Undesirable Optimality Results in Multiple Testing?

Charles Lewis Dorothy T. Thayer Intuitions about multiple testing:

- Multiple tests should be more

conservative than individual tests.

- Controlling per comparison error rate

is not enough. Need control of a

familywise error rate or, better, FDR.

Multiple testing for multilevel models

- applying Bayesian ideas in a

sampling theory context.

Examples: Shaffer (1999), Gelman &

Tuerlincks (2000), Lewis & Thayer

(2004), and Sarkar & Zhou (2008).

One-way random effects ANOVA setup

(Treat
$$\theta$$
, σ^2 and τ^2 as known.)
 $\mathbf{\mu}' = (\mu_1, \dots, \mu_m), \quad \overline{\mathbf{y}}' = (\overline{y}_1, \dots, \overline{y}_m)$
 $\mu_j \sim N(\theta, \tau^2), \quad \overline{y}_j | \mu_j \sim N(\mu_j, \sigma^2/n)$
 $\overline{y}_j \sim N(\theta, \tau^2 + \sigma^2/n), \quad \mu_j | \overline{y}_j \sim N(\mu_j, v).$

$$\hat{\mu}_{j} = \frac{n\tau^{2}\overline{y}_{j} + \sigma^{2}\theta}{n\tau^{2} + \sigma^{2}}, \quad v = \tau^{2}\sigma^{2}/(n\tau^{2} + \sigma^{2}).$$

Consider all pairwise comparisons

$$\psi_i = \mu_j - \mu_{j'}, \quad \hat{\psi}_i = \hat{\mu}_j - \hat{\mu}_{j'} = \frac{n\tau^2 \left(\overline{y}_j - \overline{y}_{j'}\right)}{n\tau^2 + \sigma^2}$$

$$\psi_i \sim \mathsf{N}\left(0, 2\tau^2\right), \ \overline{y}_j - \overline{y}_{j'} \psi_i \sim \mathsf{N}\left(\psi_i, 2\sigma^2/n\right)$$

$$\psi_i | \hat{\psi}_i \sim \mathsf{N}(\hat{\psi}_i, 2v), \overline{y}_j - \overline{y}_{j'} \sim \mathsf{N}(0, 2\tau^2 + 2\sigma^2/n)$$

for
$$i = 1, \dots, m(m-1)/2 = m^*$$
.

Decision theory framework

(Based on early work of Lehmann)

For each ψ_i , take action a_i .

- $a_i = +1$: declare ψ_i to be positive,
- $a_i = -1$: declare ψ_i to be negative,
- $a_i = 0$: unable to determine sign of ψ_i .

Two components for loss functions

 $L_1(\psi_i, a_i) = 1$ if the signs of ψ_i and a_i

disagree and 0 otherwise;

used to indicate wrong sign declarations

 $L_2(\psi_i, a_i) = 1$ if $a_i = 0$ and 0 otherwise;

used to indicate signs not determined.

Per comparison loss function for

declaring sign of ψ_i

$$L_{PCi}(\psi_i,a_i) = L_1(\psi_i,a_i) + (\alpha/2)L_2(\psi_i,a_i).$$

Bayesian decision theory identifies the

optimal decision rule, $\delta_{PCi}\left(\hat{\psi}_{i}\right)$ such that

$$E_{\psi_i|\psi_i}\left[L_{PCi}\left(\psi_i,\delta_{PCi}\left(\hat{\psi}_i\right)\right)|\hat{\psi}_i\right]$$
 is minimized.

Finding the posterior expected loss (Some helpful notation) If $Pr(\psi_i > 0 | \hat{\psi}_i) > 0.5$, define $a_i^* = +1$ and $p_i = \Pr(\psi_i < 0 | \hat{\psi}_i);$ if $\Pr(\psi_i > 0 | \hat{\psi}_i) \le 0.5$, define $a_i^* = -1$ and $p_i = \Pr(\psi_i > 0 | \hat{\psi}_i)$. It then follows that $E_{\psi_i|\psi_i}\left[L_{PCi}\left(\psi_i,a_i^*\right)\psi_i\right] = E_{\psi_i|\psi_i}\left[L_1\left(\psi_i,a_i^*\right)\psi_i\right] = p_i.$

If
$$a_i = 0$$
, we have
 $L_{PCi}(\psi_i, 0) = L_1(\psi_i, 0) + (\alpha/2)L_2(\psi_i, 0)$
 $= \alpha/2$.

Therefore, the Bayes rule declares the sign of ψ_i , namely $\delta_{PCi}(\hat{\psi}_i) = a_i^*$, iff $p_i < \alpha/2$; otherwise it takes $\delta_{PCi}(\hat{\psi}_i) = 0$.

Since the posterior expected loss for $\delta_{\rm PCi}$

is always less than or equal to $\alpha/2$, it

follows that the Bayes risk for δ_{PCi} is also

less than or equal to $\alpha/2$:

 $E_{\psi_i,\psi_i}\left[L_{PCi}\left(\psi_i,\delta_{PCi}\left(\hat{\psi}_i\right)\right)\right] \leq \alpha/2 .$

Consequently,

 $E_{\psi,\psi}\left[L_{1}(\psi_{i},\delta_{PC}(\psi_{i}))\right] \leq lpha/2$.

This expectation is the (random effects)

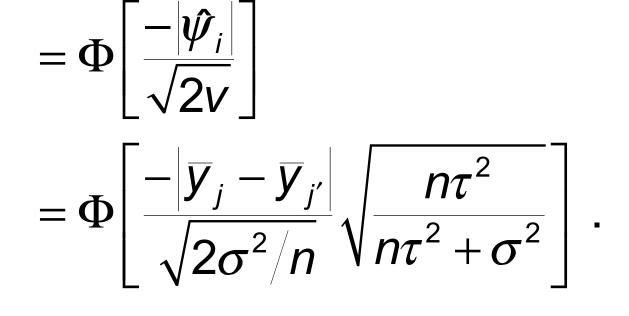
probability of incorrectly declaring the

sign of ψ_i using the decision rule δ_{PCi} : the

per comparison wrong sign rate for ψ_i .

Explicit expression for p_i

 $p_i = \min \left\{ \Pr(\psi_i > 0 | \hat{\psi}_i), \Pr(\psi_i < 0 | \hat{\psi}_i) \right\}$



For the usual (fixed effects) per

comparison test,
$$p_{fi} = \Phi \left[\frac{-|\overline{y}_j - \overline{y}_{j'}|}{\sqrt{2\sigma^2/n}} \right]$$
,

so
$$p_i > p_{fi}$$
.

Define a fixed effects decision rule by

$$\delta_{\scriptscriptstyle fi}(\hat{\psi}_{\scriptscriptstyle i}) = a_{\scriptscriptstyle i}^*, \ {
m iff} \ p_{\scriptscriptstyle fi} < lpha/2;$$

otherwise we have $\delta_{fi}(\hat{\psi}_i) = 0$.

Since p_{fi} is based on the distribution of

 $\hat{\psi}_i | \psi_i$, we may write

$$\begin{split} & E_{\psi_i | \psi_i} \left[L_1(\psi_i, \delta_{fi}(\hat{\psi}_i)) | \psi_i \right] \leq p_{fi} \leq \alpha/2 ,\\ & \text{and so} \\ & E_{\psi_i, \psi_i} \left[L_1(\psi_i, \delta_{fi}(\hat{\psi}_i)) \right] \leq \alpha/2 . \end{split}$$

Conclusion: the Bayesian random

effects rule and the fixed effects rule

both control the random effects per

comparison wrong sign rate at $\alpha/2$,

but the Bayesian rule is more

conservative than the fixed effects rule.

Extend definition of the per comparison

loss function to the set of comparisons

$$L_{PC}(\mathbf{\psi}, \mathbf{a}) = \frac{\sum_{i=1}^{m^{*}} L_{1}(\psi_{i}, a_{i})}{m^{*}} + \left(\frac{\alpha}{2}\right)^{\sum_{i=1}^{m^{*}} L_{2}(\psi_{i}, a_{i})} m^{*}$$
$$= \frac{\sum_{i=1}^{m^{*}} L_{PCi}(\psi_{i}, a_{i})}{m^{*}}.$$

Interpretation of L_{PC}

This new loss function equals the

proportion of comparisons whose signs

are incorrectly declared using a, plus

 $\alpha/2$ times the proportion of comparisons

whose signs are not determined using **a**.

Family of optimal action vectors $\mathbf{a}^{(k)}$

Order the p_i so that $p_{(1)} \leq \cdots \leq p_{(m^*)}$.

Define
$$\mathbf{a}^{(k)}$$
 for $k = 1, \dots, m^*$ as

$$a_{(i)}^{(k)} = a_{(i)}^{*}$$
, for $i = 1, \dots, k$, and
 $a_{(i)}^{(k)} = 0$, for $i = k + 1, \dots, m^{*}$.

Take
$$a_{(i)}^{(0)} = 0$$
, for $i = 1, \dots, m^*$.

The Bayesian decision rule for the loss function L_{PC}

$$\boldsymbol{\delta}_{PC}\left(\boldsymbol{\hat{\psi}}\right) = \mathbf{a}^{(k_{PC})},$$

where k_{PC} is the largest value of k such

that $p_{(k)} < lpha/2$, or $k_{PC} = 0$ if $p_{(1)} \ge lpha/2$.

Posterior expected loss for
$$\boldsymbol{\delta}_{PC}$$

$$E_{\boldsymbol{\psi}|\boldsymbol{\psi}} \left[L_{PC} \left(\boldsymbol{\psi}, \boldsymbol{\delta}_{PC} \left(\boldsymbol{\hat{\psi}} \right) \right) | \boldsymbol{\hat{\psi}} \right] = \frac{\sum_{i=1}^{k_{PC}} p_{(i)}}{m^*} + \left(\frac{\alpha}{2} \right) \left(\frac{m^* - k_{PC}}{m^*} \right)$$

if $k_{PC} > 0$, and

 $E_{\psi|\hat{\psi}}\left[L_{PC}\left(\psi, \boldsymbol{\delta}_{PC}\left(\hat{\psi}\right)\right)|\hat{\psi}\right] = \alpha/2 \text{ if } k_{PC} = 0.$

21

Since
$$L_{PC}\left(\mathbf{\Psi}, \mathbf{a}^{(0)}\right) = \alpha/2$$
, the posterior

expected loss for the Bayesian decision

function must be less than or equal to

 $\alpha/2$, and the Bayes risk for δ_{PC} must

also be less than or equal to $\alpha/2$:

$$r(\mathbf{\delta}_{PC}) = E_{\mathbf{\psi},\hat{\mathbf{\psi}}} \left[L_{PC} \left(\mathbf{\psi}, \mathbf{\delta}_{PC} \left(\hat{\mathbf{\psi}} \right) \right) \right] \le \alpha/2$$
.

Consequently,

$$E_{\boldsymbol{\psi},\hat{\boldsymbol{\psi}}}\left[\left(\frac{1}{m^*}\right)_{i=1}^{m^*}L_1(\boldsymbol{\psi}_i,\delta_{PCi}(\hat{\boldsymbol{\psi}}_i))\right] \leq \frac{\alpha}{2}.$$

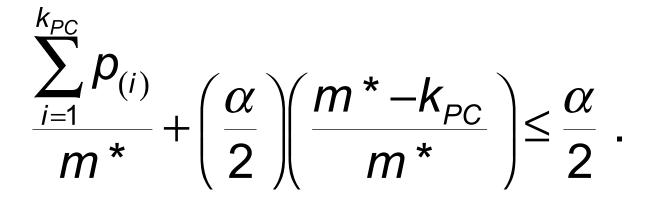
This expectation is the (random effects)

per comparison wrong sign rate for ψ

using the Bayes rule δ_{PC} .

Rewriting the bound on the posterior

expected loss for $\boldsymbol{\delta}_{PC}$ given $\hat{\boldsymbol{\Psi}}$, we have



Consequently, we may write

$$\frac{\sum_{i=1}^{k_{PC}} p_{(i)}}{m^*} \leq \left(\frac{\alpha}{2}\right) \left(\frac{k_{PC}}{m^*}\right), \text{ so}$$
$$\frac{\sum_{i=1}^{k_{PC}} p_{(i)}}{\min\{1, k_{PC}\}} \leq \frac{\alpha}{2}.$$

Since this inequality gives an upper bound on the posterior expectation, a corresponding upper bound holds for the unconditional expectation:

$$E_{\boldsymbol{\psi},\hat{\boldsymbol{\psi}}}\left[\frac{\sum\limits_{i=1}^{m^{*}}L_{1}\left(\boldsymbol{\psi}_{i},\boldsymbol{\delta}_{PCi}\left(\hat{\boldsymbol{\psi}}_{i}\right)\right)}{\min\left\{1,\boldsymbol{k}_{PC}\right\}}\right] \leq \frac{\alpha}{2}.$$

This quantity (evaluated for any decision rule $\boldsymbol{\delta}$) is referred to by Sarkar and Zhou (2008) as the Bayesian directional false discovery rate, or BDFDR, for $\boldsymbol{\delta}$. The result that $\boldsymbol{\delta}_{PC}$ controls the BDFDR was given by Lewis and Thayer (2004). Having a per comparison rule control a version of the FDR is counterintuitive!

Sarkar and Zhou (2008) propose

another decision rule (here labeled δ_{sz})

that also controls the BDFDR and

maximizes the posterior per comparison

power rate.

Specifically, $\boldsymbol{\delta}_{SZ}(\hat{\boldsymbol{\psi}}) = \mathbf{a}^{(k_{SZ})}$, where k_{SZ} is

the largest value of k such that

$$rac{\sum\limits_{i=1}^k p_{(i)}}{k} \leq rac{lpha}{2}$$
 , or $k_{\scriptscriptstyle SZ} = 0$ if $p_{(1)} \geq lpha/2$.

Thus $\boldsymbol{\delta}_{sz}$ controls the BDFDR at $\alpha/2$.

Sarkar and Zhou (2008) also proved that, among (non-randomized) rules that control the BDFDR, δ_{sz} maximizes the posterior per comparison power rate:

$$E_{\boldsymbol{\psi}|\boldsymbol{\hat{\psi}}} \begin{bmatrix} \sum_{i=1}^{m^{*}} \left[1 - L_{1}\left(\boldsymbol{\psi}_{i}, \delta_{i}\left(\boldsymbol{\hat{\psi}}_{i}\right)\right) - L_{2}\left(\boldsymbol{\psi}_{i}, \delta_{i}\left(\boldsymbol{\hat{\psi}}_{i}\right)\right) \right] \\ m^{*} \end{bmatrix} \mathbf{\hat{\psi}}$$

Too much power?

Not only does δ_{S7} have more power than the Bayes rule δ_{PC} , it may also have more power than the fixed effects rule $\boldsymbol{\delta}_{f}$. In other words, $\boldsymbol{\delta}_{SZ}$ will sometimes declare a sign for ψ_i even when $p_{fi} > \alpha/2$. This is counterintuitive!

To summarize, in a multilevel model like random effects ANOVA, Bayesian ideas have sampling interpretations. In particular, we may define a Bayesian (or random effects) version of the FDR: The average (over both levels) proportion of declared signs for a set of comparisons that are incorrectly declared.

 A Bayesian per comparison decision rule turns out to provide control of this FDR, even though it was only designed to minimize an expected per comparison loss function.

2. And a rule *designed* to control this FDR may have more power than a conventional per comparison rule.

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, Series B, 57*, 289-300.

- Gelman, A., & Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. *Computational Statistics*, *15*, 373-390.
- Jones, L. V., & Tukey, J. W. (2000). A sensible formulation of the significance test. *Psychological Methods, 5*, 411-414.
- Lehmann, E. L. (1950). Some principles of the theory of testing hypotheses. *The Annals of Mathematical Statistics, 21,* 1-26.

Lehmann, E. L. (1957a). A theory of some multiple decision problems. I. *The Annals of Mathematical Statistics, 28,* 1-25.

- Lehmann, E. L. (1957b). A theory of some multiple decision problems. II. *The Annals of Mathematical Statistics, 28,* 547-572.
- Lewis, C., & Thayer, D. T. (2004). A loss function related to the FDR for random effects multiple comparisons. *Journal of Statistical Planning and Inference*, *125*, 49-58.
- Sakar, S. K., & Zhou, T. (2008). Controlling directional Bayesian false discovery rate in random effects model. *Journal of Statistical Planning and Inference*, 138, 682-693.

Shaffer, J. P. (1999). A semi-Bayesian study of Duncan's Bayesian multiple comparison procedure. *Journal of Statistical Planning and Inference*, *82*, 197-213.

- Shaffer, J. P. (2002). Multiplicity, directional (Type III) errors and the null hypothesis. *Psychological Methods*, *7*, 356-369.
- Williams, V. S. L., Jones, L. V., & Tukey, J. W. (1999). Controlling error in multiple comparisons, with examples from state-to-state differences in educational achievement. *Journal of Educational and Behavioral Statistics, 24*, 42-69.