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WHY HL-ESTIMATORS?

O IN LINEAR REGRESSION MODELS WITH
ERROR~ F, THE HL NORMAL SCORES
ESTIMATE IS ASYMPTOTICALLY MORE
EFFICIENT THAN THE LEAST SQUARES
ESTIMATE, UNIFORMLY IN F.

@ SCHOLZ'S THEOREM. FOR EACH ONE
SAMPLE ESTIMATE THAT CAN BE
WRITTEN AS A LINEAR COMBINATION OF
ORDER STATISTICS, THERE IS A
HL-ESTIMATE THAT IS ASYMPTOTICALLY
MORE EFFICIENT.
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SOME LIKELIHOODS

X =DATA=(Y,Z), Y €R, Z € R
0=(8ecR,NcF)= PARAMETER
LIKELIHOOD = Hp (xi; 0

)‘(YI 5|Z,)
coxtik =115 (y,,mzj)

EMPIRICAL LIK = Hp xi;0), 3 p(xi; 0) = 1.
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SOME LIKELIHOODS

PROFILE EMPIRICAL (PE) LIKELIHOOD

Lpe(B) = SUP{H p(xi; 0); A} (1)
Bpe = arg max Lpe()

THIS ESTIMATE [pg IS A FUNCTION OF THE
RANK Ry, --- R, OF Yq,--- .Y,
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SOME LIKELIHOODS

HOEFFDING LIK = Ly(r(y); 8) = P(R=r) =

p(V” 0|z)
nI 0 [H r, 90|Z/
WHERE r; = r(y;) = RANK(y;).

V) < ... < V(" ARE p(v; 6h|z) ORDER
STATISTICS.
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RANK LIKELIHOOD ESTIMATOR

EXAMPLE: Y; =z"8+¢, ¢~ F, 1ID.

FORWARD RANK MLE = ARG MAX Ly(r(y); 5)
= KP MLE

KP= KALBFLEISCH-PRENTICE (1973)

Bkp SOLVES VsLp(r(y); B) =0
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RANK LIKELIHOOD ESTIMATOR

BECAUSE RANK (A(y;)) = RANK(y;). FOR A 7,
Bkp APPLIES TO SEMIPARA. TRANS. MODEL.
Bkp 1S A FUNCTION OF THE RANKS OF Y;, AS

IS THE COX ESTIMATE.
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HODGES-LEHMANN INVERSE MLE (1963)

DEFINITION:
IN THE LINEAR MODEL, By, SOLVES

VsLu(r(y — z" 8%); 8)|s=0 = 0

1ST COMPUTE VLy(r(y; 5))|3—0, THEN
CONSTRUCT AN ESTIMATING EQUATION IN 3*
BY REPLACING y WITH y — z73*. HERE

y — 273 1S THE "INVERSE” OF y = 23 + €.
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HODGES-LEHMANN INVERSE MLE (1963)

HL INVERSE LIK. EST: ALIGN RANK OF
RESIDUALS WITH THE "BASELINE" RANKS
USING HOEFFDING LIKELIHOOD.

EXAMPLE: TWO SAMPLE CASE, LOGISTIC
SHIFT MODEL, Fy(x) = Fi(x — A),
Valyla—o = WILCOXON STAT

AHL = med(ng - Xl,'),
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GENERAL HODGES-LEHMANN INVERSE MLE

MODEL: Y = h(e, z, 3),
LET g(y; z, 3) BE THE SOLUTION (INVERSE)
FOR € OF h(e,z,8) =y.

B SOLVES

Valulg(y: z,57); Bllp=0 =0
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GENERAL HODGES-LEHMANN INVERSE MLE

IN THE EXAMPLE Y; =z 3 + ¢,

VaLulr(y — 2" 5%); Bls—0
ARE p LINEAR RANK STATISTICS

n

Tw(8) = >_(z5 = 2)an(ri(5), j=1.-.p
WHERE r;(8) = RANK (y; — z7 8), AND
a,(r)=a (I#l)

a(u) = —F(F 1 (v))
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GENERAL HODGES-LEHMANN INVERSE MLE

SCALE MODEL:

Y =eexp[z"f], e~ F
e=Y/exp[z" 4],

a,(RANK (yi/ expl[z B])),

an(r) = a1 (35,

ai(u) = —F H(u)F(F 1 (u) - 1
HERE j3p, SOLVES

VsLulr(yi/ explz 8*]); Blls=0 = 0
WHICH 1S EQUIVALENT TO

> (zj—2)an(r(87) =0, j=1,--,p
=1

KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 15/31



GENERAL HODGES-LEHMANN INVERSE MLE

LINEAR MODELS:
EX1: € ~ LOGISTIC = a,(r) = =55

EX2: ¢ ~ NORMAL = a,(r) = &1 (-17),
NORMAL SCORES

SCALE MODEL:
EX3: ¢ ~ EXP = a,(r) = —log (1 — -55),

By IS THE LOGISTIC SCORES ESTIMATOR
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ASYMPTOTICS

THEOREM (JAECKEL 1972):
IN THE Y; = z7 8 + ¢ MODEL,

@ THE HL ESTIMATE (4 IS A MAXIMIZER OF
5(8) = | [ expl —(vi—2" B)-an(RANK (yi—2] 5))]
i=1

@ HERE log[S(8)] is NONNEGATIVE,
CONTINUOUS AND CONCAVE.
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ASYMPTOTICS

IN THE LINEAR MODEL, LET
p(u, ) = —L(Fy?(u)). THEN,

fol[SO(Ua fo) — Qz]zdu ] : 2—1)
Jo (u, fo)p(u, f)du

WHERE ¢ = [ o(u, fo)du ,£ = LIM, ., 1127 Z,
Z = CENTERED DESIGN MATRIX, ¢; ~ F, f = F/

V(B — B) — N(O, [

HERE f,(-) GENERATES Ly(-) AND By
f(-) IS THE TRUE DENSITY of €.
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ASYMPTOTIC

LINEAR MODEL EXAMPLES:
@ F()=LOGISTIC

B 1
n(pHL — N(O, T y !
Vil B) — N [12% i du)2] )

@ Fo()=NORMAL(0, 0?)
y-1 ] )
(Jo ©2(u)é(u, f)du)>?

Vn(Br — B) — N(O,
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ASYMPTOTIC INEQUALITY

HODGES-LEHMANN (56) CONJECTURE.
CHERNOFF-SAVAGE (58) THEOREM.

IF 34 1S BASED ON SCORES DERIVED BY
TAKING fy = N(0,1), AND IF Spe IS THE MLE
FOR THE MODEL WITH ¢ ~ N(0, ¢?), THEN

ASYMPTOTIC VARIANCEF(B) <
ASYMPTOTIC VARIANCEF(Buie)

WHERE F = TRUE DIST. OF e.
EQUALITY ONLY WHEN F = N(0, o?).
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IN THE AFT MODEL WITH € ~ F, THE HL
EXPONENTIAL SCORES STATISTIC SATISFIES

A L 2 -
VBu = 8) = N, [ I tMt)dF(t)] o

WHERE \() = f(t)/[1 — F(¢)].

KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 21/31



NAIVE MINIMAX THEORY

RESULT: THE COX ESTIMATE IS
ASYMPTOTICALLY MINIMAX FOR THE
PROPORTIONAL HAZARD (PH) MODEL:

A(y; z) = do(y)e?'”

PROOF:
STEP A: THE COX ESTIMATE IS OPTIMAL
FOR THE EXPONENTIAL MODEL,

INF3Re (B, B) = Re(B. Bc) (2)
STEP B: THE PH MODEL CAN BE WRITTEN
AS Ao(Y) ~ EXP-DISTR(z7 3) WHERE Ay IS
THE BASELINE HAZARD FUNCTION.,
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NAIVE MINIMAX THEORY

THE COX ESTIMATE J¢ IS INVARIANT,
Be(y) = Bc(Mo(y)), SO IT HAS CONSTANT RISK,

sup Re(8, B¢c) = Re(B, Be), (3)
F(y|z) € PH
STEP C: SINCE THE EXP MODEL IS PH,
sup Re(8,8) > Re(8, ), (4)
F(y|z) € PH

STEP D: (2),(3),(4) =
sup Re(B, Bc) = lieus Rr(8,5). QED.

KJELL DOKSUM DEPT. OF STAT. AT UW-MADISON HLE’s 23/31



NAIVE MINIMAX THEORY

NON-NAIVE PROOF: PAGE 332 of BICKEL,
KLAASSEN, RITOV, WELLNER.
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NAIVE MINIMAX THEORY

RESULT: THE HL EXP SCORES EST IS A
MINIMAX FOR THE IHR ACCELERATED
FAILURE TIME MODEL (IHRAFT)

Y = Yyexp(z' B), Yo ~ F,
WITH F € IHR = INCR. HAZARD RATE

PROOF:
STEP A: THE HL EXP. SC. ESTIMATE IS
OPTIMAL FOR THE EXPONENTIAL MODEL,

INFBRE(B,B) = Re(8, B (5)
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NAIVE MINIMAX THEORY

STEP B: THE EXP MODEL IS LEAST
FAVORABLE FOR Sy,

Sl,J:p Re(8, Brt) = Re(B, BrL), (6)

F(y|z) € IHRAFT
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NAIVE MINIMAX THEORY

STEP C: SINCE THE EXP MODEL IS IHRAFT,
Sup Re(B, B) > Re(B, B), (7)

F(y|z) € IHRAFT
STEP D: (5),(6),(7) =

SupRF(ﬂ:BHL) = IITFSUPRF(B,B) QED
[F 8 F

TO PROVE STEP B, USE DOKSUM (1967);
ARGUMENT BASED ON VAN ZWET
ORDERINGS.
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ASYMPTOTIC miniMAX RESULT

CONSIDER fy = LOGISTIC, SO

ri
an(r,-) - n—+1

THEN By, IS ASYMPTOTICALLY miniMAX
OVER THE CLASS OF DISTRIBUTIONS WITH

(VAN ZWET TYPE) LIGHTER TAILS THAN THE
LOGISTIC DISTRIBUTION.

(8)
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ONE STEP ESTIMATIORS

LET 7 BE A CONSISTENT ESTIMATOR OF

1

fo u, fo)o(u, f)du
AND LET J,sz BE THE LSE OF 3.

(9)

DEFINE
B = Bise+7-(Z7Z)™ - TH(RANK(Y — Z7 BLse))
(10)
THEN, A
V(Ba — B) — N(0,T) (11)

JURECKOVA(69), KRAFT AND VAN EEDEN(72),
HETTMANSPERGER, MCKEAN, TSIATIS, ETC.
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GMT MODEL

IN THE MODEL Y; = z/ 8 + ¢
THERE EXISTS G : R — R, INCREASING, SUCH

THAT

G(yi_ZiTﬂ)a I:17 , N (12)
ARE 1ID. HERE G is UNKNOWN.
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SUMMARY

© SOME LIKELIHOODS

@ ASYMPTOTIC DISTRIBUTIONS OF HLE's
9 MINIMAX RESULTS

© ONE STEP ESTIMATORS
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