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Background

eKLD: the expected (with respect to the refer-
ence model) logarithm of the ratio of the proba-
bility density functions (p.d.f.'s) of two models.

"“(tn|9)
/Iog (f(tn|9)> r(tn|0) din

oKLD: a measure of the discrepancy of informa-
tion about 6 contained in the data revealed by
two competing models (K-L; Lindley; Bernardo;
Akaike; Schwarz; Goutis and Robert).

e Challenge in the Bayesian framework:

— identify priors that are compatible under the
competing models

— the resulting integrated likelihoods are proper.



G-R KLD

e Remedy: The Kullback-Leibler projection by
Goutis and Robert (1998), or G-R KLD: the inf.
KLD between the likelihood under the reference
model and all possible likelihoods arising from the
competing model.

o G-R KLD is the KLD between the reference
model and the competing model evaluated at its
MLE if the reference model is correctly specified
(ref. Akaike 1974).

e G-R KLD overcomes the challenges associated
with prior elicitation in calculating KLD under
the Bayesian framework.



G-R KLD

e [ he Bayesian estimate of G-R KLD: integrat-
ing the G-R KLD with respect to the posterior
distribution of model parameters under the ref-
erence model.

— Bayesian estimate of G-R KLD is not subject
to impropriety of the prior as long as the poste-
rior under the reference model is proper.

— G-R KLD is suitable for comparing the predic-
tivity of the competing models.

— G-R KLD was originally developed for compar-
ing nested GLM with a known true model, and its
extension to general model comparison remains
limited.



Proposed KLD

r(thG)
/Iog (f(tn|§f)> r(tn|0) din. (1)

Bayes estimate of (1):

r(tn|0)
J{/ 1o (f(tnmf))?“(t”'@) it [ 7O, (2

Objective: To study the property of KLD esti-
mate given in (2).



Notations

e X,'s are i.i.d. originating from model g gov-
erned by 0 € ©.

e T, = T(Xq,---,Xpn): the statistic for model
diagnostics.

e Two competing models: r for the reference
model and f for the fitted model.

e Assume that prior m(0) leads to proper poste-
rior under r.



Our proposed KLD

o KLD:(r, f|0) quantifies the relative model fit
for statistic T;, between models » and f.

o KLD(r, f|0) is identical to G-R KLD when the
reference model r is the correct model.

o KLD(r, f|0) is not necessarily the same as the
G-R KLD.

e KLD(r, f|0) needs no additional adjustment for
non-nested situations.

e KLD(r, f|@) is more practical than G-R KLD.



Regularity Conditions I

(A1) For each z, both logr(x|#) and log f(x|0) are 3 times
continuously differentiable in 6. Further, there exist neigh-
borhoods N, (§) = (0 —9,,0+06,) and Ny(d) = (60— 35,0+ dy)
of § and integrable functions Hy s (x) and Hg s, (x) such that

k

0
sup (——-log r(xz|0) < Hyp s (x)
0eN(s,) |00 0=0'
and
akz
sup |——log f(x|6) < Hy,(x)
oreN(s;) |00 | 0=0' f
for k=1, 2, 3.
(A2) For all sufficiently large A > 0,
r(z]0")
E,. | sup log < 0;
o—o>x  r(z|0)
f(x]0")
E sup log < 0.
oo~ f(z|0)




Regularity Conditions II

(A3) Er[ sup  logr(x|6)
0'c(0—5,0496)

0] — E,[logr(x|0)] as § — O;

Ef[ sup log f(z|0")
0'c(0—5,0496)

0] — E¢[log f(z]0)] as 6 — O.

(A4) The prior density w(0) is continuously differentiable
in a neighborhood of § and «(6) > 0.

(A5) Suppose that T}, is asymptotically normally distributed
under both models such that

r(Tnl0) = 0,1 (0)p(Vr{Tn — 1r(0)} /0 (8)) + O(n~/3);
F(Tul6) = o7 (0)p(Vn{Tn — ps(0)}/07(8)) + O(n~ /).



Theorem 1. Assume the regularity conditions
(A1)-(A5). Then

_ . 2
LD 0 (R0 2 1O _ 1) 5
n 0¢(Un

when p¢(0) # pr(0), and

52(Un)\
2K LD¢(r, flUn) — Q (5]%(Un)> = op(1) (4)

when pu,-(0) = puge(0) but o2(0) # a]%(ﬁ).




Remarks for Theorem 1

o KLD:(r, f|0) is also a divergence of model pa-
rameter estimates

e Model comparison in real applications may rely
on the fit to a multi-dimensional statistic. The
results in Theorem 1 are applicable to the mul-
tivariate case with a fixed dimension.

e KLD:(r, f|@) can be viewed as the discrepancy
between r and f in terms of their posterior pre-
dictivity of T,.

e We study how KLD(r, f|@) is connected to a
weighted posterior predictive p-value, a typical
Bayesian technique to assess model discrepancy
(see Rubin 1984; Gelman et al. 1996).



Weighted Posterior Predictive P-value

WPPP.(U,) = / { / /_ n f*(yn|§f)dynr*(tn|0)dtn}m(0|Un)d0, (5)

where r* and f* are the predictive density func-
tions of T}, under r and f, respectively.

e WPPP is equivalent to the weighted posterior
predictive p-value of 1T, under f with respect to
the posterior predictive distribution of 7, under

T.



T heorem 2.
2K LD:(r, f|Uy)

{¢—1<VT5PPPT<U”))}2

n

4 ) (r(Un) = iy (Un))* | 57(Un)
67(Un) +62(Un) | 67(Un)

when 117(8) # 1 (0).
Let Q(y) =y —log(y) —1. Then

+ Op(]-)

52(U,
2KLDi(r, f|Un) — Q ( (U )> = 0,(1)

52(Un)
and

WPPP.(Uy,) — 0.5 = 0,(1)

when pu,(0) = pp(0) but 02(0) # UJ%(Q).

(6)

(7)

(8)



Remarks of Theorem 2.

e It shows the asymptotic relationship between
KLD(r, flun) and WPPP.

e Suppose that ue(0) # pr(0).
— Both KLDy(r, f|Un) and ®—L(WPPP,.(Uy)) are

of order Op(n).

— KLDy(r, f|lUy) is greater than ®~1(WPPP,.(Uy))
by an Op(n) term that assumes positive values
with probability 1.

e When p,(0) = ug(0) (i.e., both r and f assume
the same mean of T,,) but a]%(e) + 02(6),

— o~ Y (WPPP-(Uy)) converges to 0; WPPP-(Uy)
converges to 0.5

— KLD(r, flUn) converges to a positive quantity
order Op(1)



Example 1. X; %" go(z:) = ¢((z: — 61)/v/2)/v/02, where
6> > 0. Let T, = /n[()>_, Xi)/n — 601]/+/k. Let r = g and

fo(xi) = &((x;i — 01)/+/k)/+/Kk. Then

o 1 (0) = En(Tn) = pp(0) = Ef(T,) = 01, 02(6) = 62,
07(0) = k&,
2 lim KLD(r, flun)

— _log (§2(un))+§2(un)_1{ >0 zf /{,7+_92

= - - =0 if k=6

o], is the MLE for #; under both h and f.

elim,_... WPPP(U,) = 0.5

eWPPP(U,) is asymptotically equivalent to the KLD ap-

proaches.



Example 2 Assume X; S go(x;) = exp{—0/(1-0)}{0/(1—
0)}* /x;!, where 0 < 0 < 1. Let T, = X,,/(1 4+ X,), r = g,
and fg(x;) = 6*(1 —0). Then

o u-(0) = pp(0) = 6, 02(0) = 6(1 — 6)3, and U%(Q) =
(1 —6)2.

e § = E(X;)/(1+ E(Xi)).
e T, is the MLE for 8 under both r and f
o 21im, oo KLD(r, flun) = —10g(1 — 0(u,)) + (1 — 0(uy,)) —

1>0for0<6 <1,

e lim, .o WPPP(U,) = 0.5



Example 3 Assume X; LR go(x;) = ;2292/;)1%29)(1 + (x —

01)2/65)~(11+02)/2 \where 6, > 2. Let T, = X. Let r = g and
fo(z;) = ¢(X; —01). Then

o up(0) = pr(0) =01, 07(0) = 02/(62 - 2), and 03(0) =1

e 2limy, oo KLD(7, flun) = —109(02(un)/(02(un)—2))+602/(02(u,)
2) — 1 > 0 for all 6> with equality if and only if 6, = oo.



Example 4 Assume X; S go(x;) = exp(—x;/0)/0. Let

r=g and fo(x;) = exp(—=x;), T, = min{Xy,---, X,}. Then
e r9(tn) = nexp(—nt,/0)/0 and fy(tn) = nexp(—nt,)
e WPPP;(Z,) = Ef(Pr(T} < T»)|ZTn) — =2

7,1
o KLDi(r, f|Tn) — —109(Zn) 4+ n(Zn — 1)
e The asymptotic equivalence between KLD(r, flu,) and

W PPP;(u,) does not hold in the sense of Thm. 2 due to

the violation of the asym. normality assumption.



A Study of Glucose Change in Veterans with
Type 2 Diabetes

e A clinical cohort of 507 veterans with type 2
diabetes who had poor glucose control at the
baseline and were then treated by metformin as
the mono oral glucose-lowering agent.

e Goal: to compare models that assessed whether
obesity was associated with the net change in
glucose level between baseline and the end of 5-
year follow-up.

e [ he empirical mean of the net change in HbA1lc
over time was similar between the obese vs. non-
obese groups (-0.498 vs. -0.379). The empirical
variance was greater in the obese group (1.207
vs. 0.865).

e Distribution of HbA1lc was reasonably symmet-
ric. Considered two candidate models for fitting
the HbA1lc change: a mixture of normals vs. a
t-distribution.



o KLD(r, flun) = 10.75 suggesting that r was
superior to f.

o KLD¢(r, flun) result was consistent with Fig-
ures 1 & 2 which contrasted the empirical quan-
tiles with predicted quantiles under r and f. Note
that both r and f yielded unbiased estimators
of E(X;). Thus the model discrepancy between
r and f assessed by KLD(r, flup) is primarily
attributed to the difference in the variance as-
sumption between r and f (as evident in Figure
1 which contrasted the empirical quantiles with
predicted quantiles under r» and f).

o WPPP=0.522 suggested that the overall fit
were similar between the two models (the esti-
mated net change in HbAlc was similar between
these two models).
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A Study of Functioning in the Elderly with
Diabetes

e [ he study cohort arisen from the subset of
119 participants with diabetes in the San Anto-
nio Longitudinal Study of Aging, a community-
based study of the disablement process in Mexi-
can American and BEuropean American older adults.

e Goal: to compare models that assessed whether
glucose control trajectory class (poorer vs. bet-
ter) was associated with the lower-extremity phys-
ical functional limitation score (measured by SPPB)
during the first follow up period.

e SPPB score is discrete in nature with a range
of 0-12. Considered two candidate models for
fitting SPPB: a negative binomial vs. a poisson.

e The empirical variance of SPPB (15.60 vs.
14.33) was greater than the mean (7.23 vs. 8.02)
in both glucose control classes.



o KLD(r, flun) = 32.63 suggested that r was a
better fit than f.

e Both r and f yielded similar estimates of E(X;).
The model discrepancy assessed by K LD(r, f|lun)
could primarily be attributed to the difference in
variance estimation between r and f (as evident
in Figures 3 & 4).

e WPPP(U,) = 0.539 suggested similar fit be-
tween r and f.
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Summary
e [ his paper considers a Bayesian estimate of
the G-R-A KLD as given in (2).

o G-R-A KLD is appropriate for quantifying infor-
mation discrepancy between the competing mod-
els r and f.

e \We derive the asymptotic property of the G-R-
A KLD in Theorem 1, and its relationship to a
weighted posterior predictive p-value (WPPP) in
Theorem 2.

e Our results need further refinement when the
MLE of the mean of T;, differs between r and f ,
or the normality assumption given in (A5) is not
suitable.

e Model comparison in medical research may rely
on the fit to a multidimensional statistic. Theo-
rem 1 holds for a multivariate statistic 7T,, with a



fixed dimension. Further investigation is needed
to assess the property of our proposed KLD for
situation when the dimension of T}, increases with
n.

o G-R-A KLD provides the relative fit between
competing models. For the purpose of assess-
ing absolute model adequacy, a KLD should be
used in conjuction with absolute model departure
indices such as posterior predictive p-values or
residuals. Nevertheless, a KLD is also a measure
of the absolute fit of model f when the reference
model r is the true model.





