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Introduction

• Statistical inference in the context of spatially distributed data processed

and analyzed by decentralized systems

– sensor networks, social networks, the Web

• Two interacting aspects

– how to exploit the spatial dependence in data

– how to deal with decentralized communication and computation
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Introduction

• Statistical inference in the context of spatially distributed data processed

and analyzed by decentralized systems

– sensor networks, social networks, the Web

• Two interacting aspects

– how to exploit the spatial dependence in data

– how to deal with decentralized communication and computation

• Extensive literature dealing with each of these two aspects separately

by different communities

• Many applications call for handling both aspects in near “real-time”

data processing and analysis
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Example – Sensor network for traffic monitoring

Problem: detecting sensor failures for all sensors in the network

• data: sequence of sensor measurements of traffic volume

• sequential detection rule for change (failure) point, one for each sensor
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“Mean days to failure”

• as many as 40% sensors fail a given day

• need to detect failed sensors as early as possible

• separating sensor failure from events of interest is difficult
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Talk outline

• statistical formulation for detection of multiple change points

in a network setting

– classical sequential analysis

– graphical models

• sequential and “real-time” message-passing detection algorithms

– decision procedures with limited data and computation

• asymptotic theory of the tradeoffs between statistical efficiency vs. com-

putation/communication efficiency
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Sequential detection for single change point

• sensor u collects sequence of data Xn(u) for n = 1, 2, . . .

• λu change point variable for sensor u

• data are i.i.d. according to f0 before the change point; and iid f1 after
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Sequential detection for single change point

• sensor u collects sequence of data Xn(u) for n = 1, 2, . . .

• λu change point variable for sensor u

• data are i.i.d. according to f0 before the change point; and iid f1 after

• a sequential change point detection procedure is a stopping time τu,

i.e., {τu ≤ n} ∼ σ(X1(u), . . . , Xn(u))

• Neyman-Pearson criterion:

– constraint on false alarm error

PFA(τu(X)) = P (τu < λu) ≤ α for some small α

– minimum detection delay

E[(τu − λu)|τu ≥ λu].
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Beyond a single change point

• we have multiple change points, one for each sensor

• we could apply the single change point method to each sensor

independently, but this is not a good idea

– measurements from a single sensor are very noisy

– failed sensors may still produce plausible measurement values

• borrowing information from neighboring sensors may be useful

– due to spatial dependence of measurements

– but data sharing limited to neighboring sensors

– data sharing via a message-passing mechanism
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Sample correlation with neighbors

Correlation with good sensors Correlation with failed sensors
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Correlation statistics have been successfully utilized in practice, although

not in a sequential and decentralized setting (Kwon and Rice, 2003)
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A formulation for multiple change points

• m sensors labeled by U = {u1, . . . , um}

• given a graph G = (U, E) that specifies the the connections among

u ∈ U

• each sensor u fails at time λu

– λu is endowed with (independent) prior distribution πu
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A formulation for multiple change points

• m sensors labeled by U = {u1, . . . , um}

• given a graph G = (U, E) that specifies the the connections among

u ∈ U

• each sensor u fails at time λu

– λu is endowed with (independent) prior distribution πu

• there is private data sequence Xn(u) for sensor u

– private data sequence changes its distribution after λu

• there is shared data sequence (Zn(u, v))n for each neighboring pair of

sensors u and v:

Zn(u, v)
iid
∼ f0(·|u, v), for n < min(λu, λv)

iid
∼ f1(·|u, v), for n ≥ min(λu, λv)
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Graphical model of change points

(a) Topology of sensor network (b) Graphical model of random variables

• Conditionally on the shared data sequences, change point variables are

no longer independent
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Localized stopping times

• Data constraint. Each sensor has access to only shared data with its

neighbors

• Definition. Stopping rule for u, denoted by τu, is a localized stopping

time, which depends on measurements of u and its neighbors:

– for any t > 0:

{τu ≤ t} ∈ σ

(

{Xn(u), Zn(u, v)|n ≤ t, v ∈ N(u)}

)
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Performance metrics

• false alarm rate

PFA(τu) = P(τu ≤ λu).

• expected failure detection delay

D(τu) = E[τu − λu|τu ≥ λu].

• Problem: for each sensor u, find a localized stopping time τu

min
τu

D(τu) such that PFA(τu) ≤ α.
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Review of results for single change point detection

• optimal sequential rule is a stopping rule by thresholding the posterior

of λu under some conditions: (Shiryaev, 1978)

τu(X) = inf{n : Λn ≥ 1 − α},

where

Λn = P(λu ≤ n|X1(u), . . . , Xn(u)).

• well-established asymptotic properties (Tartakovsky & Veeravalli, 2006):

– false alarm:

PFA(τu(X)) ≤ α.

– detection delay:

D(τu(X)) =
| log α|

q(X) + d

(

1 + o(1)

)

as α → 0.

– here q(X) = KL(f1(X)||f0(X)), the Kullback-Leibler information,

d some constant
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Two sensor case: An initial idea

X YZu v

X YZ

λu λv

• Idea: use both private data X1, . . . , Xn and shared data Z1, . . . , Zn:

τu(X, Z) = inf{n : P(λu ≤ n|(X1, Z1), . . . , (Xn, Zn)) ≥ 1 − α}.
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Two sensor case: An initial idea

X YZu v

X YZ

λu λv

• Idea: use both private data X1, . . . , Xn and shared data Z1, . . . , Zn:

τu(X, Z) = inf{n : P(λu ≤ n|(X1, Z1), . . . , (Xn, Zn)) ≥ 1 − α}.

• Theorem 1: The false alarm for τu(X, Z) is bounded from above by α,

while expected delay takes the form:

D(τu(X, Z)) =
| log α|

q(X) + d

„

1 + o(1)

«

as α → 0.

– Z not helpful in improving the delay (at least in the asymptotics!)

– this suggests to use information from Y as well (to predict λu)
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Localized stopping rule with message exchange

• Modified Idea:

– u should use information given by shared data Z only if its neighbor

v has not changed (failed) ...

– but u does not know whether v has changed or not, so ...

– instead of deciding this by itself, u will wait for v to tell it

X YZu v

message
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Localized stopping rule with message exchange

• Modified Idea:

– u should use information given by shared data Z only if its neighbor

v has not changed (failed) ...

– but u does not know whether v has changed or not, so ...

– instead of deciding this by itself, u will wait for v to tell it

X YZu v

message

Stopping rule for u ultimately hinges also information given by data sequence Y ,

passed to u indirectly via neighbor sensor v
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Localized stopping rule with information exchange

• Algorithmic Protocol:

– each sensor uses all data shared with neighbors that have not de-

clared to change (fail)

– if a sensor v stops according to its stopping rule, v broadcasts this

information to all its neighbors, who promptly drop v from the list

of their respective neighbors
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Localized stopping rule with information exchange

• Algorithmic Protocol:

– each sensor uses all data shared with neighbors that have not de-

clared to change (fail)

– if a sensor v stops according to its stopping rule, v broadcasts this

information to all its neighbors, who promptly drop v from the list

of their respective neighbors

• Formally, for two sensors:

– stopping rule for u, using only X: τu(X)

– stopping rule for u, using both X and Z: τu(X, Z)

– similarly, for sensor v: τv(Y ) and τv(Y, Z)

– then, the overall stopping rule for u is:

τ̄u(X, Y, Z) =

8

<

:

τu(X, Z) if τu(X, Z) ≤ τv(Y, Z)

max(τu(X), τv(Y, Z)) otherwise
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Asymptotic expression of detection delay

(Rajagopal, Nguyen, Ergen & Varaiya, 2010)

Theorem 2: Expected detection delay for u takes the form:

D(τ̄u) = D1δα + D2(1 − δα) as α → 0.

• here,

D1 = D(τu(X)) =
| log α|

q(X) + d

(

1 + o(1)

)

,

D2 =
| log α|

q(X) + q(Z) + d

(

1 + o(1)

)

<
∼ D1.

• δα is the probability that u’s neighbor declares “fail” before u.

• clearly, for sufficiently small α there holds: D(τ̄u) < D(τu(X)). Under

additional conditions, this delay is asymptotically optimal.
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Upper bound for false alarm rate

Theorem 3: False alarm rate for τu satisfies:

PFA(τ̄u) ≤ α + ξ(τ̄u).

• ξ(τ̄u) is termed error-coupling probability: probability that u thinks v

has not changed, while in fact, v already has:

ξ(τ̄u) = P(τ̄u ≤ τ̄v, λv ≤ τ̄u ≤ λu).
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Upper bound for false alarm rate

Theorem 3: False alarm rate for τu satisfies:

PFA(τ̄u) ≤ α + ξ(τ̄u).

• ξ(τ̄u) is termed error-coupling probability: probability that u thinks v

has not changed, while in fact, v already has:

ξ(τ̄u) = P(τ̄u ≤ τ̄v, λv ≤ τ̄u ≤ λu).

• Moreover, ξ(τ̄u) → 0 at a rate that is faster than αp for some constant

p > 0.

• p > 1 under conditions that the Kullback-Leibler information given by

shared data Z are sufficiently dominated by that of private data X and

Y .

19-a



Power rate of error-coupling probability

• Define b = q0(X) − q1(Z) + d and the rate

r∗a =
1

w∗

[min{q0(X), q1(Z)} + q1(Y )]2

max{σ2
0(X), σ2

1(Z)} + σ2
1(Y )

,

where

w∗ =

√

σ2
1(X) + σ2

1(Z)

max{σ2
0(X), σ2

1(Z)} + σ2
1(Y )

[min{q0(X), q1(Z)} + q1(Y )] − b,

constants σ2
0(X), σ2

1(Z) and σ2
1(Y ) are variances of the likelihood ra-

tios.

• Then

lim
α→0

log ξ(τ̄u)

log α
≥ p, where

(a) if b1 ≤ 0 then p = r∗a;

(b) if b1 > 0 then p = max(r∗a, r∗b ), where r∗b = 4b
σ2

1
(X)+σ2

1
(Z)

.
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Simulation set-up

• f0(X) = N (1, σ2(X)); f1(X) = N (0, σ2(X))

• f0(Y ) = N (1, σ2(Y )); f1(Y ) = N (0, σ2(Y ))

• f0(Z) = N (1, σ2(Z)); f1(Z) = N (0, σ2(Z))

• Change points λ1 and λ2 are endowed with geometric priors and simu-

lated accordingly
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Benefits of message-passing with shared

data/information

Two-sensor network:

left: evaluated by simulations right: predicted by Theorem 2

X-axis: Ratio of uncertainty σ2(Z)/σ2(X)

Y-axis: Detection delay time

22



There is extra loss in terms of false alarm probability:

PFA(τ̄u) ≤ α + αp.

where p > 1 if σ2
Z/σ2

X > 3 (by Theorem 2).

By simulation p > 1 if σ2
Z/σ2

X > 1.8.
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Network with many sensors

• our algorithmic protocol is readily applicable to network with arbitrarily

number of sensors and arbitrary topology

• The Algorithmic Protocol:

– each sensor uses all data shared with neighbors that have not de-

clared to change (fail)

– if a sensor v stops according to its stopping rule, v broadcasts this

information to all its neighbors, who promptly drop v from the list

of their respective neighbors

• asymptotic theory for the false alarm probability remains open

– comparison of stopping times is intricate
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Examples of network topologies

(a) Grid network (b) Fully connected network
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Number of sensors vs Detection delay time

Fully connected network:

left: α = .1 right: α = 10−4 (theory predicts well!)
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False alarm rates

Fully connected network

simulated false alarm rate vs. actual rate number of sensors vs. actual rate
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Effects of network topology

Grid network (each sensor has fixed number of neighbors)

num. of sensors vs. detection delay num. of sensors vs. actual FA rate
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Summary

• decentralized sequential detection of multiple change points

– application to detection failures in a sensor network

• new statistical formulation drawing from classical ideas:

– sequential analysis

– probabilistic graphical models

• introduced a “message-passing” sequential detection algorithm, exploit-

ing the benefit of “network information”

• asymptotic theories for analyzing false alarm rates and detection delay
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