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Follow-up to talk in Lehmann 

memorial session 
• This talk continues a theme started in my 

talk at the memorial for Erich.  There will 

be some overlap, so I apologize if you 

were there. 
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Outline: Brief History 

• Tukey (1953),  

• Lehmann (1957) 

• Advent of mass well-structured testing 

• Benjamini-Hochberg (1995) 

• Recent extensions of Tukey and BH 

approach 

• More recent changes 
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Outline: More-Recent changes, 

relation to optimality 
• Change in emphasis from control of Type I 

error to balance of Type I and Type II error 

(or power) 

• Different level of optimality and relation to 

balance issues 

• Brief comparison of two approaches 
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The multiplicity problem 

• If m hypotheses are tested, each as if it is 

the only one, at some level α, and if all are 

true,  the expected number of errors (Type 

I errors) will be m α and the probability of 

one or more errors will increase also 

substantially. 
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Tukey et al methods 

• In 1953 Tukey wrote a book-length 

manuscript called the Problem of Multiple 

Comparisons.  It was circulated to a 

limited group but unpublished until 1994 in 

his collected works.  
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Tukey described several possible 

criteria for controlling error 

• Defined: 

• Per-comparison error rate 

• Per-family error rate 

• Familywise error rate 



Per-comparison:PCER 

• Expected number of errors per 

comparison.  Average level of error control 

for individual tests.  Multiplicity issues do 

not affect procedures. 
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Per-Family error rate (PFER) 

• The expected number of errors in the 

family of tests under consideration. 

• This is m0 times the PCER, where m is the 

number of hypotheses in the family and m0 

is the number of true hypotheses. 

Deciding on a family is the main problem in 

many situations with a variety of 

hypotheses. 
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• Probability of one or more Type I errors in 

the whole family of tests. 

• This is a compromise between per-

comparison and per-family error rates.  

With small α and small-to-moderate 

correlations among tests, usually close to 

PFER. 
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Family-wise (FWER) 



Universal PFER-FWER control: 

Bonferroni 
• Test each hypothesis at level α/m. 

• Universal control of PFER and thus of 

FWER. 

• For exact FWER-control with independent 

tests can test at 1 – (1-α)(1/m) 

• If m0 is estimated can use m0 instead of m 

in equations above. 
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Bonferroni 

 
• Although it has been typically used to 

control the FWER, note that it controls the 

PFER, in fact exactly at m0 α/m.  

• The FWER, on the other hand, is smaller 

than the PFER and the difference 

increases with the degree of positive 

correlation among the test statistics. 

• Many more-powerful procedures have 

been developed to control the  FWER. 
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Example:  Stepwise tests 

• Stepdown:  Test the most significant hypothesis 

at α/m; if rejected, test the next most significant 

at α/(m-1) or higher in some structured 

situations, etc. 

• Stepup:  Test the least significant hypothesis at 

α, if accepted test the next least significant 

hypothesis at a smaller level, etc. 

• Step-up-down: Generalization of both of the 

above. 



Lehmann (1957) 

• In two papers that year, Erich introduced a 

loss-function approach to multiple testing, 

applicable in a very general way. 

• In testing a single hypothesis, if a is the 

loss for a false rejection (Type I error), and 

b for a false acceptance (Type II error), 

and the test is best unbiased and is 

carried out at level b/(a+b), the procedure 

has uniformly minimum risk among 

unbiased procedures. 14 



Lehmann (1957) 

• If the losses are additive over a number of 

such tests, the multiple procedure has 

uniformly minimum risk. 
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Pre- 1990s 

• The Tukey approach of controlling Type I 

error at a suitably low level was dominant 

in the early applications.  There were 

usually only a small number of hypotheses 

tested, and the consequences of a false 

rejection could be severe (e.g. comparing 

a number of treatments for a disease). 
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Ill-structured mass testing 

• There were situations in which many 

hypotheses were of interest, but they were 

not of the same type and/or not of equal 

importance.  They were typically divided 

into separate families for testing, and the 

decisions about family size were more 

important than the choice of error rate. 
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• There were some cases in which many 

hypotheses were tested, but the main 

problem there was deciding on families.  

For example, in multifactor designs, 

should all tests for main effects, 

interactions of all levels, be treated as one 

big family?  How should families be 

defined?  How about followup tests on 

simple effects and interactions? 

18 

Many hypotheses:Family 

issues:Ex:Factorial Designs 



Many hypotheses:Family 

Issues: Ex. Surveys 
• Many subgroups, possibly many 

characteristics of interest.  How should 

families be defined?  It isn’t even clear 

what the total number of hypotheses is. 
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Well-structured mass 

hypotheses 

• It has always been difficult to convince 

investigators to use strict Type I error-

controlling procedures due to the loss of 

power for individual tests.   

• This became especially true with the 

advent of well-structured mass hypothesis 

testing: Testing with families of very large 

size. 
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Examples 

 
• Microarrays:  Thousands of tests  

• Neuroimaging: individual pixels 

• Astronomy: Millions of tests 

• Also, in some of these cases, a small 

number of Type I errors could often be 

tolerated (e.g. microarrays) since results 

would be subject to other testing for 

confirmation. 
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Benjamini-Hochberg (1995) 

• At a very fortunate time, Benjamini and 

Hochberg introduced a new criterion: 

control of the false discovery rate (FDR).  

The idea is to keep the proportion of false 

rejections among the rejections to a 

suitably small value. 

• Accompanied by a test controlling FDR.   
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• The observed proportion of false discoveries, 
FDP,  is the ratio: 

• no. of false rejections /no. of rejections, 

defined as zero if there are no rejections. 

• The false discovery rate, FDR, is the expected 
value of FDP. 

• Much recent work is devoted to methods for 
controlling alternative versions of the FWER, the 
FDP, or the FDR and other related measures.  
New criteria are constantly being defined.  
(Unfortunately the same terms are often defined 
differently.) 
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Alternative measures: Examples 

• For Type I error control (rather than FDR 

or FDP) 

• k-FWER: Prob. of k or more errors 

controlled (Lehmann and Romano, 2005; 

van de Laan et al, 2004). 

•  pFDR (Storey,2002,2003), k-FDP and k-

FDR (Sarkar,2007), ERR-erroneous 

rejection ratio (Cheng, 2006), aFDR 

(Pounds and Cheng, 2005), cFDR (Tsai et 

al, 2003). 



25 

More-recently: new emphasis on 

both kinds of error 

• The methods mentioned above all 

concentrate on some kind of Type I error 

control.  If specified, it is usually .05, as for 

original FWER.  More-recent approaches 

explicitly consider both Type I and Type II 

error control. 



Balancing errors 

• In scientific work there have to be 

conventions for deciding what hypotheses 

to accept/reject.  The control of Type I 

error at a traditional level α has played that 

role. Can we develop alternative criteria 

taking both kinds of error into account? 

• FDR is a start, although still based on 

Type I error control.  More recent 

emphasis on explicit consideration of the 

other type of error. 
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New criteria are needed 

• If both types of error (I and II) are to be 

taken into account, new criteria are 

needed.  Decision-theoretic approaches 

are helpful in this regard.  Given choices of 

weighting for different types of errors, 

optimal procedures are defined. 

• Consider errors of rejection and 

acceptance jointly. 
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Genovese and Wasserman 

(2002) 
• In this paper, G and W proposed 

consideration of the False Nondiscovery 

Rate (FNR), defined as (no. of false 

acceptances/no. of acceptances). 

• Spawned literature on other measures 

related to Type II error. 

 



29 

Some alternatives 

• For Type II-like error control (rather than 

FNR):  

• NDR-non-detection ratio (Craiu and Sun, 

2008) (called FNR by Pawitan et al, 2005, 

who use FNDR for what others call FNR, 

FNS-fraction of non-selection 

(Delongchamp et al, 2004), MR-Miss rate 

(Taylor, Tibshirani, and Efron, 2005). 

 



30 

• Genovese and Wasserman  also consider risk 

functions combining the two rates: FNR + λ 

FDR. 

• Several other authors consider various 

measures of false detections and false non-

detections jointly, either fixing one and 

maximizing the other (Strimmer,2008; Chi,2008) 

and/or combining them in some way (Craui and 

Sun, 2008; Sarkar,2006; Pawitan et al, 2005). 
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• Each author defends a proposed alternate 
measure as more intuitively meaningful than 
other measures. 

• Craiu and Sun (2008), for example, consider the 
NDR, the expected proportion of falsely-
accepted hypotheses among the false 
hypotheses, to be a better measure than the 
FNR, the expected proportion of falsely-
accepted hypotheses among the accepted 
hypotheses, and they and others explicitly 
compare the two in different situations. 
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Type I and Type II errors 

considered 

• Note that all FDR-like measures are 

closely related to Type I errors and all 

FNR-like measures are closely related to 

Type II errors. 
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Loss function approaches 

balancing Type I and II errors 

• In the two 1957  papers (A theory of some 

multiple decision problems I and II) Erich took a 

decision-theoretic loss function approach. 

• Other early loss-function approaches are due to 

Duncan.  More recently both Charlie and Peter 

have considered loss functions.  See also Sarkar 

et al, 2008,  Rice (2010), many others.  Some 

are bayesian, some frequentist. 

 

•  
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Relation of recent work to the 

Lehmann 1957 papers 

• As noted, Erich’s 1957 papers used a 

decision-theoretic approach to multiple 

testing, where the criterion was minimizing 

a weighted combination of Type I and 

Type II errors.   So a simple intuitive 

alternative approach to use of these more 

complex measures would be to minimize 

such a combination directly. 
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• The idea of putting weights on the two 

types of errors (I and II) and then 

considering minimum risk may be a  more 

natural way of approaching a balance of 

errors than combining more indirect 

measures like FDR and FNR.   

Furthermore, it is more flexible in that each 

hypothesis can have different weights.  



Lehmann 1957 

• If a is the loss for a Type II error and b is 

the loss for a Type I error, a minimum-risk 

procedure uses the α level a/(a+b). 

• Scale is arbitrary.  Make a+b = 1.  Then a 

is the minimum-risk level for the 

procedure, used for each test. 

• Test each hypothesis at significance level 

a. 
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Equating BH-FDR and 

Lehmann-FDR 
 

• Genovese and Wasserman showed that 

asymptotically the Benjamini-Hochberg 

(1995) method can be equated to a test of 

each hypothesis at a fixed level 

independent of the number of hypotheses. 

• This is true also non-asymptotically with 

the level depending on the number of 

hypotheses. 
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Relation to FWER, PFER, and 

PCR. 
• FWER is the probability of one or more 

errors, while PFER and PCR are both 

expected values:  of family error rate and 

individual error rate, respectively. 

• Both the latter involve testing each 

hypothesis individually using a specified 

significance level, although in one case 

(PFER) the level varies with m. 
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Gordon et al (2007 ) 

• If Bonferroni is considered in terms of 

PFER control rather than FWER control, 

and the level is not fixed at  a conventional 

level α, additional possibilities arise. 

• Limit of 1 is not necessary. 

• Gordon et al: Equate the number of Type I 

errors for Bonferroni and an FDR-

controlling method, and then compare the 

two on power. 
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PFER and PCER 

• If α is allowed to vary and be greater than 

one, for a given m there is no difference 

between PFER and PCER.  So equating 

the Bonferroni and BH (1995) procedures 

to make some function of Type I error 

equivalent can also be expressed at 

equating PCER to the BH procedure. 

• Erich’s 1957 proposal is to use the PCER 

(additive losses). 
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• The issue of weights:  Even if measures of 

both discoveries and non-discoveries are 

considered, how can one decide, in using 

a weighted combination of FDR and FNR 

or other measures, what the weights 

should be?   
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Choosing weights 

• Here, large numbers of hypotheses can provide 

useful information to apply to choosing weights 

using the Lehmann 1957 approach. 

• When applied to mass data situations, it is 

possible to estimate the number of true 

hypotheses and some aspects of the distribution 

of the false hypotheses; these in turn can be 

useful in deciding on the weights to use in 

comparing Type I and Type II errors. 
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PCER equivalents to FDR 

• The numbers in the table to follow give 

some approximate weights of Type 1 (a) 

and Type 2 (1-a) for Lehmann PCER to be 

equivalent to BH-FDR at α = .05. 

• A multiple test with these weights  

minimizes expected loss, given the 

specific tests used, if these individual tests 

are unbiased.  



PCER – BH-FDR equivalents 
m = 4 m = 20 m = 100 Asymptotic 

Alt. = 0 0125 0025 0005 --- 

Alt = 1 

Prop.m1=.05 0026 00055 1 e -08 

Prop.m1=.10 0026 00057 1 e -08 

Prop.m1=.25 0135 0028 0006 1.89 e -06 

Prop.m1=.50 014 0031 0007 4.699 e -05 

Alt. = 2 

Prop.m1=.05 003 0007 0001284 

Prop.m1=.10 0034 001 0005310 

Prop.m1=.25 0165 005 0033 002915 

Prop.m1=.50 021 01 0095 009266 

 

BHFDR jProp.    Prop.m1 = .05 

.0475 

Prop.m1=.10 

.045 

Prop.m1=.25.  

.0375 

Prop.m1=.5 

.025 
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Equating other measures to 

Type I-Type II comparisons 
• It may be possible to equate many of the 

more complex criteria to equivalent 

measures of Type I-Type II balance.  This 

could help in understanding the meaning 

of these criteria and in deciding how to use 

them in practice. 
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Summary 

Multiple testing research has evolved from 

primarily considering Type I error to an 

interest in balancing Type I and Type II error 

in some fashion, direct or indirect. 

Equating some of the more complicated 

criteria to the simple criterion of the balance 

between Type I and Type II error may help 

in deciding on the level of balance that is 

desirable.  


