The Many Flavors of Penalized Linear Discriminant Analysis

Daniela M. Witten Assistant Professor of Biostatistics University of Washington

May 9, 2011 Fourth Erich L. Lehmann Symposium Rice University

Overview

There has been a great deal of interest in the past 15+ years in penalized regression,

$$\underset{\boldsymbol{\beta}}{\text{minimize}} \{ ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2 + P(\boldsymbol{\beta}) \},$$

especially in the setting where the number of features p exceeds the number of observations n.

- ► *P* is a penalty function. Could be chosen to promote
 - ▶ sparsity: e.g. the lasso, $P(\beta) = ||\beta||_1$
 - smoothness
 - piecewise constancy...
- ► How can we extend the concepts developed for regression when p > n to other problems?
- ► A Case Study: Penalized linear discriminant analysis.

The Normal Model Fisher's Discriminant Problem Optimal Scoring

The classification problem

- ► The Set-up:
 - ► We are given *n* training observations x₁,..., x_n ∈ ℝ^p, each of which falls into one of K classes.
 - Let y ∈ {1,...,K}ⁿ contain class memberships for the training observations.
 - Let $\mathbf{X} = \begin{pmatrix} \mathbf{x}_1' \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix}$.
 - ► Each column of X (feature) is centered to have mean zero.

The Normal Model Fisher's Discriminant Problem Optimal Scoring

The classification problem

- ► The Set-up:
 - ► We are given *n* training observations x₁,..., x_n ∈ ℝ^p, each of which falls into one of K classes.
 - ► Let $\mathbf{y} \in \{1, ..., K\}^n$ contain class memberships for the training observations.

• Let
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix}$$

- ► Each column of X (feature) is centered to have mean zero.
- ► The Goal:
 - We wish to develop a classifier based on the training observations x₁,..., x_n ∈ ℝ^p, that we can use to classify a test observation x^{*} ∈ ℝ^p.
 - A classical approach: linear discriminant analysis.

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Linear discriminant analysis

The Normal Model Fisher's Discriminant Problem Optimal Scoring

LDA via the normal model

Fit a simple normal model to the data:

$$\mathbf{x}_i | y_i = k \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_w)$$

Apply Bayes' Theorem to obtain a classifier: assign x* to the class for which δ_k(x*) is largest:

$$\delta_k(\mathbf{x}^*) = \mathbf{x}^{*T} \mathbf{\Sigma}_w^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^T \mathbf{\Sigma}_w^{-1} \boldsymbol{\mu}_k + \log \pi_k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Fisher's discriminant

A geometric perspective: project the data to achieve good classification.

√ へ (~
6 / 29

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Fisher's discriminant

A geometric perspective: project the data to achieve good classification.

≣ •ી લ (∿ 6 / 29

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Fisher's discriminant

A geometric perspective: project the data to achieve good classification.

√ へ (~
6 / 29

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Fisher's discriminant

A geometric perspective: project the data to achieve good classification.

6 / 29

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Fisher's discriminant and the associated criterion

Look for the discriminant vector $oldsymbol{eta} \in \mathbb{R}^p$ that maximizes

$$\boldsymbol{\beta}^{T} \hat{\boldsymbol{\Sigma}}_{b} \boldsymbol{\beta}$$
 subject to $\boldsymbol{\beta}^{T} \hat{\boldsymbol{\Sigma}}_{w} \boldsymbol{\beta} \leq 1$.

- $\hat{\Sigma}_b$ is an estimate for the between-class covariance matrix.
- $\hat{\Sigma}_{w}$ is an estimate for the within-class covariance matrix.
- This is a generalized eigen problem; can obtain multiple discriminant vectors.
- To classify, multiply data by discriminant vectors and perform nearest centroid classification in this reduced space.
- ► If we use K 1 discriminant vectors then we get the LDA classification rule. If we use fewer than K 1, we get reduced-rank LDA.

SOR

The Normal Model Fisher's Discriminant Problem Optimal Scoring

LDA via optimal scoring

- Classification is such a bother. Isn't regression so much nicer?
- It wouldn't make sense to solve

$$\underset{\boldsymbol{\beta}}{\operatorname{minimize}} \{ || \mathbf{y} - \mathbf{X} \boldsymbol{\beta} ||^2 \}.$$

But can we formulate classification as a regression problem in some other way?

The Normal Model Fisher's Discriminant Problem Optimal Scoring

LDA via optimal scoring

• Let **Y** be a $n \times K$ matrix of dummy variables; $Y_{ik} = 1_{y_i = k}$.

minimize {
$$||\mathbf{Y}\boldsymbol{\theta} - \mathbf{X}\boldsymbol{\beta}||^2$$
} subject to $\boldsymbol{\theta}^T \mathbf{Y}^T \mathbf{Y} \boldsymbol{\theta} = 1$.

- We are choosing the optimal scoring of the class labels in order to recast the classification problem as a regression problem.
- The resulting β is proportional to the discriminant vector in Fisher's discriminant problem.
- ► Can obtain the LDA classification rule, or reduced-rank LDA.

The Normal Model Fisher's Discriminant Problem Optimal Scoring

Linear discriminant analysis

The Normal Model Optimal Scoring Fisher's Discriminant Problem

LDA when $p \gg n$

When $p \gg n$, we cannot apply LDA directly, because the within-class covariance matrix is singular.

There is also an interpretability issue:

- ► All *p* features are involved in the classification rule.
- ► We want an interpretable classifier. For instance, a classification rule that is a
 - sparse,
 - smooth, or
 - piecewise constant

linear combination of the features.

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Penalized LDA

- We could extend LDA to the high-dimensional setting by applying (convex) penalties, in order to obtain an interpretable classifier.
- ► For concreteness, in this talk: we will use l₁ penalties in order to obtain a sparse classifier.
- ▶ Which version of LDA should we penalize, and does it matter?

토▶ ∢토▶ 토 ∽੧. 12/29 Linear Discriminant Analysis **The Normal Model Penalized LDA** Optimal Scoring Connections Fisher's Discriminant Problem

Penalized LDA via the normal model

The classification rule for LDA is

$$\mathbf{x}^{*T} \hat{\mathbf{\Sigma}}_{w}^{-1} \hat{\boldsymbol{\mu}}_{k} - \frac{1}{2} \hat{\boldsymbol{\mu}}_{k}^{T} \hat{\mathbf{\Sigma}}_{w}^{-1} \hat{\boldsymbol{\mu}}_{k},$$

where $\hat{\boldsymbol{\Sigma}}_w$ and $\hat{\boldsymbol{\mu}}_k$ denote MLEs for $\boldsymbol{\Sigma}_w$ and $\boldsymbol{\mu}_k$.

- When $p \gg n$, we cannot invert $\hat{\Sigma}_w$.
- Can use a regularized estimate of Σ_w , such as

$$\boldsymbol{\Sigma}_{w}^{D} = \begin{pmatrix} \hat{\sigma}_{1}^{2} & 0 & \dots & 0 \\ 0 & \hat{\sigma}_{2}^{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \hat{\sigma}_{p}^{2} \end{pmatrix}$$

・ロト ・ ロ ト ・ ヨ ト ・ 日 ト ・ の へ ()

٠

13/29

Linear Discriminant Analysis The Normal Model Penalized LDA Optimal Scoring Connections Fisher's Discriminant Problem

Interpretable class centroids in the normal model

- For a sparse classifier, we need zeros in estimate of $\Sigma_w^{-1}\mu_k$.
- An interpretable classifier:
 - Use Σ_w^D , and estimate μ_k according to

$$\underset{\boldsymbol{\mu}_k}{\text{minimize}} \left\{ \sum_{j=1}^p \sum_{i:y_i=k} \frac{(X_{ij} - \mu_{kj})^2}{\sigma_j^2} + \lambda ||\boldsymbol{\mu}_k||_1 \right\}.$$

- ► Apply Bayes' Theorem to obtain a classification rule.
- This is the nearest shrunken centroids proposal, which yields a sparse classifier because we are using a diagonal estimate of the within-class covariance matrix and a sparse estimate of the class mean vectors.

Citation: Tibshirani et al. 2003, Stat Sinica

Linear Discriminant Analysis Penalized LDA Connections The Normal Model Optimal Scoring Fisher's Discriminant Problem

Penalized LDA via optimal scoring

► We can easily extend the optimal scoring criterion:

$$\underset{\boldsymbol{\beta},\boldsymbol{\theta}}{\text{minimize}} \{ \frac{1}{n} || \mathbf{Y}\boldsymbol{\theta} - \mathbf{X}\boldsymbol{\beta} ||^2 + \lambda ||\boldsymbol{\beta}||_1 \} \text{ subject to } \boldsymbol{\theta}^T \mathbf{Y}^T \mathbf{Y} \boldsymbol{\theta} = 1.$$

- ► An efficient iterative algorithm will find a local optimum.
- ► We get sparse discriminant vectors, and hence classification using a subset of the features.

Citation: Clemmensen Hastie Witten and Ersboll 2011, Submitted

Linear Discriminant Analysis The Normal Model Penalized LDA Optimal Scoring Connections Fisher's Discriminant Problem

Penalized LDA via Fisher's discriminant problem

• A simple formulation:

$$\underset{\boldsymbol{\beta}}{\operatorname{maximize}} \{ \boldsymbol{\beta}^{\mathsf{T}} \hat{\boldsymbol{\Sigma}}_{b} \boldsymbol{\beta} - \lambda || \boldsymbol{\beta} ||_{1} \} \text{ subject to } \boldsymbol{\beta}^{\mathsf{T}} \tilde{\boldsymbol{\Sigma}}_{w} \boldsymbol{\beta} \leq 1$$

where $\tilde{\boldsymbol{\Sigma}}_{w}$ is some full rank estimate of $\boldsymbol{\Sigma}_{w}$.

- A non-convex problem, because $\beta^T \hat{\Sigma}_b \beta$ isn't concave in β .
- Can we find a local optimum?

Citation: Witten and Tibshirani 2011, JRSSB

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

うへで 17/29

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Maximizing a function via minorization

The Normal Model Optimal Scoring Fisher's Discriminant Problem

Minorization

 Key point: Choose a minorizing function that is easy to maximize.

 Minorization allows us to efficiently find a local optimum for Fisher's discriminant problem with any convex penalty.

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

Connections between flavors of penalized LDA

つへで 19/29

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

Connections between flavors of penalized LDA

- 1. Normal Model $+ \ell_1$: use a diagonal estimate for Σ_w and then apply ℓ_1 penalty to the class mean vectors.
- 2. Optimal scoring $+ \ell_1$: apply ℓ_1 penalty to discriminant vectors.
- 3. Fisher's discriminant problem $+ \ell_1$: apply ℓ_1 penalty to discriminant vectors.

So are (1) and (3) different? And are (2) and (3) the same?

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

```
Normal Model + \ell_1 and Fisher's + \ell_1
```


つへで 21/29

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

Normal Model $+ \ell_1$ and Fisher's $+ \ell_1$

μ_{11}	μ_{21}	μ_{K1}	
μ_{12}	μ_{22}	μ_{K2}	
$\boldsymbol{\mu}_{13}$	μ_{23}	μ_{K3}	
•	•	•	
•	•	•	
:	:	:	
•	•		
•	•	•	
μ_{1p}	μ_{2p}	μ_{Kp}	

- ► Normal model + l₁ penalizes the elements of this matrix.
- ► Fisher's + l₁ penalizes the left singular vectors.
- ► Clearly these are different...
- ► ...but if K = 2, then they are (essentially) the same.

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

```
Normal Model + \ell_1 and Fisher's + \ell_1
```


୬ < ୯ 23 / 29

Normal $+ \ell_1$ and Fisher's $+ \ell_1$ Fisher's $+ \ell_1$ and Optimal Scoring $+ \ell_1$

```
Fisher's+\ell_1 and Optimal Scoring+\ell_1
```


Both problems involve "penalizing the discriminant vectors" so they must be the same, right?

Normal $+ \ell_1$ and Fisher's $+ \ell_1$ Fisher's $+ \ell_1$ and Optimal Scoring $+ \ell_1$

Fisher's+ ℓ_1 and Optimal Scoring+ ℓ_1

Theorem: For any value of the tuning parameter for $FD+\ell_1$, there exists some tuning parameter for $OS+\ell_1$ such that the solution to one problem is a critical point of the other.

- In other words there is a correspondence between the critical points, though not necessarily the solutions.
- So the resulting "sparse discriminant vectors" may be different!

Normal + ℓ_1 and Fisher's + ℓ_1 Fisher's + ℓ_1 and Optimal Scoring + ℓ_1

Connections

Pros and Cons

Penalized LDA via normal model:

- ► (+) In the case of a diagonal estimate for Σ_w and ℓ₁ penalties on mean vectors, it is well-motivated and simple.
- (-) No obvious extension to non-diagonal estimates of Σ_w .
- ► (-) Cannot obtain a "low-rank" classifier.

Penalized LDA via Fisher's discriminant problem:

- ► (+) Any convex penalties can be applied to discriminant vectors.
- (+) Can use any full-rank estimate of Σ_w .
- ► (+) Can obtain a "low-rank" classifier.

Penalized LDA via optimal scoring:

- (+) An extension of regression.
- \blacktriangleright (+) Any convex penalties can be applied to discriminant vectors.
- ► (+) Can obtain a "low-rank" classifier.
- (-) Cannot use any estimate of Σ_w .
- ► (-) Usual motivation for OS is that it yields the same discriminant vectors as Fisher's problem. Not true when penalized!

Conclusions

• A sensible way to regularize regression when $p \gg n$:

$$\underset{\boldsymbol{\beta}}{\text{minimize}} \{ || \mathbf{y} - \mathbf{X}\boldsymbol{\beta} ||^2 + P(\boldsymbol{\beta}) \}.$$

- One could argue that this is *the* way to penalize regression.
- But as soon as we step away from regression, even to a closely related problem like LDA, the situation becomes much more complex – there is no longer a "single way" to approach the problem.
- And the situation becomes only more complex for more complex statistical methods!
- Need a principled framework to determine which penalized extension of established statistical methods is "best".

References

- Witten and Tibshirani (2011) Penalized classification using Fisher's linear discriminant. To appear in *Journal of the Royal Statistical Society, Series B.*
- Clemmensen, Hastie, Witten, and Ersboll (2011) Sparse discriminant analysis. Submitted.