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Background

•KLD: the expected (with respect to the refer-

ence model) logarithm of the ratio of the proba-

bility density functions (p.d.f.’s) of two models.

∫
log

(
r(tn|θ)
f(tn|θ)

)
r(tn|θ) dtn

•KLD: a measure of the discrepancy of informa-

tion about θ contained in the data revealed by

two competing models (K-L; Lindley; Bernardo;

Akaike; Schwarz; Goutis and Robert).

• Challenge in the Bayesian framework:

– identify priors that are compatible under the

competing models

– the resulting integrated likelihoods are proper.



G-R KLD

• Remedy: The Kullback-Leibler projection by

Goutis and Robert (1998), or G-R KLD: the inf.

KLD between the likelihood under the reference

model and all possible likelihoods arising from the

competing model.

• G-R KLD is the KLD between the reference

model and the competing model evaluated at its

MLE if the reference model is correctly specified

(ref. Akaike 1974).

• G-R KLD overcomes the challenges associated

with prior elicitation in calculating KLD under

the Bayesian framework.



G-R KLD

• The Bayesian estimate of G-R KLD: integrat-

ing the G-R KLD with respect to the posterior

distribution of model parameters under the ref-

erence model.

– Bayesian estimate of G-R KLD is not subject

to impropriety of the prior as long as the poste-

rior under the reference model is proper.

– G-R KLD is suitable for comparing the predic-

tivity of the competing models.

– G-R KLD was originally developed for compar-

ing nested GLM with a known true model, and its

extension to general model comparison remains

limited.



Proposed KLD

∫
log

(
r(tn|θ)
f(tn|θ̂f)

)
r(tn|θ) dtn. (1)

Bayes estimate of (1):

∫ {∫
log

(
r(tn|θ)
f(tn|θ̂f)

)
r(tn|θ) dtn

}
π(θ|Un). (2)

Objective: To study the property of KLD esti-

mate given in (2).



Notations

• Xi’s are i.i.d. originating from model g gov-

erned by θ ∈ Θ.

• Tn = T (X1, · · · , Xn): the statistic for model

diagnostics.

• Two competing models: r for the reference

model and f for the fitted model.

• Assume that prior πr(θ) leads to proper poste-

rior under r.



Our proposed KLD

• KLDt(r, f |θ) quantifies the relative model fit

for statistic Tn between models r and f .

• KLDt(r, f |θ) is identical to G-R KLD when the

reference model r is the correct model.

• KLDt(r, f |θ) is not necessarily the same as the

G-R KLD.

• KLDt(r, f |θ) needs no additional adjustment for

non-nested situations.

• KLDt(r, f |θ) is more practical than G-R KLD.



Regularity Conditions I

(A1) For each x, both log r(x|θ) and log f(x|θ) are 3 times
continuously differentiable in θ. Further, there exist neigh-
borhoods Nr(δ) = (θ− δr, θ+ δr) and Nf(δ) = (θ− δf , θ+ δf)
of θ and integrable functions Hθ,δr

(x) and Hθ,δf
(x) such that

sup
θ′∈N(δr)

∣∣∣∣
∂k

∂θk
log r(x|θ)

∣∣∣∣
θ=θ′

≤ Hθ,δr
(x)

and

sup
θ′∈N(δf)

∣∣∣∣
∂k

∂θk
log f(x|θ)

∣∣∣∣
θ=θ′

≤ Hθ,δf
(x)

for k=1, 2, 3.

(A2) For all sufficiently large λ > 0,

Er

[
sup

|θ′−θ|>λ
log

r(x|θ′)
r(x|θ)

]
< 0;

Ef

[
sup

|θ′−θ|>λ
log

f(x|θ′)
f(x|θ)

]
< 0.



Regularity Conditions II

(A3) Er

[
sup

θ′∈(θ−δ,θ+δ)
log r(x|θ′)

∣∣∣∣ θ
]
→ Er[log r(x|θ)] as δ → 0;

Ef

[
sup

θ′∈(θ−δ,θ+δ)
log f(x|θ′)

∣∣∣∣ θ
]
→ Ef[log f(x|θ)] as δ → 0.

(A4) The prior density π(θ) is continuously differentiable
in a neighborhood of θ and π(θ) > 0.

(A5) Suppose that Tn is asymptotically normally distributed
under both models such that

r(Tn|θ) = σ−1
r (θ)φ(

√
n{Tn − µr(θ)}/σr(θ)) + O(n−1/2);

f(Tn|θ) = σ−1
f (θ)φ(

√
n{Tn − µf(θ)}/σf(θ)) + O(n−1/2).



Theorem 1. Assume the regularity conditions

(A1)-(A5). Then

2KLDt(r, f |Un)

n
−

{µ̂f(Un) − µ̂r(Un)}2

σ̂2
f (Un)

= op(1)(3)

when µf(θ) 6= µr(θ), and

2KLDt(r, f |Un) − Q


σ̂2

r (Un)

σ̂2
f (Un)


 = op(1) (4)

when µr(θ) = µf(θ) but σ2
r (θ) 6= σ2

f (θ).



Remarks for Theorem 1

• KLDt(r, f |θ) is also a divergence of model pa-

rameter estimates

• Model comparison in real applications may rely

on the fit to a multi-dimensional statistic. The

results in Theorem 1 are applicable to the mul-

tivariate case with a fixed dimension.

• KLDt(r, f |θ) can be viewed as the discrepancy

between r and f in terms of their posterior pre-

dictivity of Tn.

• We study how KLDt(r, f |θ) is connected to a

weighted posterior predictive p-value, a typical

Bayesian technique to assess model discrepancy

(see Rubin 1984; Gelman et al. 1996).



Weighted Posterior Predictive P-value

WPPPr(Un) ≡
∫ {∫ ∫ tn

−∞
f ∗(yn|θ̂f)dyn r∗(tn|θ)dtn

}
πr(θ|Un) dθ, (5)

where r∗ and f∗ are the predictive density func-

tions of Tn under r and f , respectively.

• WPPP is equivalent to the weighted posterior

predictive p-value of Tn under f with respect to

the posterior predictive distribution of Tn under

r.



Theorem 2.

2KLDt(r, f |Un)

n

=
{Φ−1(WPPPr(Un))}2

n

+

{
(µ̂r(Un) − µ̂f(Un))2

σ̂2
f (Un) + σ̂2

r (Un)

}
σ̂2

r (Un)

σ̂2
f (Un)

+ op(1) (6)

when µf(θ) 6= µr(θ).

Let Q(y) = y − log(y) − 1. Then

2KLDt(r, f |Un) − Q

(
σ̂2

r (Un)

σ̂2
f (Un)

)
= op(1) (7)

and

WPPPr(Un) − 0.5 = op(1) (8)

when µr(θ) = µf(θ) but σ2
r (θ) 6= σ2

f (θ).



Remarks of Theorem 2.

• It shows the asymptotic relationship between

KLDt(r, f |un) and WPPP.

• Suppose that µf(θ) 6= µr(θ).

– Both KLDt(r, f |Un) and Φ−1(WPPPr(Un)) are

of order Op(n).

– KLDt(r, f |Un) is greater than Φ−1(WPPPr(Un))

by an Op(n) term that assumes positive values

with probability 1.

• When µr(θ) = µf(θ) (i.e., both r and f assume

the same mean of Tn) but σ2
f (θ) 6= σ2

r (θ),

– Φ−1(WPPPr(Un)) converges to 0; WPPPr(Un)

converges to 0.5

– KLDt(r, f |Un) converges to a positive quantity

order Op(1)



Example 1. Xi
i.i.d.∼ gθ(xi) = φ((xi − θ1)/

√
θ2)/

√
θ2, where

θ2 > 0. Let Tn =
√

n[(
∑

i Xi)/n − θ1]/
√

κ. Let r = g and
fθ(xi) = φ((xi − θ1)/

√
κ)/

√
κ. Then

• µr(θ) = Eh(Tn) = µf(θ) = Ef(Tn) = θ1, σ2
r (θ) = θ2,

σ2
f (θ) = κ,

2 lim
n→∞

K̂LDt(r, f |un)

= − log

(
θ̂2(un)

κ

)
+

θ̂2(un)

κ
− 1

{
> 0 if κ 6= θ2
= 0 if κ = θ2

.

•Tn is the MLE for θ1 under both h and f .

•limn→∞ WPPP (Un) = 0.5

•WPPP (Un) is asymptotically equivalent to the KLD ap-

proaches.



Example 2 Assume Xi
i.i.d.∼ gθ(xi) = exp{−θ/(1−θ)}{θ/(1−

θ)}xi/xi!, where 0 < θ < 1. Let Tn = X̄n/(1 + X̄n), r = g,
and fθ(xi) = θxi(1 − θ). Then

• µr(θ) = µf(θ) = θ, σ2
r (θ) = θ(1 − θ)3, and σ2

f (θ) =

θ(1 − θ)2.

• θ = E(Xi)/(1 + E(Xi)).

• Tn is the MLE for θ under both r and f

• 2 limn→∞ KLDt(r, f |un) = − log(1− θ̂(un))+ (1− θ̂(un))−
1 > 0 for 0 < θ < 1.

• limn→∞ WPPP (Un) = 0.5



Example 3 Assume Xi
i.i.d.∼ gθ(xi) = Γ((θ2+1)/2)

Γ(θ2/2)
√

πθ2
(1 + (x −

θ1)2/θ2)−(1+θ2)/2, where θ2 > 2. Let Tn = X̄. Let r = g and
fθ(xi) = φ(Xi − θ1). Then

• µf(θ) = µr(θ) = θ1, σ2
r (θ) = θ2/(θ2 − 2), and σ2

f (θ) = 1

• 2 limn→∞ KLDt(r, f |un) = − log(θ2(un)/(θ2(un)−2))+θ2/(θ2(un)−
2) − 1 ≥ 0 for all θ2 with equality if and only if θ2 = ∞.



Example 4 Assume Xi
i.i.d.∼ gθ(xi) = exp(−xi/θ)/θ. Let

r = g and fθ(xi) = exp(−xi), Tn = min{X1, · · · , Xn}. Then

• rθ(tn) = n exp(−ntn/θ)/θ and fθ(tn) = n exp(−ntn)

• WPPPf (x̄n) = Ef(Pr(T ∗
n < Tn)|x̄n) → x̄n

x̄n+1

• K̂LDt(r, f |x̄n) → − log(x̄n) + n(x̄n − 1)

• The asymptotic equivalence between KLDt(r, f |un) and

WPPPf (un) does not hold in the sense of Thm. 2 due to

the violation of the asym. normality assumption.



A Study of Glucose Change in Veterans with

Type 2 Diabetes

• A clinical cohort of 507 veterans with type 2

diabetes who had poor glucose control at the

baseline and were then treated by metformin as

the mono oral glucose-lowering agent.

• Goal: to compare models that assessed whether

obesity was associated with the net change in

glucose level between baseline and the end of 5-

year follow-up.

• The empirical mean of the net change in HbA1c

over time was similar between the obese vs. non-

obese groups (-0.498 vs. -0.379). The empirical

variance was greater in the obese group (1.207

vs. 0.865).

• Distribution of HbA1c was reasonably symmet-

ric. Considered two candidate models for fitting

the HbA1c change: a mixture of normals vs. a

t-distribution.



• KLDt(r, f |un) = 10.75 suggesting that r was

superior to f.

• KLDt(r, f |un) result was consistent with Fig-

ures 1 & 2 which contrasted the empirical quan-

tiles with predicted quantiles under r and f . Note

that both r and f yielded unbiased estimators

of E(Xi). Thus the model discrepancy between

r and f assessed by KLDt(r, f |un) is primarily

attributed to the difference in the variance as-

sumption between r and f (as evident in Figure

1 which contrasted the empirical quantiles with

predicted quantiles under r and f).

• WPPP=0.522 suggested that the overall fit

were similar between the two models (the esti-

mated net change in HbA1c was similar between

these two models).





A Study of Functioning in the Elderly with

Diabetes

• The study cohort arisen from the subset of

119 participants with diabetes in the San Anto-

nio Longitudinal Study of Aging, a community-

based study of the disablement process in Mexi-

can American and European American older adults.

• Goal: to compare models that assessed whether

glucose control trajectory class (poorer vs. bet-

ter) was associated with the lower-extremity phys-

ical functional limitation score (measured by SPPB)

during the first follow up period.

• SPPB score is discrete in nature with a range

of 0-12. Considered two candidate models for

fitting SPPB: a negative binomial vs. a poisson.

• The empirical variance of SPPB (15.60 vs.

14.33) was greater than the mean (7.23 vs. 8.02)

in both glucose control classes.



• KLDt(r, f |un) = 32.63 suggested that r was a

better fit than f.

• Both r and f yielded similar estimates of E(Xi).

The model discrepancy assessed by KLDt(r, f |un)

could primarily be attributed to the difference in

variance estimation between r and f (as evident

in Figures 3 & 4).

• WPPP (Un) = 0.539 suggested similar fit be-

tween r and f.





Summary

• This paper considers a Bayesian estimate of
the G-R-A KLD as given in (2).

• G-R-A KLD is appropriate for quantifying infor-
mation discrepancy between the competing mod-
els r and f.

• We derive the asymptotic property of the G-R-
A KLD in Theorem 1, and its relationship to a
weighted posterior predictive p-value (WPPP) in
Theorem 2.

• Our results need further refinement when the
MLE of the mean of Tn differs between r and f ,
or the normality assumption given in (A5) is not
suitable.

• Model comparison in medical research may rely
on the fit to a multidimensional statistic. Theo-
rem 1 holds for a multivariate statistic Tn with a



fixed dimension. Further investigation is needed

to assess the property of our proposed KLD for

situation when the dimension of Tn increases with

n.

• G-R-A KLD provides the relative fit between

competing models. For the purpose of assess-

ing absolute model adequacy, a KLD should be

used in conjuction with absolute model departure

indices such as posterior predictive p-values or

residuals. Nevertheless, a KLD is also a measure

of the absolute fit of model f when the reference

model r is the true model.




