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A LEADING QUESTION

A Leading Question

In what ways should estimation and test procedures, or
perceived geometric features and structures in a data set,
desirably transform when the data undergo transformation to
another coordinate system?
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POPULAR POINTS OF VIEW

Popular Points of View

I “Two estimators of a parameter which agree for given
data in one coordinate system should continue to agree
after transformation to another coordinate system.”

I “A test procedure which accepts or rejects a null
hypothesis on the basis of given data should make the
same decision about the equivalent null hypothesis after
transformation to other coordinates.”

I “p-values and other interpretations of the data as
evidence for or against the null hypothesis should not
change after transformation to other coordinates.”
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POPULAR POINTS OF VIEW

I “In general, a statistical decision procedure should be
independent of the particular coordinate system of the
data.”

I “If an inference problem exhibits symmetry with respect
to some group of transformations, then one should
restrict to decision procedures which likewise exhibit the
given symmetry.”
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POPULAR POINTS OF VIEW

I “A method of ranking of points in a data cloud by
centrality or outlyingness should give the same ranking
after transformation to other coordinates.”

I “Points branded as outliers in one coordinate system
should remain so under such transformation to other
coordinates.”

I “The interpretation of a point as a quantile relative to a
given probability distribution should carry over to its
image under transformation to other coordinates.”
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POPULAR POINTS OF VIEW

I “Striking geometric features or structures perceived in a
data set or found by data mining should be invariant
under transformation of coordinates or else ignored as
mere artifacts of the given coordinate system.”
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KEY TECHNICAL CONCEPTS

Key Technical Concepts

Such requirements, which we neither endorse nor reject, are
fulfilled when, for example,

I test statistics and outlyingness functions are invariant ,

I estimators and quantile functions are equivariant ,

and/or

I preprocessing of the data is carried out using an
invariant coordinate system transformation .
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KEY TECHNICAL CONCEPTS

More specifically, for a data set Xn = {X1, . . . ,Xn} of
observations in Rd , and for affine transformations
X 7→ Ax + b with nonsingular d × d matrix A and d -vector b,

I Location estimators L(Xn) should satisfy

L(AXn + b) = AL(Xn) + b.

I Dispersion estimators D(Xn) should satisfy a version of

D(AXn + b) = AD(Xn)A
′.
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KEY TECHNICAL CONCEPTS

I Multivariate quantile functions Q(u, Xn), u ∈ Bd(0) (the
unit ball in Rd), should satisfy some version of

Q(ν,AXn + b) = AQ(u, Xn) + b,

for a suitable Bd(0)-valued reindexing ν = ν(u,A,b, Xn).

In particular, the median Q(0, Xn) should satisfy

Q(0,AXn + b) = AQ(0, Xn) + b.

I Multivariate outlyingness functions O(x, Xn), x ∈ Rd ,
should satisfy

O(Ax + b,AXn + b) = O(x, Xn),

at least up to a multiplicative constant.
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KEY TECHNICAL CONCEPTS

I We want matrix-valued invariant coordinate system (ICS)
transformations M(Xn) such that the data Xn after

transformation to new coordinates M(Xn)Xn agrees

with affine counterparts M(AXn + b)(AXn + b) up to

homogeneous scale changes and translations.

That is, M(Xn)Xn captures the affine invariant

geometric structures, artifacts, and patterns inherent in
the original data set Xn.
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GOALS OF THIS TALK

Goals of This Talk
Invariance (I) and Equivariance (E) have intuitive appeal and
a certain force of logic.

Practical implementation, however, requires a formal
development and a broad perspective.

In the setting of multivariate data in Rd , and with special
focus on matrix transformations of the data, let us examine

I formulations of I and E for various purposes,

I costs of I and E as trade-offs against efficiency,
robustness, and computational ease,

I methods for acquiring I and E via suitable
transformations of the data,

I technical issues with approaches to I and E .
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Preamble

Introduction
Invariance (I), Groups, and Symmetry: Lehmann (1959)
Some Classical Examples of Invariant Tests
Equivariance (E) versus Other Criteria

Examples of I and E in Nonparametric Multivariate Analysis
Location Testing: Chaudhuri and Sengupta (1993)
Location Estimation: Chakraborty and Chaudhuri (1996)
Further Illustrations Involving TR Transformations
Fast Dispersion Matrix Estimation

Methods for I and E : WC, TR, and SICS Transformations

Results for SICS Transformations

Application: Projection Pursuit with Finitely Many Directions

An Open Issue with SICS Transformations
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INVARIANCE, GROUPS, AND SYMMETRY: LEHMANN (1959)

Invariance, Groups, and Symmetry [Lehmann, 1959]

I “The mathematical expression of symmetry is invariance
under a suitable group of transformations.”

I General Setting (not just Rd):
I Arbitrary sample space X and measurable subsets A
I Group G of 1:1 transformations of X , g : x 7→ gx ,

x ∈ X , such that gA = A
I Orbits {g(x), g ∈ G}, x ∈ X , partition X into

equivalence classes of x , x ′ related by x = g(x ′), some g .

I A function T (x) is invariant if constant on any G-orbit O:

T (x) = constant, x ∈ O.

I A maximal invariant function T0(x) labels the orbits: if
T0(x) = T0(x

′), then x and x ′ belong to the same orbit.
Then each invariant T = h ◦ T0 for some h
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INVARIANCE, GROUPS, AND SYMMETRY: LEHMANN (1959)

I Extended Setting:
I Sample space X and measurable subsets A
I Group G of 1:1 transformations of X , g : x 7→ gx ,

x ∈ X , such that gA = A

I Family {Pθ, θ ∈ Θ} of distinct distributions on A
I Induced group G on Θ: for g ∈ G define g : θ 7→ gθ by

Pgθ(X ∈ A) = Pθ(gX ∈ A), θ ∈ Θ.
I Assumption making g 1:1 on Θ: gΘ = Θ

I Induced group G∗ on the decision space D: for g ∈ G,
define g∗ : d 7→ g∗d such that g 7→ g∗ is a
homomorphism and loss L is unchanged:
L(gθ, g∗d) = L(θ, d).
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INVARIANCE, GROUPS, AND SYMMETRY: LEHMANN (1959)

I Invariance of statistical decision problem
(X , {Pθ, θ ∈ Θ}, L):

gA = A, gΘ = Θ, L(gθ, g ∗d) = L(θ, d).

I Invariance of statistical decision procedure δ:

(A) δ(gx) = g ∗δ(x).

I For an invariant testing problem, we want g ∗ = the
identity in (A), which then expresses Invariance (I) of the
test function δ.

I For an invariant estimation problem, we want g ∗ 6= the
identity, and then, in current terminology, (A) expresses
Equivariance (E) of the estimator δ.
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SOME CLASSICAL EXAMPLES OF INVARIANT TESTS

Some Classical Examples of Invariant Tests

I G = {translations gx = x + c , c ∈ R}. A maximal
invariant is T0(Xn) = (X1 − Xn, . . . , Xn−1 − Xn).

The testing problem H0 : X ∼ f0(x − θ) versus
H1 : X ∼ f1(x − θ) with θ unknown is invariant under G
and the induced G.

An invariant test is then a function of T0(Xn), whose
distribution does not depend on θ.

The Neyman-Pearson Lemma yields a UMP invariant
test, which turns out to be quite reasonable.
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SOME CLASSICAL EXAMPLES OF INVARIANT TESTS

I G = {scale changes gx = cx , c > 0}. A maximal
invariant is T0(Xn) = (X1/Xn, . . . , Xn−1/Xn).

I G = {linear transformations gx = ax + b, a 6= 0}. A
maximal invariant is T0(Xn) =
((X1 − Xn)/(Xn−1 − Xn), . . . , (Xn−2 − Xn)/(Xn−1 − Xn)).

I G = {continuous and strictly increasing functions g(x)}.
A maximal invariant is T0(Xn) = the vector of ranks of
X1, . . . , Xn.
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SOME CLASSICAL EXAMPLES OF INVARIANT TESTS

An Example for Data in R2

I The data consists of two bivariate observations,
X1 ∼ N(0,Σ) and X2 ∼ N(0, ∆Σ). With probability 1,
X is the sample space of nonsingular 2× 2 matrices.

The problem of testing ∆ = 1 versus ∆ > 1 is invariant
with respect to G = {g: gX = AX, nonsingular 2× 2 A}.
However, there is only one orbit and so the invariant and
maximal invariant functions are the constant functions.

Then the UMP invariant size α test is φ ≡ α, with power
α. Yet a good noninvariant test can be developed with
power function increasing in ∆.

This shows that the best invariant procedure can be
inadmissable, outperformed by a noninvariant one.
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EQUIVARIANCE VERSUS OTHER CRITERIA

Equivariance versus Other Criteria
I Three desirable properties of a univariate location

estimator θ(Xn) are
I Equivariance: θ(aXn + b) = aθ(Xn) + b
I Monotonicity : for all nonnegative b1, . . . , bn,

θ(X1 + b1, . . . ,Xn + bn) ≥ θ(X1, . . . ,Xn)

I 50% breakdown point: up to 50% of the sample may be
corrupted without taking θ(Xn) to ∞.

Only one statistic possesses all three of these properties:
the sample median (Bassett, 1991). The median,
however, gives up some efficiency.

This shows that restriction to equivariant procedures can
overly compromise efficiency.
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LOCATION TESTING: CHAUDHURI AND SENGUPTA (1993)

Example: Chaudhuri and Sengupta (1993)

I Chaudhuri and Sengupta (1993) test H : θ = 0 versus
H : θ 6= 0 in the location model FX = F0(x− θ) in Rd .

I Since Aθ = 0, all nonsingular A, if and only if θ = 0,
they suggest using a test function φ satisfying φ(Ax) =
φ(x), all nonsingular A, thus making the same decision
before and after any nonsingular transformation of the
coordinate system.

I This motivates choosing the test procedure to be some
function of a maximal invariant statistic relative to the
group of nonsingular transformations A.
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EXAMPLES OF I AND E IN NONPARAMETRIC MULTIVARIATE ANALYSIS

LOCATION TESTING: CHAUDHURI AND SENGUPTA (1993)

A Maximal Invariant for This Example

I Based on Xn, and for each fixed choice of d distinct
indices J = {i1, . . . , id} from {1, . . . , n}, Chaudhuri and
Sengupta define the matrix

WJ(Xn) = [Xi1 , . . . ,Xid ]d×d

and show that for FX absolutely continuous the
transformed observations (i.e, “data-driven coordinates”)

Y(J)
n = WJ(Xn)

−1Xn

form a maximal invariant statistic with respect to the
nonsingular transformations A.
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LOCATION TESTING: CHAUDHURI AND SENGUPTA (1993)

An Important Property of the Matrix WJ(Xn)

I We observe here that, for each J, the matrix WJ(Xn)
satisfies the following structural property:

WJ(AXn) = AWJ(Xn), (1)

for any d × d A.

I This is a step in the proof of the maximal invariance of
Y(J)

n by Chaudhuri and Sengupta. However, they do not
otherwise comment on this property, nor apply it directly,
nor interpret it.
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EXAMPLES OF I AND E IN NONPARAMETRIC MULTIVARIATE ANALYSIS

LOCATION TESTING: CHAUDHURI AND SENGUPTA (1993)

Why is This Property Important?
I Equivalently, putting MJ(Xn) = WJ(Xn)

−1, the property
may be stated

MJ(AXn) = MJ(Xn)A
−1,

for any d × d A.

I It then follows that

MJ(AXn)(AXn) = MJ(Xn)A
−1(AXn) = MJ(Xn)Xn

for any d × d A.

I That is, these new data-driven coordinates MJ(Xn)Xn

represent an affine invariant coordinate system.
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LOCATION TESTING: CHAUDHURI AND SENGUPTA (1993)

A Family of Sign Tests

I Let C(d , n) denote the class of all sets of d distinct
integers from {1, . . . , n}. It follows that the statistic

ξn = {Y(J)
n , J ⊂ C(d , n)}

is also maximal invariant.

I It has the further desirable property of being invariant
over permutations of the indices of the observations, i.e.,
ξn is symmetric in the observations, although this latter is
obtained at the cost of considerable extra computation.

I Chaudhuri and Sengupta develop affine invariant
multivariate sign tests in the elliptical location model,
based on the multivariate signs of the variables in ξn.
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LOCATION ESTIMATION: CHAKRABORTY AND CHAUDHURI (1996)

Example: Chakraborty and Chaudhuri (1996)
I For estimating location rather than testing a specified

value, Chakraborty and Chaudhuri (1996) introduce a
variation of the Chaudhuri and Sengupta (1993)
transformation, namely

WJ(Xn) =
[
(Xi1 − Xid+1

), . . . , (Xid − Xid+1
)
]
d×d

,

with the index set J = {i1, . . . , id+1} in C(d + 1, n), thus
using d + 1 sample observations.

I The “data-driven coordinates”

Z(J)
n = WJ(Xn)

−1(Xn − Xid+1
)

form a maximal invariant statistic with respect to
invertible affine transformations Ax + b.
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LOCATION ESTIMATION: CHAKRABORTY AND CHAUDHURI (1996)

Key Structural Property
I Analogous to (1), we have an important structural

property:
WJ(AXn + b) = AWJ(Xn). (2)

I With MJ(Xn) = WJ(Xn)
−1, this may be expressed

MJ(AXn + b) = MJ(Xn)A
−1.

I By a simple argument as before, the data-driven

coordinates MJ(Xn)(Xn − Xid+1
) represent an affine

invariant coordinate system.
I The same is true of the simpler data-driven coordinates

MJ(Xn)Xn
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LOCATION ESTIMATION: CHAKRABORTY AND CHAUDHURI (1996)

TR Coordinatewise Median

I Chakraborty and Chaudhuri use MJ(Xn) to develop a fully
affine equivariant version of the sample coordinatewise
median, which initially is not affine equivariant.

I This “transformation-retransformation (TR)”
coordinatewise median is obtained by computing the
usual coordinate-wise median on the transformed
observations {MJ(Xn)Xi , i 6∈ J}, and then retransforming
that result back to the original coordinates via the inverse
MJ(Xn)

−1.

I The key step in the proof is an application of property (2).

I Later we will define “TR functionals” precisely.
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LOCATION ESTIMATION: CHAKRABORTY AND CHAUDHURI (1996)

Choice of J
I Based on optimality considerations in elliptical models,

Chakraborty and Chaudhuri select J to make the matrix

W′
JΣ̂

−1
WJ approximate a matrix of form λId , i.e., so as

to make the coordinate system Σ̂
−1/2

WJ as orthonormal

as possible, with Σ̂ a consistent (at least proportionally)
estimator of the population scatter matrix, for example
FAST-MCD.

I However, the computational burden includes more than
getting Σ̂. The continuing steps to find the “optimal” J
by checking all combinations are of order O(nd+1) and
become prohibitive quickly as d increases.

I Affine equivariance can cost a lot computationally.
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FURTHER ILLUSTRATIONS INVOLVING TR TRANSFORMATIONS

Further Illustrations Involving TR Transformations

I Using MJ(Xn), Chakraborty, Chaudhuri, and Oja (1998)
develop a fully affine equivariant TR sample spatial
median.

I Again using MJ(Xn), Chakraborty (2001) extends to a
fully affine equivariant TR version of the spatial quantile
function QS(u, Xn) of Chaudhuri (1996).
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FURTHER ILLUSTRATIONS INVOLVING TR TRANSFORMATIONS

I Randles (2000) develops an affine invariant,
computationally easy, multivariate sign test using an
affine invariant version of the spatial sign function based
on transforming by the well-known Tyler (1987) scatter
matrix using the location specified by the null hypothesis.

I Hettmansperger and Randles (2002) develop an affine
equivariant, computationally easy, multivariate median
based on transforming by the Tyler (1987) matrix as
obtained by simultaneously solving equations for the
matrix and an associated location.
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FURTHER ILLUSTRATIONS INVOLVING TR TRANSFORMATIONS

I Serfling (2010) shows that the TR sample spatial quantile
function based on any transformation matrix M(Xn)
which is the inverse square root of a covariance matrix
suffices for affine equivariance.

I In particular, this establishes that the special property

M(AXn + b) = M(Xn)A
−1

is not needed for equivariance in this particular
application.

I Thus computationally attractive matrices such as the
Tyler (1987) matrix may be used for the purpose of
affine equivariant spatial quantiles.
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FAST DISPERSION MATRIX ESTIMATION

Fast Dispersion Matrix Estimation

I A fast dispersion matrix estimator based on pairwise
robust covariance estimation was first proposed by
Gnanadesikan and Kettenring (1972) and later modified
by Maronna and Zamar (2002) into an “orthogonalized
Gnanadesikan-Kettenring estimate” (OGK).

I This estimator lacks affine equivariance. However,
simulations of Maronna and Zamar (2002) show that

I OGK performs similarly to Fast-MCD at lower
computational cost.

I Certain weighted versions are “more equivariant”.

I See also Maronna, Martin, and Yohai (2006).

I Here equivariance is sacrificed for computational gain.



INVARIANCE AND EQUIVARIANCE: BENEFITS, COSTS, AND METHODS

METHODS FOR I AND E: WC, TR, AND SICS TRANSFORMATIONS

WEAK COVARIANCE FUNCTIONALS

Weak Covariance (WC) Functionals

I Definition. A matrix-valued functional C(F ) is a
weak covariance (WC) functional if, for Y = AX + b

with any nonsingular A and any b,

C(FY) = k1 AC(FX)A′

with k1 = k1(A,b, FX) a positive scalar function.

I k1(A,b, FX) = 1 gives the usual “covariance functional”.
[e.g., Lopuhaä and Rousseeuw, 1991]

I A WC functional is also known as a “shape functional”.
[Paindaveine, 2008; Tyler, Critchley, Dümbgen, and Oja, 2009]
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TRANSFORMATION-RETRANSFORMATION FUNCTIONALS

Transformation-Retransformation (TR) Functionals
I Definition. A matrix-valued functional M(F ) is a

transformation-retransformation (TR) functional if, for Y

= AX + b with any nonsingular A and any b,

A′M(FY)′M(FY)A = k2 M(FX)′M(FX)

with k2 = k2(A,b, FX) a positive scalar function.
[Chakraborty and Chaudhuri, 1996; Randles, 2000]

I TR approaches modify estimation (testing) procedures to
achieve (hopefully) full affine equivariance (invariance).

I Carry out the procedure on transformed data M(Xn)Xn.
I For equivariance, retransform to original coordinates via

M(Xn)
−1. For invariance, do not retransform.

I Verify that the equivariance (invariance) indeed holds.
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TRANSFORMATION-RETRANSFORMATION FUNCTIONALS

Connection between TR and WC Functionals

I Theorem. Every TR functional M(F ) is equivalent to a
WC functional, and conversely.

I Given a TR fcnl M(F ), C(F ) = (M(F )′M(F ))−1 is WC.

I Given a WC fcnl C(F ), any solution M(F ) of C(F ) =
(M(F )′M(F ))−1 is a TR fcnl.

I Selection of a TR functional is merely an indirect but
equivalent way to select a WC functional.

I Extensive literature on covariance functionals provides
many choices meeting various criteria of robustness and
computational efficiency.
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TRANSFORMATION-RETRANSFORMATION FUNCTIONALS

Solutions M(F) of C(F ) = (M(F )′M(F ))−1

I In particular, one may choose M(F ) to be the symmetric
square root of C(F )−1 or the unique upper triangular
matrix in the Cholesky factorization with “1” in the
uppermost diagonal cell. Thus the choice of M(F ) is not
unique.

I Also, besides these structurally differing cases, for any
solution M(F ) we have that additional solutions are given
by OM(F ) for any orthogonal matrix O.

I Other solutions, quite different structurally from the
above, will be seen below.
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Invariant Coordinate System (ICS) Functionals
Definition. A matrix-valued functional D(F ) is an
invariant coordinate system (ICS) functional if the
D(·)-standardizion of X

D(FX)X

remains unaltered after affine transformation to Y = AX + b
followed by D(·)-standardization of Y to

D(FY)Y

except for coordinatewise scale changes, sign changes and
translations.
[Tyler, Critchley, Dümbgen, and Oja, 2009]
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Practical Interpretation of ICS-Standardization
I With D(·) an ICS functional, any geometric structures or

patterns identified in a D(·)-standardized data set

D(Xn)Xn

remain unaltered after affine transformation to Yn =
AXn + b followed by D(·)-standardization to

D(Yn)Yn

except for coordinatewise scale changes, sign changes and
translations.

I Some applications, however, for example outlyingness,
require homogeneity of scale changes and sign changes.
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Strong ICS (SICS) Functionals

I Definition. An ICS functional D(F ) has Structure A if,
for Y = AX + b with any nonsingular A and any b,

D(FY) = k3 JD(FX)A−1

with k3 = k3(A,b, FX) a positive scalar function and J =
J(A,b, FX) a sign change matrix (diagonal with ±1).

I Definition. A strong ICS (SICS) functional is an ICS
functional of Structure A with J = Id .
[Serfling, 2010]

I For a strong ICS functional, only homogeneous scale
changes and sign changes are involved.
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Connection between ICS and TR Functionals

Theorem. Every ICS functional D(F ) with Structure A is a
TR functional (and thus (D(F )′D(F ))−1 is a WC functional).
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Key Property of SICS Functionals

I A SICS functional D(F ) satisfies, for Y = AX + b,

D(FY)Y = k3 D(FX)X + c

with c = c(A,b, FX) = k3 D(FX)A−1b, a constant.

I Thus the new D(·)-standardized coordinates D(FY)Y
agree with the original D(·)-standardized coordinates
D(FX)X, except for a homogeneous scale change and a
translation.

I Likewise, for sample versions, D(Xn)Xn remains unaltered
after affine transformation to Yn = AXn + b followed by
D(·)-standardization to D(Yn)Yn, except for possibly a
homogeneous scale change and a translation.
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INVARIANT COORDINATE SYSTEM (ICS) FUNCTIONALS

Non-Examples of SICS Functionals

I The Tyler (1987) TR functional is not a SICS functional.

I A symmetrized version (DT) of the Tyler functional given
by Dümbgen (1998) does not involve a location functional
and also is a TR functional (but also not SICS).
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Constructions Using Two WC Functionals

I Tyler, Critchley, Dümbgen, and Oja (2009) construct ICS
functionals using two WC functionals.

I Let V1(F ) and V2(F ) be two WC functionals with the
eigenvalues of V1(F )−1V2(F ) all distinct. Then the
matrix of corresponding eigenvectors is ICS.

I Various choices of V1(F ) and V2(F ) are considered.

I These ICS functionals are not in general SICS.

I For V1 = Id and V2 = Σ(F ), this gives Principle
Components Analysis (PCA).

I For V1 = Σ(F ) and V2 a matrix-valued kurtosis measure,
this gives Indepependent Components Analysis (ICA).
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I For V1 = Σ(F ) and V2 given by various matrices
V2(X,Y) based on the means and covariances of X|Y,
this gives “supervised ICA” and includes

I Sliced Inverse Regression (SIR),
I Sliced Average Variance Regression (SAVE),
I Principle Hessian Directions (PHD),

for example.
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Sample Versions Using Two WC Functionals

I Ilmonen, Nevalainen, and Oja (2010) show that, for F
continuous, the sample versions of these constructions are
SICS when the solutions are selected in a unique way.

I However, the population versions can be SICS only under
some fairly severe restrictions on F (excluding elliptical
cases, for example).

I See also Ilmonen, Oja, and Serfling (2011).
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Direct Construction of Sample SICS Functionals

[Serfling, 2010, 2011]

I Construction:

1. Let ZN = {Z1, . . . ,ZN} be a subset of Xn of size N
obtained through some permutation-invariant procedure.

2. Form d + 1 means Z1, . . . ,Zd+1 based on blocks of size
m = bN/(d + 1)c from ZN .

3. Form the matrix

W(Xn) =
[
(Z1 − Zd+1) · · · (Zd − Zd+1)

]
d×d

.

4. Then a SICS functional is given by

D(Xn) = W(Xn)
−1.
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CONSTRUCTION OF ICS AND SICS FUNCTIONALS

I A special case of the preceding is the functional M(Xn) of
Chakraborty and Chaudhuri (1996) based on a ZN of size
N = d + 1 derived by extensive computation.

I Alternatively, Mazumder and Serfling (2010a) take for ZN

the set of observations selected and used in computing
ΣMCD with, say, N ≈ 0.75n. This uses all of the data in
selecting ZN and all of its observations in defining
W(Xn). Little computation beyond that for ΣMCD is
needed, but the latter becomes computationally
prohibitive for higher d .

I Another approach of Mazumder and Serfling (2010a) is to
compute the sample TR spatial outlyingness with M(F )
the well-known TR functional of Tyler (1987), which is
moderately robust and can be computed quickly in any
dimension, and let ZN be the 75% least outlying points.
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Results for SICS Transformations

I A SICS functional D(F ) is neither symmetric nor
triangular.

This compares with more typical types of TR functional
as some choice of square root of the inverse of the
associated WC functional C(F ) = (D(F )′D(F ))−1.
Popular choices of such square roots are either symmetric
or triangular.

However, if a TR functional M(F ) is symmetric or
triangular and also SICS, then M(F )A−1 must also be
symmetric or triangular for arbitrary A. It is easy to find
counterexamples to this possibility.
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RESULTS FOR SICS TRANSFORMATIONS

I Using two SICS functionals successively is equivalent to
just using the most recent one in the first place.

I If D(F ) is SICS, then so is cD(F ), for any constant c .

I If X and Y are affinely equivalent in distribution, i.e., Y
d
= AX + b, then D(FX) and D(FY) are proportional.
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RESULTS FOR SICS TRANSFORMATIONS

I Let θ(Xn) be a translation invariant d-vector. If D(Xn) is
SICS with proportionality constant k1 = k1(A,b) not
depending on Xn, then also SICS is

D̃(Xn) = D(X̃n),

where X̃n = {X̃i , 1 ≤ i ≤ n}, with

X̃i = ‖D(Xn)(Xi − θ(Xn))‖α (Xi − θ(Xn)), 1 ≤ i ≤ n,

for any constant α, −∞ < α < ∞.
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RESULTS FOR SICS TRANSFORMATIONS

I Theorem. Let T(u, F ) be a vector-valued functional of u
and F that is equivariant under homogeneous scale
change and translation of F , in the sense that

T(v, FcX + b) = cT(u, FX) + b,

for scalar c and vector b and some mapping u 7→ v. Let
D(F ) be a strong ICS functional. Then the functional

D(FX)−1T(u, FD(FX)X)

is affine equivariant.
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RESULTS FOR SICS TRANSFORMATIONS

Examples Using the Theorem

I Scaled-deviation outlyingness for a single projection u0.

T (x, FX) =

∣∣∣∣u′0x− µ(Fu′0X
)

σ(Fu′0X
)

∣∣∣∣ .

I Spatial quantile functional.

T(u, F ) = QS(u, F ).
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Application: Projection Pursuit Outlyingness with

Finitely Many Directions
I A projection pursuit outlyingness approach defines

outlyingness of x in Rd as a function of the quantities

{O(u′x, Fu′X),u ∈ ∆}, (3)

for some set ∆ of unit vectors u in Rd , and using the
univariate scaled deviation outlyingness

O(x , F ) =

∣∣∣∣x − µ(F )

σ(F )

∣∣∣∣ .

I For ∆ the set of all directions, and taking the supremum
over (3), this yields OP(x, Xn), which is affine invariant
but computationally intensive (e.g., see Zuo, 2003).
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I Alternatively, we may consider finite ∆ = {u1, . . . ,us}.
I However, with ∆ finite, and using the supremum or a

quadratic form, not even orthogonal invariance holds.

I On the other hand, Peña and Prieto (2001) introduce an
affine invariant method using the supremum and 2d
data-driven directions.

I These are selected using univariate measures of kurtosis
over candidate directions, choosing the d with local
extremes of high kurtosis and the d with local extremes
of low kurtosis.

I Ultimately, in their very complex algorithm, the
“outliers” are selected using Mahalanobis distance,
thus yielding ellipsoidal contours.
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I Filzmoser, Maronna, and Werner (2008) incorporate the
Peña and Prieto (2001) approach into an even more
elaborate one, using also a principal components step,
that achieves certain improvements in performance for
detection of location outliers, especially in high
dimension.

I However, this gives up affine invariance (although a
SICS pre-standardization might regain it).

I See also Maronna, Martin, and Yohai (2006).
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I The use of finitely many deterministic directions strongly
appeals on computational grounds, and it is desirable to
take directions approximately uniformly scattered on the
d -dimensional unit sphere.

I Fang and Wang (1994) provide convenient numerical
algorithms for this purpose.
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I Using finitely many deterministic directions approximately
uniformly scattered, Pan, Fung, and Fang (2000) develop
a finite ∆ approach calculating a sample quadratic form
based on the differences

{O(u′x,u′Xn)− O(u′x, Fu′X), u ∈ ∆}.

I Since these differences involve the unknown F , a
bootstrap step is incorporated.

I The number of directions is data-driven.
I The method is not affine invariant (although a SICS

pre-standardization could correct for this).
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A New SICS-Based Approach

I After first standardizing the data with a SICS D(F ), the

modified outlyingness function RMSP defined by

Õ∆(x, F ) = sup
u ∈ ∆

O(u′D(FX)x, Fu′D(FX)X)

is now affine invariant for any choice of finite ∆.

I See Serfling (2010) and Mazumder and Serfling (2010b).
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Relevant Steps for RMSP :

1. Perform SICS pre-standardization with robust D(Xn)
developed using observations indexed by JDT.

2. Choose ∆ of size s = 5d uniformly scattered on the
d -sphere (e.g., Fang and Wang, 1994).

3. Form s-vector η of scaled deviations for directions in ∆.

4. Obtain DT scatter matrix for JDT-indexed η vectors.

5. Apply the Robust Mahalanobis Spatial (RMS) approach
to the η vectors (i = 1, . . . , n) instead of data vectors,
using above DT standardization. This yields RMSP.

Comments:
I Affine invariant, due to the SICS transformation.
I Robust, due to robustness of the scaled deviations and

the JDT-based steps.
I Non-ellipsoidal contours in the data space.
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Upper plots: data and MD. Lower plots: MS and RMS.

RMS has robustness comparable to MD.



INVARIANCE AND EQUIVARIANCE: BENEFITS, COSTS, AND METHODS

APPLICATION: PROJECTION PURSUIT WITH FINITELY MANY DIRECTIONS

Upper plots: MD and MDP. Lower plots: RMS and RMSP.

Very similar performance.
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Upper plots: MD and MDP. Lower plots: RMS and RMSP.

Again, very similar performance.
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An Open Issue with SICS Transformations

I Sample SICS matrices are quite straightforward to
construct, as we have seen.

I However, the corresponding population versions are not
so straightforward.
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AN OPEN ISSUE WITH SICS TRANSFORMATIONS

I For the versions based on two WC matrices, the
population versions are defined only under fairly severe
restrictions excluding elliptical distributions.

I However, this is acceptable in ICA modeling.
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AN OPEN ISSUE WITH SICS TRANSFORMATIONS

I For the direct constructions starting with W(Xn) based
on differences of sample means, and defining D(Xn) as
W(Xn)

−1, it is tempting to define the corresponding
population SICS matrix simply by D = (E{W})−1.

I However, E{W} is a matrix of zeros.

I Another approach: define

D(F ) = E{W(Xn0)
−1}

W(F ) = M(F )−1 = (E{W(Xn0)
−1})−1,

for some suitable conceptual sample size n0.
I This is the analogue of defining the parameters θ =

E (1/W ) and η = 1/θ for a univariate random variable
W having mean 0.
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AN OPEN ISSUE WITH SICS TRANSFORMATIONS

I We desire better linkage between corresponding sample
and population SICS functionals.

I This requires better understanding of the behavior of
sample SICS functionals.
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Lopuhaä, H. P. and Rousseeuw, J. (1991). Breakdown points of
affine equivariant estimators of multivariate location and
covariance matrices. Annals of Statistics 19 229-248.

Maronna, R. A., Martin, R. D., and Yohai, V. J. (2006). Robust
Statistics: Theory and Methods. Wiley, Chichester, England.



INVARIANCE AND EQUIVARIANCE: BENEFITS, COSTS, AND METHODS

REFERENCES

Maronna, R. A. and Zamar, R. H. (2002). Robust estimation of
location and dispersion for high-dimensional data sets.
Technometrics 44 307–317.

Mazumder, S. and Serfling, R. (2010a). Spatial trimming, with
applications to robustify sample spatial quantile and outlyingness
functions, and to construct a new robust scatter estimator. In
preparation.

Mazumder, S. and Serfling, R. (2010b). Robust multivariate
outlyingness functions based on Mahalanobis standardization and
projected scaled deviations. In preparation.

Paindaveine, D. (2008). A canonical definition of shape. Statistics
and Probability Letters 78 2240–2247.

Pan, J.-X., Fung, W.-K., and Fang, K.-T. (2000). Multiple outlier
detection in multivariate data using projection pursuit techniques.
Journal of Statistical Planning and Inference 83 153–167.

Peña, D. and Prieto, F. J. (2001). Robust covariance matrix



INVARIANCE AND EQUIVARIANCE: BENEFITS, COSTS, AND METHODS

REFERENCES

estimation and multivariate outlier rejection. Technometrics 43
286–310.

Randles, R. H. (2000). A simpler, affine-invariant, multivariate,
distribution-free sign test. Journal of the American Statistical
Assocation 95 1263–1268.

Serfling, R. (2010). Equivariance and invariance properties of
multivariate quantile and related functions, and the role of
standardization. Journal of Nonparametric Statistics 22 915–936.

Serfling, R. (2011). On strong invariant coordinate system (SICS)
functionals. Working paper.

Tyler, D. E. (1987). A distribution-free M-estimator of multivariate
scatter. Annals of Statistics 15 234–251.

Tyler, D. E., Critchley, F., Dümbgen, L. and Oja, H. (2009).
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