TO PROVE STEP B, USE DOKSUM (1967); ARGUMENT BASED ON VAN ZWET ORDERINGS.

ASYMPTOTIC miniMAX RESULT

CONSIDER $f_0 = LOGISTIC$, SO

$$a_n(r_i) = \frac{r_i}{n+1} \tag{8}$$

THEN $\hat{\beta}_{HL}$ IS ASYMPTOTICALLY minimax OVER THE CLASS OF DISTRIBUTIONS WITH (VAN ZWET TYPE) LIGHTER TAILS THAN THE LOGISTIC DISTRIBUTION.

ONE STEP ESTIMATIORS

LET $\hat{\tau}$ BE A CONSISTENT ESTIMATOR OF

$$\tau = \frac{1}{\int_0^1 \phi(u, f_0) \phi(u, f) du}$$
 (9)

AND LET $\hat{\beta}_{LSE}$ BE THE LSE OF β . DEFINE

$$\hat{\beta}_{HL} = \hat{\beta}_{LSE} + \hat{\tau} \cdot (Z^T Z)^{-1} \cdot T_n(RANK(Y - Z^T \hat{\beta}_{LSE}))$$
(10)

THEN,

$$\sqrt{n}(\hat{\beta}_{HL} - \beta) \to N(0, \Gamma)$$
 (11)

JURECKOVA(69), KRAFT AND VAN EEDEN(72), HETTMANSPERGER, MCKEAN, TSIATIS, ETC.

GMT MODEL

IN THE MODEL $Y_i = z_i^T \beta + \epsilon_i$ THERE EXISTS $G: R \to R$, INCREASING, SUCH THAT

$$G(y_i - z_i^T \beta), \quad i = 1, \cdots, n$$
 (12)

ARE IID. HERE G is UNKNOWN.

SUMMARY

- SOME LIKELIHOODS
- ASYMPTOTIC DISTRIBUTIONS OF HLE's
- MINIMAX RESULTS
- ONE STEP ESTIMATORS