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The LIDAR Data (Ruppert, Wand, & Carroll, 2003)

Model: y = µ(x) + error.
Goal: estimate mean function µ(x), i.e. smooth data.
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The Fossil Data (Ruppert, Wand, & Carroll, 2003)
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Penalized Spline Model (degree p, with K knots)

µ(x) = β0 + β1x + · · ·+ βpx
p +

K

∑
k=1

uk(x − κk)
p
+

For n obs (xi , yi ), write in matrix form: µ = Xβ + Zu ≡ Bθ.

Model can allow for autocorrelation, R, in residuals (e.g. time series).

Estimate θ by minimizing

θ̂PS = arg min
θ

{
(y− Bθ)′R−1(y− Bθ) + αu′u

}
α is a smoothing parameter controlling balance between:

fidelity to data (α = 0)

smoothness of fit (α = ∞)
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Linear Mixed Model (LMM) Formulation & BLUP’s

Penalized spline can be recast as LMM with one variance component
(Brumback, Ruppert, & Wand, 1999)

y = Xβ︸︷︷︸
fixed effects

+ Zu+ ε︸ ︷︷ ︸
random effects

BLUP of y in this context is ỹ = B θ̃, where

θ̃ = arg min
θ

{
(y− Bθ)′R−1(y− Bθ) +

σ2
ε

σ2
u

u′u

}
.

Implies BLUP-optimal value for α is:

α = σ2
ε /σ2

u
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Estimation of Smoothing Parameter

Since α is ratio of variance components in LMM, many parametric
methods available.

Also have several nonparametric methods.

Examples (Parametric)

Maximum Likelihood (ML)

REstricted Maximum Likelihood (REML)

Examples (Nonparametric)

Akaike’s Information Criterion (AIC)

Generalized Cross-Validation (GCV)
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A Unified View of Smoothing Parameter Estimators (New)

Above estimators can be viewed as roots of a quadratic estimating
equation (QEE) in normal random variables

Q(α) = y′Aαy

The n× n matrix Aα has a (complicated, but) closed form expression
in each case...

Theorem (Paige & Trindade, 2010): REML QEE is unbiased.

Krivobokova & Kauermann (2007): REML less sensitive to
misspecification of residual correlation than AIC or GCV.
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Saddlepoint-Based Bootstrap (SPBB) Inference for QEEs

Pioneered by Paige, Trindade, & Fernando (2009):

Relate distribution of root of QEE to that of estimator.

Under normality have closed form for MGF of QEE.

Use to saddlepoint approximate distribution of estimator.

Now invert distribution to get CI... numerically!

Leads to 2nd order accurate CIs: coverage is O(n−1).

Works for: ML, REML, AIC, GCV, etc.!
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SPBB: An Approximate Parametric Bootstrap

Fα̂(α̂obs)

Q(α) = 0

α̂ solves

Fα̂(α̂obs) = FQ(α̂obs )(0)

Q(α) monotone

F̂Q(α̂obs )(0)

saddlepoint approx via MGF of Q(α)

(αL, αU)

pivot

Intractable! (And bootstrap too expensive...)
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Exact ML & REML Inference for α

Exact finite sample inference for α = σ2
ε /σ2

u in LMMs with one variance
component (Crainiceanu, Ruppert, Claeskens, & Wand, 2005):

Note: asymptotic χ2 dist is poor approx in finite samples due to
substantial point mass at 0 (Crainiceanu & Ruppert, 2004).

Invert (restricted) likelihood ratio test.

Grid search needed to locate endpoints of CI (αL, αU).

Only works for ML & REML...
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Simulations: Mimic Extensive Study of Lee (2003)

Simulate datasets of sample size n = 200 from curves

y = f (x) + ε, ε ∼ IID N(0, σ2
ε )

Vary 3 factors:

noise level (σ2
ε );

design density (number of x ’s);
spatial variation (type of curve).

Each factor at 3 levels (j = 1, 3.5, 6).

Each scenario (factor-level combo) replicated 200 times.

REML-Fit linear penalized spline: O-spline basis with 35 knots placed
at empirical quantiles of x ∈ (0, 1) (Wand & Ormerod, 2008).
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Results: Empirical Coverage of Nominal 95% CIs

Empirical Probabilities (Exact, SPBB)
Scenario Level Underage Coverage Overage

Noise
Level

j = 1 0.065 0.055 0.915 0.925 0.020 0.020
j = 3.5 0.035 0.025 0.950 0.945 0.015 0.030
j = 6 0.000 0.000 0.987 0.970 0.013 0.030

Design
Density

j = 1 0.040 0.040 0.945 0.935 0.015 0.025
j = 3.5 0.045 0.035 0.925 0.920 0.030 0.045
j = 6 0.040 0.040 0.945 0.945 0.015 0.015

Spatial
Variation

j = 1 0.000 0.000 0.934 0.970 0.066 0.030
j = 3.5 0.000 0.000 0.928 0.965 0.072 0.035
j = 6 0.000 0.000 0.883 0.960 0.117 0.040
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CI Lengths: Trellis Boxplots of SPBB vs. Exact

Confidence Interval Lengths (degress of freedom of fit scale)
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SPBB
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Comparison: Exact, SPBB, and Bootstrap CIs

For the 200 simulated datasets with Noise Level factor at level j = 1

Method and Coverage Interval Length Statistics
(minutes/CI) Probability Min Q1 Median Q3 Max

SPBB-REML (15) 0.925 5.25 6.09 6.31 6.51 6.80
Exact-REML (105) 0.915 5.13 5.87 6.09 6.52 8.86
Bootstrap (2,100) 1.000 8.84 13.18 15.48 18.13 28.57
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The Smoothed Fossil Data

Chaudhuri & Marron (1999): SiZer method to assess significance of
small dip around 100 MY ago (NOT sig. at 95% level).

Ruppert et al. (2003): fit penalized spline models with truncated
polynomial bases with a variety of knots, degrees, and amounts of
smoothing.

Wand & Ormerod (2008): showcase “natural boundary” properties of
O-splines; use judiciously chosen set of 20 interior knots.

Our analysis: fit O-spline of Wand & Ormerod (2008); get 95%
Exact-REML, SPBB-REML, and SPBB-GCV CIs.
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Application: The Fossil Data
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Summary of SPBB Inference

Can be used under a variety of different criteria: ML, REML, GCV,
and AIC.

Performance: nearly exact.

Computing:

1 order of magnitude faster than exact;
2 orders of magnitude faster than bootstrap.

Only computationally feasible alternative when no known exact or
asymptotic methods exist, e.g. GCV and AIC.

Smoothing parameter is tuning parameter; but can be used to
uncover features in data...
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