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Longitudinal and clustered data

Panel or longitudinal data, in which we observe many individuals
over multiple periods, offers a particularly rich opportunity for
understanding and prediction, as we observe the different paths
that a variable might take across individuals. Clustered data,
where observations have a nested structure, also reflect this
hierarchical character. Such data, often on a large scale, are seen
in many applications:

I test scores of students over time

I test scores of students across classes, teachers, or schools

I blood levels of patients over time

I transactions by individual customers over time

I tracking of purchases of individual products over time
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Longitudinal data

I will refer to such data as longitudinal data here, but all of the
content applies equally to other clustered data. The analysis of
longitudinal data is especially rewarding with large amounts of
data, as this allows the fitting of complex or highly structured
functional forms to the data.

We observe a panel of individuals i = 1, ..., I at times t = 1, ...,Ti .
A single observation period for an individual (i , t) is termed an
observation; for each observation, we observe a vector of
covariates, xit = (xit1, ..., xitK )′, and a response, yit .
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Longitudinal data models

Because we observe each individual multiple times, we may find
that the individuals differ in systematic ways; e.g., y may tend to
be higher for all observation periods for individual i than for other
individuals with the same covariate values because of
characteristics of that individual that do not depend on the
covariates. This pattern can be represented by an “effect” specific
to each individual (for example, an individual-specific intercept)
that shifts all predicted values for individual i up by a fixed amount:

yit = Zitbi + f (xit1, ..., xitK ) + εit .
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Mixed effects models

I If f is linear in the parameters and the bi are taken as fixed or
potentially correlated with the predictors, then this is a linear
fixed effects model.

I If f is linear in the parameters and the bi are assumed to be
random (often Gaussian) and uncorrelated with the predictors,
then the model is a linear mixed effects model.

Conceptually, random effects are appropriate when the observed
set of individuals can be viewed as a sample from a large
population of individuals, while fixed effects are appropriate when
the observed set of individuals represents the only ones about
which there is interest.
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Linear model and goodness-of-fit

The most commonly-used choice of f is unsurprisingly the linear
model

yit = Zitbi + Xitβ + εit ,

assuming errors ε that are normally distributed with constant
variance. This model has the advantage of simplicity of
interpretation, but as is always the case, if the assumptions of the
model do not hold inferences drawn can be misleading. Such
model violations include nonlinearity and heteroscedasticity. If
specific violations are assumed, tests such as likelihood ratio tests
can be constructed, but omnibus goodness-of-fit tests would be
useful to help identify unspecified model violations.
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Regression trees and goodness-of-fit

The idea discussed here is a simple one that has (perhaps) been
underutilized through the years: since the errors are supposed to
be unstructured if the model assumptions hold, examining the
residuals using a method that looks for unspecified structure can
be used to identify model violations. A natural method for this is a
regression tree.

Miller (1996) proposed using a CART regression tree (Breiman,
Friedman, Olshen, and Stone, 1984) for this purpose in the context
of identifying unmodeled nonlinearity in linear least squares
regression, terming it a diagnostic tree. They note that evidence
for a signal left in the residuals (and hence a violation of
assumptions) comes from a final tree that splits in the growing
phase and is not ultimately pruned back to its root node.
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Proposed method

Su, Tsai, and Wang (2009) altered this idea slightly by
simultaneously including both linear and tree-based terms in one
model, terming it an augmented tree, assessing whether the
tree-based terms are deemed necessary in the joint model. They
also note that building a diagnostic tree using squared residuals as
a response can be used to test for heteroscedasticity.

We propose adapting the diagnostic tree idea to
longitudinal/clustered data.
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Testing for model violations
RE-EM trees

Proposed method

I Fit the linear mixed effects model.

I Fit an appropriate regression tree to the residuals from this
model to explore nonlinearity.

I Fit an appropriate regression tree to the absolute residuals
from the model to explore heteroscedasticity (squared
residuals are more non-Gaussian and lead to poorer
performance).

A final tree that splits from the root node rejects the null model.
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Testing for model violations
RE-EM trees

Trees for longitudinal and clustered data

There has been a limited amount of work on adapting regression
trees to longitudinal/clustered data. Segal (1992) and De’Ath
(2002) proposed the use of multivariate regression trees in which
the response variable was the vector yi = (yi1, ..., yiT ). At each
node, a vector of means, µ(g), is produced, where µt(g) is the
estimated value for yit at node g . Galimberti and Montanari
(2002) and Lee (2005, 2006) proposed similar types of tree
models. Unfortunately, these tree estimators have several
weaknesses, including the inability to be used for the prediction of
future periods for the same individuals.

Sela and Simonoff (2009) proposed a tree-based method that
accounts for the longitudinal structure of the data while avoiding
these difficulties.
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Testing for model violations
RE-EM trees

“EM”-type algorithm

Consider again a general mixed effects model

yit = Zitbi + f (xit1, ..., xitK ) + εit .

If the random effects, bi , were known, the model implies that we
could fit a regression tree to yit − Zitbi to estimate f via a tree
structure. If the fixed effects, f , were known, then we could
estimate the random effects using a traditional random effects
linear model with fixed effects corresponding to the fitted values,
f (xi ). This alternation between the estimation of different
parameters is reminiscent of (although is not) the EM algorithm,
as used by Laird and Ware (1982); for this reason, we call the
resulting estimator a Random Effects/EM Tree, or RE-EM Tree.
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Estimation of a RE-EM Tree

1. Initialize the estimated random effects, b̂i , to zero.

2. Iterate through the following steps until the estimated random
effects, b̂i , converge:

2.1 Estimate a regression tree approximating f , based on the
target variable, yit − Zit b̂i , and predictors, xit· = (xit1, ..., xitK ),
for i = 1, ..., I and t = 1, ..., Ti . The tree is originally
overgrown, and then pruned back using the one-SE rule of
Breiman et al. (1984). Use this regression tree to create a set
of indicator variables, I (xit· ∈ gp), where gp ranges over all of
the terminal nodes in the tree.

2.2 Fit the linear random effects model,
yit = Zitbi + I (xit· ∈ gp)µp + εit using ML or REML. Extract b̂i

from the estimated model using the Empirical Bayes estimates.
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Estimation of a RE-EM Tree

This algorithm has several advantages over other approaches.

I The fitting of the regression tree uses built-in methods for
missing data.

I Different numbers of time points for different individuals are
easily handled, as is prediction of response values for future
time points.

I The fixed effects portion of the model can be based on
time-varying or nonvarying predictors.

I The fitting of the random effects portion of the model can be
based on either independence within individuals, or a specified
autocorrelation structure, thus allowing for complex
correlation structure within individuals.

I Multilevel hierarchies are easily handled.
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Null size
Power of nonlinearity test
Power of heteroscedasticity test

Structure of simulations

We use limited Monte Carlo simulations to investigate the
properties of the method. We examine number of individuals I
ranging from 50 to 200 with number of time points T ranging
from 10 to 100 (implying number of observations I × T ranging
from 500 to 20,000). Simulations show that properties are driven
by the number of observations, not I or T separately. The null
linear model is based on 5 normally-distributed predictors with
mean 10 and standard deviation 1, β′ = (1, 2,−3, 4,−5), with the
null model including 5 additional predictors with zero slopes;
σ2

ε = σ2
b = 1.
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Null size
Power of nonlinearity test
Power of heteroscedasticity test

Size of tests

Even though the growing/pruning rules for the tree are not
designed to directly control Type I error, it turns out that they do
at a roughly .05 level, resulting in a generally conservative test.
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Power of nonlinearity test
Power of heteroscedasticity test

Different slopes
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Null size
Power of nonlinearity test
Power of heteroscedasticity test

Quadratic term

E (y) = E0(y)± αx2
6 , α = .05(.05).2,E (x6) = 0
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Null size
Power of nonlinearity test
Power of heteroscedasticity test

Product term

E (y) = E0(y)± αx6x7, α = .25(.25)1, E (x6) = E (x7) = 0
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Power of nonlinearity test
Power of heteroscedasticity test

Heteroscedasticity related to nonpredictor
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Power of nonlinearity test
Power of heteroscedasticity test

Heteroscedasticity related to subgroups

σ2
y = 1±x10 α, α = .0625(.0625).25

2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total number of observations

P
ow

er

|
x10< 0.5

0.655 0.948

The Fourth Erich L. Lehmann Symposium Regression tree-based diagnostics for linear multilevel models



Longitudinal and clustered data and multilevel models
Goodness-of-fit and regression trees

Performance of tree-based lack-of-fit tests
Application to real data

Conclusion

Null size
Power of nonlinearity test
Power of heteroscedasticity test

Heteroscedasticity related to predictor
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Power of nonlinearity test
Power of heteroscedasticity test

Heteroscedasticity related to expected response
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Spruce tree growth

Diggle, Liang, and Zeger (1994) and Venables and Ripley (2002)
discuss a longitudinal growth study. The response is the log-size of
79 Sitka spruce trees, two-thirds of which were grown in
ozone-enriched chambers, measured at five time points.

First, a linear model based on treatment status and time is fit, but
the tree-based nonlinearity test indicates lack of fit related to time.
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Test of fit of linear model
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Test of fit of different slopes model

A natural alternative model is one allowing for different slopes for
the treatment and control groups, but that does not correct the
lack of fit.
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Treating time as categorical

As the diagnostic trees suggest, the problem is in the linear
formulation of the effect of time. If time is treated as a categorical
predictor, the apparent lack of fit disappears, as the diagnostic tree
has no splits.

An additional interaction of the treatment and (categorical) time
effects is statistically significant, but has higher AIC and BIC
values than the additive model, reinforcing that from a practical
point of view the fit of the simpler model is adequate.

Heteroscedasticity diagnostic trees for all models do not split.
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Transaction data set

We also apply the diagnostic trees to a dataset on third-party
sellers on Amazon Web Services aiming to predict the prices at
which software titles are sold based on the characteristics of the
competing sellers (Ghose, 2005; Sela and Simonoff, 2009).

The data consist of 9484 transactions for 250 distinct software
titles; thus, there are I = 250 individuals in the panel with a
varying number of observations Ti per individual.

The Fourth Erich L. Lehmann Symposium Regression tree-based diagnostics for linear multilevel models



Longitudinal and clustered data and multilevel models
Goodness-of-fit and regression trees

Performance of tree-based lack-of-fit tests
Application to real data

Conclusion

Spruce tree growth
Software transactions pricing

Transaction data set variables

I Target variable: the price premium that a seller can command
(the difference between the price at which the good is sold
and the average price of all of the competing goods in the
marketplace). We also examine the log of this variable.

I Predictor variables
I The seller’s own reputation (total number of comments, the

number of positive and negative comments received from
buyers, the length of time that the seller has been in the
marketplace)

I The characteristics of its competitors (the number of
competitors, the quality of competing products, and the
average reputation of the competitors, and the average prices
of the competing products).
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Test of fit of linear model

A linear model is clearly inadequate.
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Test of fit of log-linear model

A log-linear model is also clearly inadequate.
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Heteroscedasticity test of log-linear model

There is apparent heteroscedasticity in the log-linear model,
although we recognize that the lack of fit can affect this test.
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RE-EM tree for log price premium
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COUNTNY< 72

AvgCompPrice>=23.9

NGNINTY< 3.5

AvgCompCondition>=4.595

AvgCompPrice>=37.19

COUNTNY>=36.5

COUNTYR< 78.5Competitors< 18.5

−1.3 −0.711−0.618−0.209 −1.26

−0.603−0.332

−0.398

0.0886

−0.356

−0.13

0.0228 0.725

−0.978−0.343

−0.447−0.507

−0.3490.0651

−0.296 0.142

−0.403

−0.239 0.14

0.168 0.0834

0.295 0.882

−0.622

−0.4

0.144

0.455 1.07

0.249 2.5

0.173

−0.287

−0.219 0.692

−0.62

−0.633 0.225 0.256 0.43

0.511

1.04

0.889
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Spruce tree growth
Software transactions pricing

Heteroscedasticity test of log price premium RE-EM tree

Heteroscedasticity is apparently much reduced when a tree model
is used.

|
PLIFE< 80.5

COUNTYR>=61

0.13 0.307

0.253
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Conclusion

I Goodness-of-fit diagnostic trees can be constructed for
longitudinal and clustered data based on the RE-EM tree idea.

I Versions to assess potential nonlinearity (based on residuals)
and heteroscedasticity (based on absolute residuals)
correspond to roughly .05 level tests, and demonstrate
effective power for identifying different types of model
violations.

I The diagnostic trees are not meant to replace examination of
residuals or more focused (and powerful) tests of specific
model violations; rather, they are an omnibus tool to add to
the data analyst’s toolkit to try to help identify unspecified
mixed effects model violations.
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Background information and R code

A paper describing the RE-EM tree method is available at
http://archive.nyu.edu/handle/2451/28094.

The R package REEMtree used to construct RE-EM trees is
available from CRAN (for versions of R starting with 2.12.2).
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