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Intuitions about multiple testing: 

- Multiple tests should be more 

conservative than individual tests. 

- Controlling per comparison error rate 

is not enough. Need control of a 

familywise error rate or, better, FDR.  
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Multiple testing for multilevel models 

- applying Bayesian ideas in a 

  sampling theory context. 

Examples: Shaffer (1999), Gelman & 

Tuerlincks (2000), Lewis & Thayer 

(2004), and Sarkar & Zhou (2008).  
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One-way random effects ANOVA setup 

(Treat  as known.) 

,    

,    

, . 

, . 
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Consider all pairwise comparisons 

,   

,  

,  

for . 
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Decision theory framework 

(Based on early work of Lehmann) 

For each , take action . 

: declare  to be positive,  

: declare  to be negative, 

: unable to determine sign of . 
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Two components for loss functions 

 if the signs of  and  

disagree and 0 otherwise; 

used to indicate wrong sign declarations 

 if  and 0 otherwise; 

used to indicate signs not determined. 
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Per comparison loss function for 

declaring sign of  

 . 

Bayesian decision theory identifies the 

optimal decision rule,  such that 

 is minimized. 
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Finding the posterior expected loss 

(Some helpful notation) 

If , define  and 

; 

if , define  and  

. It then follows that 
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If , we have 

 

Therefore, the Bayes rule declares the 

sign of , namely , iff 

; otherwise it takes . 
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Since the posterior expected loss for  

is always less than or equal to , it 

follows that the Bayes risk for  is also 

less than or equal to : 

 . 
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Consequently, 

 . 

This expectation is the (random effects) 

probability of incorrectly declaring the 

sign of  using the decision rule : the 

per comparison wrong sign rate for . 
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Explicit expression for  
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For the usual (fixed effects) per 

comparison test, , 

so .  

Define a fixed effects decision rule by 

, iff ; 

otherwise we have . 
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Since  is based on the distribution of 

, we may write 

 , 

and so 

 . 
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Conclusion: the Bayesian random 

effects rule and the fixed effects rule 

both control the random effects per 

comparison wrong sign rate at ,  

but the Bayesian rule is more 

conservative than the fixed effects rule. 
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Extend definition of the per comparison 

loss function to the set of comparisons 
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Interpretation of  

This new loss function equals the 

proportion of comparisons whose signs 

are incorrectly declared using a, plus 

 times the proportion of comparisons 

whose signs are not determined using a. 
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Family of optimal action vectors  

Order the  so that . 

Define  for  as 

 

Take . 
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The Bayesian decision rule for the  

loss function  

, 

where  is the largest value of k such 

that  , or  if  . 
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Posterior expected loss for  

 

if , and 

 if . 
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Since , the posterior 

expected loss for the Bayesian decision 

function must be less than or equal to 

, and the Bayes risk for  must 

also be less than or equal to : 

 . 
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Consequently,

.  

This expectation is the (random effects) 

per comparison wrong sign rate for  

using the Bayes rule . 
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Rewriting the bound on the posterior 

expected loss for  given , we have 

 . 
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Consequently, we may write 

 , so 

 . 
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Since this inequality gives an upper 

bound on the posterior expectation, a 

corresponding upper bound holds for 

the unconditional expectation: 

. 



27 

This quantity (evaluated for any decision 

rule ) is referred to by Sarkar and Zhou 

(2008) as the Bayesian directional false 

discovery rate, or BDFDR, for . 

The result that  controls the BDFDR 

was given by Lewis and Thayer (2004). 

Having a per comparison rule control a 

version of the FDR is counterintuitive! 
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Sarkar and Zhou (2008) propose 

another decision rule (here labeled ) 

that also controls the BDFDR and 

maximizes the posterior per comparison 

power rate. 
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Specifically, , where  is 

the largest value of k such that 

 , or  if  . 

Thus  controls the BDFDR at . 
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Sarkar and Zhou (2008) also proved 

that, among (non-randomized) rules that 

control the BDFDR,  maximizes the 

posterior per comparison power rate: 
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Too much power? 

Not only does  have more power 

than the Bayes rule , it may also 

have more power than the fixed effects 

rule . In other words,  will 

sometimes declare a sign for  even 

when . This is counterintuitive! 
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To summarize, in a multilevel model like 

random effects ANOVA, Bayesian ideas 

have sampling interpretations. In 

particular, we may define a Bayesian (or 

random effects) version of the FDR: The 

average (over both levels) proportion of 

declared signs for a set of comparisons 

that are incorrectly declared. 
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1. A Bayesian per comparison decision 

rule turns out to provide control of this 

FDR, even though it was only designed 

to minimize an expected per comparison 

loss function. 

2. And a rule designed to control this 

FDR may have more power than a 

conventional per comparison rule. 
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