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Functional Data 

•  A sample of curves  -  one curve, X(t), per subject.  

   - These curves are usually considered realizations of 
a stochastic process in          . 

                    - dimensional 

•  In reality, X(t) is recorded at a dense time grid, often 
equally spaced (regular).     

              high-dimensional. 

∞
2( )L I



Example: Medfly Data 

•  Number of eggs laid daily were recorded for each 
of the 1.000 female medflies until death. 

•  X(t)= # of eggs laid on day t.   

•  Average lifetime = 35.6 days 

•   Average lifetime reproduction = 759.3 eggs 



  Longitudinal Data 

•  When X(t) is recorded sparsely,  often irregular in the 
time grid, they are referred to as longitudinal data. 

          Longitudinal data = sparse functional data  

•   “regular and sparse” functional data = panel data  

   They require parametric approaches and will not be   
considered in this talk.   
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Three Types of Functional Data 
 

•  Curve data  - This is the easiest to handle in theory,  
as functional central limit theorem and LLN apply. 

   -       rate of convergence can be achieved because the 
observed data is         - dimensional.   

•  Dense functional data – could be presmoothed and 
inherit the same asymptotic properties as curve data. 

•  Sparse functional data / longitudinal data – 
hardest to handle both in methodology and theory .    
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Dimension Reduction  

•  Despite the different forms that functional data 
are observed, there is an infinite dimensional 
curve underneath all these data.  

•  Because of this intrinsic infinite dimensional 
structure, dimension reduction is required to 
handle functional/longitudinal data.  



Dimension Reduction  

•  Principal Component analysis (PCA) is a standard 
dimension reduction tool for multivariate data.  It is 
essentially a spectral decomposition of the 
covariance matrix.  

•  PCA has been extended to functional data and 
termed functional principal component analysis 
(FPCA). 

  



Dimension Reduction  

•  FPCA leads to the Karhunan-Loeve decomposition:  

 X (t)= µ(t)+
k=1

!
" Ak!k (t),

 
where µ(t)=E(X (t)),

!kare the eigenfunctions of the 
covarnaice function !(s, t) = cov (X (s), X (t)). 



References for FPCA 

•   Dense Functional Data  

    - Rice and Silverman (1991, JRSSB)  

       Hall and Housseni (2006, AOS) 

•  Sparse Functional data – Yao Müller and Wang (2005)
Hall, Müller and Wang (2006)  

•  Hsing and Li (2010)  



Dimension Reduction Regression   

•  In this talk, we focus on regression models that 
involves functional data.  

•  There are two scenarios:  

   - Scalar response Y and functional/longitudinal   
 covariate X(t) 

   - Functional response Y(t) and functional covariates,  

     

 

X1(t),!,X p (t),   some of which may be scalars. 



Univariate Response:  
Sliced Inverse Regression  



Motivation 

•  Model univariate response Y with longitudinal 
covariate  X(t). 

•  Current approaches:                                           

  * Functional linear model: 

 

  * Completely nonparametric:   

   

Y = ! (t)X (t)dt! + e =  < ! , X > +e

            Y = g(X ) + e,
g : functional space ! ".



Motivation 

  * Functional single-index model: 

 

  * Goal:    Use multiple indices  

     

        without any model assumption on g.  

Y = g(< ! , X >) + e.

< 1! ,X >,!,< k! ,X >
Y = g(< 1! ,X >,!,< k! ,X >) + e.



Background 

  

 

 

 

 

 

 

 

         Y !!,   X !!
p  

Dimension reduction model: Y = f ( 1
T! X ,! ! !, k

T! X ,e),

 where f  is unknown,   e ! X  ,   k ! p.

!  Given 1
T(! X ,! ! !, k

T! X ),   Y ! X .

!  These k  indices captured all the information contained in X .  



Background 

 

•   Special Cases: 

    

 

 

 

 

 

 

 

Y = 1f ( 1
T! X ) + ! ! ! + kf ( k

T! X ) + e

! projection pursuit model

Y = f ( 1
T! X ) + e,                             

! single-index model.



Sliced Inverse Regression (Li, 1991)  

•  Separate the dimension reduction stage from the 
nonparametric estimation of the link function.  

•  Stage 1 – Estimate the linear space generated by  β’s 

            Effective dimension reduction (EDR) space 

   * Only the EDR space can be identified , but not β. 

•  Stage 2 -  Estimate the nonparametric link function f 
via a smoothing method.  



How and Why does SIR work?  

•  Do inverse regression  E(X|Y)  rather than the forward 
regression E(Y|X).  

•  For standardized X, Cov[E(X|Y)] is contained in the EDR 
space under a design condition. 

          Eigenvectors of  Cov[E(X|Y)] are the EDR directions. 

•  Perform a principal component analysis on E(X|Y).  

•  SIR employs a simple approach to estimate E(X|Y) by 
slicing the range of Y into H slices and use the sample 
mean of X’s within each slice to estimate E(X|Y). 





When does SIR work?  

•  Linear design condition :    For  any 

 

•  The design condition is satisfied when X is 
elliptical symmetric, e.g. Gaussian.  

•  When the dimension of X is high, the conditoin is 
satisfied for almost all EDR spaces (Hall and Li 
(1993)).  

E(b 'X | 1! X ,!, k! X ) = linear function of 1! X ,!, k! X .
b! p"



End of Introduction to SIR 



How to Extend SIR to Functional Data? 

  

•  Need to estimsate E{X(t)|Y} and its covariance,                      
Cov[ E {X(t)|Y}]. 

•  This is straightforward if the entire curve  X(t)  can be 
observed.                            

    Therefore SIR can be employed directly at each point t. 

•  Ferre and Yao (2003),  Ferre and Yao (2005,  2007) 

•  Ren and Hsing (2010) 

Response  Y !",     covariate  X (t)



How to Extend SIR to Functional Data? 

  

•  What if the curves are only observable at sparse 
and possibly irregular time points?    

•  We consider a unified approach that adapts to 
both sparse longitudinal and functional 
covariates.  

Observe (Y
i
, iX ) for the ith subject. 

where i X = ( i1X ,!, iniX ),with ijX = iX ( ijt ).

 Response   Y !!,     Covariate X(t) - a function



Functional Inverse Regression (FIR)    
Yu and Wang (201?) 

  

•  To estimate E{X(t)| Y=y} = µ(t, y),  we do a 2D smoothing of  

 

 

•   Once we have              ,  Cov [ E{X(t)|Y} ] can be estimated   
by the sample covariance   

Response  Y !",     covariate  X (t) ! 2L ([a,b]).
Observe Y

i
 and iX = ( i1X ,!, iniX ),where ijX = iX ( ijt ).

{
ijX } over {

ij
t ,

iY }, for j= 1, !, ni; i=1,!, n.

ˆ ( , )t yµ

!̂(s,t) = 1
n

µ̂(s,Y
i
)

i=1

n

" µ̂(t,Y
i
).





Theory 

•  Identifiability of the EDR space 

    - We need to standardize the curve X (t), but the 
covariance operator of X is not invertible!  

•   Under standard regularity conditions,   

    cov [E{X(t)|Y}]  can be estimated at 2D rate, but  

      

 -  EDR directions, β’s can be estimated at 1D rate. 

  

1 2ˆ|| || (( ) )pjj O hnhββ
−− = +



Choice of  # of Indices 

•  Fraction of variation explained  

•  AIC or BIC. 

•  A Chi-square test as in Li(1991).  

•  Ferre and Yao (2005) used an approach in Ferre
( 1998).  

•  Li and Hsing (2010) developed another 
procedure.   



End of FIR 



Fecundity Data 

•  Number of eggs laid daily were recorded for each of the 
1.000 female medflies until death. 
 

•   Average lifetime = 35.6 days 

•   Average lifetime reproduction = 759.3 eggs 

•  64 flies were infertile and excluded from this analysis.  

•  Goal : How early reproduction (daily egg laying up to day 
20)  relates to mortality.   

•   Y= lifetime (days),  X(t)= # of eggs laid on day t,    1 20.t≤ ≤



Mediterranean Fruit Fly 



Multivariate PCA on X(t)  



Multivariate PCA (cont’d)   

 

 

•  This is not surprising as reproduction is a complicated 
system that is subject to a lot of variations. 

•  Hence, a PC regression is not an effective dimension 
reduction tool for this data.   

•  However, the information it contains for lifetime may be 
simpler and could be summarized by much fewer EDR 
directions.  



Comparison of PCA and FSIR 



Sparse Egg Laying Curves 

•  Randomly select ni  from {1,2,…,8} and then choose              
ni days from the ith fly.  

•  Thus, one (or two) directions suffices to summarize the 
information contained in the fecundity data to infer 
lifetime of the same fly. 



Estimated Directions 

Complete data (solid),  Sparse data (dash)  



Conclusion 

•  The first directions estimated from the complete 
and sparse data have similar pattern. 

•  The correlation between the effective data, using 
a single index  < β, X> , for the complete and 
sparse data turns out to be 0.8852 .   

•  Sparse data provided similar information as the 
complete data, and both outperform the principal 
component regression for this data.   



 Functional Response: 
Single (or Multiple) Index Model 



Objectives 

•  Model longitudinal response Y(t) with 
longitudinal  covariates,    

 

 

•  Adopt a dimension reduction (semiparametric) 
model 

1                                        X (t), p!,X (t),
some or all of  iX (t)  may be scalar.   



AIDS Data 

•  CD4 counts of 369 patients were recorded. 

•  Five covariates, age is time-invariant but the rest four 
are longitudinal.  

     packs of cigarettes 

     Recreational drug use (1: yes, 0: no) 

     number of sexual partners 

     mental illness scores 

 

 



First consider  Y !  !,   X !! p .  

Y = g (!TX ) + !                           !  single index

Y = g (!1
TX , !2

TX , ..., !k
TX )+!    ! multiple indices

               k< p   

           

 Single (or Multiple) Index Model 



Functional  Single Index Model  
Jiang and Wang (2011, AOS) 

•  When there is no longitudinal component. 

  

•  However, this uses the same link function at all 
time t and does not properly address the role of 
the time factor,  

Y = g(! TX )+! .

Y ! Y (t) ! Y (t) = g(! TX )+!  



Functional  Single Index Model  

•  We consider a time dynamic link functio 

 

•    

•  For identifiability,  we assume    

                     Y (t) =   g (t, ! TX ) +".
Non Dynamic:     Y (t) =  g  (!TX )+"

!! !  =1 and !1 > 0.

Longitudinal X (t)!   Y (t) =   g (t, ! TX (t)) +!.



  Method and Theory:  Estimation 

•  We adopt an approach that estimates β and µ 
simultaneously by extending   

      “MAVE”   by    Xia et al. (2002)  

      to longitudinal data. 

•  The advantage is that no undersmoothing is needed 
to estimate β at the root-n rate. 

 

 

Y (t)= g(t, ! Tz(t)) +!.



MAVE  (Xia et al., 2002 ) 



MAVE  (Xia et al., 2002 ) 

Here a local linear smoother is applie  
 ( | ) ( )  a + b )

o
 
d

(
 t

T T TE Y Z Z Zβ µ β β= :



MAVE for Longitudinal  Data 



Algorithm for MAVE 



 rMAVE (Refined MAVE) 

•  If we iterate MAVE once to refine it, this is  
called rMAVE.   

•  Xia et al. (2002) found such an iteration improves 
efficiency.  

•  We adopted rMAVE for longitudinal data.  



- convergence of  
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Convergence of the Mean Fucntion 

nNhthz  [µ̂(t,u) ! µ(t,u)]! N (!(t,u),!(t,u)),
where N = !  ni  .

nNhthz  [µ̂(t, !̂ TZ ) ! µ(t,! TZ )]"
                                 N (!(t,  ! TZ ),  #(t,  ! TZ ))



AIDS data Analysis 



AIDS: Mean Function  



Single-index Model as an 
Exploratory Tool 

•  This suggests the possibility of a  more 
parsimonious model. 

•                could be parametric.  

•   Random effects could be added.  

Y (t)= µ(t) + f ( T! X (t))+!.

µ(t) 



Conclusion  

•  Common marginal models for longitudinal data 
use the additive form, and employ parametric 
models for both the mean and covariance function.  

      
      - Both parametric forms are difficult to detect for 

sparse and noisy longitudinal data. 
      

•  A semiparametric model, such as the single index 
model, may be useful as an exploratory tool to 
search for a parametric model.  



Conclusion  

•  Our approach allows for multiple indices. 

•  Could extend the random effects model to make 
the eigenfunctions covariate dependent  

           Jiang and Wang (2010, AOS) 

•  Could use an additive model instead of index 
model.  




