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Overview

I There has been a great deal of interest in the past 15+ years
in penalized regression,

minimize
β

{||y − Xβ||2 + P(β)},

especially in the setting where the number of features p
exceeds the number of observations n.

I P is a penalty function. Could be chosen to promote
I sparsity: e.g. the lasso, P(β) = ||β||1
I smoothness
I piecewise constancy...

I How can we extend the concepts developed for regression
when p > n to other problems?

I A Case Study: Penalized linear discriminant analysis.
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The Normal Model
Fisher’s Discriminant Problem
Optimal Scoring

The classification problem

I The Set-up:
I We are given n training observations x1, . . . , xn ∈ Rp, each of

which falls into one of K classes.
I Let y ∈ {1, . . . ,K}n contain class memberships for the training

observations.

I Let X =

xT1
...

xTn

.

I Each column of X (feature) is centered to have mean zero.

I The Goal:
I We wish to develop a classifier based on the training

observations x1, . . . , xn ∈ Rp, that we can use to classify a test
observation x∗ ∈ Rp.

I A classical approach: linear discriminant analysis.
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LDA via the normal model

I Fit a simple normal model to the data:

xi |yi = k ∼ N(µk ,Σw )

I Apply Bayes’ Theorem to obtain a classifier: assign x∗ to the
class for which δk(x∗) is largest:

δk(x∗) = x∗TΣ−1
w µk −

1

2
µT
k Σ−1

w µk + logπk
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Fisher’s discriminant

A geometric perspective: project the data to achieve good
classification.
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Fisher’s discriminant and the associated criterion

Look for the discriminant vector β ∈ Rp that maximizes

βT Σ̂bβ subject to βT Σ̂wβ ≤ 1.

I Σ̂b is an estimate for the between-class covariance matrix.

I Σ̂w is an estimate for the within-class covariance matrix.

I This is a generalized eigen problem; can obtain multiple
discriminant vectors.

I To classify, multiply data by discriminant vectors and perform
nearest centroid classification in this reduced space.

I If we use K − 1 discriminant vectors then we get the LDA
classification rule. If we use fewer than K − 1, we get
reduced-rank LDA.
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LDA via optimal scoring

I Classification is such a bother. Isn’t regression so much nicer?

I It wouldn’t make sense to solve

minimize
β

{||y − Xβ||2}.

I But can we formulate classification as a regression problem in
some other way?
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LDA via optimal scoring

I Let Y be a n × K matrix of dummy variables; Yik = 1yi=k .

minimize
β,θ

{||Yθ − Xβ||2} subject to θTYTYθ = 1.

I We are choosing the optimal scoring of the class labels in
order to recast the classification problem as a regression
problem.

I The resulting β is proportional to the discriminant vector in
Fisher’s discriminant problem.

I Can obtain the LDA classification rule, or reduced-rank LDA.
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LDA when p � n

When p � n, we cannot apply LDA directly, because the
within-class covariance matrix is singular.

There is also an interpretability issue:

I All p features are involved in the classification rule.
I We want an interpretable classifier. For instance, a

classification rule that is a
I sparse,
I smooth, or
I piecewise constant

linear combination of the features.
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Penalized LDA

I We could extend LDA to the high-dimensional setting by
applying (convex) penalties, in order to obtain an
interpretable classifier.

I For concreteness, in this talk: we will use `1 penalties in order
to obtain a sparse classifier.

I Which version of LDA should we penalize, and does it matter?
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Penalized LDA via the normal model

I The classification rule for LDA is

x∗T Σ̂−1
w µ̂k −

1

2
µ̂T
k Σ̂−1

w µ̂k ,

where Σ̂w and µ̂k denote MLEs for Σw and µk .

I When p � n, we cannot invert Σ̂w .

I Can use a regularized estimate of Σw , such as

ΣD
w =


σ̂21 0 . . . 0

0 σ̂22
. . .

...
...

. . .
. . . 0

0 . . . 0 σ̂2p

 .
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Interpretable class centroids in the normal model

I For a sparse classifier, we need zeros in estimate of Σ−1
w µk .

I An interpretable classifier:
I Use ΣD

w , and estimate µk according to

minimize
µk


p∑

j=1

∑
i :yi=k

(Xij − µkj)
2

σ2
j

+ λ||µk ||1

 .

I Apply Bayes’ Theorem to obtain a classification rule.

I This is the nearest shrunken centroids proposal, which yields a
sparse classifier because we are using a diagonal estimate of
the within-class covariance matrix and a sparse estimate of
the class mean vectors.

Citation: Tibshirani et al. 2003, Stat Sinica
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Penalized LDA via optimal scoring

I We can easily extend the optimal scoring criterion:

minimize
β,θ

{1

n
||Yθ − Xβ||2 + λ||β||1} subject to θTYTYθ = 1.

I An efficient iterative algorithm will find a local optimum.

I We get sparse discriminant vectors, and hence classification
using a subset of the features.

Citation: Clemmensen Hastie Witten and Ersboll 2011, Submitted
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Penalized LDA via Fisher’s discriminant problem

I A simple formulation:

maximize
β

{βT Σ̂bβ − λ||β||1)} subject to βT Σ̃wβ ≤ 1

where Σ̃w is some full rank estimate of Σw .

I A non-convex problem, because βT Σ̂bβ isn’t concave in β.

I Can we find a local optimum?

Citation: Witten and Tibshirani 2011, JRSSB
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Minorization

I Key point: Choose a minorizing function that is easy to
maximize.

I Minorization allows us to efficiently find a local optimum for
Fisher’s discriminant problem with any convex penalty.
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Connections between flavors of penalized LDA

1. Normal Model + `1: use a diagonal estimate for Σw and then
apply `1 penalty to the class mean vectors.

2. Optimal scoring + `1: apply `1 penalty to discriminant
vectors.

3. Fisher’s discriminant problem + `1: apply `1 penalty to
discriminant vectors.

So are (1) and (3) different? And are (2) and (3) the same?
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Normal Model + `1 and Fisher’s + `1

I Normal model + `1 penalizes the
elements of this matrix.

I Fisher’s + `1 penalizes the left singular
vectors.

I Clearly these are different...

I ...but if K = 2, then they are (essentially)
the same.
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Normal + `1 and Fisher’s + `1
Fisher’s + `1 and Optimal Scoring + `1

Fisher’s+`1 and Optimal Scoring+`1

Both problems involve “penalizing the discriminant vectors” so
they must be the same, right?
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Fisher’s+`1 and Optimal Scoring+`1

Theorem: For any value of the tuning parameter for FD+`1, there
exists some tuning parameter for OS+`1 such that the solution to
one problem is a critical point of the other.

I In other words – there is a correspondence between the critical
points, though not necessarily the solutions.

I So the resulting “sparse discriminant vectors” may be
different!

25 / 29



Linear Discriminant Analysis
Penalized LDA

Connections

Normal + `1 and Fisher’s + `1
Fisher’s + `1 and Optimal Scoring + `1

Connections

26 / 29



Linear Discriminant Analysis
Penalized LDA

Connections

Pros and Cons

Penalized LDA via normal model:

I (+) In the case of a diagonal estimate for Σw and `1 penalties on mean
vectors, it is well-motivated and simple.

I (-) No obvious extension to non-diagonal estimates of Σw .

I (-) Cannot obtain a “low-rank” classifier.

Penalized LDA via Fisher’s discriminant problem:

I (+) Any convex penalties can be applied to discriminant vectors.

I (+) Can use any full-rank estimate of Σw .

I (+) Can obtain a “low-rank” classifier.

Penalized LDA via optimal scoring:

I (+) An extension of regression.

I (+) Any convex penalties can be applied to discriminant vectors.

I (+) Can obtain a “low-rank” classifier.

I (-) Cannot use any estimate of Σw .

I (-) Usual motivation for OS is that it yields the same discriminant vectors
as Fisher’s problem. Not true when penalized! 27 / 29
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Conclusions

I A sensible way to regularize regression when p � n:

minimize
β

{||y − Xβ||2 + P(β)}.

I One could argue that this is the way to penalize regression.

I But as soon as we step away from regression, even to a closely
related problem like LDA, the situation becomes much more
complex – there is no longer a “single way” to approach the
problem.

I And the situation becomes only more complex for more
complex statistical methods!

I Need a principled framework to determine which penalized
extension of established statistical methods is “best”.
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