Fast and Accurate Inference for the Smoothing Parameter in Semiparametric Models

Alex Trindade

Dept. of Mathematics & Statistics, Texas Tech University

Joint work with Rob Paige, Missouri University of Science and Technology

Funded in part by the National Security Agency Grants: H98230-09-1-0071 (Paige) & H98230-08-1-0071 (Trindade)

May 2011

Outline

Motivation

- The need for a semiparametric smoothing approach...
- Penalized spline models
- Penalized splines as linear mixed models (LMMs)

Main Result: Inference on Smoothing Parameter

- Estimators as roots of quadratic estimating equations (QEEs)
- Saddlepoint-based bootstrap (SPBB) inference for QEEs
- Exact ML & REML inference in LMMs

Simulations: Confidence Intervals

- Coverages, lengths, compute times
- Application: The Fossil Data

The LIDAR Data (Ruppert, Wand, & Carroll, 2003)

- **Model:** $y = \mu(x) + \text{error.}$
- **Goal:** estimate mean function $\mu(x)$, i.e. smooth data.

The Fossil Data (Ruppert, Wand, & Carroll, 2003)

age (millions of years)

Penalized Spline Model (degree p, with K knots)

$$\mu(x) = \beta_0 + \beta_1 x + \dots + \beta_p x^p + \sum_{k=1}^K u_k (x - \kappa_k)_+^p$$

- For *n* obs (x_i, y_i) , write in matrix form: $\mu = X\beta + Z\mathbf{u} \equiv B\theta$.
- Model can allow for autocorrelation, *R*, in residuals (e.g. time series).
- Estimate θ by minimizing

$$\hat{\boldsymbol{\theta}}_{\mathrm{PS}} = \arg\min_{\boldsymbol{\theta}} \left\{ (\mathbf{y} - \boldsymbol{B}\boldsymbol{\theta})' \boldsymbol{R}^{-1} (\mathbf{y} - \boldsymbol{B}\boldsymbol{\theta}) + \alpha \mathbf{u}' \mathbf{u} \right\}$$

- *α* is a **smoothing parameter** controlling balance between:
 - fidelity to data $(\alpha = 0)$
 - smoothness of fit $(\alpha = \infty)$

Penalized spline can be recast as LMM with one variance component (Brumback, Ruppert, & Wand, 1999)

• BLUP of **y** in this context is $\tilde{\mathbf{y}} = B\tilde{\boldsymbol{\theta}}$, where

$$\tilde{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \left\{ (\mathbf{y} - B\boldsymbol{\theta})' R^{-1} (\mathbf{y} - B\boldsymbol{\theta}) + \frac{\sigma_{\varepsilon}^2}{\sigma_u^2} \mathbf{u}' \mathbf{u} \right\}.$$

• Implies BLUP-optimal value for α is:

$$\alpha = \sigma_{\varepsilon}^2 / \sigma_u^2$$

- Since *α* is ratio of variance components in LMM, many parametric methods available.
- Also have several nonparametric methods.

Examples (Parametric)

- Maximum Likelihood (ML)
- REstricted Maximum Likelihood (REML)

Examples (Nonparametric)

- Akaike's Information Criterion (AIC)
- Generalized Cross-Validation (GCV)

• Above estimators can be viewed as roots of a quadratic estimating equation (QEE) in normal random variables

$$\mathcal{Q}(\alpha) = \mathbf{y}' A_{\alpha} \mathbf{y}$$

- The n × n matrix A_α has a (complicated, but) closed form expression in each case...
- Theorem (Paige & Trindade, 2010): REML QEE is unbiased.
- Krivobokova & Kauermann (2007): REML less sensitive to misspecification of residual correlation than AIC or GCV.

Pioneered by Paige, Trindade, & Fernando (2009):

- Relate distribution of root of QEE to that of estimator.
- Under normality have closed form for MGF of QEE.
- Use to saddlepoint approximate distribution of estimator.
- Now invert distribution to get CI... numerically!
- Leads to 2nd order accurate CIs: coverage is $O(n^{-1})$.
- Works for: ML, REML, AIC, GCV, etc.!

SPBB: An Approximate Parametric Bootstrap

Exact finite sample inference for $\alpha = \sigma_{\varepsilon}^2 / \sigma_u^2$ in LMMs with one variance component (Crainiceanu, Ruppert, Claeskens, & Wand, 2005):

- Note: asymptotic χ² dist is poor approx in finite samples due to substantial point mass at 0 (Crainiceanu & Ruppert, 2004).
- Invert (restricted) likelihood ratio test.
- Grid search needed to locate endpoints of CI (α_L, α_U) .
- Only works for ML & REML...

Simulations: Mimic Extensive Study of Lee (2003)

• Simulate datasets of sample size n = 200 from curves

$$y = f(x) + \varepsilon$$
, $\varepsilon \sim \text{IID } N(0, \sigma_{\varepsilon}^2)$

• Vary 3 factors:

- noise level (σ_{ε}^2) ;
- design density (number of x's);
- spatial variation (type of curve).
- Each factor at 3 levels (j = 1, 3.5, 6).
- Each scenario (factor-level combo) replicated 200 times.
- REML-Fit linear penalized spline: O-spline basis with 35 knots placed at empirical quantiles of $x \in (0, 1)$ (Wand & Ormerod, 2008).

		Empirical Probabilities (Exact, SPBB)					
Scenario Level		Underage	Coverage	Overage			
Noise Level	j = 1	0.065 0.055	0.915 0.925	0.020 0.020			
	<i>j</i> = 3.5	0.035 0.025	0.950 0.945	0.015 0.030			
	<i>j</i> = 6	0.000 0.000	0.987 0.970	0.013 0.030			
Design Density	j = 1	0.040 0.040	0.945 0.935	0.015 0.025			
	<i>j</i> = 3.5	0.045 0.035	0.925 0.920	0.030 0.045			
	<i>j</i> = 6	0.040 0.040	0.945 0.945	0.015 0.015			
Spatial Variation	j = 1	0.000 0.000	0.934 0.970	0.066 0.030			
	<i>j</i> = 3.5	0.000 0.000	0.928 0.965	0.072 0.035			
	<i>j</i> = 6	0.000 0.000	0.883 0.960	0.117 0.040			

CI Lengths: Trellis Boxplots of SPBB vs. Exact

Confidence Interval Lengths (degress of freedom of fit scale)

For the 200 simulated datasets with Noise Level factor at level j = 1

Method and Coverage		Interval Length Statistics				
(minutes/CI)	Probability	Min	Q_1	Median	Q_3	Max
SPBB-REML (15)	0.925	5.25	6.09	6.31	6.51	6.80
Exact-REML (105)	0.915	5.13	5.87	6.09	6.52	8.86
Bootstrap (2,100)	1.000	8.84	13.18	15.48	18.13	28.57

- Chaudhuri & Marron (1999): SiZer method to assess significance of small dip around 100 MY ago (NOT sig. at 95% level).
- Ruppert *et al.* (2003): fit penalized spline models with truncated polynomial bases with a variety of knots, degrees, and amounts of smoothing.
- Wand & Ormerod (2008): showcase "natural boundary" properties of O-splines; use judiciously chosen set of 20 interior knots.
- Our analysis: fit O-spline of Wand & Ormerod (2008); get 95% Exact-REML, SPBB-REML, and SPBB-GCV CIs.

Application: The Fossil Data

age (millions of years)

alex.trindade@ttu.edu

- Can be used under a variety of different criteria: ML, REML, GCV, and AIC.
- Performance: nearly exact.
- Computing:
 - 1 order of magnitude faster than exact;
 - 2 orders of magnitude faster than bootstrap.
- Only computationally feasible alternative when no known exact or asymptotic methods exist, e.g. GCV and AIC.
- Smoothing parameter is tuning parameter; but can be used to uncover features in data...

Key References

- Chaudhuri, P. & Marron J.S. (1999). SiZer for exploration of structures in curves. *J. Amer. Statist. Assoc.* 94, 807-823.
- Crainiceanu, C., Ruppert, D., Claeskens, G., and Wand, M. (2005), "Exact likelihood ratio tests for penalized splines", *Biometrika*, 92, 91-103.
- Krivobokova, T., & Kauermann, G. (2007), "A Note on Penalized Spline Smoothing with Correlated Errors", J. Amer. Statist. Assoc., 102, 1328-1337.
- Lee, T.C.M. (2003). Smoothing parameter selection for smoothing splines: a simulation study. *Comp. Statist. Data Anal.* 42, 139-148.
- Paige, R.L., Trindade, A.A. and Fernando, P.H. (2009), "Saddlepoint-based bootstrap inference for quadratic estimating equations", *Scand. J. Stat.*, 36, 98-111.
- Paige, R.L., & Trindade, A.A., "Fast and Accurate Inference for the Smoothing Parameter in Semiparametric Models", *Aust. & New Zeal. J. Stat.*, (to appear).
- Ruppert, D., Wand, M.P., & Carroll, R.J. (2003), Semiparametric Regression, London: Cambridge.